Application of dietary surveys for risk assessment in Nordic countries

Publication date: 2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Application of dietary surveys for risk assessment in Nordic countries

The NORDIRA project

serve as a platform for capacity building in the fields of dietary survey methods as well as food safety related risk assessment methods

share experiences within applications of combining data of dietary surveys and occurrence of chemical hazards

discuss methodological developments needed for improving, standardizing and harmonizing data collection methods and representativeness and quality of food consumption data in the framework of risk assessment

Examples of how dietary surveys are used in exposure assessment of non nutrients are shown in the following......

Calculating exposure to caffeine by deterministic model:
Intake from food =
Fixed value for food chemical concentration x fixed value for food consumption
Total intake = Sum of intake from all foods containing the chemical

Food consumption data:
3-7 d food diary, 24 h recall

Conclusions: Current exposure of children in the Nordic countries to caffeine is of concern. Ten percent of children with the highest consumption exceeded the level where the tolerance may develop. Approximately 20 % of the teenagers might be exposed to levels of caffeine from caffeine-containing soft drinks inducing anxiety and jitteriness. Methologically intake assessment of caffeine and estimation of exposure to caffeine from soft-drinks were partly based on assumptions due to lack of adequate information.
Case 2. Estimated intake of benzoic and sorbic acids in Denmark. Leth et al. Food Additives & Contaminants 2010

Occurrence data:
Monitoring content of benzoic and sorbic acids in all food groups were allowed from 2001 to 2006. In all 1526 samples.

Food consumption data:
The Danish National Survey of Dietary Habits and Physical Activity 2000-2004
Intake estimation was based on deterministic calculations.

Conclusions: The median intake of benzoic and sorbic acids were well below the acceptable daily intakes (ADI). Soft drinks and mayonnaise contributed most to the intake of benzoic acid (Figure) and sliced bread to the intake of sorbic acid. About 10% of subjects exceeded the ADI for benzoic acid and 5-10% for sorbic acid. A reduction of the maximum limits should be considered especially for the food groups contributing most for the intake. It was found relevant to estimate exposure to additives both by high intake calculation and average intake calculation.

Conclusions: No concern with chronic exposure by probabilistic model. Organophosphates and carbamates resulted in exceeding acute dose limit (Figure). Probability of an aRfD exceedance decreased from 2002 to 2007 in adults. Monitoring of subpopulations recommended. Dietary recommendations support increasing vegetable consumption. For chronic exposure, food consumption for different time periods is necessary.

Occurrence data: Residue analysis of legal and illegal pesticides in 10600 samples.

Food consumption data: FINDIET2002, FINDIET2007, 48-h recall, food diaries (www.thl.fi)

NFG: Nation wide part: qualitative food questionnaire.
High pollutant intake: In-depth study including FFQ and questionnaires, laboratory samples (2003)
Lake Mjosa Study: FFQ, questionnaires and laboratory samples (2004-2005)
Estimating dietary intake of dioxins, PCBs PBDEs etc., PFCs and metals (Hg, Cd, Pb, As etc.)

Conclusions: Some people exceed tolerable intake for dl-compounds (Figure). Despite high nutrient content dietary fish liver and seagull eggs should be restricted due to dl-compounds and possible vitamin A-D antagonism.
Case 5. Assessment of dietary cadmium exposure
(Sand & Becker 2012)

Occurrence data:
Monitoring programmes, market basket surveys
Between 1999-2008
Food consumption data:
Riksmaten 1997-1998

Conclusions:
Contributors of cadmium intake differ by intake percentiles (Figure).
Potatoes and wheat flour are most important products for the Cd intake. Seafood, root vegetables and spinach contribute relatively more to the Cd intake among high intake individuals compared to the situation among median intake individuals. Matching level of occurrence data and consumption data matters.
Learnings from the NORDIRA-project

- Matching occurrence data and food consumption data is case-specific
- Matching is working if foods described in similar details
- None food classification is satisfying all needs, tailored risk assessment is necessary
- Parallel consumption data is challenging I DO NOT UNDERSTAND THIS SENTENCE – in what way challenging (daily record, recall, monthly frequencies)
- Else?