Bioenergy yield from cultivated land in Denmark - competition between food, bioenergy and fossil fuels under physical and environmental constraints

Callesen, Ingeborg; Grohnheit, Poul Erik; Østergård, Hanne

Published in:
Collection of extended abstracts

Publication date:
2011

Citation (APA):
Bioenergy yield from cultivated land in Denmark – competition between food, bioenergy and fossil fuels under physical and environmental constraints

1,2Ingeborg Callesen, 2Poul Erik Grohnheit and 2Hanne Østergård

1 DTU-Man, 2 Risø-DTU
Bioenergy past

Danish Energy Agency, 2006
Renewable energy future

Danmarks energifremskrivning frem til 2030
[Energy projection to 2030]
Danish Energy Agency, 2009
Domestic bioenergy?

- What is the potential biomass supply in PJ yr$^{-1}$?
- What is the monetary cost?
- Energy efficiency?
- Land availability and suitability for annual crops, short rotation forest (willow) and plantation spruce forest?
- Consequences for nitrogen load
Model overview

- **Cultivation**
 - Starch crops
 - Oil crops
 - Sugar crops
 - Grassy crops
 - Willow (SRF)
 - Forest

- **Conversion**
 - Ethanol 57%
 - Heat/CHP 90%
 - RME 70%
 - 1G/2G ethanol 54%
 - Biogas 54%
 - Biogas 54%
 - Heat/CHP 81%
 - Heat/CHP 69%

- Nitrogen load
 - \(\text{N}_2\text{O} \)
 - \(\text{NO}_3^- \)
Model parameters

• Denmark, total area 4309 kha
• Amounts and costs of seeds, machine operations, pesticides, fuels, fertilisers and lime.
• Bioenergy conversion types: district heating, heat and power, biogas, biodiesel (RME), bioethanol (data from AEBIOM, 2005)
Minimize fuel cost

- Cost minimization model
- Linear programming – a technique developed within operations research
- Objective function: \(\text{Min } Y = cX \)
- Constraints: \(aX \leq b, X \geq 0, X \sim X_1 - X_n \)

- Energy mix of bioenergy and diesel oil

\[
\min \sum \left\{ p_{ic(oil)} \times x_{itc} \times a_{it} + p_{oil} \times (E - E_{bio}) \right\}
\]

\(a\sim\text{area}, i\sim\text{crop representative}, c\sim\text{commodity}, t\sim\text{soil type}, oil\sim\text{oil price}\)
A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
03	Social	Glazed cups revenue (farm land and fed. P)	6	6	6	6	FALSE	FALSE	FALSE	FALSE															
04	Social	Sugar beet revenue (farm land and fed. P)	11	11	11	11	FALSE	FALSE	FALSE	FALSE															
05	Social	Green Fruits revenue (farm land and fed. P)	38	38	38	38	FALSE	FALSE	FALSE	FALSE															
06	Political	Incentive payments	0	0	0	0	108	108	108	108															
07	Incentive payments		0	0	0	0	108	108	108	108															

Solve Parameters

Set Target Cell: B217

Equal To: Max

Objective of: value of: 0

By Changing Cells: G143, H143, F91

Subject to the Constraints:

Subject to:

Add: P500, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25

Add: P500, P25, P25, P25

Options: P500, P25, P25, P25
Model constraints I

• Physical
 – Cultivated land area 3200 kha (2005)
 – Forest area: 600 kha
 – Soil types: 48% sandy, 52% loamy

• Agronomy – crop rotations
 – e.g. oilseed rape every 4 years~max 25%

• Environmental: biodiversity ~area reservation for permanent grassland, limits on willow area
Oil price and commodity prices

- Oil price range from index 25 to index 200
 - Index 100 ~2005~9.4€ GJ$^{-1}$
Scenario constraints

Type Model constraints

<table>
<thead>
<tr>
<th>Type</th>
<th>Model constraints</th>
<th>P100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>Cultivated land</td>
<td>3200</td>
</tr>
<tr>
<td>Physical</td>
<td>Minimum forest area</td>
<td>600</td>
</tr>
<tr>
<td>Physical</td>
<td>Maximum forest area PK 8</td>
<td>300</td>
</tr>
<tr>
<td>Physical</td>
<td>Maximum forest area PK 12</td>
<td>300</td>
</tr>
<tr>
<td>Landscape</td>
<td>Permanent grass (out of rotation)</td>
<td>175</td>
</tr>
<tr>
<td>Landscape</td>
<td>Maximum area of annual crops and SRF area</td>
<td>2425</td>
</tr>
<tr>
<td>Soil quality</td>
<td>JB 1-3 + JB 11 (humus) of land area</td>
<td>1164</td>
</tr>
<tr>
<td>Soil quality</td>
<td>JB 4-10 and 12 (calcareous) of land area</td>
<td>1261</td>
</tr>
<tr>
<td>Crop rotation</td>
<td>Rape seed area of annual crop land (loamy)</td>
<td>111</td>
</tr>
<tr>
<td>Crop rotation</td>
<td>Rape seed area of annual crop land (sandy)</td>
<td>0</td>
</tr>
<tr>
<td>Landscape</td>
<td>Minimum share of clover grass, in rotation</td>
<td>200</td>
</tr>
<tr>
<td>Landscape</td>
<td>Maximum area of SRF (willow), kha</td>
<td>46</td>
</tr>
<tr>
<td>Crop rotation</td>
<td>Area limitation on sugar beet (and soil quality)</td>
<td>46</td>
</tr>
<tr>
<td>Landscape and biodiversity</td>
<td>Crop mix, annual crops, sandy soils</td>
<td>934</td>
</tr>
<tr>
<td>Landscape and biodiversity</td>
<td>Crop mix, annual crops loamy soils</td>
<td>1081</td>
</tr>
<tr>
<td>Ground water</td>
<td>N leaching (k t N/yr)</td>
<td>180</td>
</tr>
<tr>
<td>GHG</td>
<td>N2O emission from cultivated land (kt N2O-N/yr)</td>
<td>8</td>
</tr>
<tr>
<td>Carbon balance - soil humus</td>
<td>Straw for feed/animal husbandry</td>
<td>18</td>
</tr>
<tr>
<td>Social</td>
<td>Timber/construction wood</td>
<td>5</td>
</tr>
<tr>
<td>Social</td>
<td>Wheat grain reserved for food and feed, PJ</td>
<td>167</td>
</tr>
<tr>
<td>Social</td>
<td>Oil seed rape reserved for food and feed, PJ</td>
<td>6</td>
</tr>
<tr>
<td>Social</td>
<td>Sugar beets for sugar production, PJ</td>
<td>11</td>
</tr>
<tr>
<td>Social</td>
<td>Grass for feed, PJ</td>
<td>38</td>
</tr>
</tbody>
</table>

Scenario A

Food & feed 100% (=2005)

- Willow < 0.2% area
- Permanent grass 175 kha

Scenario B

Food & feed 50% of scenario A

- Willow < 25% area
- Permanent grass 275 kha
Crop yields

Net energy harvest yield

<table>
<thead>
<tr>
<th>Crop Type</th>
<th>GJ ha⁻¹·Yr⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-wheat, sandy</td>
<td>50</td>
</tr>
<tr>
<td>W-wheat, loamy</td>
<td>100</td>
</tr>
<tr>
<td>Oilseed rape, sandy</td>
<td>150</td>
</tr>
<tr>
<td>Oilseed rape, loamy</td>
<td>200</td>
</tr>
<tr>
<td>Sugar beet</td>
<td>250</td>
</tr>
<tr>
<td>Grass/clover</td>
<td>300</td>
</tr>
<tr>
<td>Willow, sandy</td>
<td>100</td>
</tr>
<tr>
<td>Willow, loamy</td>
<td>150</td>
</tr>
<tr>
<td>Spruce, low yield</td>
<td>50</td>
</tr>
<tr>
<td>Spruce, avg. Yield</td>
<td>100</td>
</tr>
</tbody>
</table>

[Diagram showing net energy harvest yield for various crop types.]
Crop area distribution

(a) 100% food&feed
(b) 50% food&feed

- Fallow + set-aside
- Wood, average
- Wood, sandy
- Willow, loamy
- Willow, sandy
- Clover grass (rotation)
- Sugar beet
- Rape, loamy
- Rape, sandy
- Wheat, loamy
- Wheat, sandy

Land area, kha

Oil index (2005=100)
Bioenergy yield

Scenario/ oil index

100%food&feed

50%food&feed

25 50 75 100-150 160-190

25 50 75-130 140-160 170-190

Pl yr⁻¹

0 20 40 60 80 100 120 140 160 180

Biogas
RME
Ethanol
CHP

100%food&feed
50%food&feed

DTU
Nitrogen load from cultivated land

- Reduction in N use and thus in N leaching and in N$_2$O losses
Bioenergy future scenarios

<table>
<thead>
<tr>
<th></th>
<th>AGR</th>
<th>FOR</th>
<th>WASTE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jørgensen, 2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>5</td>
<td>25</td>
<td>19</td>
<td>50</td>
</tr>
<tr>
<td>Scenario</td>
<td>82</td>
<td>32</td>
<td>33</td>
<td>147</td>
</tr>
<tr>
<td>EEA, 2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>17</td>
<td>4</td>
<td>96</td>
<td>117</td>
</tr>
<tr>
<td>2030</td>
<td>4</td>
<td>8</td>
<td>92</td>
<td>105</td>
</tr>
<tr>
<td>Our study, Oil index 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100%FF</td>
<td>0</td>
<td>21</td>
<td>32</td>
<td>53</td>
</tr>
<tr>
<td>50%FF</td>
<td>6</td>
<td>125</td>
<td>18</td>
<td>149</td>
</tr>
</tbody>
</table>
Biomass in EU27

Potential self sufficiency (2030 supply vs 2005 consumption)

Total: 8 – 25 EJ yr⁻¹

After deWit et al. 2009, figure 6, Biomass & bioenergy
The Refuel project, www.refuel.eu
Conclusion

• More biomass for bioenergy at increasing oil prices
• Domestic bioenergy potentials are limited due to land and environmental constraints (~20% of primary energy use)
• Increased biomass imports necessary to meet strategic goals of bioenergy supply
• Large N load reductions possible by growing more short rotation forest (willow) or by planting high forest
More about the model

Optimization of bioenergy yield from cultivated land in Denmark

Ingeborg Callesena,*, Poul Erik Grohnheitb, Hanne Østergårda

aBiosystems Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark – DTU, Building 301, P.O. Box 49, Frederiksbergvej 399, DK-4000 Roskilde, Denmark

bSystems Analysis Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark – DTU, Building 110, P.O. Box 49, Frederiksbergvej 399, DK-4000 Roskilde, Denmark