Wind energy challenges wind resource assessment and large scale integration

Hansen, Jens Carsten

Publication date:
2012

Link back to DTU Orbit

Citation (APA):
Sustainable Energy for All: Powering Africa
Copenhagen, 24th September 2012

Wind energy challenges
wind resource assessment and large scale integration

Jens Carsten Hansen
Head of Wind Energy Systems Section

DTU Wind Energy
Department of Wind Energy
Outline

• Introduction – status and challenges
• Wind resource assessment
• Large scale integration of wind power – some projects
• Concluding remarks

The challenge

Cumulative Global Wind Power Development
Actual 1990-2011 Forecast 2012-2016 Prediction 2017-2021

Source: BTM Consult - A Part of Navigant - March 2012
International wind turbine standards - IEC

a) Safety & functional requirements
b) Test methods
c) Certification procedures
d) Interfaces & Component

IEC TC88: IEC 61400 series:
- IEC 61400-1 Design requirements
- IEC 61400-2 Small wind turbines
- IEC 61400-3 Design requirements for offshore wind turbines
- IEC 61400-4 Gears for wind turbines
- IEC 61400-5(5) Wind Turbine Rotor Blades
- IEC 61400-11, Acoustic noise measurement techniques
- IEC 61400-12-1 Power performance measurements
- IEC 61400-13 Measurement of mechanical loads
- IEC 61400-14 Declaration of sound power level and tonality
- IEC 61400-21 Measurement of power quality characteristics
- IEC 61400-22 Conformity Testing and Certification of wind turbines
- IEC 61400-23 TR Full scale structural blade testing
- IEC 61400-24 TR Lightning protection
- IEC 61400-25-(1-6) Communication
- IEC 61400-26 TS Availability
- IEC 61400-27 Electrical simulation models for wind power generation

International partnerships such as e.g. TPWIND and EERA in Europe

The EERA Joint Programme on Wind Energy aims at accelerating the realization of the EU SET-plan goals and to provide added value through:
- Strategic leadership of the underpinning research
- Joint prioritisation of research tasks and infrastructure
- Alignment of European and national research efforts
- Coordination with industry, and
- Sharing of knowledge and research infrastructure.
Wind energy – Global and Africa

Installed capacity in 2010 and 2011 (Global)

<table>
<thead>
<tr>
<th>Region</th>
<th>Installed MW 2010</th>
<th>Accrued MW 2010</th>
<th>Installed MW 2011</th>
<th>Accrued MW 2011</th>
<th>% of installed MW 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Americas</td>
<td>10,980</td>
<td>21,130</td>
<td>15,226</td>
<td>25,988</td>
<td>24.5%</td>
</tr>
<tr>
<td>Total Europe</td>
<td>11,630</td>
<td>56,277</td>
<td>10,655</td>
<td>79,282</td>
<td>56.4%</td>
</tr>
<tr>
<td>Total South & East Asia</td>
<td>927</td>
<td>3,368</td>
<td>894</td>
<td>4,892</td>
<td>1.1%</td>
</tr>
<tr>
<td>Total Africa</td>
<td>98</td>
<td>1,112</td>
<td>133</td>
<td>1,245</td>
<td>0.3%</td>
</tr>
<tr>
<td>Total other continents and areas</td>
<td>79</td>
<td>208</td>
<td>81.6</td>
<td>290</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

Annual MW installed capacity 39,404 41,712
Cumulative MW installed in the world 199,520 241,029

Source: BTM Consult - A Part of Navigant - March 2012

Wind energy forecast – Global and Africa

Forecast for wind power development 2012-2016 (Global)

<table>
<thead>
<tr>
<th>Region</th>
<th>Forecast 2012-2016 (incl. Offshore)</th>
<th>Installed capacity 2012-2016 (incl. Offshore)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Americas</td>
<td>56,563 9,573 11,450 13,850 14,850 17,350</td>
<td>99,200 125,763</td>
</tr>
<tr>
<td>Total Europe</td>
<td>97,588 10,226 11,100 13,075 13,625 18,750</td>
<td>73,050 170,638</td>
</tr>
<tr>
<td>Total South & East Asia</td>
<td>79,282 21,900 20,400 21,500 22,500 26,500</td>
<td>109,450 188,732</td>
</tr>
<tr>
<td>Total OECD-Pacific</td>
<td>6,045 694 900 1,500 2,000 2,650 3,050</td>
<td>10,100 16,145</td>
</tr>
<tr>
<td>Total other areas</td>
<td>1,533 215 595 1,130 1,585 2,280 2,455</td>
<td>8,045 9,998</td>
</tr>
<tr>
<td>Total new capacity every year</td>
<td>41,712 43,195 47,805 52,560 58,180 66,105</td>
<td>269,845 510,874</td>
</tr>
</tbody>
</table>

Accrued capacity (MW) 241,029 284,224 332,029 384,589 442,769 510,874

Source: BTM Consult - A Part of Navigant - March 2012

DTU Wind Energy, Technical University of Denmark
Africa’s challenge

Sustainable, cost efficient and long term solutions are needed.

How can Africa be part of the global wind energy development?

This presentations takes a look at two important issues:

- Wind resource assessment
- Integration of wind power in power systems

Why wind resource assessment - 1?

Traditional climatology and global models (GCM) do not provide the answer

Source: European Center for Medium Range Weather Forecasting (ECMWF) – ERA Interim reanalysis
Why wind resource assessment - 2?

Wind provides the income in cost-benefit

- Investment costs
- Operation and maintenance costs
- Electricity production ~ Wind resources
- Turbine lifetime
- Discount rate
- Environmental benefits

Modelling is necessary and it has to be good

Energy in wind

\[P = \frac{1}{2} \rho U^3 \quad \text{[W/m}^2\text{]} \]

Wind speed \(U \quad \text{[m/s]} \)

Measurements + Linear interpolation = NO
Numerical Wind Atlas
Downscaling from global reanalysis data

- **Global**
- **Regional**
- **Local**

Mesoscale modelling
KAMM/WAsP, MMS, WRF, etc.

Microscale modelling
(WAsP, other linear/nonlinear models)

Wind Atlas for South Africa
Western Cape and parts of Eastern and Northern Cape
Verified Numerical Wind Atlas for South Africa

the database

Wind climate data available every 5 km × 5 km – corresponding to 15000 virtual masts.

Workshops and guidelines describe WASA methods, tools, products and their application.

Data are available through wasadata.csir.co.za/wasa1/WASAData

10 WASA masts and data

High quality wind measurements for verification of modelling

www.wasa.csir.co.za
Global Wind Atlas for policy and planning

Initiative by Clean Energy Ministerial (CEM) Multilateral Working Group on Solar and Wind Technologies

- Intended for policy makers, energy planners and Integrated Assessment Modelling (IAM)
- The Global Wind Atlas will provide a unified, high resolution, and public-domain dataset of wind energy resources for the whole world by 2015
- DTU Wind Energy has developed the framework methodology for the project
 - microscale modelling capturing small scale wind speed variability
 - no mesoscale modelling
 - uncertainty estimates
- Results to be published and methodology to ensure transparency (peer review)
- DK government funds DTU Wind Energy
- Partners at this stage:
 - International Renewable Energy Agency (IRENA) - coordinator
 - DTU Wind Energy
 - CENER, Spain
 - DLR, Germany
 - NREL and NCAR, USA
 - Other technical partners for creating the infrastructure

Why wind power integration?
The Danish example

Source: Energinet.dk - EcoGrid

- Approximately 20% of electricity consumption met by wind power – annual average
- Around 3GW installed wind power capacity
- For a few hours in a year wind power covers the entire Danish demand
- 50% of electricity consumption to be met by wind power – annual average
- Around 6GW installed wind power capacity
- Wind power production will often exceed the Danish demand
Denmark Demo

National targets and policy
25% of electricity from wind energy today
50% of electricity from wind energy by 2020

Innovation Partnership between Research and Industry (MegaVind)
... to provide the most effective wind power and wind power plants – that ensure the best possible integration of wind power ...

A demonstration country for wind energy
How to reach the targets and a reliable and cost efficient power system

Wind integration: challenges and solutions

Challenges
• Balancing production and consumption
• Power transfer from production to consumers
• Coping with faults
• Requirements for ancillary services

Solutions and research
• The grid
 • Enhancing grid infrastructure
 • Smart grids
 • Storage
• Power system modelling
 • Variability
 • Dynamic stability
• Wind power plant capabilities
 • Wind farms behaving more like conventional power stations
 • Low voltage ride through
 • Better prediction of wind power
 • More flexible and controllable turbines
The grid – European perspective

European Synchronous Zones

- Existing
- Under construction
- Under consideration

Source: EWEA

DTU Wind Energy, Technical University of Denmark

EU FP7 - TWENTIES

Consortium and budget

10 European Member States
1 Associated Country

United Kingdom (2)
- ALSTOM GRID
- UNIVERSITY OF STRATHCLYDE

France (2)
- EDF
- RTE

Norway
- SINTEF

Denmark (2)
- DONG ENERGY
- ENERGINET
- DTU WIND ENERGY

The Netherlands
- TENNET

Germany (3)
- FRAUNHOFER IWES
- 50 HzT
- SIEMENS Wind Power

Belgium (6)
- ELIA SYSTEM OPERATOR
- EWEA
- CORESO
- UNIVERSITY LIEGE
- UNIVERSITY LEUVEN
- UNIVERSITE LIBRE BRUXELLES

Ireland
- UCD

Portugal
- INESC-PORTO

Spain (5)
- RED ELECTRICA DE ESPAÑA
- IBERDROLA
- ITT COMILLAS
- GAMESA
- ABB S.A.

Total budget: 56.8 MC
EU contribution: 31.8 MC

DTU Wind Energy, Technical University of Denmark

Source: EWEA
EU FP7 - TWENTIES
TRANSMISSION SYSTEM OPERATION WITH LARGE PENETRATION OF WIND AND OTHER RENEWABLE ELECTRICITY SOURCES IN NETWORKS BY MEANS OF INNOVATIVE TOOLS AND INTEGRATED ENERGY SOLUTIONS

EU TWENTIES – WP16.2
(Leader: DTU Wind Energy)

OBJECTIVES
- Study power system balancing and reserve requirements with massive offshore wind power
- Special focus on sudden loss of wind power due to storm passages

RESULTS
- Time series of wind power generation and forecast errors in 2020 and 2030 – development and use of CorWind
- Quantification of reserve requirements
DC grids for integration of large scale wind power (NEF OffshoreDC)

Overall objective:
To develop and apply the Voltage Source Converter (VSC) based HVDC grid technologies in the deployment of offshore wind power.

Partners:
- DTU Wind Energy
- Vestas Technology R&D
- ABB
- Chalmers University
- SINTEF
- DTU- Elektro
- DONG Energy
- Energinet.dk
- VTT
- Statnett

Cluster control:
Communication and control in clusters of wind power plants connected to HVDC offshore grids (control system architecture, allocation of control tasks, communication protocol)

Simulation of Balancing (SimBa) Energinet.dk project
Planning tool to simulate balancing of power

SimBa Overview
SimBa is a multi-module simulation software that Energinet is developing to simulate the balancing and scheduling of the entire power market in Denmark.

Forecast Module Overview
The forecast module of SimBa is configured to calculate the available power and the hour-ahead (HA) forecasted power for the aggregate power output from wind farms in the entire Denmark.
Wind Power Plant capabilities

- Wind farm modeling
- Wind farm control with grid support
- Generic, simplified but realistic power system model delivered by EnergiNet.dk

Ability to control wind farms as wind power plant

Active controllable components in the power system with

- Fault ride through capabilities
- Active and reactive power support of the grid
- Voltage grid support
- Frequency control (island systems)

Prediction

ANEMOS SafeWind (EU FP7)

- OBJECTIVES
To improve wind predictability with focus on extremes at various temporal scales (5 min to days ahead) and at various spatial scales (gusts, thunderstorms and fronts)

- RESULTS
DTU Wind Energy developed a variability forecast for the time scale of variations for the next day or two. DTU Wind Energy also improved data assimilation into the WRF model, using wind farm data directly. For the sister project ANEMOS.plus, DTU Wind Energy implemented the WILMAR model to test probabilistic scheduling for Ireland.
Electrical simulation models for wind power

IEC 61400-27:
- Scope
 - Develop generic models for wind power generation
 - Procedures for validation of models
- Work with new standard initiated in 2009
- Two parts
 - 1. Wind turbines (standard by 2012)
 - 2. Wind farms (standard by 2014)
- 32 members from 14 countries, industry (TSOs, power producers, consultants) and research
- DTU Wind Energy is convener (project manager)

Some concluding remarks

- National wind atlas projects (e.g. in South Africa and Egypt) found new promising resources, geographical coverage, improved accuracy, ...
- Global Wind Atlas for Integrated Assessment Modelling by 2015 – global, needs verification and detail by national activities

- Power system development needed for wind power integration
 - Models for wind power required
 - Link up to European work and lessons learnt in the Denmark Demo
PS: Rural Electrification + RE

DTU Wind Energy
Department of Wind Energy

Example module

Case 3c - Modular electrification concept

Possible diesel generator & storage

Control point: power can only flow to the grid. Additional generation installed in the module is able to export power to earn revenue
Aspects of the Modular form of rural electrification project

The ultimate goal:
• To enable rural and semi-urban communities to receive electricity with a high proportion of renewable energy penetration from local resources

The modular concept aims to be:
• a sustainable, low-carbon and intelligent power system
• able to expand, interconnect and grid connect at a later date
• limiting further loading of the conventional grid
• employing smart grid technology
• encouraging informed consumer participation
• empowering consumers to be producers

Thank you for your attention