Minimizing System Modification in an Incremental Design Approach

Pop, Paul; Eles, Petru; Pop, Traian; Peng, Zebo

Published in:
Ninth International Symposium on Hardware/Software Codesign. CODES 2001 (IEEE Cat. No.01TH8571)

Link to article, DOI:
10.1109/HSC.2001.924672

Publication date:
2001

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Minimizing System Modification in an Incremental Design Approach

Paul Pop, Petru Eles, Traian Pop, Zebo Peng
Department of Computer and Information Science
Linköpings universitet, Sweden
Incremental Design Process

- Start from an already existing system with applications
- Implement new functionality on this system
 Mapping and Scheduling

- To reduce design and testing time:
 As few as possible modifications of the existing applications

- After the new functionality has been implemented:
 It should be easy to add functionality in the future
Mapping and Scheduling Problem

Future applications

Do not exist yet at Version N!

Current applications

Map and schedule so that the future applications will have a chance to fit.

Existing applications

Modify (re-map) so that the current applications will fit.

Modify (re-map)

so that the current applications will fit.
Problem Formulation

Input
- A set of existing applications modelled using process graphs.
- A current application to be mapped modelled using process graphs.
- Each process graph in the application has its own period and deadline.
- Each process has a potential set of nodes to be mapped on and a WCET.
- The system architecture is given.

Output
- A mapping and scheduling of the current application, so that:
 Requirement a: constraints of the current application are satisfied and minimal modifications are performed to the existing applications.
 Requirement b: new future applications can be mapped on the resulted system.

Notes
- Hard real-time applications
- Static cyclic scheduling of processes and messages
- Time-triggered protocol, TDMA
Mapping and Scheduling Strategy

- Initial mapping and scheduling

 a) - Satisfying the constraints for the current application
 - Minimizing the modification cost

 b) - Prediction of success in adding future applications
 - Minimizing the objective function

\[
C = w_1^P (C_1^P) + w_1^m (C_1^m) + w_2^P \max(0, t_{\text{need}} - C_2^P) + w_2^m \max(0, b_{\text{need}} - C_2^m)
\]
Characterizing Existing Applications

R(\{\Gamma_7\})=20, R(\{\Gamma_3\})=50, R(\{\Gamma_3, \Gamma_7\})=70,
R(\{\Gamma_4, \Gamma_7\})=90 (the modification of \Gamma_4 triggers the modification of \Gamma_7),
R(\{\Gamma_2, \Gamma_3\})=120, R(\{\Gamma_3, \Gamma_4, \Gamma_7\})=140, R(\{\Gamma_1\})=150,

The total number of possible subsets is 16.
Mapping and Scheduling, Requirement a)

- **Mapping and scheduling of the current application**, so that:
 Constraints of the current application are satisfied and **minimal modifications** are performed to the existing applications.

- **Subset selection problem**
 Select that subset Ω of existing applications which guarantees that the current application fits and the modification cost $R(\Omega)$ is minimized:

$$R(\Omega) = \sum_{\Gamma_i \in \Omega} R_i$$
Mapping and Scheduling Strategy

- Initial mapping and scheduling

- Requirement a)
 Minimizing the modification cost $R(\Omega)$, subset selection:
 - Exhaustive Search (ES)
 - Ad-Hoc Solution (AH)
 - Subset Selection Heuristic (SH)

- Requirement b)
 Minimizing the objective function:

Experimental Results

Average Modification Cost $R(\Omega)$

- **AH**
- **SH**
- **ES**

Number of processes

- 320
- 400
- 480
- 560
- 640
Conclusions

- Mapping and scheduling of distributed embedded systems for hard-real time applications.

- Incremental design process
 - Already existing system,
 - Implement new functionality,
 - a) Existing system modified as little as possible,
 - b) new functionality can be easily added to the system.

- Mapping strategy
 - a) Subset selection to minimize modification cost,
 - b) Two design criteria, objective function.