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Abstra ct

The Hidden Mark o v Mo del �HMMs� is one of the most successful mo deling approac hes for acoustic

ev en ts in sp eec h recognition� and more recen tly it has pro v en useful for sev eral problems in biolog�

ical sequence analysis� Although the HMM is go o d at capturing the temp oral nature of pro cesses

suc h as sp eec h� it has a v ery limited capacit y for recognizing complex patterns in v olving more than

�rst order dep endencies in the observ ed data sequences� This is due to the �rst order state pro�

cess and the assumption of state conditional indep endence b et w een observ ations� Arti�cial Neural

Net w orks �NNs� are almost the opp osite� they cannot mo del dynamic� temp orally extended phe�

nomena v ery w ell� but are go o d at static classi�cation and regression tasks� Com bining the t w o

framew orks in a sensible w a y can therefore lead to a more p o w erful mo del with b etter classi�cation

abilities�

The o v erall aim of this w ork has b een to dev elop a probabilistic h ybrid of hidden Mark o v mo dels

and neural net w orks and to ev aluate this mo del on a n um b er of standard sp eec h recognition tasks�

This has resulted in a h ybrid called a Hidden Neur al Network �HNN�� in whic h the HMM emission

and transition probabilities are replaced b y the outputs of state�sp eci�c neural net w orks� The

HNN framew ork is c haracterized b y�

Discriminativ e training� HMMs are commonly trained b y the Maxim um Lik eliho o d �ML� crite�

rion to mo del within�class data distributions� As opp osed to this� the HNN is trained b y the

Conditional Maxim um Lik eliho o d �CML� criterion to discriminate b et w een di	eren t classes�

CML training is in this w ork implemen ted b y a gradien t descen t algorithm in whic h the

neural net w orks are up dated b y b ackpr op agation of errors calculated b y a mo di�ed v ersion

of the forw ard�bac kw ard algorithm for HMMs�

Global normalization� A v alid probabilistic in terpretation of the HNN is ensured b y normalizing

the mo del globally at the sequence lev el during CML training� This is di	eren t from the

lo cal normalization of probabilities enforced at the state lev el in standard HMMs�

Flexibilit y� The global normalization mak es the HNN arc hitecture v ery 
exible� An y com bina�

tion of neural net w ork estimated parameters and standard HMM parameters can b e used�

F urthermore� the global normalization of the HNN giv es a large freedom in selecting the

arc hitecture and output functions of the neural net w orks�

T ransition�based mo deling� Con trary to HMMs� whic h mo del data as sequences of �steady�

state� segmen ts� the HNN can fo cus on �transitional� regions b et w een �steady�state� seg�

men ts b y using neural net w orks to estimate conditional transition probabilities� Exp erimen�

tal evidence suggest that suc h �transitional� regions are imp ortan t for h uman p erception of

sp eec h�

The HNN has b een ev aluated on three standard sp eec h recognition tasks� namely sp eak er

indep enden t recognition of � broad phoneme classes� �� �� phoneme classes and �� isolated�w ord

telephone�sp eec h� The TIMIT database has b een used for the phoneme exp erimen ts� whereas the

recen tly released PhoneBo ok database has b een used for the isolated w ord exp erimen ts� F or these

tasks� the HNN yields recognition accuracies that compare fa v orably to results for standard HMMs

and other h ybrids�
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Resum

�

e �Abstra ct in D anish�

Den skjulte Mark o v mo del �HMM� er en af de mest succesfulde meto der inden for talegenk endelse�

og har for n yligt ogs � a fundet an v endelse inden for analyse af biologisk e sekv enser� HMM�en er go d

til at mo delere den tidslige natur i pro cesser s � a som tale� Imidlertid k an HMM�en kun i b egr�nset

omfang genk ende k omplekse m�nstre med mere end f�rste ordens afh�ngigheder i de observ erede

data sekv enser� Dette skyldes f�rste ordens Mark o v an tagelsen� sam t an tagelsen om tilstands

b etinget uafh�ngighed mellem observ ationer� Kunstige Neurale Netv�rk �NN� er n�rmest mo d�

satte af HMM�en� De k an ikk e mo delere dynamisk e� tidsligt udstrakte f�nomener s�rligt go dt�

men er go de til �statisk� klassi�k ation og regression� En forn uftig k om bination af HMM�er og

NN�er k an derfor lede til en mere e	ektiv mo del med b edre klassi�k ations egensk ab er�

Ho v edform � alet med dette arb ejde har v�ret at udvikle en h ybrid af skjulte Mark o v mo deller og

neurale netv�rk� sam t at ev aluere denne mo del p � a en r�kk e standard talegenk endelses problemer�

Dette har resulteret i en h ybrid k aldet skjulte neur ale netv�rk �HNN�� h v ori emissions� og o v ergangs

sandsynlighederne i en HMM er erstattet med output�ene fra tilstands sp eci�kk e neurale netv�rk�

HNN�en er k arakteriseret v ed�

Diskriminativ tr�ning� Standard HMM�er tr�nes s�dv anligvis ud fra Maxim um Lik eliho o d

�ML� kriteriet til at mo dellere sandsynlighedsfordelinger af data i b estem te klasser� I mo d�

s�tning hertil tr�nes HNN�en ud fra Conditional Maxim um Lik eliho o d �CML� kriteriet til

at sk elne eller diskriminere mellem klasser� CML tr�ning af HNN�en er i dette arb ejde im�

plemen teret med en gradien t nedstignings algoritme� h v ori de neurale netv�rk op dateres v ed

b ackpr op agation af fejl b eregnet med en mo di�ceret v ersion af forw ard�bac kw ard algoritmen

for standard HMM�er�

Global normalisering� En k orrekt sandsynlighedsteoretisk fortolkning af HNN�en er sikret v ed

at normalisere mo dellen globalt p � a sekv ens niv eau� Dette er forsk elligt fra den lok ale nor�

malisering af sandsynligheder p � a tilstands niv eau� som er p � akr�v et i standard HMM�er�

Fleksibilitet� Den globale normalisering g�r HNN meget 
eksib el� Enh v er k om bination af parame�

tre estimeret med neurale netv�rk og standard HMM parametre k an b en yttes� Den globale

normalisering giv er endvidere en stor frihed i v alget af arkitektur og ouput funktion for de

neurale netv�rk�

Ov ergangs�baseret mo dellering� HNN�en k an� i mo ds�tning til HMM�er� fokusere p � a �o v er�

gangs� regioner mellem �station�re� segmen ter i datasekv ensen v ed brug af neurale netv�rk

til estimering af b etingede o v ergangssandsynligheder� Det er exp erimen telt b evist at s � adanne

�o v ergangs� regioner er vigtige for mennesk elig p erception af tale�

HNN�en er i dette arb ejde blev et ev alueret p � a tre standard talegenk endelses problemer� nem�

lig taler uafh�ngig genk endelse af � brede fonem klasser� �� �� fonem klasser og �� isolerede

ord udtalt o v er en telefon linie� TIMIT databasen er blev et b en yttet til fonem eksp erimen terne

mens den for n yligt udgivne PhoneBo ok database er blev et b en yttet til isoleret ord genk endelses

eksp erimen terne� HNN�en opn � ar genk endelses n�jagtigheder for disse tre problemer� som er go de

sammenlignet med resultater for standard HMM�er og andre h ybrider�
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Chapter �

Intr oduction

This c hapter pro vides a short in tro duction to sp eec h recognition systems and presen ts

the motiv ation for the w ork do cumen ted in this thesis� Section ��� reviews the di�culties

encoun tered in sp eec h recognition and section ��� presen ts the general structure of a sp eec h

recognition system� The ob jectiv es of this w ork are stated in Section ��� and �nally

section ��� pro vides an o v erview of the thesis b y c hapters�

��� Dimensions of Di�cult y in Sp eec h Recognition

Sp eec h is the most natural mo de of comm unication b et w een h uman b eings� It comes

so natural to us that w e do not ev en realize ho w complex a phenomenon it is� Sp eec h

can b e c haracterized as a signal con v ey ed b y an acoustic �eld
 and is the end pro duct of

conscious
 formalized and v olun tary motions of the r espir atory and articulatory apparatus�

Th us
 sp eec h planning tak es place in the mind of a sp eak er and the actual acoustic w a v e

is generated b y a con trolled air�o w mo dulating the v o cal cords and passing through the

v o cal tract �oral ca vit y 
 nasal ca vit y etc� �� The v o cal cord vibrations cause a slo wly

v arying p erio dicit y in the sp eec h �v oiced sounds
 v o cals� and the v o cal tract shap e causes

v ariations in the sp ectral en v elop e� Similarly 
 constrictions in the v o cal tract can cause

turbulen t air�o w �un v oiced sounds
 consonan ts�� Because the h uman articulatory system

is biological
 the generated acoustic w a v e will b e highly dep enden t on the actual sp eak er�

Hence
 factors lik e age
 gender
 upbringing and emotional state will a�ect the generation

of sp eec h� The generated acoustic w a v e is furthermore in�uenced b y the transmission

medium through whic h it passes b efore reac hing the listener� The transmission medium

can in tro duce noise and nonlinear distortions but the sp eec h will remain fully in telligible

to the listener ev en for large noise lev els or distortions� The listener extracts the message

uttered b y the sp eak er using his�her kno wledge of the language
 topic
 con text and p ossibly

also visual information lik e gestures and facial expressions� This pro cess is called de c o ding

the sp eec h signal and requires only a minim um of e�ort from the listener despite the large

v ariations b et w een di�eren t sp eak ers and di�eren t transmission media�

Because w e are so comfortable with sp eec h there is a large desire for b eing able to

in teract with mac hines b y sp eec h comm unication� The abilit y to automatically tr anscrib e

sp eec h signals is in teresting in a wide n um b er of con texts e�g� 
 computer in teraction �dic

tation
 command�
 telephone homebanking
 handsfree op eration
 information retriev al

from databases and automatic language translation� The wide range of p oten tial applica

tions has motiv ated researc h in automatic sp e e ch r e c o gnition since the �����s� Since then

sp eec h recognition b y mac hines has impro v ed signi�can tly and there are already sev eral
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commercial solutions a v ailable for op eration b y singleusers in noisefree en vironmen ts�

Ho w ev er
 there is still a lot of researc h to b e done when it comes to recognizing natural

con v ersational sp eec h from sev eral di�eren t sp eak ers�

The complexit y of a sp eec h recognition system can b e c haracterized b y the follo wing

k eyw ords


Sp eak er dep endence�indep endence� A sp e aker dep endent system is b y de�nition de

signed only for use b y a single sp eak er� Con v ersely 
 a sp e aker indep endent system

is in tended for use b y any sp eak er� In general
 sp eak er dep enden t systems are

considerably more accurate than sp eak er indep enden t systems b ecause the acoustic

v ariation b et w een di�eren t sp eak ers is v ery di�cult to describ e and mo del� In ter

mediate to sp eak er dep enden t and sp eak er indep enden t systems are multi�sp e aker

systems aimed at a small but �xed group of p eople� F or b oth m ultisp eak er and

sp eak er indep enden t recognizers a large impro v emen t in accuracy can b e obtained

b y adapting the recognizer to a sp eci�c sp eak er during op eration� Suc h systems are

kno wn as sp e aker�adaptive and w ork b y tuning themselv es to a sp eak er during op er

ation� The adaptation can b e done in a sup ervised fashion from a set of enr ol lment

utterances or in an unsup ervised fashion b y adapting to the user as he�she sp eaks�

Isolated�connected�con tin uous sp eec h� In isolate d wor d recognition the w ords m ust

b e uttered in isolation and eac h w ord is treated indep enden tly b y the recognizer�

Conne cte d wor d recognition requires the w ords in a sen tence to b e uttered in iso

lation separated b y arti�cial p erio ds of silence� Ho w ev er
 con trary to isolated w ord

recognition it is here the sequence of w ords that is of in terest and not just eac h

w ord in the sequence� Connected sp eec h can b e view ed as an idealization of c on�

tinuous sp e e ch in whic h sen tences are uttered in a natural manner without arti�cial

pauses b et w een w ords� Con tin uous sp eec h recognition is b y far the most di�cult

case b ecause the w ords are not separated b y w ell de�ned pauses and b ecause w ord

pron unciations are corrupted b y c o articulation � Coarticulation is a result of the h u

man sp eec h pro duction system not b eing able to c hange instan taneously and of the

sym b ol generation and planning pro cess taking place in the sp eak ers mind� Th us


the pron unciation of a w ord in a sen tence is a�ected b y forming the articulators in

an ticipation of the next w ord�

V o cabulary size� The n um b er of w ords in the vo c abulary is naturally an imp ortan t

factor when assessing the p erformance of a sp eec h recognizer� Th us
 small v o cabulary

systems �less than ��� w ords� are usually capable of obtaining close to ���� accuracy

ev en for sp eak er indep enden t recognition� Ho w ev er
 the accuracy of the recognizer

also dep ends on the actual w ords that are included in the v o cabulary � If the w ords

are highly c onfusable it can b e quite di�cult to obtain ���� accuracy ev en for

v ery small v o cabularies� A go o d example of a confusable v o cabulary is the English

�Eset�� ��B� C� D� E �G� P� T� V� Z�� � The Eset has b een used for ev aluating

the abilit y of sp eec h recognizers to discriminate b et w een w ords with similar acoustic

realizations�

Linguistic constrain ts� The linguistic constrain ts �p ossibly sp eci�c to a giv en task� can

b e imp osed b y an abstract mo del of the language� A language mo del of a natural

language is comp osed of four comp onen ts
 namely sym b olic
 grammatical
 seman tic

and pragmatic� The sym b ols of a language are de�ned to b e the most natural
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units from whic h all messages can b e comp osed� These sym b ols are sometimes

denoted symb olic message units �SMUs� and t ypically represen t w ords or subw ords

lik e syl lables or phonemes � The gr ammar of a language is comp osed of lexic al and

syntactic constrain ts that describ e ho w w ords are formed from subw ords and ho w

sen tences are formed from w ords
 resp ectiv ely � Semantics is concerned with the w a y

w ords are com bined to form meaningful messages
 e�g� 
 the sen tence �The dog is

talking� is syn tactically correct but seman tically incorrect� A t the highest lev el of

abstraction is the pr agmatics of a language whic h describ es ho w the utterances relate

to the sp eak ers and the en vironmen t� This asp ect of a language is hard to formalize

but it is illustrated quite w ell b y the sen tence �He sa w that gas can burn�� Dep ending

on the con text of the con v ersation the w ord �can� is either a v erb or a noun� Seman tic

and pragmatic constrain ts are rarely used in sp eec h recognition systems b ecause of

the di�cult y in formalizing these constrain ts� On the other hand
 grammatical

constrain ts are used in almost ev ery con tin uous sp eec h recognition system as the

lexical and syn tactical constrain ts signi�can tly reduce the n um b er of sen tences that

the recognizer m ust b e able to hyp othesize �

Read�sp on taneous sp eec h� Un til recen tly 
 most researc h in sp eec h recognition has fo

cused on r e ad sp eec h� Ho w ev er
 sp eec h uttered naturally in a sp ontane ous con

v ersational manner is v astly more di�cult to recognize b y mac hines� Sp on taneous

sp eec h is c haracterized b y dis�uencies lik e false starts
 incomplete sen tences
 restarts


laugh ter and coughing and furthermore the v o cabulary is practically unlimited�

En vironmen t� The en vironmen t in whic h the recognizer is supp osed to op erate naturally

also in�uences the recognition p erformance� Adv erse conditions lik e en vironmen tal

noise
 acoustic distortions
 microphone and transmission c hannel distortions ma y

degrade p erformance signi�can tly � In general
 if a recognizer designed for clean


noisefree sp eec h is applied without mo di�cation in adv erse conditions the p erfor

mance is lik ely to b e v ery p o or� Therefore
 recognizers supp osed to op erate in suc h

en vironmen ts m ust tak e actions to reduce the e�ects of noise and other degradations

of the sp eec h signal� T ypically 
 this is done b y using v arious sp eec h enhanc ement

tec hniques and b y letting the system adapt to the en vironmen tal conditions in a

manner similar to sp eak er adaption�

The ab o v e list indicates that in order to compare sp eec h recognizers it is mandatory

to ev aluate them under b enign conditions� Therefore
 a n um b er of standardized databases

ha v e b een created in order to allo w comparisons under w ellde�ned conditions� A few

examples of suc h databases are the TIMIT database of read American English sp eec h


the PhoneBo ok database of isolated w ords uttered o v er North American telephone lines


the D ARP A Resource Managemen t database con taining read sen tences from the �eld of

na v al resource managemen t and the ARP A W all Street Journal database con taining sp eec h

read from the New Y ork W all Street Journal� Except for PhoneBo ok all of these databases

con tain sp eec h recorded in noisefree en vironmen ts�

While sp eak er dep enden t systems ha v e found their w a y in to commercial applications


large v o cabulary sp eak er indep enden t systems are in general only a v ailable as protot yp es in

a n um b er of sp eec h researc h labs� A few examples of sp eak er indep enden t large v o cabulary

systems are BYBLOS from Bolt
 Beranek and Newmann incorp orated �BBN� �K CD��  


SPINHX from CarnegieMellon Univ ersit y �Lee��  
 HTK from En tropic Researc h limited

�Y ou��b  and ABBOT from Cam bridge Univ ersit y �RHR��  � Examples of commercial
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singleuser systems include the recen tly released �Marc h ����� v ersions of ViaV oice from

IBM corp oration and Dragon NaturallySp eaking from Dragon systems incorp orated� Vi

aV oice and Dragon NaturallySp eaking b oth aim at sp eec h dictation tasks and runs on

standard PCs�

��� Con v en tional Sp eec h Recognition Systems

Sp eec h recognition is basically a pattern recognition task� Ho w ev er
 as opp osed to con

v en tional �static� pattern classi�cation
 sp eec h recognition aims at assigning a se quenc e

of class lab els �w ords� to an observ ed acoustic signal� If the duration of w ords w ere �xed

a priori 
 sp eec h recognition could b e done in m uc h the same w a y as �static� pattern

classi�cation b y assigning class lab els indep enden tly to eac h �xed length sp eec h segmen t�

Ho w ev er
 the timeb oundaries b et w een w ords are not kno wn a priori during recognition and

it is th us necessary someho w to align h yp othesized w ord sequences to the acoustic signal


i�e� 
 to searc h for those segmen ts of the sp eec h signal that in some sense optimally repre

sen t the h yp othesized w ords� This pro cedure is commonly referred to as time�alignment

and p attern matching �

The structure of a general sp eec h recognition system is illustrated in �gure ���� A brief

description of the di�eren t comp onen ts sho wn in the �gure is giv en b elo w�

Speech signal

Acoustic
preprocessor

Time-alignment
&

Pattern matching

Acoustic
models

Language
model

Recognized
words

Speech
Frames

Figure ��� � Structure of a sp eech recognition system�

����� The Prepro cessor

The pr epr o c essor transforms the ra w acoustic w a v eform in to an in termediate compressed

represen tation that is used for subsequen t pro cessing� T ypically 
 the prepro cessor is capa

ble of compressing the sp eec h data b y a factor of ten b y extracting a set of fe atur e ve ctors

from the sp eec h signal that preserv es information ab out the uttered message� Although

the prepro cessor is separated from the time alignmen t and pattern recognition mo dule in

�gure ���
 it is in principle an in tegrated part of the o v erall classi�er� Th us
 the optimal

prepro cessor is nothing but the Bayes� optimal classi�er �DH��  

In sp eec h recognition the sp eec h signal is assumed pie c ewise stationary and the prepro

cessor t ypically yields a feature v ector ev ery ����ms calculated from a ����ms windo w of

sp eec h� The result of prepro cessing is th us a sequence of sp e e ch fr ames or fe atur e ve ctors at

��ms in terv als with ���� co e�cien ts p er frame� The feature v ectors are often augmen ted
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b y their �rst and sometimes second order deriv ativ es calculated from linear regression on

a n um b er of consecutiv e sp eec h frames� The delta�fe atur es pro vide explicit information

ab out sp eec h dynamics� Commonly used tec hniques for prepro cessing are �lterbank ana

lysis
 linear prediction analysis
 p erceptual linear prediction and cepstral analysis� The

in terested reader is referred to e�g� 
 �DPH��  for details on the di�eren t metho ds�

����� Time�Alignmen t and P attern Matc hing

The timealignmen t and pattern matc hing pro cess uses information from b oth the ac oustic

mo del and the language mo del to assign a sequence of w ords to the sequence of sp eec h

frames� The acoustic mo del con v erts the sp eec h frames in to sym b olic message units of

a language lik e e�g� 
 w ords
 syllables or phonemes that can b e concatenated under the

constrain ts imp osed b y the language mo del to form meaningful sen tences�

Dep ending on the actual form of the acoustic mo del there are di�eren t w a ys of doing

the temp oral alignmen t� Tw o of the most p opular approac hes are Dynamic Time Warping

and Hidden Markov Mo deling �HMM�� These metho ds will b e describ ed brie�y b elo w and

an elab oration on the theory of HMMs will b e giv en in c hapter ��

Dynamic Time W arping � A T emplate�Based Approac h

Dynamic time w arping is a socalled templatebased approac h in whic h the acoustic mo del

is a collection of prerecorded wor d�templates � The templates t ypically consist of a repre

sentativ e sequence of feature v ectors for the corresp onding w ords� The basic idea in

dynamic time w arping is to align the utterance to eac h of the template w ords and then

select the w ord �or w ord sequence� that obtains the �b est� alignmen t� F or eac h frame

in the utterance
 the distance b et w een the template and observ ed feature v ectors are

computed using some distance measure and these lo cal distances are accum ulated along

eac h p ossible alignmen t path
 see �gure ���� The lo w est scoring path

�

then iden ti�es the

optimal alignmen t for a w ord and the w ordtemplate obtaining the lo w est o v erall score

depicts the recognized w ord �or w ord sequence�� The alignmen t can b e done with a linear

time and memory complexit y b y socalled dynamic pr o gr amming �

Because of the nature of sp eec h the alignmen t paths m ust ob ey certain lo cal constrain ts

expressing that w e can only mo v e forw ard in b oth the observ ed and stored reference

templates� Similarly 
 there are a n um b er of constrain ts imp osed b y the language mo del

whic h dictate the allo w ed w ord sequences�

As sho wn in �gure ��� the optimal alignmen t path induces a se gmentation on the

h yp othesized w ord sequence� This segmen tation indicates the timeb oundaries b et w een

w ords relativ e to the acoustic signal�

Dynamic time w arping is an elegan t solution to the time alignmen t and pattern matc h

ing problem� Ho w ev er
 there are three serious limitations of this metho d� Firstly 
 w ord

templates cannot mo del acoustic v ariabilit y b et w een sp eak ers v ery w ell
 except in a coarse

manner b y using m ultiple templates for eac h w ord in the v o cabulary � Secondly 
 only tem

plates represen ting whole w ords can b e used b ecause
 in practice
 it is almost imp ossible to

record sp eec h segmen ts shorter than a w ord
 i�e� 
 it is not p ossible to utter e�g� 
 phonemes

in isolation� Thirdly 
 there is no automatic w a y of generating represen tativ e templates�

�

Actually � it is often b etter to ev aluate eac h h yp othesis not only b y its optimal alignmen t� but b y the

comp osite score of all of its p ossible alignmen ts� The optimal alignmen t approac h is� ho w ev er� the most

widely used�
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Figure ��� � Dynamic time w a rping and HMM deco ding b y sea rching fo r the optimal alignment

path� Note that when an HMM acoustic mo del is used the observed sp eech frames a re aligned

directly to the HMM states� i�e� � there is only one ho rizontal sequence of �dots� fo r each HMM

state�

The simplest metho d is to use all the training utterances as templates but this is lik ely to

result in v ery p o or gener alization to unseen data�

Hidden Mark o v Mo dels � A Probabilistic Approac h

The HMM remo v es the need for creating reference templates b y using a probabilistic acous

tic mo del� Th us
 instead of templates for eac h SMU �w ord or subw ord� the HMM de�nes

probabilit y distributions for the assumed stationary sp eec h segmen ts within eac h SMU

class� The adv an tage of using a probabilistic represen tation is that the data distributions

within eac h class can b e learned automatically from a set of training utterances� F ur

thermore
 the probabilistic represen tation is far b etter capable of represen ting v ariations

b et w een sp eak ers�

Similar to �nite state automatons the HMM is c haracterized b y a set of states con

nected b y transition probabilities
 see �gure ���� Ho w ev er
 in addition to the transition
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Figure ��� � Schematic illustration of simple left	to	right connected HMM�

probabilities eac h state also has assigned

�

a probabilit y densit y function describing the

distribution of sp eec h frames or observations � These statelo cal distributions are com

monly denoted emission or observation distributions� Because of the �forw ard� nature of

sp eec h
 the HMM states are usually connected in a lefttorigh t manner as illustrated in

�gure ����

Time alignmen t and pattern matc hing with an HMM acoustic mo del is done in m uc h

the same w a y as for the template based approac h describ ed ab o v e� Ho w ev er
 instead of

the lo cal distances b et w een reference and observ ed feature v ectors it is no w the emission

probabilities for the input sp eec h frames in com bination with the transition probabilities

that are used in the searc h for the optimal alignmen t� The dynamic programming matc h

is for HMMs called Viterbi de c o ding and can b e view ed as a sto c hastic v ersion of dynamic

time w arping b ecause the stored reference �templates� are sto c hastic quan tities� F or an

HMM acoustic mo del the segmen tation corresp onding to the optimal path iden ti�es an

asso ciation b et w een HMM states and sp eec h frames ! a socalled statesegmen tation
 see

�gure ����

Ideally 
 the probabilit y parameters of the SMUHMMs should b e estimated suc h that

the o v erall error rate is minimized� This can b e obtained b y maximizing the a p osteriori

probabilit y of the observ ed w ord sequence giv en the observ ed acoustic signal� Ho w ev er


in man y sp eec h recognition systems the HMM for a giv en SMU is only trained to max

imize the probabilit y of the data corresp onding to this SMU� This metho d is kno wn as

Maximum Likeliho o d �ML� training and will in practice often lead to HMMs that giv e

large probabilities for other SMUs than the ones they w ere trained to mo del� In fact
 ML

estimation will only b e optimal if the HMMs are c orr e ct mo dels of sp eec h
 that is
 capable

of represen ting the true withinclass data distributions� This is ob viously not the case

since sp eec h is generated b y a nonstationary and highly complex biological pro cess�

As a �nal remark it should b e noted that language mo dels sometimes can b e form ulated

in the probabilistic framew ork of HMMs� In suc h cases
 large c omp osite HMMs can b e

constructed using SMUHMMs as in termediate building blo c ks� Despite the increased

complexit y of comp osite HMMs compared to simple acoustic HMMs the basic theory of

parameter estimation and deco ding remains the same� W e will delv e in to the details of

HMM theory and mo deling in c hapter ��

��� Ob jectiv es

HMMs ha v e b een used for more than �� y ears in the sp eec h recognition area� Although

ML estimation has b een the main c hoice for man y y ears due to its computational sim

plicit y and easy implemen tation
 sev eral researc hes ha v e recen tly ac kno wledged the need

�

This corresp onds to a so�called Mo or e t yp e HMM where observ ations are emitted in the states� The

transition�emitting Me aly t yp e HMM is sligh tly more general but is not considered in this w ork�
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for discriminative training in order to impro v e p erformance� Con trary to ML estima

tion
 discriminativ e training aims at minimizing the error rate of the mo del and is not

based on assumptions of mo del correctness� Ho w ev er
 ev en with discriminativ e training

the HMM still su�ers from a n um b er of serious limitations� F or the past few y ears the

socalled h ybrids of HMMs and arti�cial Neur al Networks �NN� ha v e gained widespread

in terest among sp eec h researc hers as a w a y of mitigating some of the basic limitations

of standard HMMs� HMM�NN h ybrids com bine the temp oral alignmen t capabilities of

the HMM with the p o w erful static classi�cation and function appro ximating capabilities

of neural net w orks� A particular neural net w ork kno wn as the Multi�L ayer Per c eptr on

�MLP� has for the past decade pro v en v ery useful for complex static pattern recognition

and is probably the most widely used NN arc hitecture in HMM�NN h ybrids� This is

commonly attributed to the follo wing t w o k ey features of MLPs


F unction appro ximation� MLPs can in theory appro ximate an y smo oth nonlinear

function b y using a hierarc hical arc hitecture where inputs are propagated through

la y ers of simple pro cessing units� Eac h unit or neur on t ypically calculates a w eigh ted

sum of its inputs and passes this sum through a nonlinear function �t ypically a sig

moid�� The MLP arc hitecture furthermore allo ws for using an y kind of input
 i�e� 


one could use sev eral consecutiv e sp eec h feature v ectors as input or ev en information

from other sources�

T raining� MLPs can b e trained e�cien tly b y the socalled Backpr op agation algorithm

�RHW��  for either function appro ximation �regression� or static classi�cation� The

bac kpropagation algorithm w orks b y c hanging the w eigh ts b et w een units in the neu

ral net w ork�

The fo cus of this thesis
 as suggested b y its title
 is on h ybrids of HMMs and neural

net w orks applied to sp eec h recognition� Ho w ev er
 con trary to man y of the HMM�NN

h ybrids prop osed in the literature
 the aim of this w ork has b een to dev elop a sound

probabilistic mo del in whic h all parameters of b oth the o v erlying Mark o v mo del and the

neural net w orks are trained join tly to minimize the same discriminativ e criterion�

The dev elopmen t is based on a �stepb ystep� approac h in whic h discriminativ e train

ing of standard HMMs is �rst in v estigated in the framew ork of socalled Class HMMs

�CHMMs�� The CHMM w as in tro duced in �Kro��  and can b e view ed as a particular

extension of the standard HMM arc hitecture that allo ws for direct maximization of the

a p osteriori probabilit y of the sequence of classlab els giv en the observ ed data� This is

also kno wn as discriminativ e Conditional Maximum Likeliho o d training and is
 as men

tioned ab o v e
 more consisten t with minimizing the error rate than ML training� One of

the k ey features of the CML trained CHMM is that it can b e normalized globally at the

sequence lev el without extra computational burden� This feature mak es it easy to extend

the CHMM to an HMM�NN h ybrid in a v ery in tuitiv e manner� The h ybrid
 whic h is

called Hidden Neural Net w orks �HNN�
 is based on replacing the standard transition and

emission probabilities in the CHMM b y the outputs of statesp eci�c neural net w orks� By

imp osing a few constrain ts on the general HNN arc hitecture
 it is p ossible to let this mo del

fo cus on �transitional� regions in the data sequence
 that is
 to do socalled tr ansition�

b ase d mo deling� This ma y b e imp ortan t in sp eec h recognition
 b ecause sev eral studies

ha v e indicated that the �transitional� regions of a sp eec h signal con taining the largest

sp ectral c hanges o v er time are imp ortan t for h uman p erception of sp eec h�
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In this w ork three standard �sp eak er indep enden t� sp eec h recognition tasks ha v e b een

selected for ev aluating v arious HNN arc hitectures


�� Recognition of �v e broad phoneme classes in con tin uous read sp eec h from the TIMIT

database�

�� Recognition of �� phonemes in con tin uous read sp eec h from the TIMIT database�

�� Recognition of isolatedw ord telephonesp eec h from the PhoneBo ok database�

There are t w o main reasons for selecting these tasks� Firstly 
 n umerous results rep orted

in the literature are a v ailable for comparison� Secondly 
 the broad class task is su�cien tly

simple to allo w a reasonable dev elopmen t and ev aluation cycle
 while the other t w o tasks

are represen tativ e of t ypical situations encoun tered in more �realw orld� sp eec h recogni

tion� By selecting these tasks
 fo cus is furthermore limited to the acoustic mo deling part

of sp eec h recognition�

��� Thesis Ov erview

This thesis presen ts a small step on the w a y to w ards impro v ed mo dels for tasks lik e acoustic

mo deling in sp eec h recognition� It is divided in to ten c hapters and six app endices� The

con ten ts of the individual c hapters and app endices are as follo ws�

Chapter 	 giv es an in tro duction to the theory of hidden Mark o v mo deling� Since the

HMM theory has b een extensiv ely describ ed in the literature
 c hapter � primarily

discusses issues relev an t to the w ork describ ed in this thesis� The c hapter is con

cluded b y a description of practical issues in HMM mo deling for sp eec h recognition�

Chapter � discusses di�eren t strategies for training HMMs� The con v en tional Maximum

Likeliho o d �ML� criterion is compared to di�eren t discriminativ e training criteria

whic h all aim at minimizing the error rate of the HMM as a classi�er� Based on this

comparison
 a particular discriminativ e criterion kno wn as the Conditional Maximum

Likeliho o d �CML� criterion is selected for ev aluation in subsequen t c hapters�

Chapter � describ es a particular HMM arc hitecture called a Class HMM �CHMM� whic h

allo ws sev eral di�eren t classes to b e mo deled in eac h state� The CHMM is w ell suited

for discriminativ e CML training and c hapter � extends the original form ulation giv en

b y Krogh in �Kro��  to accommo date the time alignmen t and pattern matc hing

problem in sp eec h recognition� F urthermore
 it is sho wn ho w the CHMM can b e

normalized �globally� at the sequence lev el without extra computational cost during

CML training�

Chapter � giv es an ev aluation of ML and gradien tbased CML training of the CHMM on

the highly simpli�ed task of sp eak er indep enden t recognition of �v e broad phoneme

classes in con tin uous sp eec h from TIMIT�

Chapter  describ es the new HMM�NN h ybrid called Hidden Neur al Networks �HNN��

The HNN is based on a simple extension of the CHMM and mak es use of the global

normalization prop ert y to ensure a v alid probabilistic in terpretation during CML

training� The c hapter furthermore describ es ho w a few constrain ts on the general

HNN arc hitecture can lead to a transitionbased mo del� Finally 
 the HNN is com

pared to main stream HMM�NN h ybrids�
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Chapter � reconsiders the TIMIT broad phoneme task but in the con text of the HNN h y

brid� Di�eren t HNN arc hitectures including globally and lo cally normalized transition

based HNNs are ev aluated on the broad phoneme task� Due to the limited complexit y

of the broad class task a thorough in v estigation of di�eren t strategies for initializing

and training the HNN is giv en in this c hapter�

Chapter � extends the simple broad class task to the �standard� task of recognizing ��

di�eren t phonemes in con tin uous sp eec h from the TIMIT database�

Chapter 
 con tains an ev aluation of the HNN for sp eak er indep enden t recognition of

isolated w ords recorded o v er the existing North American telephone net w ork� The

utterances are tak en from the PhoneBo ok database�

Chapter �� wraps up the o v erall conclusion an giv es directions for further w ork�

App endix A describ es the TIMIT and PhoneBo ok databases�

App endix B elab orates on a particular approac h for training CHMMs that allo w sev eral

di�eren t lab els in eac h state� This app endix serv es as a reference for future researc h�

App endix C�F con tains reprin ts of selected pap ers whic h ha v e b een authored and co

authored during the Ph�D� study �



Chapter �

Hidden Mark o v Models

��� In tro duction

The ro ot of the HMM theory can b e traced bac k to the ����s �DLR�� 
 Lev��  � Ho w ev er


it w as not un til the indep enden t w ork of Bak er at CarnegieMellon Univ ersit y �Bak��b 


Bak��a  and Jelinek and colleagues at IBM �JBM�� 
 Jel�� in the ����s that HMMs

gradually en tered the �eld of automatic sp eec h recognition� The w ork b y Baum and

colleagues in the late ����s and early ����s �BP�� 
 BE�� 
 BPS�� 
 Bau��  on e�cien t

algorithms for HMM estimation made the application to sp eec h recognition p ossible in

practice� Nev ertheless
 templatebased approac hes lik e dynamic time w arping still tended

to dominate the �eld ev en in the late ����s and it w as not un til the widespread publication

of HMM theory and metho ds in the ����s that the comm unit y exp erienced a shift in

tec hnology � Since then
 HMMs ha v e dev elop ed in to the most successful approac hes for

acoustic mo deling in sp eec h and sp eak er recognition and are used to da y b y virtually all

sp eec h researc h groups� More recen tly 
 HMMs ha v e b een successfully applied to other tasks

including e�g� 
 protein and DNA mo deling �DEKM�� 
 Kro��
 Kro��
 Edd��
 KBM

�

�� 


KMH�� 
 BCHM��  
 h uman face iden ti�cation �SH��
 Sam��  
 lip and sp eec hreading

�SH�� 
 CH��  
 optical c haracter recognition �LCBB�� 
 BLNB��  and time series prediction

�FD��  �

T o establish notation and set the stage for describing class HMMs and the hidden

neural net w ork h ybrid
 w e giv e a brief in tro duction to standard hidden Mark o v mo dels

in this c hapter� The c hapter b egins b y reviewing the basic concepts of discrete HMM

mo deling and is concluded with a discussion of issues regarding the use of HMMs for

sp eec h recognition in practice� The HMM theory has b een describ ed extensiv ely in the

literature and the aim of the presen t c hapter is not to giv e an indepth co v erage of the

HMM theory and tec hniques but rather to describ e elemen ts considered relev an t to this

thesis� F or a more comprehensiv e in tro duction
 the reader is referred to the excellen t

tutorialst yle reviews giv en in �LRS��
 Rab�� 
 Pic�� 
 JR�� 
 RJ��  whic h also con tain

n umerous references�

��� HMM Arc hitecture

The HMM is an extension of the w ell kno wn Mark o v mo del �see e�g� 
 �LG��  � whic h

de�nes a probabilit y distribution o v er sequences of discrete or con tin uous v alued random

v ariables � " �

L

�

" �

�

� � � � � �

L

� F or a k �th order Mark o v mo del the follo wing conditional

indep endence assumptions are made
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�� The v ariables �

l

are

usually called state variables and for a k �th order Mark o v mo del �

l � �

l � k

summarizes all

relev an t past information to deriv e the curren t state �

l

� Mark o v mo dels can b e used to

mo del sequen tial data lik e sp eec h and biological sequences �see e�g� 
 �DEKM��  � and the

k �th order mo del giv es a go o d �t if the data satis�es the k �th order Mark o v assumption�

Ho w ev er
 the larger the mo del order k 
 the larger the datasets required in order to estimate

the conditional probabilities P � �

l

j �

l � �

l � k

� reliably � Therefore
 k is usually restricted to b e

quite small in practice whic h is clearly inappropriate for man y applications�

In practice
 it is often observ ed that
 at least appro ximately 
 all relev an t past data up

to time l can b e summarized in a set of state v ariables� This is exactly the idea in hidden

Mark o v mo dels
 where the data sequence is mo deled as a pie c ewise stationary pro cess� A

k �th order HMM is c haracterized b y a set of N n um b ered discrete states


�

� " i� � � � � N 


and t w o concurren t sto c hastic pro cesses# ��� a k �th order Mark o v pro cess mo deling the

temp oral structure of the data and ��� an emission pro cess assigned to eac h state mo deling

the assumed lo cally stationary part of the data
 see �gure ���� The Mark o v pro cess of

an HMM is hidden ! all w e can observ e is the output of the emission pro cesses� Hence


the name hidden Mark o v mo del� An y k �th order HMM can b e em ulated b y a �rst order

HMM simply b y increasing the n um b er of states� First order HMMs are therefore usually

preferred b ecause they are conceptually simple and b ecause they can b e trained using the

v ery e�cien t Baum�Welch r e estimation algorithm� Here w e will only consider the �rst

order HMM�

� 1(xl) � 2(xl) � 3(xl)

�=1 �=2 �=3

� 11 � 22 � 33

� 12 � 23

Figure ��� � A simple 
rst o rder discrete HMM�

The Mark o v pro cess in �rst order HMMs is commonly describ ed b y homo gene ous

tr ansition pr ob abilities # the probabilit y of a transition from state i to state j is giv en b y 


�

ij

" P � �

l

" j j �

l � �

" i � � �����

whic h is indep enden t of the time index l � Often prior kno wledge is incorp orated b y forcing

some transition probabilities to zero
 e�g� 
 in sp eec h recognition a lefttorigh t arc hitecture

is t ypically used in fa v or of an ergo dic �fully connected� mo del�

The emission pro cess in state i can tak e di�eren t forms dep ending up on whether the

data sequence consists of discrete or con tin uously v alued observ ations� F or simplicit y 
 w e

here assume that the observ ations are discrete sym b ols from a �nite alphab et A � The

case of a con tin uously v alued observ ation v ariable will b e treated in section ���� When the

�

The state v ariables of an HMM are discrete and the p ossible v alues are denoted states �
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observ ations are discrete the mo del is often denoted a discr ete HMM
 and the probabilit y

of emitting sym b ol x

l

" a from the alphab et A at an y time l in state i is giv en b y 


�

i

� a � " P � x

l

" a j �

l

" i � � �����

Similar to the transition probabilities
 the probabilit y of emitting sym b ol a in state i is

the same no matter where the sym b ol o ccurs in the data sequence�

The set of all transition and emission probabilities

� " f i� j " � � � � � � N # a � Aj �

ij

� �

i

� a � g �����

completely sp eci�es the discrete HMM�

Giv en a �rst order HMM
 the probabilit y of a data sequence of L discrete observ ations

x " x

L

�

" x

�

� � � � � x

L

can b e written


P � x # � � "

X

�

P � x � � # � � "

X

�

P � x

L

�

� �

L

�

# � � � �����

Here � " �

L

�

" �

�

� � � � � �

L

is a state sequence# �

l

is simply the n um b er of the l �th

HMM state in the sequence� Suc h a state sequence is usually called a p ath through the

mo del� Since the paths are m utually exclusiv e P � x # � � is simply the sum of the join t

probabilit y P � x � � # � � of eac h path� Using Ba y es rule the join t probabilit y can b e written

�conditioning on � is dropp ed for notational con v enience�


P � x

L

�

� �

L

�

� " P � x

L

� �

L

j x

L � �

�

� �

L � �

�

� P � x

L � �

�

� �

L � �

�

�

" P � x

L

j x

L � �

�

� �

L

�

� P � �

L

j x

L � �

�

� �

L � �

�

� P � x

L � �

�

� �

L � �

�

�

�

�

�

"

L

Y

l ��

P � x

l

j x

l � �

�

� �

l

�

� P � �

l

j x

l � �

�

� �

l � �

�

� � �����

In the �rst order HMM it is assumed that ��� the Mark o v pro cess is �rst order and

indep enden t of the observ ation sequence and ��� the observ ations are state conditionally

indep enden t
 that is
 all relev an t past data is summarized in the curren t state v ariable �

l

�

F ormally 
 this assumption is

P � �

l

j x

l � �

�

� �

l � �

�

� " P � �

l

j �

l � �

� �����

P � x

l

j x

l � �

�

� �

l

�

� " P � x

l

j �

l

� � �����

and ����� simpli�es to a pro duct o v er l of t w o �statelo cal� probabilities

�

P � x � � � �

L

Y

l ��

P � x

l

j �

l

� P � �

l

j �

l � �

�

�

P � x # � � "

X

�

P � x � � # � � "

X

�

L

Y

l ��

�

�

l � �

�

l

�

�

l

� x

l

� � �����

�

The appro ximation in �	�
� de�nes a so�called Mo or e form HMM� If the observ ations are assumed

conditionally indep enden t on the state pair �

l

l � �

� then P � x

l

j x

l � �

�

� �

l

�

� � P � x

l

j �

l

� �

l � �

�� This de�nes a so�

called Me aly form HMM where the emission pro cesses are asso ciated with the transitions b et w een states�
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An auxiliary zeroth nonemitting state
 �

�

" �
 termed the b e gin state has b een in tro duced

in ����� so that �

� j

" P � �

�

" j j �

�

" �# � � denotes the probabilit y of initiating a path in

state j �

Strictly sp eaking
 P � x # � � as giv en b y ����� is only a v alid probabilistic mo del if all

observ ation sequences ha v e the same length L � If this is not the case
 it is straigh tforw ard

to see that the sum


P

x �X

P � x # � �
 o v er the space X of all p ossible sequences is in�nite�

T o prop erly mo del sequences of di�eren t lengths suc h that

P

x �X

P � x # � � " �
 one of

the states in the mo del m ust b e an end state
 i�e� 
 a state with no outgoing transitions�

Alternativ ely 
 a termination sym b ol can b e added to the alphab et� In the follo wing w e

will use an auxiliary N $ ��th nonemitting state
 �

L ��

" N $ �
 called the end state 
 with

no outgoing transitions in order to ensure prop er length mo deling�

It is often useful to think of an HMM as a generativ e mo del
 where sequences are

generated b y random w alks from state to state go v erned b y the transition probabilities

�

ij

and emission probabilities �

i

� a �� Here
 ho w ev er
 the HMM framew ork will b e used for

assigning a class or a sequence of classes to the observ ed data sequence
 so instead w e wish

to in terpret the emission probabilit y in state i as the probabilit y that the curren t observ a

tion matches this state� Throughout the rest of this thesis the term match pr ob ability will

therefore b e used for �

i

� a �� The reason for this b ecomes more clear when w e in tro duce

the concept of global normalization and the hidden neural net w ork h ybrid�

Giv en the formal de�nition of HMMs
 w e will no w examine the follo wing three classic

issues in HMM mo deling�

Probabilit y calculation� F or a giv en HMM ho w do w e compute the probabilit y P � x # � �

of an observ ation sequence%

Deco ding� When using HMMs for sp eec h recognition or other classi�cation tasks
 ho w

do w e �nd the class or sequence of classes corresp onding to an observ ation sequence%

Estimation� Ho w do w e estimate the parameters � of an HMM giv en a set of training

data sequences%

��� Probabilit y Calculation

Equation ����� for computing the probabilit y of an observ ation sequence is v ery in tuitiv e# it

states that w e just ha v e to m ultiply matc h and transition probabilities along eac h p ossible

path and then add these pro ducts together� Unfortunately 
 this is in tractable in practice

ev en for sequences of mo derate lengths b ecause the n um b er of p ossible paths gro ws as

O � N

L

�� Eac h path requires appro ximately � L �oating p oin t op erations ��ops� and a di

rect computation of the probabilit y w ould th us require as m uc h as O �� LN

L

� �ops� There

is
 ho w ev er
 a v ery e�cien t w a y of doing the probabilit y calculation� The forwar d algo�

rithm �BE��  is a dynamic programming algorithm whic h exploits the constrained HMM

arc hitecture to compute the probabilit y of an observ ation sequence using only O � N

�

L �

�ops� It is based on the forwar d v ariable �

i

� l � de�ned as the join t probabilit y of matc hing

the partial observ ation sequence x

l

�

" x

�

� � � � � x

l

and b eing in state i at time l 


�

i

� l � " P � x

l

�

� �

l

" i # � � � ������

Supp ose that w e no w unfold the HMM in time to form a lattice as illustrated in �gure ���


and supp ose that at time l w e ha v e arriv ed at state i and ha v e computed �

i

� l �� F rom the

lattice it is no w v ery easy to compute �

j

� l $ �� b y utilizing the standard HMM assumptions
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Time

l-1 l l+ 1

1 1 1

i i i

j j j

N N N

� i(l)

� j(l+ 1)
S

ta
te

� ij

� j(xl+ 1)

Figure ��� � State lattice illustration of fo rw a rd recursion�

�

j

� l $ �� "

N

X

i ��

P � x

l ��

�

� �

l ��

" j� �

l

" i # � �

"

N

X

i ��

P � x

l

�

� �

l

" i � P � �

l ��

" j j �

l

" i� x

l

�

� P � x

l ��

j �

l ��

" j� �

l

" i� x

l

�

�

" �

j

� x

l ��

�

N

X

i ��

�

ij

�

i

� l � � ������

The probabilit y P � x # � � is no w simply computed as

P � x # � � "

N

X

i ��

�

iN ��

�

i

� L � � ������

where state N $ � is the nonmatc hing end state� The forw ard algorithm is summarized

in algorithm ����

Algorithm 	�� F orw ard algorithm � P � x # � � 

De�nition� �

j

� l � " P � x

l

�

� �

l

" i # � �

Initialization� �

j

��� " �

j

� x

�

� �

� j

� � � j � N

Recursion� �

j

� l � " �

j

� x

l

�

P

i

�

ij

�

i

� l � �� � � � j � N � � � l � L

T ermination� P � x # � � "

P

i

�

iN ��

�

i

� L �

When implemen ting the forw ard algorithm care m ust b e tak en to a v oid n umerical

under�o w due to the rep eated m ultiplication of small probabilities� The under�o w problem

can b e handled b y scaling the forw ard v ariables at eac h time step as discussed in �Rab��  �
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The forw ard algorithm considers al l paths through the mo del and the probabilit y

calculation can b e view ed as a w eigh ted a v erage of probabilities giv en eac h path# P � x # � � "

P

�

P � x j � # � � P � � # � �� If only one particular path giv es a signi�can t con tribution to

the w eigh ted a v erage it is in practice su�cien t to consider this path only � The Viterbi

algorithm �Vit�� 
 F or��  utilizes this fact b y appro ximating P � x # � � with the probabilit y

corresp onding to the optimal path
&

� 


P � x # � � � P � x �
&

� # � � � ������

where

&
� " argmax

�

P � x � � # � � " argmax

�

P � � j x # � � � ������

The last equalit y holds b ecause P � x # � � is indep enden t of the path� The Viterbi algorithm

is an e�cien t dynamic programming algorithm whic h is simply obtained b y replacing

the summations in the forw ard algorithm b y maximization op erations� De�ne �

�

j

� l � "

P � x

l

�

� &�

�

� � � � � &�

l

" j # � �
 where & �

�

� � � � � &�

l

" j is the the optimal path leading to state j at

time l � Then the Viterbi algorithm can b e expressed as follo ws�

Algorithm 	�	 Viterbi algorithm � P � x �
&

� # � � 

De�nition� �

�

j

� l � " P � x

l

�

� &�

�

� � � � � &�

l

" j # � �

Initialization� �

�

j

��� " �

j

� x

�

� �

� j

� � � j � N

Recursion� �

�

j

� l � " �

j

� x

l

� max

i

�

ij

�

�

i

� l � �� � � � j � N � � � l � L

T ermination� P � x �
&

� # � � " max

i

�

iN ��

�

�

i

� L �

Since no summations are in v olv ed in the Viterbi recursion
 n umerical under�o w is easily

a v oided b y represen ting the probabilities b y their logarithms�

The Viterbi algorithm is appro ximately of the same computational complexit y as the

forw ard algorithm ! it requires ab out N L few er additions than the forw ard algorithm�

It th us seems that the Viterbi algorithm can only b e justi�ed for calculating the proba

bilit y of an observ ation sequence if the b est path appro ximation
 P � x # � � � P � x �
&

� # � �


is v ery accurate� Ho w ev er
 the Viterbi algorithm is widely used for estimating and de

co ding HMMs as discussed later� It is in teresting to note that the Viterbi algorithm is

actually similar to a �sto c hastic� v ersion of the dynamic time w arping approac h discussed

in c hapter � ! an allusion to the fact that the stored �reference templates� are sto c hastic

quan tities�

��� Deco ding

Deco ding with an HMM is the task of assigning a class or a sequence of classes to an

observ ation sequence� An example of the former is isolated w ord recognition
 where the

aim is to classify a sp eec h signal as one of the p ossible w ords from a giv en v o cabulary �

Con tin uous sp eec h recognition constitutes a go o d example of ho w to use an HMM for

assigning a sequence of w ords to an utterance� The case of one class p er observ ation



��� Deco ding �

sequence will b e describ ed b elo w� The case of assigning a sequence of classlab els to the

data is treated in section ����

The Bayes optimal classi�er minimizes the probabilit y of error b y selecting the class

y with Maximum A Posteriori �MAP� probabilit y �DH��  


&y " argmax

y �C

P � y j x � � ������

where C is the set of p ossible classes� This is also kno wn as minimum err or classi�c ation �

Using Ba y es� rule and the fact that P � x � is indep enden t of y 
 w e see that ������ is equiv alen t

to


&y " argmax

y �C

P � x j y � P � y � � ������

In ������ P � x j y � represen ts the class conditional probabilit y and P � y � the a priori prob

abilit y for class y �

����� F orw ard Deco ding

Assume that w e ha v e a set C " f � � � � � � C g of C di�eren t classes and one HMM for eac h

of these classes
 �

�

� � � � � �

C

� The collection of class sp eci�c HMMs can b e gathered in to

one large HMM � " f c " � � � � � � C j �

c

� �

� c

g as illustrated in �gure ����

� 01
� 1N+1

� 0c
� cN+1

� 0C
� CN+1

Begin End

� 1

� c

� C

Figure ��� � An HMM fo r sequence classi
cation�

F or the mo del in �gure ��� the MAP deco der can b e expressed


&y " argmax

y �C

P � x j y # � � P � y # � � " argmax

y �C

P � x # �

y

� �

� y

� ������

where �

y

is the subHMM represen ting class y 
 and �

� y

represen ts the a priori probabilit y

of this class� No w
 the forw ard algorithm is used to compute the probabilit y for eac h of

the comp eting subHMMs and these are m ultiplied b y the a priori probabilities of the

corresp onding classes� The largest of these pro ducts then iden ti�es the optimal class�
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����� Viterbi Deco ding

The Viterbi algorithm can b e used instead of the forw ard algorithm
 but in this case the

optimal class is selected according to


&y " argmax

y �C

P � x �
&

� j y # � � P � y # � � � ������

The adv an tage of the Viterbi algorithm compared to the forw ard algorithm is that the

optimal path
&

� can b e computed b y b acktr acking � By sa ving the argumen t of the maxi

mization op erations in algorithm ��� in a b acktr acking p ointer �

i

� l � the optimal path can

b e found as sho wn in �gure ��� and algorithm ���� Kno wledge of the optimal path mak es it

p ossible to align observ ations to HMM states
 i�e� 
 to segmen t the data sequence in to time

in terv als sp en t in eac h of the states� F or applications suc h as con tin uous sp eec h recogni

tion this is extremely useful
 as will b ecome apparen t in section ���
 and it is probably

the main reason for the widespread use of the Viterbi algorithm� Note that for the simple

classi�cation example giv en in �gure ��� the optimal path will pass through only one of

the class submo dels and thereb y iden tify the recognized class# &y " y �
&

� ��

Time

State

0 l L+1

N+1

i

0

� i(l)
� i(l)
*

�̂

Figure ��� � Viterbi backtracking�

Algorithm 	�� Viterbi bac ktrac king �
&

� " & �

�

� � � � � &�

L

 

De�nition� �

j

� l � " b est predecessor state at time l

Initialization� �

j

��� " � � � � j � N

Recursion� �

j

� l � " argmax

i

�

ij

�

�

i

� l � �� � � � j � N � � � l � L

T ermination� &�

L

" argmax

i

�

iN ��

�

�

i

� L �

Bac ktrac king� &�

l

" �

��

l ��

� l $ �� � l " L � � � � � � � �



��� Maxim um Lik eliho o d Estimation �

An alternativ e w a y of asso ciating a path with an observ ation sequence is b y selecting

the state with the maxim um a p osteriori probabilit y at time l 


&�

l

" argmax

i

P � �

l

" i j x # � � " argmax

i

n

i

� l � � ������

The state p osteriors n

i

� l � can b e computed b y the forwar d�b ackwar d algorithm whic h

will b e sho wn later� Note that the �optimal� path found using ������ not necessarily

corresp onds to a v alid path through the mo del�

��� Maxim um Lik eliho o d Estimation

So far w e ha v e assumed that the parameters of the mo del are giv en� In this section w e will

sho w ho w the parameters can b e estimated from data using a Maximum Likeliho o d �ML�

based metho d� A discussion of theoretical and practical issues in ML estimation will b e

giv en in c hapter ��

Let the data set �training set� of K sym b ol sequences from the alphab et A b e denoted


D " f x

L

k

�

� k �# k " � � � � � � K g � ������

L

k

is the n um b er of observ ations in training sequence k � Giv en the mo del � 
 the sequences

x ��� � � � � � x � K � are assumed to b e indep enden t
 and the total lik eliho o d is

�

L � � # D � "

K

Y

k ��

P � x � k �# � � � ������

Because of the indep endence assumption w e consider only one training sequence hereafter

without loss of generalit y � Generalization to m ultiple sequences is straigh tforw ard b y

placing sums or pro ducts o v er the K sequences at appropriate places�

The ob jectiv e of maxim um lik eliho o d estimation is to �nd the parameters

&

�

M L

that

maximize ������


&

�

M L

" argmax

�

L � � # D � � ������

T o maximize the lik eliho o d
 one can apply sev eral di�eren t metho ds� The most widely

used is probably the BaumW elc h or forw ardbac kw ard algorithm �BE�� 
 BPS�� 
 Bau��  

whic h is a particular implemen tation of the Exp ectationMaximization �EM� algorithm

�DLR��  for HMMs� The BaumW elc h algorithm increases the lik eliho o d monotonically b y

iterativ ely r e estimating the transition and matc h probabilities using a set of reestimation

form ulas� A v ery pleasing prop ert y of the BaumW elc h algorithm is that it guaran tees

con v ergence of ������ to a lo cal maxim um� The deriv ation of the reestimation form ulas

and the pro of of con v ergence giv en in the pap ers b y Baum et al� is rather in tricate� Based

on the formalism of the EM algorithm describ ed in the follo wing section it is
 ho w ev er


simple to deriv e the reestimation form ulas and pro v e con v ergence� The in tro duction to

the EM algorithm giv en b elo w is based on �YHS�� 
 Y os��  �

�

Note that w e use the same sym b ol� P � �  � �� for lik eliho o ds and probabilities� It should� ho w ev er� b e

clear from the con text whether P � x  � � denotes the probabilit y of x giv en b y the mo del � or the lik eliho o d

giv en the observ ation sequence�
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����� The EM Algorithm

The EM algorithm is an iterativ e approac h to maxim um lik eliho o d estimation prop osed b y

Dempster et al� �DLR��  whic h is useful when the optimization problem can b e simpli�ed

b y in tro ducing an additional missing or hidden v ariable� A v ery app ealing prop ert y of

the EM algorithm is that it guaran tees a monotonic increase of the lik eliho o d to a lo cal

maxim um b y p erforming t w o separate steps at eac h iteration# an Estimation �E� step and

a Maximization �M� step� The algorithm con v erges at a linear rate �DLR��  whic h is

slo w compared to the ideal con v ergence rate of e�g� 
 second order metho ds suc h as the

NewtonRaphson family of algorithms� The simplicit y and guaran tee of con v ergence is

nev ertheless v ery attractiv e to man y applications�

Let the � inc omplete data � lik eliho o d b e denoted P � x # � �
 where � are the parameters

w e wish to estimate and x is the �incomplete� data� F urthermore
 assume z is the missing

data suc h that P � x � z # � � denotes the c omplete data lik eliho o d� The EM pro cedure is

attractiv e only when the maximization of the complete data lik eliho o d is more tractable

than the maximization of the incomplete data lik eliho o d� Using Ba y es� rule w e �nd


P � x # � � "

P � x � z # � �

P � z j x # � �

������

and taking the logarithm
 m ultiplying b y P � z j x # � � and summing o v er z yields


log P � x # � � "

X

z

P � z j x # � � log P � x � z # � � �

X

z

P � z j x # � � log P � z j x # � �

" E

z

�log P � x � z # � � j x � �  � E

z

�log P � z j x # � � j x � �  � ������

No w de�ne the Q and the H auxiliary functions b y 


Q

z

� � j � � " E

z

�log P � x � z # � � j x � �  ������

H

z

� � j � � " E

z

�log P � z j x # � � j x � �  � ������

Then
 the �incomplete� data log lik eliho o d is a di�erence b et w een the Q and H functions


log P � x # � � " Q

z

� � j � � � H

z

� � j � � ������

and for the t w o parameter sets � and � the log lik eliho o d di�erence b ecomes


log P � x # � � � log P � x # � � " fQ

z

� � j � � � Q

z

� � j � � g � fH

z

� � j � � � H

z

� � j � � g � ������

F rom Jensen�s inequalit y 


�

the follo wing inequalit y alw a ys holds


�fH

z

� � j � � � H

z

� � j � � g � � � ������

with equalit y if and only if � " � � Consequen tly 
 if the parameters � are c hosen suc h

that


Q

z

� � j � � � Q

z

� � j � � � ������

�

Jensen�s inequalit y states that E � g � z �� � g � E � z �� for an y con v ex function g � z ��
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then

log P � x # � � � log P � x # � � � ������

Equations ������ and ������ suggest an algorithm that iterativ ely estimates the parameters

� suc h that


P � x # �

	 t ��


� � P � x # �

	 t 


� ������

is satis�ed for a sequence �

	�


� �

	�


� � � � � �

	 t 


� �

	 t ��


� � � � of parameter sets� Suc h an ap

proac h implies that the lik eliho o d increases monotonically un til a �lo cal� maxim um is

reac hed� The EM algorithm is summarized in algorithm ����

Algorithm 	�� EM algorithm

Initialization� �

	�


" Initial guess

Estep� Giv en �

	 t 


� compute Q

z

� � j �

	 t 


� � t " � � � � � � �

Mstep� Up date parameters �

	 t ��


" argmax

�

Q

z

� � j �

	 t 


� � t " � � � � � � �

Sometimes it is not p ossible to analytically maximize the Q function as required b y

the Mstep� Ho w ev er
 if w e can �nd a parameter estimate that incr e ases the Q function

at eac h iteration instead of maximizing it
 the con v ergence prop ert y of the algorithm is

still v alid� In this case the EM algorithm is called a Gener alize d EM or GEM algorithm�

The standard �G�EM algorithm is a socalled b atch or o	ine training algorithm
 where

the parameter up date is done after collecting the statistics for all training sequences� That

is
 for a set of K training sequences the auxiliary function is de�ned o v er the en tire training

set b y adding sums o v er k in algorithm ���
 and the Mstep giv es a parameter estimate

based on the en tire training set� Incr emental or online v arian ts of the �G�EM algorithm


where the E and Msteps are carried out for eac h training sequence
 ha v e recen tly b een

prop osed in e�g� 
 �YHS��  � Ho w ev er
 these online approac hes ha v e considerably larger

memory requiremen ts than the con v en tional EM algorithm�

����� Baum�W elc h Reestimation

F or an HMM the hidden v ariable is the state sequence � � Indeed
 if � is giv en
 then

maximizing ������ reduces to � N static learning problems# w e can estimate the transition

and matc h probabilities indep enden tly for eac h state� If w e denote the curren t mo del b y

�

	 t 



 then the auxiliary Q function can b e expressed as the exp ectation of the complete

data log lik eliho o d P � x � � # � � o v er the path distribution giv en b y the curren t mo del

�

�

	 t 





�

The Baum�W elc h algorithm w as actually prop osed sev eral y ears b efore the formal description of the

EM algorithm� In the deriv ation b y Baum and colleagues a sligh tly di�eren t auxiliary function w as used�

�

Q � � j �

� t �

� � Q � � j �

� t �

� �P � x  �

� t �

� �

X

�

P � � � x  �

� t �

� log P � � � x  � � �

This function essen tially measures the di�erence b et w een the distributions represen ted b y � and �

� t �

� and

since P � x  �

� t �

� is indep enden t of � maximization of Q and

�

Q w�r�t� � yields iden tical results�
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Q

�

� � j �

	 t 


� " E

�

�log P � x � � # � � j x � �

	 t 


 

"

X

�

P � � j x # �

	 t 


� log P � x � � # � � � ������

F rom ����� w e �nd for the complete data lik eliho o d


P � x � � # � � "

Y

l

�

�

l � �

�

l

�

�

l

� x

l

� "

Y

l ij

�

�

�

l � �

�i

�

�

l

�j

ij

Y

l i

�

i

� x

l

�

�

�

l

�i

� ������

where �

�

l

�i

is the Kronec k er delta function whic h is one if and only if �

l

" i and otherwise

zero� T aking the logarithm yields the complete data log lik eliho o d


log P � x � � # � � "

X

l ij

�

�

l � �

�i

�

�

l

�j

log �

ij

$

X

l i

�

�

l

�i

log �

i

� x

l

� ������

and substituting ������ in to ������ giv es


Q

�

� � j �

	 t 


� "

X

l i

n

	 t 


i

� l � log �

i

� x

l

� $

X

l ij

n

	 t 


ij

� l � log �

ij

" Q

�

�

� � j �

	 t 


� $ Q

�

�

� � j �

	 t 


� � ������

where w e ha v e de�ned


n

ij

� l � " E

�

� �

�

l � �

�i

�

�

l

�j

j x � �  

"

X

�

P � � j x # � � �

�

l � �

�i

�

�

l

�j

" P � �

l � �

" i� �

l

" j j x # � � ������

and

n

i

� l � " E

�

� �

�

l

�i

j x � �  "

X

�

P � � j x # � � �

�

l

�i

" P � �

l

" i j x # � � ������

n

ij

� l � is the exp e cte d n um b er of times the transition from state i to state j is used at time

l and n

i

� l � is the exp ected n um b er of times state i is visited at time l �

As sho wn in ������ the auxiliary function is comp osed of t w o separate terms# one corre

sp onding to the transition probabilities
 Q

�

�

"

P

l ij

n

	 t 


ij

� l � log �

ij


 and one corresp onding

to the matc h probabilities
 Q

�

�

"

P

l i

n

	 t 


i

� l � log �

i

� x

l

�� Th us
 the Mstep can b e car

ried out separately for transition and matc h probabilities� The probabilistic constrain ts

are easily incorp orated b y viewing the maximization step as a constrained optimization

problem� F or the matc h probabilities w e de�ne


J

�

�

� � j �

	 t 


� " Q

�

�

� � j �

	 t 


� $

X

i

	

i

�

� �

X

a �A

�

i

� a �

�

� ������

where the 	

i

�s are Lagrange m ultipliers� The deriv ativ e of J

�

�

w�r�t� the probabilit y of

matc hing sym b ol a in state i reads
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 J

�

�

� � j �

	 t 


�


 �

i

� a �

"

�

�

i

� a �

X

l

n

	 t 


i

� l �


 �

i

� x

l

�


 �

i

� a �

� 	

i

" � � ������

Observing that

� �

i

	 x

l




� �

i

	 a 


" �

x

l

�a

w e �nd



 J

�

�

� � j �

	 t 


�


 �

i

� a �

"

�

�

i

� a �

X

l

n

	 t 


i

� l � �

x

l

�a

� 	

i

� ������

Setting the deriv ativ e to zero and solving for �

i

� a � giv es


�

	 t ��


i

� a � "

P

l

n

	 t 


i

� l � �

x

l

�a

	

i

� ������

The constrain t

P

a

�

i

� a � " � yields 	

i

"

P

l a

n

	 t 


i

� l � �

x

l

�a

and therefore the reestimation

form ulas for the matc h probabilities are


�

	 t ��


i

� a � "

P

l

n

	 t 


i

� l � �

x

l

�a

P

l a

�

n

	 t 


i

� l � �

x

l

�a

�

"

'n

	 t 


i

� a �

P

a

�

'n

	 t 


i

� a

�

�

� ������

where ' n

i

� a � "

P

l

n

i

� l � �

x

l

�a

is de�ned as the exp ected n um b er of times sym b ol a is matc hed

in state i for observ ation sequence x � The deriv ation for the transition probabilities is of

exactly the same form and leads to the reestimation form ulas

�

	 t ��


ij

"

P

l

n

	 t 


ij

� l �

P

l j

�

n

	 t 


ij

�

� l �

"

'n

	 t 


ij

P

j

�

'n

	 t 


ij

�

� ������

where ' n

ij

"

P

l

n

ij

� l � is the exp ected n um b er of times a transition from state i to j is used

for observ ation sequence x � F or a set of K training sequences the up date form ulas remain

unc hanged but the exp ected 'n coun ts m ust no w b e accum ulated o v er the K training

sequences�

The exp ected coun ts in the BaumW elc h reestimation equations ab o v e can b e com

puted e�cien tly using the forwar d�b ackwar d algorithm� In addition to the recursion for the

forw ard v ariable �

j

� l � giv en in algorithm ��� a similar bac kw ard recursion is in tro duced

for the bac kw ard v ariable �

i

� l �� Let �

i

� l � " P � x

L

l ��

j �

l

" i # � �
 i�e� 
 the probabilit y of

matc hing the rest of the sequence x

L

l ��

" x

l ��

� � � � � x

L

giv en that w e are in state i at time

l � The bac kw ard recursion is easily deriv ed and the pro cedure is sho wn in algorithm ����

Observ e that the lik eliho o d can b e calculated as


P � x # � � "

N

X

i ��

�

i

� l � �

i

� l � ������

for an y l � ��# L  �

No w
 b y consulting �gure ��� and exploiting the standard HMM assumptions
 w e see

that the exp ected n um b er of times
 n

ij

� l �
 a transition from state i to state j is used at

time l is giv en b y 


n

ij

� l � "

P � �

l � �

" i� �

l

" j� x # � �

P � x # � �

"

�

i

� l � �� �

ij

�

j

� x

l

� �

j

� l �

P

i

�

�

i

�

� l � �

i

�

� l �

� ������
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Algorithm 	�� Bac kw ard algorithm � P � x # � � 

De�nition� �

i

� l � " P � x

L

l ��

j �

l

" i # � �

Initialization� �

i

� L � " �

iN ��

� � � i � N

Recursion� �

i

� l � "

P

j

�

j

� l $ �� �

ij

�

j

� x

l ��

� � � � i � N � � � l � L

T ermination� P � x # � � "

P

j

�

j

��� �

� j

�

j

� x

�

�

Similarly 
 the exp ected coun t n

i

� l � is obtained b y summing ������ o v er j and using the

bac kw ard recursion


n

i

� l � "

P � �

l

" i� x # � �

P � x # � �

"

�

i

� l � �

i

� l �

P

i

�

�

i

�

� l � �

i

�

� l �

� ������

Time

l-1l-2 l

i j

� i(l-1) � j(l)

S
ta

te

� ij

� j(xl)

l+ 1

Figure ��� � Calculation of exp ected counts�

����� Viterbi Reestimation

When calculating the coun ts b y the forw ardbac kw ard algorithm
 all p ossible paths through

the mo del are tak en in to accoun t� Another approac h is to use the Viterbi algorithm whic h

only considers the optimal path
&

� through the mo del� In this case the parameters are

selected according to


&

�

M L

" argmax

�

�max

�

P � x � � # � � � ������

The coun ts can no w b e computed during Viterbi bac ktrac king and they e�ectiv ely b ecome

delta functions


n

ij

� l � " �

��

l � �

�i

�

��

l

�j

������

n

i

� l � " �

��

l

�i

� ������
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Th us
 n

ij

� l � " � � � only if the transition probabilit y �

ij

is used at time l in the optimal

path and similarly n

i

� l � " � � � only if state i is visited at time l � The reestimation

equations remain the same as ������������ and the metho d is often called Se gmental k�

me ans reestimation �R WJ��  or simply Viterbi reestimation�

Compared to the forw ardbac kw ard approac h
 Viterbi reestimation is computationally

c heap er as the bac kw ard pass is not needed� F urthermore
 if the n um b er of training exam

ples is v ery large compared to the n um b er of parameters it has b een theoretically argued

�ME��  that Viterbi reestimation will giv e parameter estimates similar to the BaumW elc h

estimates� In most applications
 ho w ev er
 the training data is limited and the estimates

will di�er for the t w o approac hes� The forw ardbac kw ard algorithm calculates the coun ts

as a w eigh ted a v erage o v er all paths in the mo del
 thereb y allo wing the HMM to �share�

mo deling resources b et w een sev eral states to handle di�cult segmen ts in the training

data� On the other hand
 Viterbi reestimation forces the HMM to treat eac h state in

dep enden tly � Based on these observ ations one ma y argue that Viterbi deco ding is more

suitable for Viterbi trained mo dels whereas �all path� forw ard deco ding should b e used

for forw ardbac kw ard reestimated mo dels�

��	 V ariations

Through time a large n um b er of v ariations ha v e b een prop osed to the basic HMM arc hi

tecture describ ed ab o v e� In this section w e discuss some of the v ariations relev an t to this

w ork�

����� Matc h Distributions

Standard HMMs t ypically mak e use of t w o di�eren t kinds of matc h distributions
 namely

discrete and con tin uous
 but parameter sharing b et w een states can lead to mixtures of

the t w o
 kno wn as semicon tin uous distributions� Figure ��� illustrates the three t yp es of

distributions whic h are describ ed b elo w�

	����� Discrete Matc h Distribution

F or discrete observ ations the probabilit y of matc hing a sym b ol a from a �nite alphab et A

in state i at an y time is denoted �

i

� a �� HMMs emplo ying discrete matc h distributions are

commonly termed discrete HMMs� Discrete matc h probabilities are computationally v ery

c heap as they can b e implemen ted b y lo okup tables�

The discrete HMM seems to b e the righ t c hoice for applications lik e biological sequence

mo deling where the observ ations are inheren tly sym b ols from a �nite alphab et �DEKM��  �

Most early sp eec h recognition systems w ere also based on discrete HMMs �Jel��
 Rab��


Lee��  � Suc h an approac h
 ho w ev er
 requires that the sp eec h feature v ectors are �rst passed

though a ve ctor quantizer whic h assigns a sym b ol from an alphab et A to eac h of the feature

v ectors� The sym b ols represen t protot yp e feature v ectors from a c o deb o ok obtained b y e�g� 


the kmeans or LindeBuzoGra y �LBG� algorithm �see e�g� 
 �DPH��  � and the assignmen t

is t ypically based on the Euclidean or Itakura �Ita��  distance b et w een the protot yp e and

observ ed feature v ector� An imp ortan t qualit y of the discrete distribution is that it do es

not assume an y sp eci�c functional form of the matc h distribution� Ho w ev er
 the qualit y of

the quan tizer in terms of the distortion in tro duced due to �nite size co deb o oks can ha v e

a crucial impact on the p erformance of the recognizer �Rab��  �
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Continuous

Discrete

Semi-continuous

� 1(xl) � 2(xl) � 3(xl)

�=1 �=2 �=3

� 11 � 22 � 33

� 12 � 23

Figure �� � Illustration of match distributions in HMMs�

	����	 Con tin uous Matc h Distribution

The con tin uous HMM w as in tro duced in the mid����s �LRS�� in order to accoun t for

the fact that the observ ations x

l

� R

r

are inheren tly con tin uous v alued v ectors in man y

applications� In the con tin uous HMM the matc h distribution �

i

� x

l

# w

i

� in state i is a

parametric con tin uous densit y function� The most commonly used densit y is the Gaussian

densit y function


�

i

� x

l

# w

i

� " N � x

l

# �

i

� �

i

� "

�

�� � �

r � �

j �

i

j

� � �

exp

�

�

�

�

� x

l

� �

i

�

T

�

� �

i

� x

l

� �

i

�

�

� ������

where �

i

� R

r

	 R

r

and �

i

� R

r

iden tify the co v ariance matrix and mean v ector
 resp ec

tiv ely � The v ector w

i

denotes the collection of parameters sp ecifying the densit y asso ciated

with state i 
 that is
 w

i

" f �

i

� �

i

g � The unimo dal singleGaussian densit y is v ery sim

ple and usually inadequate for describing the complex data distributions encoun tered in

practical applications lik e sp eec h recognition� Therefore
 it is common to use a mixtur e of

Gaussians instead


�

i

� x

l

# w

i

� "

K

X

k ��

c

ik

N � x

l

# �

ik

� �

ik

� � ������

Here there are K comp onen ts in the mixture and the mixture w eigh ts c

ik

satisfy

P

k

c

ik

" �

and c

ik

� � for all states i � F or the k �th comp onen t in the mixture
 �

ik

and �

ik

iden tify the
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co v ariance matrix and mean v ector
 resp ectiv ely � The BaumW elc h algorithm also applies

to mixtures of Gaussians and the reestimation equations for the mixture w eigh ts
 mean

v ectors and co v ariance matrices are readily expressed in terms of the exp ected coun t n

i

� l �

in tro duced ab o v e �see e�g� 
 �Rab��  �� They can b e deriv ed easily b y a simple application

of the c hain rule when calculating the deriv ativ e of the auxiliary Q function�

Giv en a su�cien t n um b er of comp onen ts the Gaussian mixture can
 in theory 
 ap

pro ximate an y smo oth con tin uous function to arbitrary accuracy � Ho w ev er
 the a v ailable

amoun t of data in most applications puts an upp er limit on the n um b er of mixture com

p onen ts that can b e estimated reliably � T o ensure robust training it is furthermore quite

common to assume that the elemen ts of the feature v ector x

l

are uncorrelated b y ignoring

o�diagonal elemen ts in the co v ariance matrix� With a t ypical feature v ector dimension

of r � �� � �� this can lead to v ery large sa vings in the n um b er of parameters but at the

cost of reduced mo deling capabilities�

	����� Semi�Con tin uous Matc h Distribution

T o alleviate the parameter problem in con tin uous mixtures a com bination of discrete and

con tin uous densities ha v e b een prop osed in �BN�� 
 HJ�� 
 Hua��  � Mo dels emplo ying

suc h densities are usually called semicon tin uous HMMs and the idea is to shar e a set of

common basis functions
 t ypically Gaussians� Let the shared basis functions b e denoted

N � x

l

# �

k

� �

k

�� Then the semicon tin uous matc h distribution �

i

� x

l

# w

i

� in state i is de�ned

b y 


�

i

� x

l

# w

i

� "

K

X

k ��

c

ik

N � x

l

# �

k

� �

k

� � ������

where the mixture co e�cien ts satisfy p ositivit y and sumtoone constrain ts� The semi

con tin uous HMM can b e view ed as a sp ecial kind of discrete HMM where the mixture co

e�cien ts replace the discrete matc h probabilities and the v ector quan tizer is represen ted b y

the set of basis functions� Con trary to the standard discrete HMM
 the �v ectorquan tizer�

in a semicon tin uous HMM is trained along with all the other parameters in the mo del�

Th us
 the semicon tin uous HMM can b e considered a sp ecial case of a discrete HMM

with an adaptive input tr ansformation � The semicon tin uous HMM also has in teresting

relations to the socalled r adial b asis function neural net w ork
 see e�g� 
 �RMCF��  �

Reestimation equations for the mixture w eigh ts
 mean v ectors and co v ariance matrices

can b e deriv ed in a w a y analogous to the con tin uous mixture case
 see e�g� 
 �BN�� 
 HJ��


Hua��  �

����� P arameter T ying

The semicon tin uous HMM constitutes a sp ecial case of a tec hnique kno wn as p ar ameter

tying �Y ou��a  where some parameters or parameter sets are shared b et w een one or more

states in the HMM� The tec hnique is v ery similar to weight sharing in neural net w orks �see

e�g� 
 �HKP�� 
 Bis�� � and ma y yield b etter generalization p erformance when the training

data is sparse� The BaumW elc h algorithm applies without c hanges if the exp ected coun ts

for the tied parameters are added up�

P arameter t ying necessarily implies that some of the mo deling capabilities are sacri�ced

to impro v e generalization and it is therefore v ery imp ortan t to select the prop er parameters

to share� This is often done using prior kno wledge ab out the problem at hand� F or
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example
 in sp eec h recognition it is v ery common to share the same matc h distribution

b et w een sev eral states in a phoneme mo del for duration mo deling as discussed b elo w�

Similarly 
 for con text dep enden t phoneme mo dels the �core� or nucleus section can b e

shared b et w een all con textmo dels for a particular phoneme �LH��  � Alternativ ely 
 one

can use unsup ervised clustering tec hniques for t ying di�eren t parameter sets automatically

during mo del estimation
 see e�g� 
 �Lee�� 
 Lee�� 
 Y ou��a 
 K OR�� �

����� Duration Mo deling

If the selflo op transition for a state has the v alue �

ii

" q 
 then the probabilit y of sta ying

in this state for d timesteps �observ ations� is giv en b y 


P � d � " q

d � �

�� � q � ������

and the a v erage duration is

'

d " �� � q �

� �

� F or man y applications this is a v ery p o or dura

tion mo del� A P oisson distribution
 for example
 is m uc h more appropriate for phonemes


see �gure ���� There are sev eral w a ys to impro v e duration mo deling in the HMM frame

w ork� One approac h is to use explicit parametric or nonparametric �histogram� duration

distributions instead of the selflo op transitions as prop osed in e�g� 
 �RM�� 
 Lev��  � In

these approac hes the forw ardbac kw ard algorithm is altered b y in tro ducing sums o v er

the allo w ed duration in terv als and the histogram probabilities or the parameters of the

parametric duration distributions can b e reestimated along with the other parameters�

Although app ealing
 the use of explicit duration distributions has not b een widely used

b ecause of the added computational complexit y ! for a maxim um duration of D ob

serv ations the forw ard algorithm for mo dels with explicit duration distributions requires

appro ximately D

�

� � times the computation of the standard forw ard algorithm� Another

approac h is to use socalled �hardwired� duration mo deling where state duplication is

used to ensure minim um and�or maxim um durations� When duplicating states the matc h

distributions are tied b et w een the duplicated states� An example of a mo del with hard

wired minim um duration is sho wn in �gure ����a�� If the t w o transitions asso ciated with

eac h of the duplicated states are tied as in �gure ����a� the mo del will ha v e a P ascal or

pseudoP oisson duration distribution


P � d � "

�

l � �

n � �

�

q

l � n

�� � q �

n

� l � n ������

with a v erage duration

'

d " n�q 
 see �gure ���� If the v alue of q is �xed a priori b efore

training the n um b er of duplicated states needed to obtain an observ ed a v erage duration

of D is simply n " q D � Note that if the mo del in �gure ��� is trained or deco ded using all

p ossible paths the pseudoP oisson distribution will b e v alid� On the other hand
 if training

or deco ding is based only on the optimal Viterbi path then the duration distribution

e�ectiv ely b ecomes exp onen tial b ecause all paths of length l through the mo del in this

case ha v e equal probabilit y � F or Viterbi training or deco ding this implies that the minim um

duration mo del in �gure ����a� can b e replaced b y the mo del in �gure ����b��

The hardwired duration mo deling approac h has only little computational o v erhead

and has b een observ ed to giv e excellen t results in man y sp eec h recognition applications


see e�g� 
 �Rii��
 Rob�� 
 BM�� 
 Rob��  � Therefore
 it tends to b e the most widely used

approac h�
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Figure ��� � Example of duration distributions fo r the phoneme �eh� in the TIMIT database�

The plot sho ws the observed distribution and the distributions given b y a one	state mo del

and a four	state mo del� F o r the four	state mo del b oth the exp onential and pseudo	P oisson

distributions a re sho wn� F o r all mo dels� the self	lo op p robabilit y q is selected to match the

observed average duration of ���ms�

� 1(xl)

� 1(xl)

� 1(xl)

� 1(xl)

� 1(xl)

� 1(xl)

q q

q

q

1-q

1-q

1-q
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a) Hardwired minimum duration (pseudo-Poisson distribution)

b) Equivalent model for Viterbi training/decoding

Figure ��� � �Ha rdwired� duration mo deling in HMMs b y duplication states �all match and

transition p robabilities a re tied b et w een the duplicated states�� �a� pseudo	P oisson minimum

duration distribution� �b� equivalent mo del fo r Viterbi training o r deco ding�
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��
 HMMs for Sp eec h Recognition

In the ab o v e discussion of the HMM framew ork it w as assumed that a separate mo del could

b e built for eac h class to b e recognized� In small v o cabulary isolated w ord recognition it

is indeed p ossible to construct an HMM for eac h w ord and to estimate its parameters

using the training data a v ailable for that w ord� In principle large v o cabulary isolated

w ord recognition and con tin uous sp eec h recognition can b e done in exactly the same w a y

b y ha ving mo dels for eac h p ossible hyp othesis 
 that is
 eac h p ossible w ord or sen tence


resp ectiv ely � Ho w ev er
 in practice there are a n um b er of problems that ha v e to b e solv ed�

These are de�ned b elo w and discussed in the follo wing sections�

Since training data �and the p o w er of to da ys computers� is alw a ys limited in sp eec h

recognition it is di�cult if not imp ossible to train a separate mo del for eac h w ord �or

sen tence� in a large v o cabulary task� This problem is usually solv ed b y splitting the

recognition task in to t w o separate parts as discussed in c hapter �� �� Acoustic mo deling

and �� Language mo deling� The acoustic mo del is a collection of HMMs whic h translate the

acoustic observ ations x in to a sequence y of meaningful symb olic message units �SMUs�

of a language� As discussed in c hapter � the SMUs are t ypically w ords
 syllables or

phonemes� By concatenating SMUs
 w ords or sen tences can b e built according to the

constrain ts imp osed b y a language mo del�

F urthermore
 the large n um b er of p ossible h yp otheses �sen tences or w ords� can mak e

an exhaustiv e searc h o v er all p ossible concatenations of SMUs during deco ding impractical�

T o deco de utterances in real time more e�cien t searc h strategies are needed�

��	�� Acoustic Mo deling

Similar to the case of only one class for eac h sequence
 the MAP deco der for �nding the

optimal sequence of SMU lab els y corresp onding to an utterance x is giv en b y 


&
y " argmax

y �Y

P � x j y # � � P � y # � � � ������

where Y is the space of all p ossible SMU lab el sequences� In ������ P � y # � � is commonly

denoted the language mo del and P � x j y # � � the acoustic mo del� In man y applications the

language mo del parameters are assumed indep enden t of the acoustic mo del parameters


that is
 the language mo del is giv en b y a separate mo del# P � y # � �� In this w a y the mo d

eling problem has b een divided in to t w o separate parts# acoustic mo deling and language

mo deling�

The acoustic mo del describ ed b y � consists of one subHMM for eac h SMU and it

maps the input sp eec h feature v ectors in to a sequence of SMUs� The c hoice of SMU is

v ery imp ortan t for the o v erall p erformance of the system� In Lee �Lee��  it w as argued

that go o d p erformance can b e obtained pro vided that the SMUs satisfy t w o criteria�

Consistency � The SMUs m ust b e acoustically consisten t
 that is
 di�eren t acoustic re

alizations of the same SMU m ust b e similar and signi�can tly di�eren t from other

SMUs� Consistency will impro v e the abilit y of the acoustic mo del to discriminate

b et w een classes and impro v e o v erall p erformance�

T rainabilit y � The SMUs m ust b e trainable from the a v ailable data
 that is
 there m ust

b e a su�cien t n um b er of examples in the training set for eac h SMU to guaran tee
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robust estimates of the parameters� T rainabilit y ensures that the acoustic mo del

will generalize w ell to examples not found in the training set�

F or small v o cabulary isolated w ord recognition w ords are a natural c hoice for SMUs b e

cause they are the most natural unit of sp eec h and b ecause they are consisten t and train

able� Ho w ev er
 for large v o cabularies it is not p ossible to train all w ord mo dels due to

limited training data and computer p o w er� The trainabilit y problem can b e handled b y

using phonemelik e SMU mo dels �LH�� 
 Rob�� 
 HRR C��  � In English there are ab out

�� distinct phonemes whic h constitute a set of building blo c ks for all w ords in the lan

guage� The small n um b er of phonemes mak es it p ossible to train phonemeHMMs from

relativ ely small training sets� Unfortunately 
 phonemes are abstract units of sp eec h and

it is v ery di�cult to utter an y phoneme in isolation� The actual realization of a particu

lar phoneme
 called a phone


�

is highly in�uenced b y coarticulation e�ects of the h uman

sp eec h pro duction system
 i�e� 
 the realization will dep end on the phonetic con text� The

large v ariabilit y in acoustic realizations can to some exten t b e handled using con text de

p enden t phone mo dels e�g� 
 biphones or triphones � Biphones represen t phonemes in the

�righ t or left� con text of another phoneme whereas triphones represen t phonemes in the

�left and righ t� con text of t w o other phonemes
 see �Y ou��  for a discussion� Although

this addresses the consistency problem
 it rein tro duces the trainabilit y problem b ecause

for a set of �� phonemes there are ��

�

" �� � ��� p ossible triphones �some of whic h do

not actually o ccur in practice�� In order to use biphone or triphone mo dels it is there

fore necessary to emplo y parameter t ying and smo othing tec hniques as describ ed in e�g� 


�LH�� 
 Lee�� 
 Rab�� 
 K OR�� 
 YW��  � In the w ork describ ed b y this thesis only mono

phone mo dels w ere used mainly for computational reasons�

F or some de�nition of the SMUs let us no w assume that the SMU y

l

asso ciated with

eac h observ ation x

l

is kno wn� Then maximizing the lik eliho o d of the acoustic mo del

P � x j y # � � is straigh tforw ard� The HMM mo deling a particular SMU is just trained using

those segmen ts of the data whic h b elong to that SMU class� Unfortunately 
 the exact

time b oundaries b et w een SMUs relativ e to the acoustic signal are rarely kno wn b ecause

they ha v e to b e man ually assigned b y h uman exp erts ! a pro cess whic h is b oth time

consuming and exp ensiv e� A t this p oin t it is con v enien t to distinguish explicitly b et w een

t w o t yp es of lab eling common to HMM mo deling�

Complete Lab els� Eac h observ ation is asso ciated with one lab el� In some applications

suc h as the prediction of socalled secondary structures in proteins �RK��a  eac h

observ ation is asso ciated with a particular class lab el� Th us
 the sequence of lab els

denoted y " y

�

� � � � � y

L

is as long as the sequence of observ ations x " x

�

� � � � � x

L




and t ypically the lab els come in groups� In sp eec h the complete lab eling corresp onds

to kno wing the SMU timesegmen tation
 that is
 the exact time b oundaries b et w een

SMUs relativ e to the acoustic signal�

Incomplete Lab els� The whole sequence of observ ations is asso ciated with a shorter

sequence of lab els y " y

�

� � � � � y

S


 S � L � The lab el of eac h individual observ ation

is unkno wn!only the order of lab els is a v ailable� In SMU based acoustic mo deling

the correct string of SMUs is usually kno wn for the training utterances b ecause

	

Di�eren t phoneme sequences result in di�eren t w ords whereas the same w ord can b e pro duced using

man y di�eren t phone sequences� Th us� phonemes are abstract sound classes and phones the particular

realizations of these sounds� W e will use the term phone and phoneme in terc hangeably throughout this

thesis despite the sligh t di�erence in de�nition�
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the sp ok en w ords are kno wn but the time segmen tation is unkno wn� T ypically the

sequence of observ ations is considerably longer than the lab el sequence� When S " L

the t w o t yp es of lab els are equiv alen t and S " � corresp onds to only one lab el for

eac h observ ation sequence�

Where needed w e will distinguish b et w een the t w o t yp es of lab eling b y explicitly writing

y

S

�

for incomplete lab eling and y

L

�

for complete lab eling�

If only the incomplete lab eling is a v ailable the ab o v e approac h for maximizing the

lik eliho o d cannot b e used� There are t w o common solutions�

Viterbi resegmen tation In this metho d the sequence of incomplete lab els is iterativ ely

c hanged in to a sequence of complete lab els b y a so�called forced Viterbi alignmen t�

The basic idea is to deco de the curren t acoustic mo del using a Viterbi deco der where

the sequence of SMUHMMs is constrained to ob ey the incomplete lab el sequence

asso ciated with the training sequence� Since the Viterbi deco der giv es a state seg

men tation this alignmen t can b e translated in to a sequence of complete lab els� Using

this complete lab eling the mo dels are trained indep enden tly as ab o v e �using either

forw ardbac kw ard or Viterbi training� un til con v ergence and a new alignmen t can

b e generated based on these mo dels�



The forced Viterbi resegmen tation approac h

is widely used for HMM�NN h ybrids as discussed later in c hapter ��

Em b edded reestimation This metho d is sometimes more reasonable than Viterbi re

segmen tation since enforcing an explicit time segmen tation can b e inappropriate�

�

In

the framew ork of maxim um lik eliho o d estimation the task is solv ed b y concatenating

SMUHMMs according to the observ ed incomplete SMU lab eling y

S

�

�LH�� 
 Lee��  


see �gure ���� Multiple pron unciations of a w ord can b e included as parallel branc hes

in the sequence of SMUHMMs and the exp ected coun ts are calculated using the stan

dard forw ardbac kw ard algorithm on the concatenated HMM �

y

S

�

� This is rep eated

for all training utterances and the accum ulated coun ts are used for reestimating the

parameters� Note that this approac h relies hea vily on go o d initial SMUHMMs in

order to attract the righ t p ortions of the training data during estimation� W e will

elab orate on this in c hapter ��

��	�� Language Mo deling

The language mo del de�nes a set of rules describing ho w utterances are formed from

sequences of SMUs� The language mo del imp oses large constrain ts on the sequence of

SMUs and a w ell designed language mo del aids considerably in guiding the searc h during

deco ding and consequen tly in reducing the deco ding time� The degree of constrain t that

a language mo del imp oses is usually measured in terms of the p erplexity �DPH��  whic h

is roughly the a v erage branc hing factor for an SMU
 i�e� 
 the a v erage n um b er of SMUs

that can follo w an y other SMU� In a t ypical con tin uous sp eec h recognition application


the language mo del con tains a pron unciation lexicon de�ning phonetic transcriptions of

w ords and a syn tax de�ning ho w sen tences are formed from w ords� If some of the w ords




T ypically � the initial complete lab eling is a linear expansion of the incomplete lab eling� p ossibly con�

strained b y a v erage durations of the SMUs�

�

Explicit time b oundaries b et w een e�g� � phonemes do not exist b ecause of coarticulation � the h uman

articulatory system cannot c hange instan taneously �
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Phoneme
level

Word
level

Sentence
level

/k/

this

/ae/

cat can

/t/

speak

dog cannot

� 1(xl) � 2(xl) � 3(xl)

�=1 �=2 �=3

� 11 � 22 � 33

� 12 � 23

Figure ��� � Illustration of concatenated phoneme	HMMs fo r the w o rd �cat� with phonetic

transcription �k� �ae� �t� �TIMIT phoneme lab els� see app endix A��

ha v e m ultiple pron unciations the lexicon will ha v e one en try for eac h pron unciation� The

rules in the grammar are usually describ ed b y N�gr am sto c hastic grammars giving the

probabilit y that a w ord �or subw ord� follo ws a particular sequence of N � � w ords �or

subw ords�� Th us
 an N gram e�ectiv ely appro ximates the probabilit y of a w ord �or sub

w ord� sequence y as


P � y � �

S

Y

s ��

P � y

s

j y

s � �

s � N ��

� � ������

F or w ord sequences the Ngram probabilities can b e estimated reliably from large textonly

corp era pro vided N is not larger than three or four� The degenerate case of N " � de�nes

a unigram grammar where the a priori probabilit y of the SMU sequence y is giv en b y the

pro duct of a priori probabilities for eac h of the SMU classes in the sequence� Similarly 


N " � de�nes a zero or n ullgram where all lab el sequences are equiprobable� Note that

the Ngrams actually describ e an � N � ���th order Mark o v c hain and for r e gular or bigr am

grammars � N " ��
 the language mo del can b e included in the acoustic HMM during

deco ding as transition probabilities b et w een SMUs�

�

Suc h a com bined mo del is called

a c omp osite HMM
 see �gure ���� In c hapter � w e will describ e a sligh t generalization

of comp osite HMMs called Class HMMs �CHMMs�
 in whic h the acoustic and �bigram�

language mo del parameters are join tly estimated from the same data�

�

Because a �rst order HMM can em ulate an HMM of an y order b y increasing the n um b er of states� it is

actually also p ossible to use the idea of comp osite HMMs for N �grams with N � 	� F or N � 	 the resulting

comp osite HMM will� ho w ev er� b e far to o complex to handle in most sp eec h recognition applications�
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��	�� Viterbi Deco ding

F or comp osite HMMs Viterbi deco ding is practically iden tical to the case of small v o cab

ulary isolated w ord recognition discussed in section ���� The standard Viterbi deco der

is simply applied to the comp osite mo del
 and the optimal state path deriv ed from the

bac ktrac king pass can b e con v erted in to a sen tence h yp othesis
&

y " y �
&

� �
 since eac h state

in the comp osite HMM is uniquely asso ciated with a particular SMU� This also applies to

the maxim um p osterior state path de�ned b y ������ but the sequence of SMUs obtained

in this w a y need not corresp ond to a v alid path through the mo del� F or large v o cabularies

and regular grammars the idea of comp osite HMMs can still b e applied but it quic kly b e

comes impractical to actually construct the comp osite HMM� Instead
 one can implemen t

the Viterbi deco der using the concept of token p assing �YR T�� 
 Y ou��  where the recogni

tion net w ork can b e built onthe�y using the constrain ts imp osed b y the language mo del�

The tok en passing approac h also allo ws for long�sp an language mo dels lik e trigrams� In

the tok en passing algorithm the partial h yp othesis at time l in state i along with its as

so ciated score is a tok en whic h is copied and passed on to all p ossible successor states j

at time l $ �� When passing the tok en on to the next state inside an SMU mo del the

score is scaled b y the transition probabilit y �

ij

� If the tok en is passed on to another SMU

mo del the score is scaled b y the language mo del probabilit y 
 and the partial h yp othesis

is extended with the new SMU� The b est incoming tok en is selected b y a maximization

op eration and b efore passing it on again it is scaled b y the matc h probabilit y �

j

� x

l ��

��

Since the partial h yp othesis at time l is stored in the tok en
 the use of longspan language

mo del probabilities and onthe�y extension of the recognition lattice is p ossible� A t the

end of deco ding the highest scoring h yp othesis will b e the tok en stored in the end state

N $ �� Th us
 no bac ktrac king is needed� The tok en passing algorithm is illustrated in

�gure �����

(i,l)

y1(i,l) Score[y1(i,l)]

S
ta

te

Time

max

Figure ���� � Viterbi deco ding b y tok en passing� y

�

� i� l � is the pa rtial hyp othesis in the tok en

asso ciated with state i at time l � The sco re of this hyp othesis is given b y S cor e � y

�

� i� l � "

�

�

i

� l � �

T o reduce the complexit y of the Viterbi deco der it is v ery common to apply the tec h

nique of b e am se ar ch to prune the searc h lattice� Only partial paths that ha v e a log

probabilit y within a b e am width threshold b elo w the o v erall highest scoring partial path

at time l is allo w ed to surviv e during the searc h of the lattice� More e�cien t pruning

strategies exist but common to them all is the risk of pruning the optimal path�
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��	�� F orw ard Deco ding

Although the Viterbi deco der has b een the main c hoice in sp eec h recognition for man y

y ears
 it is generally ac kno wledged that deco ders whic h consider all p ossible paths through

the mo del instead of just the optimal path
 can yield considerably b etter results for large

v o cabulary and con tin uous sp eec h recognition �SA��
 RK��b
 Joh��
 Joh�� � Unfortu

nately 
 it is not straigh tforw ard to apply the standard forw ard deco der discussed in sec

tion ����� to con tin uous sp eec h recognition� F or example
 applying the forw ard algorithm

to a comp osite HMM will only giv e the probabilit y of the observ ation sequence P � x # � �

and not join t the probabilit y of observ ations and lab els P � x � y # � � as needed b y the MAP

deco der�

A v ery simple �observ ationlo cal� deco der for comp osite HMMs whic h considers all

paths
 can b e obtained b y summing the state a p osteriori probabilities for all states that

b elong to the same SMU submo del� Assume that the set of states in the subHMM for

SMU c � C carries the lab el c � Then the probabilit y of lab el y

l

" c at time l can b e

calculated as


P � y

l

" c j x # � � "

X

i

P � �

l

" i j x # � � �

c

i

�c

������

where c

i

is the lab el asso ciated with state i � The state p osterior probabilities are calculated

b y running the standard forw ardbac kw ard algorithm on the comp osite HMM� Note that

the lab el distribution giv en b y ������ can b e in terpreted as a mixtur e of exp erts distribution

�JJNH�� 
 JJ��b where the mixture co e�cien ts are the state a p osteriori probabilities�

F rom ������ it is no w a simple matter to select the recognized lab el at time l 


&y

l

" argmax

c �C

P � y

l

" c j x # � � � ������

W e will call this deco der the forwar d�b ackwar d deco der� If the aim of deco ding is an

incomplete lab el sequence
 this can b e obtained b y folding iden tical successiv e lab els in to

one lab el� Naturally 
 the forw ardbac kw ard deco der do es not ensure that the recognized

lab eling corresp onds to a v alid path
 but it has b een observ ed to yield considerably b etter

p erformance than the Viterbi deco der for some sp eec h recognition tasks
 see c hapter ��

A di�eren t deco der kno wn as the N � best deco der �SC��  can �nd the h yp othesis that

maximizes the join t probabilit y P � x � y # � � without the need for constructing the comp osite

HMM� The basic idea in N b est deco ding is to implemen t the forw ard algorithm using the

tok en passing paradigm where sev eral h yp otheses are allo w ed to surviv e in eac h state
 see

�gure ����� The implemen tation is v ery similar to the one for the Viterbi deco der except

that the maximization op eration is replaced b y an op eration
 where all iden tical partial

incoming h yp otheses in a state are merged and their asso ciated costs added� The highest

scoring h yp othesis in the tok en asso ciated with the exit state is then the one maximizing

the join t probabilit y of lab els and observ ations�

Since new h yp otheses are generated eac h time a new SMU is en tered
 the tok en asso ciated

with eac h state in the searc h lattice gro ws v ery quic kly � In a practical implemen tation

it is therefore necessary to sacri�ce optimalit y b y pruning h yp otheses with lo w scores�

In �SC�� t w o suc h pruning sc hemes w ere prop osed# a lo cal and a global thresholding�

The lo cal pruning w orks b y remo ving all partial h yp otheses in a tok en that ha v e a log

probabilit y score lo w er than the highest scoring one min us a sp eci�ed threshold� This

is similar to the b eam searc h idea and the result is a tok en con taining only the highest
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(i,l)
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ta

te

Time

y1(i,l)
y2(i,l)
y3(i,l)

Score[y1(i,l)]
Score[y2(i,l)]
Score[y3(i,l)]

Figure ���� � N	b est deco ding b y tok en passing� y

p

� i� l � is the p �th pa rtial hyp othesis in the

tok en asso ciated with state i at time l �

scoring h yp otheses� The global pruning sc heme further reduces the complexit y b y de�ning

a maxim um of N h yp otheses allo w ed to surviv e in eac h state� These pruning sc hemes mak e

the deco ding complexit y linear in the sequence length L and at the end of deco ding the

end state holds a list of the N b est �highest scoring� h yp otheses� Similar to the pruning

mec hanisms in the Viterbi deco der there is a risk of pruning the optimal h yp othesis
 but as

discussed in �SC��  the risk is m uc h smaller than for the Viterbi deco der if N is su�cien tly

large�

��	�� Async hronous Searc h

Both the Viterbi and the Nb est deco ders are time�synchr onous searc h tec hniques in the

sense that all partial h yp otheses at time l are a v ailable b efore pro cessing at time l $ �

starts� In the socalled time�asynchr onous deco ders the computational complexit y of the

searc h is reduced b y pursuing the most probable partial h yp othesis �rst� This b est�rst

searc h is con trary to the exhaustiv e searc h in the Viterbi and N b est deco ders� A widely

used async hronous deco der is the socalled A

�

or stack de c o der used b y Bahl
 Jelinek and

Mercer for the DRA GON sp eec h recognizer �BJM��  
 and more recen tly in the HMM�NN

h ybrid ABBOT system �RH�� 
 HRR C��  �

��

The k ey to stac k deco ding is the score f � y

s

�

# l �

for a partial h yp othesis y

s

�

at time l de�ned b y

f � y

s

�

# l � " a � y

s

�

# l � $ b � y

s

�

# l � � ������

a � y

s

�

# l � is the log probabilit y of the partial h yp othesis y

s

�

at time l obtained from the

acoustic and language mo del
 and b � y

s

�

# l � is an estimate of the b est p ossible score �mini

m um cost� in extending y

s

�

to a v alid complete h yp othesis y

S

�

� It ma y b e sho wn �BJM��  

that as long as b � y

s

�

# l � is an upp er b ound on the actual log probabilit y of extending the

partial h yp othesis to a v alid complete h yp othesis then the searc h will b e admissible 
 i�e� 


it will not prune the optimal complete h yp othesis�

In the stac k deco der activ e h yp otheses are placed in an ordered stac k in descending

order of scores� The top scoring h yp othesis is then p opp ed o� the stac k and extended b y

one w ord and the new cost is computed according to ������� Then the extended h yp othesis

is pushed bac k on to the stac k and the stac k is sorted according to the scores of the partial

h yp otheses� This pro cedure is con tin ued un til the top h yp othesis is a complete h yp othesis

whic h is then the optimal h yp othesis b ecause extending an y partial h yp othesis b elo w it

�

A demo v ersion of ABBOT is a v ailable at h ttp���svr�www�eng�cam�ac�uk�
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in the stac k cannot yield a higher score� The stac k deco der can use longspan language

mo dels and since the Viterbi criterion is not em b edded in the searc h the deco der can

consider all p ossible paths�

��� Summary

The standard HMM framew ork is based on a n um b er of assumptions whic h limit their

mo deling capabilities�

First order Mark o v assumption� This assumption implies that time dep endencies b e

t w een successiv e observ ations are �rstorder linear correlations� In sp eec h this is

ob viously a p o or assumption since coarticulation e�ects can range m uc h longer than

just one frame�

State conditional observ ation indep endence� Implies that there are no correlations

b et w een adjacen t observ ations other than the �rstorder time dep endencies� Since

the h uman sp eec h pro duction system cannot c hange instan taneously this sev erely

hamp ers the abilit y to mo del coarticulation� T o b ene�t from con textual informa

tion it is common in sp eec h applications to augmen t the feature v ector with its

corresp onding delta features �LH��  computed b y linear regression from neigh b oring

frames� A further impro v emen t is to use m ultiple str e ams �LH�� 
 NCM��  where fea

tures and delta features are mo deled indep enden tly in eac h state b y separate matc h

distributions� The matc h probabilit y used in the forw ardbac kw ard calculations is

then simply the pro duct of the probabilit y from eac h of the streams�

Matc h densit y mo dels� The discrete matc h probabilit y distribution su�ers from quan

tization errors whereas the con tin uous Gaussian mixture su�ers from mo del mis

matc h
 b ecause usually only small mixtures can b e estimated reliably �

Discrimination� Maxim um lik eliho o d estimation is an unsup ervised training algorithm

in that it only uses the data b elonging to a certain class �p ositiv e examples� to train

the mo del represen ting this class� As discussed in the next c hapter this is optimal for

classi�cation pro vided that the HMM can represen t the true lik eliho o d
 but due to

the assumptions discussed ab o v e this will nev er b e the case for sp eec h applications�

The remainder of this thesis will describ e ho w all of these assumptions except the �rst

order assumption can b e mitigated� Firstly 
 the discrimination problem can b e solv ed b y

using discriminativ e training criteria� This is discussed in the follo wing three c hapters

describing di�eren t discriminativ e training algorithms and a particular HMM
 called a

Class HMM
 designed for classi�cation� Secondly 
 the observ ation con text indep endence

and the problems with mo del mismatc h due to p o or matc h distributions can b e handled

e�cien tly b y using neural net w orks to estimate probabilities in the HMM framew ork� This

is the topic of c hapters ���



��



Chapter �

Discrimina tive Training

The ultimate goal of HMM estimation is to obtain a mo del that results in the lo w est p os

sible error rate for the deco der used� In the previous c hapter a particular approac h called

Maxim um Lik eliho o d �ML� estimation w as discussed� The b ene�ts of ML estimation are

man y 
 but the most imp ortan t is probably the guaran teed con v ergence and computational

e�ciency of the asso ciated BaumW elc h algorithm� A serious problem of ML estimation


ho w ev er
 is that it is not directly aimed at minimizing the error rate of the HMM�

In this c hapter w e start b y discussing the problems encoun tered in ML estimation and

then turn our atten tion to w ards socalled discriminative tr aining tec hniques� The aim of

discriminativ e training is to �push� the HMM to w ard mo deling the de cision b oundaries

b et w een classes rather than the often m uc h more complex withinclass distributions� If

the mo del approac hes the optimal decision b oundaries during training the error rate will

approac h that of the optimal Ba y es classi�er� In tuitiv ely this sounds righ t
 but unfortu

nately it is not p ossible to pro v e that discriminativ e training will alw a ys b e at least as go o d

as lik eliho o dbased approac hes in terms of minimizing the error rate� Nev ertheless
 a v ast

b o dy of exp erimen tal w ork supp orts this h yp othesis for a v ariet y of mo deling framew orks

and realw orld applications�

The most commonly used discriminativ e training algorithms can roughly b e divided

in to �� those that directly minimize a smo oth represen tation of the error rate and �� those

that indirectly minimize the error rate b y training the HMM to mo del the class p osterior

distribution� T ypical indirect metho ds include Conditional Maximum Likeliho o d �CML�

estimation
 whic h has Maximum Mutual Information �MMI� estimation as a sp ecial case


and the Me an Squar e d Err or criterion� Minimum Classi�c ation Err or and c orr e ctive

tr aining constitutes t w o examples of direct metho ds�

One of the main disadv an tages of most discriminativ e metho ds is that computation

ally they are more exp ensiv e than ML training� In addition
 e�cien t algorithms lik e EM

generally do not apply and optimization m ust b e based on more general iterativ e tec h

niques lik e gradien t descen t� This is probably the main reason wh y these metho ds ha v e

not gained m uc h atten tion un til recen tly when p o w erful computers ha v e made them feasi

ble� Although discriminativ e training is costly 
 it should b e noted that the complexit y of

deco ding is the same for b oth ML and discriminativ ely trained mo dels�

��� Maxim um Lik eliho o d

ML training of acoustic mo dels can b e in terpreted as estimating the mo del parameters

so as to minimize the Kul lb ack�L eibler distanc e or discrimination information �ER��  

��
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b et w een the true data distribution P " P � x j y � and the lik eliho o d giv en b y the mo del

P

�

" P � x # �

y

�� This distance can b e expressed as

�

D � P jj P

�

� "

X

y �Y

X

x �X

P � x j y � log

P � x j y �

P � x # �

y

�

�����

and is alw a ys larger than or equal to zero� D � P jj P

�

� " � means that the t w o distribu

tions are iden tical
 whereas nono v erlapping distributions will ha v e in�nite discrimination

information� Th us
 minimizing D � P jj P

�

� will giv e a set of parameters that ensures the

b est p ossible matc h b et w een the true distribution and the mo del distribution� The dis

crimination information as giv en b y ����� is mainly of theoretical in terest since the true

distribution is unkno wn� Replacing the true distribution b y the training set empirical

distribution giv es �ER��  

D � P jj P

�

� " �

�

K

K

X

k ��

log P � x � k �# �

y 	 k 


� $ const�� �����

where y � k � is the lab eling asso ciated with the k �th training sequence x � k �� Equation �����

is seen to b e prop ortional to the negativ e logarithm of the training set lik eliho o d and

Minimum Discrimination Information is th us equiv alen t to ML�

An alternativ e to using the training set distribution is to replace P � x j y � b y a distri

bution
 Q � x j �

y

�
 whic h is �less constrained� than the HMM distribution �ER�� 
 ER��  


and then minimize D � Q

�

jj P

�

� in a t w o step iterativ e pro cedure� In the �rst step
 � is

c hosen suc h that D � Q

�

jj P

�

� is minimized for the curren t estimate of the HMM distribu

tion� In the second step � is c hosen to minimize the same D but no w giv en the curren t

� � This pro cedure will con v erge to a solution where the HMM distribution has minim um

discrimination information w�r�t� the �nal Q �ER��  � T o our kno wledge
 this approac h has

nev er b een implemen ted in practice and it is th us unclear whether it will lead to b etter

classi�ers than ML estimation�

The ML criterion states that the mo del represen ting a particular class should only b e

trained using examples from that class� In theory 
 this is optimal b ecause the ML estimate

is asymptotic al ly e
cient �see e�g� 
 �DH��  �
 i�e� 
 it is a minim um v ariance
 un biased

estimate of the optimal parameters if the functional form P � x # �

y

� is su�cien tly general

to �mirror� the true distribution and if the training set is su�cien tly large� Th us
 pro vided

the mo del is c orr e ct the mo del distribution will approac h the true distribution as the mo del

parameters approac h the optimal parameters� In theory 
 ML estimation can therefore lead

to the optimal Ba y es classi�er with minim um error rate if the asso ciated MAP deco der is

used and if the true a priori distribution P � y � is kno wn �N� ad��  �

In sp eec h recognition it is w ell kno wn that the true acoustic mo del is not con tained

in the HMM mo del space since the h uman sp eec h system is complex and nonstationary �

Similarly 
 parametric language mo dels are generally not capable of capturing all of the

complexit y and v ariation in an y natural language and will therefore b e p o or represen tations

of the true a priori distributions� F urthermore
 the assumption in the lik eliho o d criterion

that training sequences are indep enden t implies that all examples are giv en equal w eigh t�

The e�ect of this is that t ypical examples from a giv en class will tend to dominate the ML

estimate for that class� The result ma y b e a sub optimal placemen t of decision b oundaries�

�

F or con tin uously v alued observ ation v ectors� the sum in ����� is replaced b y an in tegration o v er the

space of con tin uous observ ation v ectors�
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These restrictions and the fact that training data is alw a ys limited means that the optimal

Ba y es classi�er is nev er obtained in practice�

��� Discriminativ e T raining b y Indirect Metho ds

The indirect metho ds for discriminativ e training are similar in spirit to ML estimation
 in

the sense that they rely on matc hing a mo del distribution to a true distribution� The main

di�erence is that here the mo del is trained to optimally matc h the a p osteriori pr ob ability

distribution of classes P � y j x � rather than the withinclass data distributions� T ypically 


data distributions are m uc h more complex to describ e than p osterior distributions
 b ecause

the data distributions m ust describ e all v ariations of the data within a class while the

p osterior distribution is only concerned with the b oundaries b et w een the classes� F or

example
 to describ e the t w o data distributions in the upp er panel of �gure ��� fairly

complex class conditional densit y functions are necessary � On the other hand
 the p osterior

distribution illustrated in �gure ��� is far simpler than the data distributions b ecause the

b oundary b et w een the t w o classes is clear regardless of the �ne structure in the data� This

means that a simpler mo del can b e exp ected to obtain b etter p erformance when trained

discriminativ ely instead of using the ML criterion� Th us
 discriminativ e training can

lead to more r obust mo dels with impro v ed generalization to new examples� Exp erimen tal

evidence of this has b een giv en for sp eec h recognition in e�g� 
 �Joh�� 
 KVY�� 
 NCM��  �
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Figure ��� � Illustration of within	class and p osterio r distributions fo r a t w o class p roblem with

continuous observations�
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����� Conditional Maxim um Lik eliho o d

The discrimination information b et w een the p osterior distribution P

�

" P � y j x # � � giv en

b y the mo del and the true distribution P " P � y j x � is

D � P jj P

�

� "

X

y �Y

X

x �X

P � y j x � log

P � y j x �

P � y j x # � �

� �����

Minimizing this quan tit y giv es an optimal matc h b et w een the true and the mo del distri

bution but as for the ML case the true distribution is unkno wn� Replacing it with the

training set empirical distribution yields �ER��  

D � P jj P

�

� " �

�

K

K

X

k ��

log P � y � k � j x � k �# � � � �����

The parameter set minimizing ����� is kno wn as the Conditional Maximum Likeliho o d

�CML� estimate


&

�

C M L

" argmax

�

K

Y

k ��

P � y � k � j x � k �# � � �����

" argmax

�

K

Y

k ��

P � x � k � � y � k �# � �

P � x � k �# � �

� �����

and w as �rst prop osed for sp eec h recognition b y N� adas in �N� ad��  � The CML criterion

is equiv alen t to the maxim um lik eliho o d criterion used for classi�cation training of neural

net w orks when the net w orks use a softmax output function �HKP�� 
 RL�� � This is easy

to see b y noting that CML corresp onds to ML training of a mo del with a softmax output

transformation


P � y j x # � � "

exp�log P � x � y # � ��

P

�

exp�log P � x � � # � ��

"

exp� h

y

�

P

�

exp� h

	

�

� �����

where h

y

" log P � x � y # � � and the sum in the denominator is extended o v er all p ossible

lab elings � � Y � Ric hard and Lippmann �RL��  pro v ed that for a su�cien tly complex

neural net w ork with a softmax output function the p osterior distribution giv en b y the

net w ork will approac h the true distribution as the lik eliho o d approac hes a global maxim um

in the limit of an in�nite size training set� Naturally 
 this also holds for the CML criterion

pro vided that the HMM is su�cien tly complex� In �Kon�� 
 BKM��  CML estimation w as

called Maxim um A P osteriori �MAP� training and used for HMM�NN h ybrid optimization�

F rom ����� w e see that the CML criterion can b e expressed as a rational function

b et w een t w o lik eliho o ds# the clamp e d phase lik eliho o d P � x � y # � � and the fr e e�running or

r e c o gnition phase lik eliho o d P � x # � �� The term freerunning means that the lab els are not

tak en in to accoun t
 so this phase is similar to the deco ding phase
 where w e wish to �nd the

lab els for an observ ation sequence� The constrain t imp osed b y the lab els during training

giv es rise to the name clamp e d phase # this terminology is b orro w ed from the Boltzmann

mac hine literature �AHS��  � Th us
 CML estimation adjusts the mo del parameters so as

to mak e the freerunning (recognition mo del� as close as p ossible to the clamp ed mo del�

The freerunning term constitutes the di�erence to standard ML estimation� F or small

v o cabulary isolated w ord recognition the freerunning lik eliho o d is simple to compute#
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it is just a sum o v er all w ords of the pro duct of acoustic lik eliho o d and w ord prior


P � x # � � "

P

	

P � x # �

	

� P �  �� F or large v o cabulary isolated w ord recognition or con

tin uous sp eec h recognition the freerunning term can b e computationally inhibitiv e due

to the large n um b er of p ossible lab elings� Ho w ev er
 if the language mo del is a bigram it

can b e com bined directly with the acoustic mo del in to a comp osite HMM
 and then the

freerunning lik eliho o d can b e computed b y applying the standard forw ard algorithm to

this comp osite HMM� In cases where a reasonable size recognition phase mo del cannot

b e designed one can use an N b est appro ximation
 where only the N largest lik eliho o ds

obtained in an N b est deco ding pass are included in the sum �Cho�� � F urthermore
 prun

ing sc hemes similar to b eam searc h for Viterbi deco ding can also reduce the complexit y

of the forw ard and bac kw ard recursions considerably �V al��  � F or comp osite mo dels the

clamp ed phase lik eliho o d can b e computed b y a sligh tly mo di�ed forw ard algorithm whic h

only considers those paths through the comp osite HMM that conform with the observ ed

lab eling y 
 see c hapter �� Alternativ ely 
 one can use the standard forw ard algorithm on

the concatenation � �

y

� of sym b olic message unit HMMs corresp onding to the observ ed

lab eling and then scale this lik eliho o d with the language mo del probabilit y �

Unfortunately 
 the rational function form of the conditional lik eliho o d mak es it imp os

sible to de�ne an auxiliary Q function as for the ML approac h and it is th us not p ossible

to apply the EM algorithm� Instead CML estimation m ust b e based on general iterativ e

optimization tec hniques lik e e�g� 
 gradien tbased metho ds� An alternativ e metho d kno wn

as extende d Baum�Welch reestimation w as prop osed b y Gopalakrishnan et al� �GKNN��  

for discrete HMMs and later for con tin uous and semicon tin uous HMMs �NM�� 
 NCM��  �

The metho d w as dev elop ed in the con text of Maxim um Mutual Information estimation

�see b elo w� but applies equally w ell to CML estimation� W e will discuss this metho d in

further detail in c hapter ��

The discrimination b et w een classes can easily b e explained for the CML criterion b y

expressing the conditional lik eliho o d of the lab eling as follo ws

&

�

C M L

" argmax

�

P � y j x # � �

" argmax

�

P � x � y # � �

P � x # � �

" argmax

�

P � x � y # � �

P � x � y # � � $

P

� �� y

P � x � � # � �

" argmax

�

P � x � y # � �

P

� �� y

P � x � � # � �

� �����

F rom ����� w e see that increasing the conditional lik eliho o d P � y j x # � � corresp onds to in

creasing the lik eliho o d of the correct mo del P � x � y # � � and at the same time decreasing

the lik eliho o ds of all comp eting mo dels

P

� �� y

P � x � � # � �� This forces the mo del to dis

criminate b et w een the di�eren t lab elings b y learning the decision b oundaries� Although

this explanation is in tuitiv e
 it is not alw a ys the result of training� The e�ect of increasing

the conditional lik eliho o d can also b e obtained if e�g� 
 the lik eliho o d for al l h yp otheses are

decreased �increased�
 but in suc h a w a y that the lik eliho o d for the comp eting h yp otheses

decrease �increase� at a faster rate than that of the correct h yp othesis� This scenario is

often encoun tered in practice as w e shall see in c hapter �� Note that the discriminativ e

asp ect of training means that mo deling resources are distributed among the individual
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submo dels for the di�eren t classes�

Con trary to ML
 the training set samples con tribute di�eren tly when using the CML

criterion according to whether they are w ell classi�ed or not� The CML criterion is a ge o�

metric al a v erage of training sample lab el a p osteriori probabilities and samples with large

p osteriors
 P � y j x # � � � �
 will not con tribute m uc h whereas samples with small p osteriors

will tend to dominate the CML criterion� If the mo del giv es a large conditional probabilit y

for the observ ed lab eling the sequence will b e classi�ed correctly with high probabilit y 


whereas smaller v alues increase the risk of misclassi�cation� CML estimation is there

fore e�ectiv ely dominated b y examples that are incorrectly classi�ed and far a w a y from a

decision b oundary � P � y j x # � � � �� �NSB��  � The large con tribution from clearly misclas

si�ed examples has the undesirable e�ect that CML estimation is v ery sensitiv e to outliers

and mislab elings in the training set� Unfortunately 
 this can result in oscillatory training

scenarios and sub optimal placemen t of decision b oundaries� F or small training sets and

w ell �tting �correct� mo dels b etter p erformance can therefore b e exp ected b y using ML

estimation �N� ad�� 
 NNP�� 
 NSB��  � Ho w ev er
 for incorrect mo dels CML estimation can

result in b etter recognizers as discussed and exp erimen tally v eri�ed in �NNP�� 
 NSB��  �

����� Maxim um Mutual Information

Let X � Y b e random v ariables with realizations x� y � Then the en trop y of X is de�ned b y

H � X � " �

X

x

P � x � log P � x � " � E �log P � x � � �����

H � X � measures the amoun t of information

�

needed to sp ecify the outcome of X when

using an optimal enco ding sc heme� Similarly 
 the conditional en trop y

H � Y j X � " �

X

x�y

P � x� y � log P � y j x � " � E �log P � y j x � � ������

measures the a v erage amoun t of information needed to sp ecify the outcome of Y giv en

kno wledge of X � By replacing the exp ectation with the training set empirical a v erage and

the conditional distribution b y the one giv en b y the mo del w e �nd

H

�

� Y j X � " �

�

K

K

X

k ��

log P � y � k � j x � k �# � � � ������

from whic h w e see that CML estimation corresp onds to minimizing the conditional en trop y �

A conditional en trop y of zero means that the observ ed acoustic signal giv es su�cien t in

formation for p erfect deco ding� A conditional en trop y equal to the en trop y of the language

mo del


H

�

� Y � " �

�

K

K

X

k ��

log P � y � k �# � � � ������

means that no information ab out the lab eling is extracted from the acoustic signal�

Based on this form ulation the relationship b et w een CML and the Maxim um Mutual

Information �MMI� criterion is straigh tforw ard to see� The a v erage m utual information

�

If log

�

is used the amoun t of information is measured in bits�
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b et w een Y and X measures the a v erage amoun t of information in X as to the iden tit y of

Y 
 and for the HMM distributions it is giv en b y

I

�

� Y # X � " H

�

� Y � $ H

�

� X � � H

�

� X � Y �

" H

�

� Y � � H

�

� Y j X �

" H

�

� X � � H

�

� X j Y �

" �

�

K

K

X

k ��

log

P � x � k �# �

y 	 k 


�

P � x � k �# � �

� ������

In terms of HMM acoustic and language mo dels
 I

�

� Y # X � " � means that the acoustic

mo del do es not extract an y information from the acoustic signal ab out the lab eling
 that

is
 H

�

� X j Y � " H

�

� X �� On the other hand
 a v alue equal to the en trop y of the language

mo del
 I

�

� Y # X � " H

�

� Y �
 implies that the acoustic mo del remo v es all uncertain t y ab out

the lab eling� Th us
 maximizing the m utual information can lead to a p erfect deco der�

If the language mo del and consequen tly H

�

� Y � is indep enden t of the parameter set

� then it follo ws from ������ that CML estimation is equiv alen t to MMI estimation� The

assumption of an indep enden t language mo del during acoustic mo del training is reasonable

if it can b e estimated more reliably from a represen tativ e text corpus� In this thesis w e

will use the term MMI estimation for mo dels with a �xed language mo del
 and CML

estimation when acoustic and language mo del parameters are join tly estimated from the

acoustic data�

MMI
 CML and ML estimation can all b e considered sp ecial cases of the socalled

Hcriterion prop osed in �GKN

�

�� 
 GKNN��  


H


�� ��

" �H � Y � X � $ � H � Y � $ � H � X � � ������

F or � �� � � � � " �� � � � ��
 � �� � � � � " �� � � � � � �� and � �� � � � � " �� � � � � �� ������ is equiv alen t

to ML
 MMI and CML estimation resp ectiv ely � If � " � and � " � then � 
" � corresp onds

to a w eigh ting exp onen t applied to the freerunning lik eliho o d in the denominator of the

CML criterion �GKNN��  �

One of the �rst sp eec h recognition applications of MMI w as probably the w ork b y Bahl

and colleagues �BBdSM��  at IBM on isolated w ord recognition� Since then a n um b er of

applications ha v e b een rep orted in the literature including connected digit recognition

�CNM�� 
 NM�� 
 NCM��  
 con tin uous phoneme recognition �Mer�� 
 KVY��  and large

v o cabulary con tin uous sp eec h recognition �Cho�� 
 YNC��  � Recen tly 
 CML estimation

has b een applied to con tin uous phoneme recognition in �KR�� 
 RK��
 Joh�� �

����� Mean Squared Error

Neural net w ork classi�ers are commonly trained using the socalled Me an Squar e d Er�

r or criterion �HKP��
 Bis�� 
 whic h measures the a v erage squared di�erence b et w een the

mo del output and the desired output� The mean squared error criterion for HMM training

can b e form ulated as �NSB��  

E

M S E

"

�

K

K

X

k ��

X

� �Y

� P � � j x � k �# � � � �

� � y 	 k 


 

�

� ������
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where �

� � y 	 k 


is one if and only if � is iden tical to the observ ed lab eling y � k � for training

sequence k and otherwise zero� In the limit of an in�nite size training set the mo del will

estimate the true a p osteriori distribution if it is p ossible to reac h the global minim um

of ������ during training as sho wn in �RL��  � Th us
 analogous to CML estimation the

optimal classi�er can in theory b e obtained with the mean squared error criterion�

In the mean squared error criterion training samples con tribute di�eren tly according to

their distance from a decision b oundary �NSB��  � Clearly correctly classi�ed samples with

P � y � k � j x � k �# � � � � and clearly incorrectly classi�ed samples with P � � j x � k �# � � � �
 for

some � 
" y � k � do not con tribute signi�can tly to the error criterion� The samples that

pro vide the largest con tributions are those whic h lie close to decision b oundaries b ecause

for these samples P � � j x � k �# � � is nonzero for sev eral di�eren t lab elings� Mean squared

error estimation is therefore robust to outliers
 ho w ev er
 at the cost of utilizing ev en few er

training examples than CML� A slo w er con v ergence compared to CML training is therefore

an ticipated in general�

Mean squared error estimation is straigh tforw ard to implemen t for HMM based small

v o cabulary isolated w ord recognition where the sum o v er all p ossible w ords in ������

is tractable� F or large v o cabularies or con tin uous sp eec h recognition it is
 ho w ev er
 not

p ossible to compute the sum unless an N b est appro ximation is used� In com bination with

the slo w con v ergence this is probably the main reason wh y mean squared error estimation

has not found widespread use in discriminativ e HMM mo deling for sp eec h recognition�

��� Discriminativ e T raining b y Direct Metho ds

The aim of discriminativ e training b y direct metho ds is to directly minimize the exp ected

error rate of the classi�er b y adjusting the mo del parameters� Th us
 these metho ds do not

aim at �nding the �correct� mo del in the sense of optimally matc hing the true distribution


but rather to �nd the placemen t of decision b oundaries that minimizes the error rate on

the training set�

����� Correctiv e T raining

F rom classical linear discriminan t theory the direct approac hes are kno wn as r elaxation

pr o c e dur es � A w ell kno wn example is the p er c eptr on le arning rule 
 whic h w as designed

for �nding the optimal placemen t of a separating plane in linearly separable problems�

Although con v ergence of the p erceptron learning rule can only b e pro v en for linearly

separable problems exp erimen tal evidence suggests that it often applies equally w ell to

problems that are not linearly separable�

A simple heuristic algorithm called c orr e ctive tr aining 
 whic h is similar in spirit to

the p erceptron learning rule
 w as prop osed for isolated w ord recognition using discrete

HMMs b y Bahl and colleagues �BBdSM��  � In correctiv e training there is no assumption

of mo del correctness and for an y set of mo dels the algorithm attempts to adjust the para

meters suc h that the n um b er of recognition errors is decreased� Instead of only correcting

parameters for misrecognized w ords Bahl and colleagues observ ed a faster con v ergence b y

doing parameter corrections whenev er the probabilit y of an incorrect w ord w as �close� to

the probabilit y of the correct w ord� On an isolated w ord recognition task the correctiv e

training algorithm obtained signi�can tly b etter results than b oth ML and MMI estimation

�BBdSM��  �
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In �NM�� 
 CNM�� 
 NCM��  a related approac h denoted c orr e ctive MMI estimation

w as prop osed for connected digit recognition� In correctiv e MMI an initially ML estimated

mo del is retrained b y standard MMI estimation but only using the utterances that are

incorrectly recognized� Since correctly recognized utterances do not con tribute m uc h to

MMI training
 estimation based on incorrectly classi�ed examples giv es practically the

same parameters as estimation based on the full training set�

Correctiv e training only mak es sense when it is p ossible to recognize en tire utterances

with fairly high accuracy � Although the w ord error rate can b e quite small in a con tin uous

sp eec h recognition task
 this do es not apply to the sen tence error rate
 whic h is often larger

than ���� The correctiv e metho ds are th us not directly applicable to con tin uous sp eec h

recognition tasks�

����� Minim um Empirical Error Rate

In �LER�� an estimate of the exp ected error rate of a classi�er asso ciated with the MAP

deco der w as de�ned b y

&

P � er r or # � � " � �

�

K

K

X

k ��

P � y � k � j x � k �# � � � ������

Minimizing

&

P � er r or # � � is called Minimum Empiric al Err or estimation �LER�� 
 ER��  �

Comparing to CML estimation w e see that b oth of these approac hes use the same statistics

but in a rather di�eren t w a y � Whereas the CML criterion is a geometric a v erage o v er the

training set p osteriors
 the empirical error rate estimate is an arithmetic a v erage� Th us


all training samples con tribute equally to the minim um empirical error criterion and the

sensitivit y to outliers and mislab elings is thereb y reduced compared to the CML criterion�

Note that if the training set is considered as one long sequence then the CML and minim um

empirical error rate criteria are iden tical�

����� Minim um Classi
cation Error

The Minimum Classi�c ation Err or training for HMMs prop osed in �KLJ��
 JK�� is sim

ilar to the empirical error rate metho d in the sense that it maximizes a smo oth estimate

of the exp ected error rate� It is based on de�ning a socalled misclassi�c ation me asur e 


whic h giv es a scalar v alue corresp onding to ho w �w ell� the mo del discriminates b et w een

classes� In terms of the join t probabilit y of observ ations and lab els
 the misclassi�cation

measure can b e written �KLJ�� 
 JK��  

b

d

y

� x � " � log P � x � y # � � $ log

�

�

�

M � �

X

� �� y

P � x � � # � �



�

	

�

�

� ������

where M is the total n um b er of p ossible h yp otheses and the sum is extended o v er all

comp eting h yp otheses� In line with the discussion for the mean squared error criterion


this sum generally cannot b e computed for con tin uous sp eec h recognition unless only the

N b est comp eting h yp otheses are included� F or large v alues of � only the top scoring

comp eting h yp otheses will con tribute signi�can tly to the sum and for � � � the mis

classi�cation measure equals the discriminan t distance b et w een the correct and highest

scoring comp eting h yp othesis
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d

y

� x � " � log P � x � y # � � $ max

� �� y

log P � x � � # � � � ������

The v alue of

b

d

y

� x � for a giv en utterance indicates ho w w ell it is recognized b y the mo del�

Large p ositiv e �negativ e� v alues corresp ond to clearly incorrect �clearly correct� recogni

tion
 whereas small p ositiv e �negativ e� v alues indicate a nearmiss �almostcorrect��

Based on the misclassi�cation measure appro ximation to the discriminan t distance

it is p ossible to de�ne the a v erage training set classi�cation error� Ideally 
 the a v erage

n um b er of errors can b e calculated b y passing the discriminan t distance through a binary

step function� Ho w ev er
 since the step function is discon tin uous and consequen tly not

di�eren tiable
 a sigmoid appro ximation is normally used suc h that

E

M C E

"

�

K

K

X

k ��

�

� $ exp� � �

b

d

y 	 k 


� x � k �� 

� ������

where � is a p ositiv e constan t con trolling the steepness of the sigmoid� F or large � �s the

sigmoid approac hes the binary step function
 and incorrectly classi�ed � d

y

� �� training

samples giv e an equal con tribution � � � �K � to the error criterion
 whereas correctly

classi�ed samples do not con tribute at all� A small � implies that all samples con tribute

signi�can tly 
 whic h is similar to the minim um empirical error rate case� Note that for

� � � and � " � the minim um classi�cation error and minim um empirical error rate

criteria are equiv alen t�

��� Summary

The aim of all the discriminativ e training algorithms discussed in this c hapter is to giv e pa

rameter estimates that result in b etter recognition p erformance than when ML estimation

is used� Con trary to ML
 the discriminativ e metho ds adjust mo del parameters in a sup er

vised fashion to optimally place the decision b oundaries implemen ted b y the mo del� In the

CML�MMI and mean squared error approac hes this is obtained b y matc hing the true a

p osteriori probabilit y of the classes
 whereas minim um empirical error rate and minim um

classi�cation error estimation directly minimize a smo oth represen tation of the exp ected

error rate on the training set� The main di�erence b et w een the di�eren t optimization

algorithms lies in the w a y they use the examples for training� CML�MMI rely mainly

on misclassi�ed examples far a w a y from decision b oundaries� The mean squared error

estimator e�ectiv ely only utilizes samples close to decision b oundaries
 whereb y the out

lier problem in the CML estimator is circum v en ted but at the cost of slo w er con v ergence�

Finally 
 in minim um empirical error rate estimation all samples con tribute signi�can tly �

In this thesis w e will use CML estimation� The argumen ts in fa v or of CML are the

straigh tforw ard extension from ML estimation and that it con tains no �con trol� param

eters to adjust� F urthermore
 all comp eting h yp otheses can b e used for discrimination

if a comp osite HMM arc hitecture is emplo y ed� This is con trary to mean squared error

and minim um classi�cation error training
 where the lik eliho o ds for eac h of the comp et

ing h yp otheses and not just the sum of them m ust b e computed� F or con tin uous sp eec h

recognition this is computationally prohibitiv e unless an N b est appro ximation is used

�CS�� 
 Cho��  �

With this c hoice in mind
 one m ust b e a w are of the outlier sensitivit y of the CML

criterion� Ho w ev er
 a p ossible w a y of handling the CML outlier problem is to use CML
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for initial training and then switc h to e�g� 
 mean squared error training to �netune the

decision b oundary placemen t� This is reasonable if the mo del is not capable of o v er�t

ting the training set� Unfortunately 
 a common observ ation in HMM mo deling for sp eec h

recognition is that the more general the mo del
 the b etter p erformance can b e obtained

on unseen data� A lik ely explanation for this is that the HMM arc hitecture is to o con

strained to implemen t the true distributions unless a large n um b er of parameters are used�

Suc h mo dels will o v er�t the training data if trained for a su�cien t n um b er of iterations�

T raining is therefore usually stopp ed when the p erformance on an indep enden t represen

tativ e v alidation set is at a maxim um� Th us
 training will usually b e terminated b efore a

lo cal minim um of the CML criterion is reac hed
 and so �netuning b y mean squared error

estimation seems meaningless� Consequen tly 
 w e ha v e only used pure CML estimation in

the w ork do cumen ted b y this thesis�



��



Chapter �

Class HMMs

In this c hapter w e describ e the socalled Class HMM �CHMM�
 whic h can b e view ed as

a generalization of the comp osite HMM discussed in c hapter �� W e will in tro duce the

arc hitecture as a simple extension of the standard HMM framew ork where eac h state in

addition to the matc h distribution also has a distribution o v er lab els� As will b e dis

cussed in section ��� and section ��� this form ulation allo ws the CHMM to b e trained b y

BaumW elc h lik e reestimation form ulas to maximize the join t lik eliho o d P � x � y # � � for ob

serv ation and lab el sequences� Based on the deriv ed reestimation form ulas for ML training

it is a simple matter to �nd the gradien ts w�r�t� v arious parameters in the CHMM needed

for discriminativ e conditional maxim um lik eliho o d estimation� This will b e discussed in

section ���� W e conclude the c hapter b y describing ho w the CML estimated CHMM can

b e normalize d glob al ly at the sequence lev el with no extra computational burden� This

normalization is di�eren t from the lo c al normalization enforced in standard HMMs
 where

the matc h and transition distributions are required to normalize to one for eac h state�

With global normalization the mo del can still b e giv en a probabilistic in terpretation ev en

though the parameters asso ciated with the individual states no longer normalize� This can

b e v ery attractiv e in some applications and it will b e necessary when w e turn the CHMM

in to the hidden neural net w ork h ybrid in c hapter ��

��� The Mo del

T o accommo date mo deling of the join t probabilit y of observ ations and lab els w e use one

�global� HMM and assign a distribution o v er p ossible lab els to eac h state� Let the set of

p ossible lab els b e denoted C � Then the probabilit y of matc hing lab el c � C in state i is

de�ned b y

�

i

� c � " P � y

l

" c j � " i � � �����

Analogous to the matc h distributions for discrete HMMs
 the lab el distribution is time

in v arian t so the probabilit y of matc hing lab el c � C is the same no matter where this

lab el o ccurs in the lab el sequence� In some applications it mak es sense to restrict some

states to mo del only a subset of all the p ossible lab els and sometimes ev en to �x the lab el

probabilities a priori� A particularly simple case is obtained if w e only allo w one lab el to b e

mo deled in eac h state
 i�e� 
 if state i is supp osed to mo del lab el c

i

then �

i

� c � " �

c

i

�c

� States

mo deling a single lab el will b e denoted single�lab el�states and states mo deling sev eral or

all lab els will b e denoted multiple�lab el�states �

�
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Using this setup the men tal picture of class submo dels as used in sp eec h recognition

can b e discarded# the mo del can ha v e an y structure
 that is
 an y state can b e connected

to an y other state in the big mo del� Because eac h state has a lab el or a distribution o v er

lab els this mo del w as called a Class HMM �CHMM� in �Kro�� �

In the original form ulation of the CHMM b y Krogh �Kro��  the lab eling w as assumed

complete� This pro vides a m uc h simpler case than incomplete lab eling b ecause the lab el

distribution for complete lab eling can b e treated in a similar w a y as the matc h distri

bution
 see b elo w� Th us
 for complete lab eling one can consider the CHMM as a mo del

capable of matc hing t w o sequences in parallel# the lab el and the observ ation sequence� F or

incomplete lab eling there is no longer a onetoone corresp ondence b et w een the lab el and

the observ ation sequence
 i�e� 
 the s �th lab el in the lab el sequence is not asso ciated with

a particular observ ation� T o handle this case it is necessary someho w to allo w the states

not to matc h an y lab el and to k eep trac k of the alignmen t b et w een the observ ation and

lab el sequence�

F or simplicit y w e will limit the discussion b elo w to discrete observ ations
 but k eeping

in mind that the framew ork applies equally w ell to con tin uous observ ations� F or discrete

observ ations the CHMM is completely sp eci�ed b y the parameter set

� " f i� j " � � � � � � N # a � A # c � C j �

ij

� �

i

� a � � �

i

� c � g � �����

Since only the case of singlelab elstates will b e ev aluated exp erimen tally in this thesis


the presen tation b elo w will fo cus mainly on this case� The m ultiplelab elstate case is

detailed in app endix B as a reference for future researc h�

��� Complete Lab el Maxim um Lik eliho o d Estimation

Assume that the observ ation sequence x

L

�

" x

�

� � � � � x

L

is asso ciated with a complete lab el

sequence y

L

�

" y

�

� � � � � y

L

� F or singlelab elstates only one particular lab el is allo w ed in

eac h state
 and the lab el distribution is a deltafunction# �

i

� y

l

� " �

c

i

�y

l


 where c

i

is the

lab el assigned to state i � Consequen tly 
 the join t lik eliho o d for lab els and observ ations

can b e computed b y considering only allo w ed paths )

y

through the mo del
 in whic h the

lab els of the states agree with the lab els of the observ ations


�

P � x � y # � � "

X

�

P � x � y � � # � � "

X

� � �

y

P � x � � # � � � �����

If the lab els are assumed state c onditional ly indep endent then the join t lik eliho o d can b e

expressed as �see app endix B�

P � y � x # � � "

X

�

Y

l

�

�

l

� x

l

� �

c

�

l

�y

l

�

�

l � �

�

l

"

X

� � �

y

Y

l

�

�

l

� x

l

� �

�

l � �

�

l

� �����

whic h sho ws that the lab els are treated in the same w a y as the observ ations� The lik eliho o d

����� can therefore b e computed b y a v ery simple mo di�cation of the standard forw ard

bac kw ard algorithm
 where all m ultiplications b y the matc h probabilit y are replaced b y the

�

As for the HMM it is assumed that w e only ha v e one training sequence in the follo wing� The general�

ization to m ultiple training sequences is straigh tforw ard�
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pro duct �

i

� x

l

� �

c

i

�y

l

� The mo di�ed forw ardbac kw ard pro cedure is sho wn in algorithm ���

and algorithm ����

Algorithm ��� F orw ard algorithm � P � x

L

�

� y

L

�

# � � 

De�nition� *�

j

� l � " P � x

l

�

� y

l

�

� �

l

" j # � �

Initialization� *�

j

��� " �

j

� x

�

� �

c

j

�y

�

�

� j

� � � j � N

Recursion� *�

j

� l � " �

j

� x

l

� �

c

j

�y

l

P

N

i ��

�

ij

*�

i

� l � �� � � � j � N � � � l � L

T ermination� P � x � y # � � "

P

N

i ��

�

iN ��

*�

i

� L �

Algorithm ��	 Bac kw ard algorithm � P � x

L

�

� y

L

�

# � � 

De�nition�

*

�

i

� l � " P � x

L

l ��

� y

L

l ��

j �

l

" i # � �

Initialization�

*

�

i

� L � " �

iN ��

� � � i � N

Recursion�
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Note that a computationally more e�cien t implemen tation of the bac kw ard algorithm

can b e obtained b y mo ving the deltafunctions outside the summation suc h that
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�� In this case the bac kw ard recursion is initialized b y
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for all i �

If w e think of �

i

� l � �or �

i

� l �� as a matrix
 the new algorithm corresp onds to masking

this matrix suc h that only allo w ed regions are calculated
 see �gure ���� Therefore the

calculation is faster than the standard forw ard �or bac kw ard� calculation of the whole

matrix� In fact
 if w e assume that the same n um b er N

c

of states are used for mo deling

e ach class then the computational requiremen t of the new forw ardbac kw ard algorithm for

an ergo dic mo del scales as O � N

�

c

L �
 see �gure ���� This should b e compared to O � N

�

L � for

the standard forw ardbac kw ard algorithm� In most cases N

�

 N

�

c

so the computational

complexit y is reduced b y a factor � N � N

c

�

�

 � b y only considering allo w ed paths�

The BaumW elc h reestimation equations giv en for the standard HMM in c hapter � also

applies for complete lab el ML training of singlelab elstate CHMMs� The only di�erence

is that the exp ected coun ts should no w only b e computed along those paths )

y

that are

allo w ed� De�ne

m

i

� l � " E

�

� �

�

l

�i

j x � y � �  

" P � �

l

" i j x � y # � �

"

P � �

l

" i� x � y # � �

P � x � y # � �

�����

and



�� Chapter �� Class HMMs

BA

BA

End

Begin

1

2

3

4

x1

A
x2

A
x3

A
x4

B
x5

B
x6

B
x7

B
x8

A
x9

A
x10

B
Sequence

Labels

S
ta

te 1

2

3

4 �=0

A

A

B

B

x11

B
x12

A
x13

A
x14

A

	 �=0	 �=0	

�=0	�=0	

Figure ��� � L eft p anel� A very simple mo del with four states� t w o with lab el �A� and t w o with

lab el �B�� R ight p anel� The *� matrix fo r an example observation sequence x " x

�

� � � � � x

��

with complete lab els� The grey a reas of the matrix a re calculated as in the standa rd fo rw a rd

algo rithm whereas *� is set to zero in the white a reas� The

*

� matrix is calculated in the same

w a y � but from right to left �only applies to the computational e�cient implementation� see

main text��

m
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m

i

� l � is the exp ected n um b er of times w e are in state i at time l computed only along

allo w ed paths )

y

� Similarly 
 m

ij

� l � denotes the exp ected n um b er of times w e use the

transition from state i to state j at time l in the allo w ed paths� These coun ts are computed

in exactly the same w a y as the n �s for the standard HMM
 but using the new forw ard and

bac kw ard v ariables in ������������ and replacing �

i

� x

l

� with �

i

� x

l

� �

c

i

�y

l
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The reestimation equations for matc h and transition probabilities are no w obtained b y

replacing the n �s in ������������ b y the m �s giv en ab o v e�

The singlelab elstate case is a generalization of the comp osite HMM discussed in

section �����
 in whic h acoustic sym b olic message unit HMMs are connected in a big mo del

with bigram language mo del transition probabilities� Indeed
 if states with iden tical lab els

are arranged in submo dels and if w e only allo w one transition b et w een suc h submo dels


then the CHMM is equiv alen t to a comp osite HMM� That is
 the join t probabilit y for

observ ations and complete lab els equals the pro duct of acoustic mo del probabilities and

separately �ML� estimated language mo del bigram probabilities� Ho w ev er
 the CHMM

form ulation is more general b ecause it is p ossible to ha v e transition probabilities from



��� Incomplete Lab el Maxim um Lik eliho o d Estimation ��

sev eral states mo deling a particular class to an y other state in the mo del� Suc h �language

mo del� transitions are not straigh tforw ard to estimate separately � F urthermore
 when

training the CHMM b y conditional maxim um lik eliho o d as discussed in section ���
 these

transition probabilities are estimated in a discriminativ e fashion�

����� Multiple�Lab el�States

The extension of the ab o v e framew ork to states with sev eral lab els is simple� As sho wn in

app endix B w e just ha v e to replace the deltafunction in the forw ardbac kw ard algorithm

describ ed ab o v e with the full distribution �

i

� y

l

�� All other equations remain the same
 but

in addition to the reestimation equations for matc h and transition probabilities there will

no w also b e one for estimating the parameters of the lab el distribution
 see app endix B�

The m ultiplelab elstate CHMM is somewhat similar to the socalled Input�Output HMM

�IOHMM� recen tly prop osed b y Bengio and F rasconi �BF��  � This will b e discussed further

in c hapter ��

Whereas deco ding of the singlelab elstate CHMM is iden tical to that of the standard

HMM
 this is not the case for states with m ultiple lab els� Consider e�g� 
 the optimal

path found b y the standard Viterbi deco der� F or m ultiplelab elstates this path cannot b e

translated uniquely in to a lab el sequence
 but as discussed in the app endix it is p ossible to

mo dify the standard deco ding algorithms so that they also apply for m ultiplelab elstates�

��� Incomplete Lab el Maxim um Lik eliho o d Estimation

F or incomplete lab eling the join t lik eliho o d P � x

L

�

� y

S

�

# � � for the observ ation and lab el

sequence can also b e expressed as in �����
 but )

y

no w has a di�eren t
 less restrictiv e

in terpretation� it is the set of paths in whic h the incomplete lab el sequence corresp onds to

the sequence of gr oups of states with the same lab el � The easiest w a y to ensure that w e only

allo w paths from )

y

is b y rearranging the �big� mo del temp orarily for eac h observ ation

sequence� This is similar to the mo del building tec hnique discussed in c hapter �
 where

sym b olic message unit submo dels are concatenated with unit tr ansitions according to the

incomplete lab eling of the sp ok en utterance� In the CHMM all the states with a lab el

matc hing the �rst lab el are copied to a temp orary mo del including all transitions b et w een

them as w ell as the �

� i

corresp onding to these states� Then all the states matc hing the

second lab el are copied including all in ternal transitions and transitions from the �rst set

of states to the second set of states � not vic e versa �� This is done for the whole incomplete

lab el sequence� All the transition probabilities retain their original value in the temp orary

mo del� The join t lik eliho o d for observ ations and incomplete lab els is no w computed b y

applying the standar d forw ard algorithm to this temp orary mo del
 see �gure ���� Similarly 


the exp ected coun ts m

i

� l � and m

ij

� l � can b e computed b y the expressions for the standard

HMM but using the standard forw ardbac kw ard algorithm on the temp orary HMM� This

is done for all K observ ation sequences and the accum ulated m v alues are used to up date

the mo del b y the BaumW elc h reestimation equations �������������

Strictly sp eaking
 the temp orary mo del is not a prop er HMM b ecause the transition

probabilities in some states will no longer sum to one� F ortunately 
 the forw ardbac kw ard

algorithm as w ell as the reestimation equations are still v alid as the ab o v e approac h cor

resp onds to putting restrictions on whic h paths are allo w ed�

The computational complexit y of running the forw ardbac kw ard algorithm on the tem

p orary mo del can b e sligh tly higher than for the originating mo del� Again
 if N

c

states
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Figure ��� � F o r the same mo del as in 
gure ���� this example sho ws ho w the mo del is tem	

p o ra rily rea rranged fo r gathering statistics � i�e� calculate exp ected m 	counts� fo r a sequence

with incomplete lab els AB AB A �

are used for eac h class then the computational complexit y for the temp orary mo del is

prop ortional to the length S of the incomplete lab el sequence and it scales as O � N

�

c

S L ��

This is a factor S more than for the complete lab el case�

����� Multiple�Lab el�States

When w e allo w sev eral lab els in eac h state the simple approac h of rearranging the mo del

no longer w orks� A p ossible w a y of handling this case is b y adding an extra empty lab el


c " � 
 to the set of lab els allo w ed in eac h state� The empt y lab el do es not �extend� the

lab el sequence and the lab el distribution in all states no w satisfy

�

i

� � � $

X

c �C

�

i

� c � " � � �����

An analogous approac h w as recen tly prop osed b y Bengio and Bengio �BB��  for training

socalled async hronous Input�Output HMMs �IOHMMs�
 but they used an additional

�emitornot� distribution to tak e care of empt y lab els�

T o k eep trac k of the alignmen t b et w een the observ ation sequence x " x

L

�

and incom

plete lab el sequence y " y

S

�

an additional hidden v ariable �

l

can b e used# �

l

is equal to s if

the s �th lab el y

s

is matc hed at time l � Then � " �

L

�

" �

�

� � � � � �

L

describ es the alignmen t

b et w een the t w o sequences and the join t lik eliho o d can b e expressed as

P � x

L

�

� y

S

�

# � � "

X

� � �

P � x

L

�

� y

S

�

� �

L

�

� �

L

�

# � � � ������

where w e ha v e used explicit time sup er and subscripts to indicate that the t w o sequences

are of di�eren t length� Based on this form ulation it is p ossible to deriv e BaumW elc h lik e

reestimation form ulas similar to those for the complete lab el case
 but with a di�eren t set

of exp ected coun ts� As sho wn in app endix B the basic idea in the deriv ation is to observ e

that at an y time l w e can either matc h a �true� lab el from C or the empt y lab el � � This

leads to forw ardbac kw ard recursions and expressions for the exp ected m coun ts
 whic h

are comp osed of t w o terms# one for matc hing a lab el y

s

� C at time l in state i and one

for matc hing the n ull lab el � �

Incomplete lab el ML estimation for the singlelab elstate mo del can in principle also

b e done b y the empt y lab el metho d� The parameter estimates obtained b y the forw ard
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bac kw ard algorithm sho wn in app endix B will
 ho w ev er
 generally b e di�eren t from those

obtained b y the temp orary mo del approac h describ ed ab o v e� This is so b ecause the

p ossibilit y of matc hing empt y lab els in all states implies that w e can follo w paths in

the CHMM whic h are not allo w ed in the temp orary mo del� Consider for example the

observ ation sequence x " x

�

� � � � � x

�

with incomplete lab els AB C and assume that w e

wish to train a threestate fully connected CHMM where state � can mo del lab el A


state � lab el B and state � lab el C� In the temp orary mo del corresp onding to this lab el

sequence w e can nev er mo del observ ation x

�

in state �
 but this is indeed p ossible in the

approac h where all states can also matc h the empt y lab el� F urthermore
 the computational

complexit y of the empt y lab el approac h scales as O � N

�

S L � �see app endix B� compared to

O � N

�

c

S L � for the temp orary mo del metho d �if eac h class is mo deled b y N

c

� N states��

F or these reasons w e will only use the temp orary mo del approac h in this thesis�

��� Conditional Maxim um Lik eliho o d Estimation

The BaumW elc h EM algorithm is v ery elegan t and e�cien t
 but unfortunately it do es

not generalize to CML estimation as discussed in c hapter �� Another p ossibilit y is to use

more general gradien tbased iterativ e optimization metho ds
 where the new estimate of a

generic parameter � � � at time t $ � can b e expressed b y

�

	 t ��


" �

	 t 


$ + �

	 t 


� ������

F or purely gradien tbased metho ds
 the parameter c hange + �

	 t 


at iteration t is expressed

en tirely in terms of the gradien ts of the CML criterion w�r�t� the � �s� Note that the

parameter up date can b e done either online �up date after eac h sequence� or o,ine �up date

after all sequences�� Con trary to the EM algorithm
 online and o,ine gradien tbased

training require the same amoun t of memory � F or online training the + � �s are computed

using the gradien ts for one sequence
 whereas the accum ulated gradien ts o v er all sequences

are used in batc h or o,ine training� W e will elab orate on this and v arious approac hes for

computing the + � �s in c hapter ��

In this section w e deriv e the gradien ts of the CML criterion w�r�t� to the parameters in

the CHMM necessary for gradien tbased optimization� F urthermore
 w e will discuss dif

feren t w a ys of ensuring that the parameters normalize correctly during training and sho w

that one of these metho ds can b e used to �deriv e� the extended BaumW elc h reestimation

form ulas in a heuristic manner�

The expressions deriv ed b elo w are all stated in terms of the exp ected n  and m coun ts�

By using the appropriate m coun ts de�ned ab o v e and in app endix B the gradien ts apply

to complete as w ell as incomplete lab el training for b oth single and m ultiplelab elstate

CHMMs�

����� Gradien t Deriv ation

T o mak e the gradien t deriv ation easier w e switc h to log lik eliho o ds and de�ne the ne gative

lo g c onditional likeliho o d

L � � � " � log P � y j x # � � " L

c

� � � � L

f

� � � � ������

where the negativ e log lik eliho o d L

c

� � � in the clamp ed phase and L

f

� � � in the recognition

phase are de�ned b y
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L

c

� � � " � log P � x � y # � � ������

L

f

� � � " � log P � x # � � � ������

The deriv ativ e of the freerunning log lik eliho o d L

f

� � � w�r�t� a generic parameter

� � � can b e written
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whic h is v ery similar to the gradien t of the auxiliary function ������ de�ned for standard

HMMs in c hapter �



 Q

�

� � j �
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�
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"

X
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�
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 �
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The only di�erence is that in the EM algorithm the path distribution giv en at iteration

t is assumed to b e constan t during the maximization of the auxiliary function� If the

Q function cannot b e maximized exactly one can resort to iterativ e gradien tbased tec h

niques as discussed in c hapter � and the approac h is then a GEM algorithm� W e see

that maximizing Q b y a gradien t metho d is v ery similar to maximizing the log lik eliho o d

b y a gradien t metho d� Therefore
 the t w o approac hes can b e exp ected to ha v e similar

con v ergence rates�

Using ������ the gradien t of L

f

� � � is no w easily found
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F or a mo del without parameter t ying the gradien t w�r�t� the transition probabilit y �

ij

is
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and the gradien t w�r�t� the probabilit y of matc hing sym b ol a in state i is
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Note that if

� L

f

	 � 


� �

" � then solving for � under the p ositivit y and sumtoone constrain ts

yields the BaumW elc h reestimation form ulas� This sho ws that the reestimation form ulas

are exactly correct at critical p oin ts of L

f

� � ��
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The gradien t of the negativ e log lik eliho o d L

c

� � � in the clamp ed phase is computed

similarly 
 but the exp ectation in ������ is tak en only o v er allo w ed paths � � )

y

� This

leads to
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where the m �s are the exp ected coun ts giv en the lab eling� If m ultiple lab els are allo w ed

in eac h state then ������ will con tain an additional term for the parameters of the lab el

distribution
 see app endix B� Since L

f

� � � do es not dep end on the parameters of the lab el

distribution
 these parameters can b e up dated using the reestimation equations deriv ed

in app endix B or alternativ ely b y a gradien t metho d as for the other parameters�

F or a mo del without parameter t ying w e can no w express the deriv ativ e of L � � � w�r�t�

the transition probabilit y �

ij

as
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and w�r�t� the probabilit y of matc hing sym b ol a � A in state i as
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F rom ������ and ������ w e can easily see ho w the discrimination b et w een classes en ters

training� Compared to the gradien ts in the free running phase the m terms can b e view ed

as observ ed �v alues� or sup ervision information� In neural net w ork terminology a p ositiv e

di�erence b et w een the m �s and the n �s represen ts p ositiv e training examples and a negativ e

di�erence represen ts negativ e examples� The gradien t expressions also illustrate wh y it is

not p ossible to use BaumW elc h lik e reestimation equations directly � Th us
 replacing e�g� 


n

i

� l � in the BaumW elc h reestimation equation for �

i

� a � with m

i

� l � � n

i

� l � can v ery w ell

lead to a negativ e reestimate�

����� Normalization Constrain ts

Up dating the parameters according to ������ will not ensure that the parameters normalize

correctly and there is a risk of obtaining negativ e estimates� T o ensure p ositiv e and

normalizing parameters one can do an explicit normalization after eac h up date


�
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" Normalize
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$ + �

	 t 
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� ������

The �Normalize� op erator ensures that the required parameters sum to one� It is easy

to prev en t negativ e parameter estimates b y e�g� 
 setting suc h estimates to zero b efore

normalizing�

A more elegan t approac h is to use a parameter transformation that ensures p osi

tiv e and normalizing parameters� Here w e can use the same metho d as �BC��  and do

gradien tbased optimization in another set of unconstrained v ariables� F or the transition

probabilities w e de�ne

�

ij
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e

z

ij
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z
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where z

ij

� R are the new unconstrained auxiliary v ariables� This transformation is kno wn

as the softmax function in the neural net w ork literature� By construction
 �

ij

will alw a ys

b e p ositiv e and prop erly normalized� No w gradien tbased optimization in the auxiliary

v ariables yields a new estimate of z

ij
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where the parameter c hange + z

	 t 


ij

is computed using the gradien ts of L � � � w�r�t� z

ij

� The

new estimate for the auxiliary v ariables corresp onds to an estimate for �

ij

giv en b y
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The gradien ts of L � � � with resp ect to z

ij

can b e expressed en tirely in terms of �
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and
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F or purely gradien tbased optimization the c hange in the auxiliary v ariables + z

	 t 


ij

can

therefore b e expressed en tirely in terms of the exp ected coun ts and �

ij

� Th us
 the up date

form ula ������ for the transition probabilities do es not dep end explicitly on the auxiliary

v ariables
 but can b e expressed en tirely b y the exp ected coun ts and the mo del parameters

at the previous iteration� Equations for discrete matc h probabilities can b e obtained

in exactly the same w a y � This approac h is sligh tly more straigh tforw ard than the one

prop osed in �Bri��
 BC��  
 where the auxiliary v ariables w ere retained and the parameters

of the mo del calculated explicitly from ������ after up dating the auxiliary v ariables� This

t yp e of gradien t optimization is also v ery similar to the exp onen tiated gradien t descen t

prop osed and in v estigated in �KW�� 
 HSSW��  �

In a similar w a y to whic h the BaumW elc h reestimation form ula w as �deriv ed� for the

standard HMM
 w e can set equation ������ equal to zero and solv e for �

ij

�or one of the

other parameters of the mo del�� Unfortunately 
 the solution mak es no sense as it will often

b e negativ e� Ho w ev er
 the deriv ativ e do es not c hange if an arbitrary p ositiv e n um b er D

is added and subtracted
 so w e migh t write
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or more generally for a generic parameter �
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where the sum in the denominator is extended o v er the set of parameters that include �

i

and m ust normalize to one� This is essen tially the up dating form ula kno wn as extende d

Baum�Welch r e estimation suggested in �GKNN��  for discrete HMMs and later for con tin

uous and semicon tin uous HMMs �NM�� 
 NCM��  � Similar equations can b e deriv ed for

the matc h probabilities� Extended BaumW elc h reestimation has b een sho wn to compare

fa v orably to gradien t descen t MMI estimation in sev eral applications �KVY�� 
 Mer�� 


NM�� 
 NCM�� 
 GKNN��  � In �GKNN��  it w as sho wn that ������ giv es new estimates

of the parameters whic h guaran tee con v ergence of the MMI �and CML� criterion to a

lo cal maxim um pro vided that the constan t D is su�cien tly large� F or practical purp oses

reasonably fast con v ergence is obtained if D is c hosen suc h that the n umerator of ������

is alw a ys larger than or equal to some small p ositiv e constan t � �NCM��  


D " max

�

i

� �

�


 L � � �


 �

i

� �

�

$ �� ������

��� Global Normalization

In man y applications there is a long and successful tradition of breaking the sacred prin

ciple that the probabilit y parameters of the individual states m ust sum to one� These

ad ho c metho ds include e�g� 
 language mo del biases
 m ultiple indep enden t streams and

stream exp onen ts �Rob�� 
 NCM�� 
 KVY��  � The rationale in using language mo del bi

ases is to reduce what seems to b e a (mismatc h� b et w een acoustic mo del probabilities and

language mo del probabilities� In �Rob��  b etter p erformance w as obtained in a phoneme

recognition task when scaling bigram language mo del probabilities with a certain �global�

factor� Similarly 
 Kapadia et al� �KVY��  rep orted impro v ed p erformance b y squaring

the bigram language mo del probabilities for phoneme recognition� In �HBAH��  the lan

guage mo del bias approac h w as succesfully extended to the socalled Uni�e d Sto chastic

Engine 
 in whic h separate w eigh ts for di�eren t language mo del probabilities w ere used�

The language w eigh ts and the parameters of the acoustic mo dels w ere all join tly estimated

b y gradien tbased minimization of a �global� discriminativ e training criterion similar to

the minim um classi�cation error criterion� The e�ect of language mo del biases can also

b e obtained b y using stream exp onen ts where the log matc h probabilities are scaled b y

small p ositiv e constan ts� The stream exp onen t approac h can b e further re�ned b y using

separate w eigh ts for eac h stream in m ultiple indep enden t stream mo dels �NCM��  �see

section �����

T o retain a probabilistic mo del
 ev en when the parameters for a state do not sum to

one
 one can normalize globally � F or the CML estimated CHMM global normalization

is particularly con v enien t b ecause the normalizing constan t need not b e calculated� F ur

thermore
 when in tro ducing observ ation con text dep endence in the hidden neural net w ork

h ybrid
 describ ed in c hapter �
 it is imp ossible to prop erly normalize the probabilities for

eac h state�

Similar to the probabilit y ����� for a standard HMM w e de�ne
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R � x # � � "
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In general
 this is not a pr ob ability b ecause w e will lift the normalization requiremen t for

the parameters in the matc h and transition distributions
 whic h is the reason for c hanging

the notation from P to R � When the parameters do not normalize w e will use the term

sc or e instead of probabilit y � The R function can b e turned in to a probabilit y b y explicit

normalization


�

P � x # � � "

R � x # � �

P

x

�

�X

R � x

�

# � �

� ������

where X is the space of all p ossible discrete observ ation sequences of an y length� With

this normalization the mo del can still b e giv en a probabilistic in terpretation ev en though

the parameters no longer normalize to one� Note that due to the normalization term


training of the globally normalized HMM cannot b e done b y the EM algorithm� Ho w ev er


gradien tbased metho ds can b e used instead�

With discrete matc h �distributions� �and man y con tin uous �distributions�� it is in

theory p ossible to compute the normalization factor to arbitrary precision pro vided that

R � x # � � approac hes zero fast enough as a function of sequence length
 or that a maxim um

sequence length can b e enforced whic h is usually the case� T o see this w e express the

normalization factor as a sum o v er all sequence lengths
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x
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where L

max

is the assumed maxim um sequence length and X

L

is the space of observ a

tion sequences of length L� F or a giv en length L the sum o v er sequences in X

L

can b e

computed b y the standard forw ard algorithm where m ultiplications b y �

i

� x

l

� are replaced

with

P

a �A

�

i

� a � �or

R

x

�

i

� x � d x for con tin uous observ ations��

F or the CML estimated CHMM it is nev er necessary to actually calculate the normal

ization factor� Similar to the lik eliho o d for the clamp ed phase P � x � y # � � w e de�ne for

the singlelab elstate CHMM
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A similar expression exists for CHMMs with m ultiplelab elstates� Pro vided the lab el

distributions normalize to one �this is trivially ensured for singlelab elstates� w e ha v e

X

y �Y

R � x � y # � � " R � x # � � � ������

Therefore


P � x � y # � � "

R � x � y # � �

P

x

�

�X

R � x

�

# � �

� ������

whic h leads to the follo wing expression for the a p osteriori probabilit y of the lab eling

�

F or con tin uous HMMs the summation is replaced b y an in tegration o v er the space of con tin uous

observ ation sequences�
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P � y j x # � � "

R � x � y # � �

R � x # � �

� ������

where the normalization constan t has cancelled out� Th us
 when training the CHMM b y

CML the global normalization is automatically ensured� This is true ev en if w e do not

use an auxiliary end state or if w e allo w states with outgoing transitions to b e end states�

In man y applications it is nev ertheless con v enien t to restrict only one or a few states to

b e end states� F or example
 in sp eec h recognition the last few lab els for most utterances

usually corresp ond to the silence class� This constrain t can easily b e ensured b y only

allo wing states mo deling the silence class to b e end states�

The calculation of R � x # � � and R � x � y # � � can b e done exactly as describ ed for P � x # � �

and P � x � y # � �
 b ecause the forw ard and bac kw ard algorithms are not dep enden t on the

normalization of parameters� It is imp ortan t to note
 though
 that the forw ard and bac k

w ard v ariables in the case of nonnormalizing parameters cannot b e giv en a probabilistic

in terpretation� They should rather b e considered as scores� Ev en though the forw ard

bac kw ard v ariables are not probabilities
 the exp ected m and n coun ts are still proba

bilistic quan tities b ecause they are expressed as rational functions of the forw ard and

bac kw ard v ariables
 see ������������� Similarly 
 the standard MAP deco der can b e based

on R � x � y # � � instead of P � x � y # � � b ecause the factor R � x # � �
 whic h turns R � x � y # � �

in to the p osterior probabilit y of the lab eling
 is the same for all p ossible lab elings�

Nonnormalizing parameters can lead to a m uc h ric her mo del than when the parameters

are required to normalize� In principle the parameters need ev en not b e p ositiv e� Ho w ev er


to ensure that the normalization terms in ������ and ������ are di�eren t from zero w e

prop ose to k eep the parameters strictly p ositiv e b y using e�g� 
 an exp onen tial parameter

transformation# for a generic parameter �

i

� � w e in tro duce an auxiliary v ariable z

i

� R

and de�ne

�

i

" exp� z

i

� � ������

This p ositivit y constrain t also implies that the standard forw ardbac kw ard and deco ding

algorithms can b e used directly without mo di�cation � i�e� 
 the �tric ks� for handling n u

merical problems in the forw ardbac kw ard and Viterbi algorithms only w ork for p ositiv e

parameters�� F or the exp onen tial transformation the up date equations for the parameters

b ecome particularly simple
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and since


 L � � �


 z

i

" �

i


 L � � �


 �

i

������

the up date equations ������ for the parameters will not dep end explicitly on the auxiliary

v ariables�

A p oten tial problem with the exp onen tial parameter transformation is that a large

c hange in the auxiliary v ariable implies that the curren t parameter estimate �

	 t 


i

is scaled

b y a h uge p ositiv e v alue� Since a large + z

	 t 


i

corresp onds to a large gradien t of L � � �

w�r�t� �

i

this is v ery lik ely to happ en� It can b e cured b y using a sigmoid parameter

transformation instead
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�

i

"

�

� $ exp� � z
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whic h yields nonnormalizing parameters in the range  �# ��� Also for this transformation

the new estimate �

	 t ��


i

can b e expressed en tirely in terms of �

	 t 


i

and the exp ected coun ts�

��	 Summary

In this c hapter w e ha v e in tro duced the Class HMM as a particular extension of standard

HMMs
 where eac h state in addition to the usual matc h distribution also has b een as

signed a distribution o v er p ossible lab els� This allo ws for mo deling of the join t probabilit y

of observ ation and lab el sequences and equations for BaumW elc hlik e ML training and

gradien tbased CML training w ere deriv ed for b oth complete and incomplete lab eling�

F urthermore
 it w as sho wn ho w CML estimation of the CHMM automatically ensures

that the mo del is normalized globally suc h that the parameters of the individual states

need not normalize to one�

Eac h state in the CHMM arc hitecture can in principle mo del all p ossible lab els� This

can b e attractiv e to some applications
 but for sp eec h recognition it is b eliev ed that mo d

eling all lab els in all states is not b ene�cial� One of the main conclusions of man y y ears

of researc h in sp eec h recognition is that the HMM arc hitecture
 although p ossibly still

the b est kno wn mo del
 is not a v ery go o d represen tation of sp eec h� Go o d p erformance

has mainly b een obtained b y submo dels with a highly constrained top ology 
 for instance


lefttorigh t phoneme submo dels� By allo wing all phoneme lab els in all states
 the states

in the CHMM can no longer b e giv en a ph ysical in terpretation
 i�e� 
 one can no longer

tell whic h states mo del whic h phonemes� Th us
 allo wing all lab els implies that the prior

kno wledge obtained through y ears of researc h in to sp eec h recognition is discarded� On

the other hand
 w e still b eliev e that it can b e b ene�cial to allo w some states to mo del a

subset of the p ossible lab els in some situations
 for example in order to mak e the mo del

sensitiv e to phonetic con text�

It should also to b e noted that the �optimal� HMM top ologies ha v e b een dev elop ed

in the con text of nondiscriminativ e ML estimation� As suc h
 there is no guaran tee that

these top ologies will also b e �optimal� for discriminativ e training� In principle
 it is

therefore necessary to reev aluate a large n um b er of di�eren t top ologies in the framew ork

of discriminativ e training� This is naturally b ey ond the scop e of this thesis and w e will

here mak e extensiv ely use of lefttorigh t phoneme submo del top ologies
 k eeping in mind

that b etter p erformance migh t b e p ossible with a completely di�eren t
 but y et unkno wn


top ology � The follo wing c hapter giv es an ev aluation of the ML and CML estimated CHMM

on a simple con tin uous sp eec h recognition task�



Chapter �

Ev alua tion of Class HMMs

This c hapter giv es an ev aluation of the discrete class HMM for the highly simpli�ed task

of recognizing �v e broad phoneme classes in con tin uous sp eec h from the TIMIT database�

Ev en though this task is sp eak er indep enden t it has a n um b er of limitations� Firstly 


fo cus is put only on acoustic mo deling
 i�e� 
 it is only attempted to recognize broad class

phoneme sequences and not w ords or sen tences� Secondly 
 TIMIT is a database of r e ad

sp eec h recorded in a quiet en vironmen t and it therefore do es not encompass e�ects of noise

and sp on taneous sp eec h dis�uencies lik e hesitations
 restarts and incomplete sen tences�

Suc h e�ects are imp ortan t in practice but generally considered di�cult to handle in a

sp eec h recognition system� By selecting a simple task
 ho w ev er
 it is p ossible to ev aluate

a n um b er of the ideas presen ted in the previous c hapter in a reasonable time�

The c hapter starts b y de�ning the broad phoneme recognition task and b y describing

the datasets
 prepro cessor and c hosen mo del top ology � In section ��� a comparison b et w een

complete and incomplete lab el Maxim um Lik eliho o d �ML� training is giv en� Suc h a direct

comparison is p ossible b ecause the utterances in TIMIT are segmen ted man ually in to a

set of phone lab els� Complete and incomplete lab el Conditional Maxim um Lik eliho o d

�CML� training is the topic of section ���� Since CML estimation cannot b e done b y the

e�cien t BaumW elc h algorithm this section starts b y ev aluating a n um b er of gradien t

based training algorithms and compare these to the extended BaumW elc h algorithm� In

section ��� and section ��� the issue of nonnormalizing parameters is discussed brie�y �

Section ��� concludes the c hapter b y a comparison to results rep orted in the literature�

��� T ask De�nition

The TIMIT broad phoneme class task w as originally in tended as a demonstration of the

Hidden Mark o v Mo del T o olkit �HTK� dev elop ed at Cam bridge Univ ersit y �Y ou��b  
 but

it has recen tly b een adopted for ev aluation of discriminativ e MMI and CML estimation

of con tin uous densit y HMMs �Joh�� 
 JJ��a 
 Joh�� � The �v e broad phoneme classes are


v o w els �V�
 consonan ts �C�
 nasals �N�
 liquids �L� and silence �S�� They are de�ned in

table ��� using the original �� TIMIT phone lab els sho wn in app endix A� Note that the

glottal stop �q� is deleted as in �Joh�� 
 LH��  � This lea v es unde�ned segmen ts in the

phonetic transcriptions �incomplete lab elings�� The broad classes constitute a ma jor sim

pli�cation compared to the full TIMIT phone in v en tory 
 but the classes are still p oten tially

confusable and co v er all phonetic v ariations in American English� The �v e broad class

task is therefore a go o d test b ed for the preliminary ev aluation of sp eak er indep enden t

con tin uous sp eec h recognizers�

��
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Broad class Lab el TIMIT phone lab els

V o w el V iy ih eh ae ix ax ah axh

u w uh ao aa ey a y o y a w

o w ux

Consonan t C c h jh dh b d dx g p t k

z zh v f th s sh hh h v

Nasal N m n en ng em nx eng

Liquid L l el r y w er axr

Silence S h- pau

 q

T able ��� � De
nition of 
ve b road phoneme classes in terms of the � TIMIT phone lab els�

����� Datasets

Only a subset of the TIMIT database w as used in the broad class exp erimen ts
 see table ����

The training set con tained ��� sen tences uttered b y ��� di�eren t sp eak ers� This corre

sp onds to ab out ���th of the total recommended TIMIT training set
 see app endix A� The

sen tences in the training set w ere all di�eren t and phonetically div erse ��SI� sen tences��

F or ev aluation of the mo dels the recommended TIMIT core test set w as used� The core

test set con tains a total of ��� sen tences uttered b y �� di�eren t sp eak ers� All sen tences in

the core test set are di�eren t and phonetically compact ��SX� sen tences�
 i�e� 
 sp eci�cally

designed to co v er all p ossible biphones that can b e generated from the TIMIT phones�

F or monitoring p erformance and mo del selection a separate v alidation set of ��� sen tences

uttered b y ��� di�eren t sp eak ers w as used� As for the training set these sen tences w ere

textually di�eren t and phonetically div erse� Note that there are no o v erlapping sen tences

or sp eak ers b et w een an y of the three datasets� The datasets are iden tical to those used in

�Joh��  �

����� Prepro cessing and Scoring

The ra w sp eec h signal w as prepro cessed using a mel�fr e quency c epstr al prepro cessor
 see

e�g� 
 �DPH��  � Cepstral features can b e computed indirectly b y applying a recursion to

the line ar pr e diction co e�cien ts or in a more direct fashion from the short term absolute

sp ectrum of the sp eec h signal� The basic idea in the latter approac h
 whic h w as used in this

w ork
 is to tak e the logarithm of the absolute short term sp ectrum and then transform this

new �signal� bac k to the time domain� By taking the logarithm in the frequency domain it

is p ossible to transform the nonlinear timedomain con v olution of t w o signals in to a sum�

Hereb y 
 the slo wly v arying v o cal tract impulse resp onse and the quic kly v arying excitation

sequence for a sp eec h signal can b e separated�

�

Ideally 
 the lo worder cepstral co e�cien ts

iden tify the v o cal tract en v elop e sp ectrum and the higher order co e�cien ts iden tify the

excitation sequence� T ypically 
 only the lo worder cepstral co e�cien ts are used in sp eak er

indep enden t HMMbased sp eec h recognition� These co e�cien ts tend to b e less sp eak er

dep enden t than the higher order ones �DPH��  and express the �con�guration� of the v o cal

tract� F urthermore
 HMMs mo del sp eec h as a sequence of steadystate segmen ts� This is

�

In principle this only applies to v oiced sp eec h whic h is ideally generated b y a p erio dic excitation of

the v o cal tract system�
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Datasets

General c haracteristics

Sp eec h t yp e Con tin uous read American English

En vironmen t Quiet studio
 high qualit y microphone

Phoneme segmen tation Assigned b y h uman exp ert phoneticians

Dialects � ma jor dialect regions in USA

Sp eak ers ���

Sen tences ����

Utterances ���� ��� p er sp eak er�

T raining set

Sp eak ers ���

Sen tences ��� �phonetically div erse�

��ms frames ������ � � �� min utes�

Broad class lab els �����

T esting set

Sp eak ers ��

Sen tences ��� �phonetically compact�

��ms frames ����� � � �� min utes�

Broad class lab els ����

V alidation set

Sp eak ers ���

Sen tences ��� �phonetically div erse�

��ms frames ����� � � � min utes�

Broad class lab els ����

T able ��� � Summa ry of TIMIT datasets used fo r b road class exp eriments�

consisten t with mo deling sp eec h as a sequence of steadystate v o cal tract con�gurations�

Th us
 the lo worder cepstral co e�cien ts are a reasonable c hoice for HMMbased sp eec h

recognition� Impro v ed recognition p erformance has often b een observ ed b y using psyc ho

acoustic kno wledge in the cepstral analysis� T ypically 
 the log of the sp ectrum is passed

through a set of p erceptual �lters that in tegrate the signal energy within a n um b er of

critic al b ands � The bandwidth of the critical bands increase logarithmically ab o v e �kHz

to sim ulate the sensitivit y of the h uman ear to di�eren t frequencies� Another t ypically used

metho d is to w arp the frequency scale on to e�g� 
 the melscale� The melscale expresses

the p er c eive d fr e quency as a function of the actual frequency as obtained through a set of

listening exp erimen ts� It is appro ximately linear b elo w �kHz and logarithmic ab o v e �kHz�

In this w ork
 triangular shap ed critical band �lters and melscale w arping w as used�

The actual prepro cessor implemen tation w as based on the public domain Cfunction

library accompan ying the OGI Speech Tools pac k age pro vided b y Cen ter for Sp ok en Lan

guage Understanding at the Oregon Graduate Institute�

�

F or eac h �� ms frame of sp eec h

the prepro cessor yielded �� melscaled cepstral co e�cien ts and the signal log energy com

puted o v er a ��ms Hamming w eigh ted and preemphasized windo w� This v ector of ��

features w as augmen ted b y the corresp onding �rstorder di�eren tial features �+features�

�

The OGI Sp eec h T o ols has recen tly b een renamed to the CSLU T o olkit and is a v ailable at

h ttp���www�cse�ogi�edu�CSLU��



�� Chapter �� Ev alua tion of Class HMMs

computed b y linear regression on a windo w of �v e frames cen tered on the curren t sp eec h

frame� Th us
 the prepro cessor yielded a �� dimensional feature v ector for ev ery ��ms

frame of sp eec h� All feature v ectors in a giv en utterance w ere normalized suc h that eac h

elemen t in the v ector had zero mean and unit v ariance o v er that utterance�

As discrete CHMMs w ere used in all exp erimen ts rep orted in this c hapter
 the ��

dimensional feature v ectors w ere quan tized prior to training� A co deb o ok of ��� proto

t yp e v ectors w as generated from the training set feature v ectors b y the LindeBuzoGra y

algorithm
 see e�g� 
 �DPH��  � The details of the prepro cessor and v ector quan tizer are

summarized in table ����

F or complete lab el training the man ually assigned timeb oundaries b et w een phones

in the TIMIT database w ere used for assigning broad class lab els to eac h ��ms frame of

sp eec h� A t p ositions where the glottal stop �q� had b een deleted the lab el of the previous

class w as simply used� Similarly 
 frames o v erlapping a phone timeb oundary w ere assigned

the broad class lab el corresp onding to the phone that co v ered the largest part of the

frame� This implies that some broad class b oundaries w ere �arti�cially� shifted b y up to

� �ms� Ho w ev er
 the TIMIT phone b oundaries are assigned b y h uman phoneticians and

are therefore sub ject to v ariations b et w een these exp erts� F urthermore
 one can argue

that exact b oundaries b et w een phonemes do not exist as the h uman articulators cannot

c hange �state� instan taneously � The arti�cially in tro duced shifts are therefore b eliev ed to

ha v e little consequence on the �nal recognition accuracy �

Melfrequency prepro cessor

Amplitude compression None

Sampling frequency �� kHz

Preemphasis co e�cien t ����

Windo w length �� ms

W eigh ting function Hamming

F rame length �� ms

Sp ectral analysis FFT

F requency w arping Melscale

Mel �lterbanks ��

Mel �lterbank shap e T riangular

Cepstral liftering windo w size ��

Cepstral liftering t yp e Raised sine

Cepstral features �� ��� $ log energy $ +�s�

F eature normalization Zero mean
 unit v ariance

Delta regression windo w � frames

V ector quan tizer

Co deb o ok size ���

Co deb o ok generation LindeBuzoGra y

T able ��� � Summa ry of mel	frequency cepstral p rep ro cesso r and vecto r quantizer fo r the b road

phoneme class task�

Recognition results will b e rep orted in terms of the string accuracy �� Acc � de�ned b y

� Acc " ���� �

I ns $ D el $ S ub

N

s

� ���� �����



�� T ask De�nition ��

where I ns 
 D el and S ub are the n um b er of textual insertions 
 deletions and substitutions

resp ectiv ely obtained b y aligning the recognized broad class lab el strings � i�e� the rec

ognized incomplete lab elings� against the reference lab el strings� N

s

denotes the total

n um b er of incomplete lab els in the reference sym b ol strings� In this w ork w e used the

public domain standard scoring program sclite �v er����� pro vided b y the American Na

tional Institute of Standards �NIST��

�

Con trary to the UNIX utilit y diff for assessing

di�erences b et w een text �les
 the NIST scoring program uses di�eren t p enalt y w eigh ts

for insertions
 deletions and substitutions
 see e�g� 
 �PGMDF��  and the do cumen tation

accompan ying the sclite distribution� This is equiv alen t to the sequence alignmen t tec h

niques often used in biological sequence analysis�

����� General Mo del Setup

Although it is not necessary to use separate class submo dels in the CHMM it w as decided

to use the simple top ology sho wn in �gure ��� for eac h of the �v e broad phoneme classes�

The main reason for this is that initial exp erimen ts did not indicate an y impro v emen t b y

using e�g� 
 fully connected mo dels where all states in the CHMM are connected regardless

of class lab els� This is agrees with sev eral y ears of researc h in sp eec h recognition indicating

that lefttorigh t top ologies yield p erformance sup erior to other top ologies�

Figure ��� � Submo del used fo r each b road class�

The submo del for eac h broad class con tains three lefttorigh t connected states and

a �skip� transition b et w een the �rst and last state� The skip transition implies that the

shortest broad class segmen t whic h can b e mo deled is t w o frames �or ��ms� long� The

matc h distributions asso ciated with eac h of the states are discrete distributions o v er the

��� co deb o ok sym b ols� Since w e only consider singlelab elstate CHMMs here
 the lab el

�distributions� in eac h state are simply deltafunctions indicating the class lab el of the

submo del�

Figure ��� illustrates the o v erall CHMM mo del whic h is similar to socalled lo op e d

mo dels commonly used for phoneme recognition exp erimen ts� Note
 ho w ev er
 that the

�language mo del� transitions b et w een the class submo dels are considered part of all the

other parameters of the mo del� This is con trary to common approac hes in con tin uous

phoneme recognition in whic h the bigram probabilities are estimated b eforehand b y the

frequency of phoneme pairs in the training set�

�

Because all sen tences in the three datasets

start and end in the silence class w e only connect the auxiliary nonmatc hing b egin �end�

state to the �rst �last� state of the submo del for the silence class� The total n um b er of

parameters in the discrete CHMM is ����� Note that some of these parameters should

not b e considered as trainable when sumtoone constrain ts are enforced�

�

The scoring program is a v ailable b y anon ymous ftp from ftp���svr�ftp�eng�cam�ac�uk�

�

ML training of the CHMM yields bigram transitions iden tical to those found b y simple coun ting of

phoneme pairs in the training set� This is� ho w ev er� not the case for CML estimation where the bigram is

trained discriminativ ely �
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V V V

C C C

N N N

L L L

S S S

Begin End

"Bigram transition
probabilities"

Figure ��� � Overall CHMM top ology fo r the b road class task� Note that the 
lled circles a re

not CHMM states� but used only to cla rify the illustration� i�e� � the last state of e�g� � the

consonant submo del is fully connected to the 
rst state of all submo dels�

Ev en for this simple mo del setup and fairly small datasets the computational complex

it y is fairly large� On a fast unix w orkstation


�

training times v aried from ab out �� CPU

min utes for complete lab el ML estimation to ab out three hours for incomplete lab el CML

estimation�

��� Maxim um Lik eliho o d T raining

As a �rst exp erimen t the discrete lo cally normalized CHMM w as trained to maximize

the lik eliho o d of the data within eac h class� Because the �true� phoneme segmen tation

is kno wn
 a direct comparison b et w een complete and incomplete lab el training has b een

p ossible�

�

A Silicon Graphics mac hine with a MIPS R����� CPU�
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����� Complete Lab el T raining

In this exp erimen t the mo del w as trained from scratc h using BaumW elc h reestimation and

the complete lab eling� Before training the mo del w as initialized with uniform probabilities�

Only t w o or three iterations of BaumW elc h reestimation w ere needed for con v ergence


that is
 additional iterations pro vided only insigni�can t c hanges to the a v erage training

set lik eliho o d� The recognition accuracies obtained b y the forw ardbac kw ard
 Viterbi and

Nb est deco ders are sho wn in table ���� Whereas no pruning w as used for the forw ard

bac kw ard and Viterbi deco ders
 it w as necessary to use b oth lo cal and global pruning

for the Nb est deco der to reduce computational requiremen ts� Th us
 for all exp erimen ts

with the Nb est deco der w e used a lo cal pruning threshold of �

l

" ����� and a maxim um

n um b er of M " �� partial h yp otheses allo w ed to surviv e in eac h state� With �

l

" �����


partial h yp otheses that ha v e a probabilit y ����� times smaller than the b est h yp othesis

in eac h state are discarded� Only the topscoring h yp othesis in the end state w as used for

calculating recognition accuracies�

T rain T est

FB Nb est Vit FB Nb est Vit

���� ���� ���� ���� ���� ����

T able ��� � Recognition accuracies ��Acc� fo r a complete lab el ML trained CHMM�

F rom the table w e observ e that Nb est deco ding giv es the b est accuracies on b oth train

ing and test sets
 but also that the di�erence to Viterbi deco ding is small� No o v er�tting

is observ ed�

����� Incomplete Lab el T raining

One can argue that complete lab el training is inconsisten t with using the mo del to rec

ognize the broad class incomplete lab eling� F urthermore
 the complete lab eling as giv en

in the TIMIT database is not alw a ys a v ailable� Therefore
 in a second set of exp erimen ts

w e trained the mo del using incomplete lab el ML estimation� T o illustrate the imp ortance

of a go o d initial mo del for incomplete lab el training three sligh tly di�eren t metho ds for

initializing the mo del w ere tested� The �rst mo del w as initialized b y uniform probabilities

and incomplete lab el ML training w as th us done from �scratc h�� The other t w o mo dels

w ere initialized b y t w o iterations of complete lab el ML estimation using �� �� randomly

selected sen tences from the training set and �� all ��� training sen tences�

T rain T est

N

cl

FB Nb est Vit FB Nb est Vit

� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���	

T able ��� � Recognition accuracies ��Acc� fo r an incomplete lab el ML trained CHMM� N

cl

is

the numb er of sequences used fo r initial complete lab el training b efo re switching to incomplete

lab el training on the full training set�

F rom table ��� w e see that a go o d initial mo del signi�can tly a�ects the p erformance

of the incomplete lab el trained mo del� The reason for this is that a w ell initialized class
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mo del can �attract� the righ t p ortions of the data during incomplete lab el training� It

is
 ho w ev er
 in teresting that the uniformly initialized mo del obtains a reasonably high

recognition accuracy � The a v eraging e�ect resulting from rep eated training on temp orary

mo dels for eac h incomplete lab el sequence is th us su�cien t for the submo dels to learn

some of the c haracteristics of the data distributions within eac h class� The b est result w as

obtained b y initial complete lab el training on the en tire training set� Ho w ev er
 the gain

compared to using only �� randomly selected training sequences is not v ery large� A t least

for the task considered here this indicates that w e just need a few sen tences with complete

lab eling to ac hiev e go o d results�

A surprising observ ation is that the incomplete and complete lab el ML estimated

mo dels yield a comparable recognition accuracy � This is con trary to what w as exp ected

b ecause maximizing the lik eliho o d of the incomplete lab eling is more consisten t with using

the mo del for generating broad class lab el strings during deco ding� A p ossible explanation

is that the initial complete lab el training giv es a set of submo dels whic h are capable of

attracting the righ t p ortions of the sp eec h signal in a maxim um lik eliho o d sense� As suc h


incomplete lab el ML training will not impro v e the recognition accuracy an y further�

F rom table ��� it is seen that the Viterbi deco der giv es sligh tly higher accuracies than

the other t w o deco ders� Consequen tly 
 the inconsistency b et w een total lik eliho o d or �all

path� training and b est path deco ding do es not seem to a�ect p erformance of the Viterbi

deco der for ML trained mo dels� This indicates that a single path through the mo del

dominates the o v erall lik eliho o d� F or an example sen tence this fact is clearly illustrated in

�gure ���
 sho wing the state a p osteriori probabilities computed b y the forw ardbac kw ard

algorithm for an incomplete lab el ML estimated mo del� Note that most of the state

p osteriors are either v ery close to zero or v ery close to one� F urthermore
 the most probable

path �in terms of state p osteriors� is �connected� from the start to the end of the sen tence

ev en though this is not enforced as in the Viterbi deco der� F or the example sen tence in

the �gure the ML estimated mo del yields an Nb est accuracy of ������

All of the ab o v e results for the ML estimated mo dels w ere obtained through only a

single training session� One should therefore b e careful when comparing the results for the

v arious mo dels b ecause the same mo del migh t yield sligh tly di�eren t p erformance when

trained from sligh tly di�eren t initial conditions� An indication of con�dence in terv als for

the ab o v e results can b e obtained b y training the same mo del sev eral times with sligh tly

di�eren t initial conditions� F or the �v e broad class task it is p ossible to mak e suc h an

ev aluation due to the fairly lo w computational complexit y of the mo dels considered here�

In a �rst exp erimen t �� mo dels with random probabilities w ere trained b y incomplete lab el

ML reestimation un til con v ergence� F or this exp erimen t all mo dels con v erged to practically

the same lik eliho o d lev el and the test set recognition accuracy for an y of the �� mo dels

w as w ell within � � � �� of the a v erage accuracy for the �� mo dels� Th us
 the BaumW elc h

reestimation algorithm tends to end up in the same minim um for randomly initialized

mo dels� In a second exp erimen t it w as in v estigated whether the algorithm tends to get

stuc k in a p o or lo cal minim um� In the spirit of simulate d anne aling �K GJV��  one w a y

to do this is b y adding uniformly distributed random noise to the �accum ulated� exp ected

coun ts and then decrease the added noise amplitude gradually as training progresses� F or

this exp erimen t w e used an initial random noise amplitude of ���� and decreased this

amplitude b y a factor ���� for eac h ep o c h� Similar to the random probabilit y initialization

describ ed ab o v e a series of ten training sessions resulted in practically the same �nal

lik eliho o d and the deviation in test set recognition accuracies w as again within � � � �� of

the a v erage accuracy for the ten runs� Based on these results w e conclude that the Baum
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Figure ��� � Gra ytone plot of state p osterio r p robabilities n

i

� l � " P � �

l

" i j x � � � fo r the

utterance �But in this one section w e w elcomed audito rs� �TIMIT id� si����� V alues of ���

a re indicated b y black and values of ��� b y white� States ��� b elong to the consonant mo del�

�� to the nasal mo del� ��� to the liquid mo del� ����� to the vo w el mo del and ����� to

the silence mo del� Upp er p anel� Incomplete lab el ML trained CHMM �N	b est sentence

accuracy� � Acc " �� � � �� L ower p anel� Observed complete lab eling�
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W elc h reestimation training for the mo dels considered here is v ery robust and that the

ab o v e presen ted results di�er b y no more than � ���� b et w een di�eren t training sessions�

��� Conditional Maxim um Lik eliho o d Estimation

The ML criterion used ab o v e is not optimal for classi�cation if the submo dels are not

capable of represen ting the true distribution of the data within eac h class� A b etter c hoice

is to train the mo del to discriminate b et w een the classes� Belo w w e giv e an ev aluation of

the conditional maxim um lik eliho o d trained CHMM� As for the case of ML estimation it

is p ossible to directly compare complete and incomplete lab el training� Ho w ev er
 it is no

longer p ossible to train the mo del b y BaumW elc h lik e reestimation� Therefore
 w e start

b y brie�y discussing di�eren t gradien tbased approac hes to training and compare these

to the extended BaumW elc h reestimation algorithm� F or a more detailed discussion of

gradien tbased optimization metho ds the reader is referred to �Bis��
 HKP��  and the

references therein�

����� T raining Algorithms

F or iterativ e minimization of the negativ e log conditional lik eliho o d L � � � giv en b y ������


the parameter up date can b e written in the general form


�

	 t ��


" �

	 t 


$ � + �

	 t 


� �����

where �

	 t 


is the parameter v ector for the mo del at the t �th iteration and � is the stepsize

or le arning r ate � The se ar ch dir e ction + �

	 t 


m ust b e c hosen suc h that the the up date

leads �do wnhill� for the c ost function 
 i�e� 
 L � �

	 t ��


� � L � �

	 t 


� for a su�cien tly small

stepsize� A natural c hoice is the direction in whic h the negativ e log conditional lik eliho o d

decreases most rapidly 
 that is
 the opp osite direction of the gradien t


+ �
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�
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�

� � �

� t �

� �����

This metho d is kno wn as ste ep est desc ent or simply gradien t descen t and b elongs to the

class of �rst�or der metho ds as it is based only on �rstorder deriv ativ e information� The

parameter up date can b e done using the gradien t of L accum ulated o v er either the en tire

training set or for a single training sequence� The former metho d is commonly denoted

b atch or o	ine gradien t descen t and the latter se quenc e online gradien t descen t� Note that

the online up date for the CHMM is not done for eac h fr ame 
 but rather for eac h tr aining

utter anc e � The reason for this is that the deriv ativ e of L is expressed in terms of the

exp ected m and n coun ts whic h are not a v ailable b efore the forw ardbac kw ard algorithm

has b een completed for the en tire sen tence� Th us
 up dating for eac h frame w ould require

application of the forw ardbac kw ard algorithm L times for a sequence of L observ ations

and thereb y increase the computational complexit y b y a factor of L �

F or b oth online and batc h training the size of the learning rate is v ery imp ortan t for

the con v ergence to w ards a lo cal minim um of the cost function� If � is c hosen su�cien tly

small a decrease of the cost can alw a ys b e ensured
 but a learning rate to o small will result

in v ery slo w con v ergence� On the other hand
 if � is to o large the algorithm ma y div erge�

Pro vided w e are su�cien tly close to a lo cal minim um an upp er b ound for the stepsize


whic h guaran tees con v ergence to a lo cal minim um of batc h mo de gradien t descen t
 can b e
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deriv ed
 see e�g� 
 �Bis�� � In practice
 ho w ev er
 faster con v ergence is usually observ ed for

stepsizes larger than this upp er b ound� T ypically 
 the stepsize is found b y trialanderror�

An alternativ e metho d is to in v ok e a socalled line se ar ch in eac h iteration� An exact line

searc h �nds the learning rate �

	 t 


that minimizes the cost function in the searc h direction

giv en at the curren t iteration


�
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" argmin

�

� t �

� �

L � �
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$ �
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+ �

	 t 


� � �����

Usually it is not p ossible to p erform an exact line searc h
 but a simple approac h that has

b een observ ed to w ork fairly w ell in practice �see e�g� 
 �P ed��  � is to start from some initial

stepsize and then k eep halving it un til a decrease of the cost is observ ed� It should b e

noted that the line searc h leads to an extra computational burden compared to using a

�xed learning rate b ecause the cost function needs to b e ev aluated sev eral times during the

searc h for the b est stepsize� Because of the high computational complexit y asso ciated with

ev aluating the lik eliho o d o v er the en tire training set in most large scale sp eec h recognition

systems
 line searc h has not b een widely applied in HMM mo deling for sp eec h recognition�

One exception is the phoneme recognition exp erimen t rep orted in �KVY��  where a line

searc h w as p erformed on a subset of the training data�

Line searc h as de�ned in ����� is inheren tly a batc h metho d and will therefore not

w ork w ell for online training� Con trary to batc h training
 online gradien t descen t do es not

guaran tee con v ergence to a lo cal minim um for some �xed small stepsize� Ho w ev er
 con

v ergence can b e theoretically pro v en if � decreases in v ersely prop ortional to the iteration

n um b er e�g� 
 as �Joh��  


�
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"
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	�


t � �

N

�

$ �

� �����

where �

	�


is the initial stepsize and N

�

� � a factor that determines the rate of decrease�

F or N

�

" � this learning rate sc hedule is simply �

	 t 


" �

	�


�t � F or N

�

� � the con v ergence

prop ert y breaks do wn and the stepsize equals �

	�


for all t � �� Often faster con v ergence

has b een observ ed b y using either a �xed stepsize or some heuristic sc hedule for selecting

�

	 t 


� A m ultitude of suc h heuristic sc hedules ha v e b een prop osed in the literature lik e e�g� 


geometrically increasing�decreasing the stepsize b y di�eren t factors if an iteration leads

to a decrease�increase of the cost� Another p opular metho d is to use separate learning

rates for eac h parameter in the mo del� The reader is referred to �Bis��
 Ha y�� 
 HKP�� 

for a discussion of v arious approac hes�

An imp ortan t adv an tage of the online approac h o v er the batc h metho ds arises if there

is a high degree of redundan t information in the data� As a simple example
 supp ose that a

training set of K sequences is obtained b y replicating the same sequence K times� F or this

training set the gradien t calculation will tak e K times longer than for just one sequence�

But the information pro vided b y the accum ulated gradien t is the same as that pro vided

b y the gradien t for eac h sequence and batc h training will therefore con v erge considerably

slo w er than online training if the same �su�cien tly small� stepsize is used�

Another adv an tage of online gradien t descen t is that it is a sto c hastic algorithm b ecause

w e do the up date for eac h sequence indep enden tly � Hereb y the algorithm has the abilit y to

escap e relativ ely �at lo cal minima� A further re�nemen t
 whic h can aid further in escaping

lo cal minima
 is to select the sequences in random order from the training set�
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F or b oth batc h and online training
 con v ergence will b e v ery slo w if w e mo v e along

plateaus of the cost function b ecause in these regions the gradien t will b e v ery small� A

p opular w a y of accelerating the searc h in suc h regions is to add a socalled momen tum

term to the parameter up date


+ �

	 t 


" � � rL � �

	 t 


� $ � + �

	 t � �


� �����

where + �

	 t 


" �

	 t ��


� �

	 t 


and � � ��# �� is the momentum parameter� The momen tum

term e�ectiv ely adds inertia to the motion through parameter space� A t places where the

gradien t is almost unc hanging the e�ectiv e stepsize can easily b e sho wn to b e �

e�

"

�

� � �

�

In �gure ��� a comparison of di�eren t gradien t descen t metho ds to the extended Baum

W elc h algorithm is giv en for conditional maxim um lik eliho o d estimation of the CHMM

for the simple broad class task� During gradien tbased estimation
 sumtoone constrain ts

for the parameters in the CHMM w ere enforced b y the softmax parameter transformation

������� The batc h mo de gradien t descen t used either a �xed stepsize or the simple line

searc h algorithm describ ed ab o v e� Due to the relativ ely small size of the broad class task it

w as p ossible to do the line searc h o v er the en tire training set in reasonable time� The �xed

stepsize w as � " � � �� and the initial stepsize used for the line searc h w as � " � � ��� The

sequence online metho d also used a �xed stepsize of � " � � �� and the training sequences

w ere presen ted in random order� All three gradien tbased approac hes w ere accelerated b y

a momen tum term with momen tum parameter � " � � �� In the extended BaumW elc h

algorithm ������ the constan t D w as selected according to ������ with � " ��

� �

to ensure

that the parameter up date w as p ositiv e and w ell de�ned� All mo dels w ere initialized b y t w o

iterations of complete lab el ML reestimation and then trained for �� ep o c hs

�

of complete

and �� ep o c hs of incomplete lab el CML estimation� Note that the �gure illustrates the

ev olution of L � � � calculated for the inc omplete lab eling observ ed for the training set�
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Figure ��� � Compa rison b et w een extended Baum	W elch reestimation and batch and online

gradient descent� L eft p anel� Evolution of L � � � fo r the training set� R ight p anel�

Stepsizes chosen b y the simple linesea rch algo rithm during batch mo de gradient descent�

F rom �gure ��� w e �rst observ e that batc h mo de gradien t descen t decreases the cost

v ery smo othly � The more rapid decrease in cost just after ep o c h �� is due to the shift

	

An ep o c h denotes a ful l pass through the training set�
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in training strategy from complete to incomplete lab el estimation� W e also note that

the simple line searc h algorithm succeeds in �nding a sequence of stepsizes that leads to

a somewhat faster con v ergence at least during the initial stages of training� Ho w ev er
 it

seems that b oth the �xed stepsize and line searc h approac h ev en tually ends up in the same

minim um� In comparison to sto c hastic online gradien t descen t with �xed stepsize there is

no doubt that this algorithm ac hiev es a signi�can tly faster con v ergence than either of the

gradien t batc h metho ds� Th us
 within the �rst �� ep o c hs it has reac hed a lev el of the cost

that is b elo w the �nal lev el obtained b y batc h mo de gradien t descen t� This indicates that

there are large redundancies in the training data whic h is v ery t ypical to sp eec h recognition

applications� Extended BaumW elc h reestimation is seen to p erform sligh tly w orse than

online gradien t descen t in the initial stages of training
 but ends up with roughly the same

conditional lik eliho o d after ab out �� iterations�

Figure ��� illustrates the training scenario for online gradien t descen t with stepsizes

deca ying in v ersely prop ortional to the ep o c h n um b er for di�eren t v alues of N

�

in ������

In terestingly 
 the fastest con v ergence is obtained for N

�

� � corresp onding to a �xed

stepsize of � " � � ���
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Figure ��� � Online gradient descent training with deca ying stepsize� The initial stepsize is

�

	�


" � � �� �

In �V al�� 
 KVY��  a comparison b et w een di�eren t batc h mo de gradien tbased training

strategies for MMI estimation of con tin uous densit y HMMs w as giv en for the recognition

of the British English Eset



and for a TIMIT phoneme recognition task� The conclusion

of these exp erimen ts w as that batc h gradien t descen t with a �xed or heuristically adapted

stepsize p erformed w orse than when an appro ximativ e line searc h w as in v ok ed� F urther

more
 they observ ed that faster con v ergence could b e obtained b y an appro ximativ e second

order metho d called QuickPr op �F ah��  or b y socalled c onjugate gradien t descen t
 see e�g� 





The E�set is the set of acoustically confusable letters f �B�� �C�� �D�� �E�� �G�� �P�� �T� � �V� g �
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�HKP�� 
 Bis�� � Ho w ev er
 all of these gradien tbased batc h approac hes could not outp er

form the extended BaumW elc h reestimation algorithm� Because w e here ha v e observ ed

a similar p erformance of online gradien t descen t and extended BaumW elc h reestimation

for the broad class task it w as decided not to try e�g� 
 conjugate gradien t descen t or ap

pro ximativ e second order metho ds for the discrete CHMMs� The online gradien t descen t

metho d has b een used for all exp erimen ts rep orted b elo w b ecause it also applies to mo dels

with parameters that do not normalize lo cally and b ecause it generalizes to the hidden

neural net w ork h ybrid presen ted in the next c hapter�

F or this c hoice of algorithm it is v ery in teresting to observ e the b eha vior of the clamp ed

� L

c

� and free running phase � L

f

� negativ e log lik eliho o ds during training� F or a uniformly

initialized mo del and a mo del initialized b y t w o iterations of complete lab el ML reestima

tion the scenarios are illustrated in �gure ���� F or b oth situations w e see that the clamp ed

and free running phase lik eliho o ds b eha v e similarly 
 but that the distance b et w een them

is decreased suc h that L " L

c

� L

f

for the training set is decreased� In terestingly 
 L

c

and L

f

starts b y decreasing for the uniform mo del
 but then suddenly starts to increase�

Similarly 
 w e see that b oth L

c

and L

f

for the mo del initialized b y ML training increase

during CML estimation�
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Figure �� � Evolution of average clamp ed phase � � log P � x � y � � �� free running phase � �

log P � x � � � and conditional � � log P � y j x � � � log lik eliho o ds fo r the training set� L eft

p anel� Mo del initialized b y unifo rm p robabilities� R ight p anel� Mo del initialized b y t w o

iterations of complete lab el ML reestimation�

A set of initial exp erimen ts with CML estimation indicated a sligh t tendency to o v er�t

the training data ev en though the mo dels are sparse on parameters� It w as therefore

decided to adopt the metho d used b y e�g� 
 Renals et al� �RMB

�

��  for adapting the

stepsize according to the p erformance on a v alidation set� The sc hedule is as follo ws� if

the forw ardbac kw ard deco der recognition ac cur acy on the v alidation set drops b y more

than ���� o v er �v e ep o c hs then the stepsize is m ultiplied b y a factor of ��� and the

momen tum term is reset for the follo wing ep o c h� After a few initial exp erimen ts this

sc hedule w as found to impro v e the �nal recognition accuracy sligh tly compared to using

a �xed stepsize� F urthermore
 it mak es the selection of the initial stepsize less critical� T o

limit the computational requiremen t an upp er b ound of ��� training ep o c hs w as enforced

in all exp erimen ts rep orted b elo w�
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T o reduce the e�ect of o v er�tting r e gularization of the cost function w as also attempted�

The regularized cost function C � � � is de�ned b y

C � � � " L � � � $ R � � jj

*

� � � �����

where R � � jj

*

� � is the regularization term� Similar to the weight de c ay regularizer �HKP�� 


Bis��  often used for neural net w ork training one can use a regularizer of the form


R � � jj

*

� � " � �

X

i

*�

i

log

�

i

*�

i

� �����

where �

i

� � are generic parameters of the mo del and *�

i

�

*

� are normalize d regulariza

tion parameters whic h can b e in terpreted as the parameters of a constan t r e gularization

mo del

*

� with the same top ology as the mo del � � W e see that R � � jj

*

� � is the Kullbac k

Leibler div ergence b et w een the distributions giv en b y � and the regularization mo del

*

�

and that it leads to a new set of gradien ts where the *�

i

�s are simply added to the dif

ference b et w een the exp ected coun ts#

�


 C �
 � " � � m � n $ � *� � �� � Suc h a regularizer

will mak e parameters �

i

that are not �reinforced� deca y to w ards the asso ciated *�

i

�s� This

implicitly corresp onds to reducing the e�ectiv e n um b er of trainable parameters and will

hop efully lead to b etter recognition p erformance� A p ossible c hoice for

*

� is a mo del with

uniform probabilities whic h is similar to the standard w eigh t deca y for neural net w orks�

Another c hoice is to use the ML trained mo del for

*

� � Unfortunately 
 none of these ap

proac hes seemed to impro v e recognition p erformance in a set of initial exp erimen ts and

consequen tly the idea w as not pursued an y further�

����� Complete Lab el T raining

Because of the o v er�tting e�ects and the sto c hastic nature of the online gradien t algorithm


the CML training scenario is lik ely to b e more sensitiv e to the initial mo del parameters

than for BaumW elc h reestimation� Figure ��� sho ws the errorbars on L for ten inde

p enden t complete lab el CML training sessions of random initial mo dels with and without

random noise added to the exp ected coun t di�erence in the gradien t expressions ������

������� Whereas practically the same lik eliho o d lev el w as obtained b y incomplete lab el ML

reestimation in a similar exp erimen t �see section ������
 �gure ��� sho ws a large v ariation

in the training set conditional lik eliho o d b et w een the ten runs� Ho w ev er
 the v ariation in

the recognition accuracies b et w een the ten runs w as only of order � � � �� for b oth exp eri

men ts� A similar �nding w as done for incomplete lab el CML training b y gradien t descen t�

Th us
 as a rule of th um b the results presen ted b elo w ma y b e considered as signi�can tly

di�eren t if they deviate b y more than � � ���

T able ��� sho ws the recognition accuracies obtained b y complete lab el CML training

of a CHMM initialized b y uniform probabilities or b y t w o iterations of complete lab el ML

reestimation� The ML b o otstrapp ed mo del p erforms sligh tly b etter than the uniformly

�

The Kullbac k�Leibler regularization is v ery closely related to imp osing a discrete Diric hlet prior on

the parameters of a discrete HMM� Suc h a prior distribution turns the maxim um lik eliho o d approac h

in to a Ba y esian maxim um a p osteriori approac h� where the Baum�W elc h reestimation algorithm estimates

the parameters that maximize the p osterior P � � j x � instead of the lik eliho o d P � x j � �� �DLR���� These

metho ds are commonly used in so�called sp eak er adaptiv e training where sp eak er indep enden t mo dels are

adapted for a single sp eak er based on v ery limited training data from that sp eak er� see e�g� � �HCL�� � GL�� ��

Another application is biological sequence analysis �DEKM�
 � KBM

�

�� ��
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Figure ��� � Erro rba rs on the training set negative log conditional lik eliho o d fo r complete lab el

CML training b y sto chastic online gradient descent with 
xed stepsize� L eft p anel� T en

mo dels initialized b y random p robabilities� R ight p anel� T en mo dels trained with random

noise added to the di�erence b et w een the m and n counts� The initial noise amplitude is ���

and the noise is decreased b y a facto r of ���� at each ep o ch�

T rain T est

Initial ML FB Nb est Vit FB Nb est Vit

� ���� ���� ���� ���� ���� ����

� ���� 	��� ���� ���� �
�� ����

T able �� � Recognition accuracies ��Acc� fo r complete lab el CML trained CHMM� The mo del

is initialized b y � o r � iterations of complete lab el ML reestimation�

initialized mo del
 but the di�erence is not signi�can t� The table also sho ws that the N

b est and forw ardbac kw ard deco ders giv e appro ximately the same recognition accuracies

and that they signi�can tly outp erform the Viterbi deco der� Th us
 for b oth initialization

metho ds the �all path� deco ders obtain more than �� higher recognition accuracy than

the �b est path� Viterbi deco der� Compared to the ML estimated mo dels w e see from

table ��� that CML estimation giv es considerably higher recognition accuracies� Th us
 the

b est test set result b y complete lab el CML training is an accuracy of ����� whic h should

b e compared to ����� for ML training�

In the left panel of �gure ��� the accuracies obtained b y the three deco ders are sho wn

as complete lab el training progresses� F or the forw ardbac kw ard and Nb est deco ders w e

see that there is an almost constan t di�erence in accuracy b et w een the training and test

set after ab out ���� ep o c hs� A sligh t tendency to o v er�t the training data is resp onsible

for part of this di�erence
 but the in trinsic di�erence b et w een the test and training sets

also con tributes� In fact
 the training and v alidation set accuracies are almost iden tical

throughout training
 b ecause b oth of these sets con tain sen tences of the same phonetically

div erse t yp e� On the other hand
 the phonetically compact sen tences in the test set are

sp eci�cally designed to co v er all biphone v ariations p ossible in the TIMIT phone in v en tory 


and they are therefore somewhat harder to recognize� After just t w o to three complete

lab el CML ep o c hs the accuracy obtained b y the Viterbi deco der decreases rapidly for al l
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three datasets
 see the left panel of �gure ���� This is not an o v er�tting e�ect b ecause

the accuracy also drops for the training set� It merely illustrates that there is a mismatc h

b et w een complete lab el CML training based on all paths and single path deco ding� The

mismatc h is further emphasized b y the relativ ely large oscillations in the curv e for the

Viterbi deco der�
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Figure ��� � Evolution of recognition accuracies during CML training fo r a �from top to b ottom�

Viterbi� fo rw a rd	backw a rd o r N	b est deco der� L eft p anel� Complete lab el training� R ight

p anel� Incomplete lab el training�

����� Incomplete Lab el T raining

When switc hing to incomplete lab el training after �v e ep o c hs of complete lab el CML

training the accuracy for the training set increases fairly smo oth for all three deco ders as

sho wn in the righ t panel of �gure ���� Ho w ev er
 the increasing size of the gap in accuracy

b et w een the training and test set indicates that the mo del no w o v er�ts the training data�

This is also seen in table ��� sho wing the training and test set recognition accuracies

for the incomplete lab el CML trained CHMM� By comparing table ��� and table ���

w e furthermore see a signi�can t gain in accuracy for b oth the training and test set b y

switc hing to incomplete lab el CML training� This is di�eren t from the ML trained mo dels

where practically no gain w as observ ed b y switc hing from complete to incomplete lab el

training� One reason for this is that the CML criterion is highly sensitiv e to outliers and

mislab elings as discussed in c hapter �� Since the TIMIT phone segmen tation is not p erfect

the complete lab eling for the broad class task ma y v ery w ell con tain errors� By switc hing

from complete to incomplete lab el CML training the e�ect of suc h errors is mitigated and

the Nb est accuracy is increased from ����� to ������

As for the complete lab el training exp erimen ts
 the �allpath� Nb est and forw ard

bac kw ard deco ders obtain signi�can tly higher accuracies than the Viterbi deco der
 see

table ���� F or the same example sen tence as in �gure ��� for the ML estimated mo del


�gure ��� clearly sho ws that sev eral paths con tribute to the probabilit y of the sen tence in

the incomplete lab el CML trained mo del� Note that the Nb est accuracy for the sen tence

in the �gure is ����� compared to only ����� for the ML trained mo del�
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T rain T est

FB Nb est Vit FB Nb est Vit

���� 	��� ���� ���� 	��� ����

T able ��� � Recognition accuracies ��Acc� fo r an incomplete lab el CML trained CHMM� The

mo del is initialized b y t w o iterations of complete lab el ML and 
ve ep o chs of complete lab el

CML training�
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Figure ��� � Same as 
gure ���� but fo r incomplete lab el CML trained mo del� Sentence N	b est

accuracy� � Acc " �� � � � Compa re to 
gure ��� fo r ML trained mo del�

��� The Language Mo del Probabilities

In the CML estimated CHMM all parameters including the �bigram� transition proba

bilities b et w een di�eren t submo dels w ere trained discriminativ ely from the acoustic data�

T able ��� compares the test set accuracy obtained b y CML estimation to that obtained b y

MMI estimation of a mo del with a �xed uniform or bigram language mo del� The uniform

or zer o�gr am language mo del assigns the same probabilit y to all pairs of broad classes

whereas the �xed bigram probabilities are giv en b y the relativ e frequencies of broad class

pairs observ ed in the training set� Using a �xed bigram instead of a zerogram impro v es

the recognition accuracy considerably � The gain in accuracy b y discriminativ ely training

the bigram as opp osed to using a �xed bigram is also signi�can t�

In con tin uous sp eec h recognition it is v ery common to scale the language mo del prob

abilities b y some factor b efore deco ding� This has b een observ ed to increase accuracy

signi�can tly for some tasks� Figure ���� sho ws the e�ect of language mo del scaling on

the recognition accuracy � F or the complete lab el ML trained mo del a fairly large gain in

accuracy can b e obtained b y appropriately scaling the bigram probabilities� In terestingly 




��� The Language Mo del Probabilities ��

Language mo del � Acc

Fixed zerogram �MMI� ����

Fixed bigram �MMI� ����

T rainable bigram �CML� ����

T able ��� � E�ect of language mo del transitions on test set accuracy � Only results fo r the

N	b est deco der a re sho wn�

squaring the bigram probabilities for this mo del as prop osed in �KVY��  increases the

accuracy b y more than �� for the ML trained mo del� The adv an tage of scaled bigrams is

still presen t for the MMI trained mo del with a bigram language mo del
 but it is far smaller

than for the ML trained mo del� Con v ersely 
 there is no gain in accuracy b y scaling the

discriminativ ely trained bigram in the CML estimated mo del� Th us
 the CML criterion is

able to �balance� the language mo del and acoustic mo del probabilities during training�
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Figure ���� � E�ect of language mo del scaling fo r ML� MMI and CML trained mo del� L eft

p anels� Accuracy fo r di�erent biases� R ight p anels� E�ect of scaling on the p ercentage of

insertions� deletions and substitutions �the lo w er curves sho w substitutions��
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��� NonNormalizing P arameters

Because of the p o or e�ect of language mo del scaling for the CML estimated mo del it can

not b e exp ected that relaxing the sumtoone constrain t for all parameters will impro v e

p erformance signi�can tly � Indeed
 if only a p ositivit y constrain t is enforced on the param

eters b y the exp onen tial parameter transformation ������ the test set accuracy drops from

����� to ����� and the training set accuracy drops from ����� to ������ A probable

reason is the large �uctuations in the conditional lik eliho o d illustrated in �gure ����� As

discussed in c hapter � the exp onen tial parameter transformation leads to a parameter

up date in whic h the curren t parameter v alue is m ultiplied b y exp� � � m � n �� where m and

n are the exp ected coun ts de�ned in c hapter � and c hapter �� This can lead to v ery large

parameter c hanges resulting in a �uctuating conditional lik eliho o d� The only w a y in whic h

this e�ect can b e a v oided is b y using a v ery small stepsize to k eep the argumen t of the

exp onen tial function small ev en for large gradien ts� Ho w ev er
 this will unfortunately also

imply v ery slo w con v ergence� Instead of the exp onen tial transformation one can use the

sigmoid transformation� With this transformation w e w ere able to obtain an accuracy of

����� and as sho wn in �gure ���� the sigmoid transformation is m uc h more �w ell b eha v ed�

than the exp onen tial transformation�
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Figure ���� � T raining of a mo del with p ositivit y constraint� L eft p anel� Exp onential pa ram	

eter transfo rmation� R ight p anel� Sigmoid pa rameter transfo rmation�

��	 Rep orted Results

F or the �v e broad phoneme class task Johansen et al� �Joh��
 JJ��a 
 Joh��  ha v e rep orted

a n um b er of results using con tin uous HMMs with diagonal co v ariance Gaussian matc h

distributions� As w e ha v e selected an almost iden tical mo del setup and iden tical datasets


a direct comparison is p ossible� F or v arious n um b ers of comp onen ts in the Gaussian matc h

distributions the b est results for ML
 MMI and CML trained mo dels obtained b y Johansen

et al� are sho wn in table ���� Note that they also used an Nb est deco der v ery similar to

the one used here�

In terestingly 
 the accuracies for the con tin uous Gaussian densit y HMMs used b y Jo

hansen et al� are signi�can tly lo w er than those obtained b y discrete CHMMs� Th us
 for
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Criterion K P arms� � Acc

ML � ��� ����

� ���� ����

�� ����� ����

MMI � ��� ����

CML � ��� ����

T able ��� � T est set recognition accuracies � � Acc � fo r ML� MMI and CML trained continuous

HMMs rep o rted b y Johansen et al� � K is the numb er of diagonal cova riance Gaussians used

in each mixture�

appro ximately the same n um b er of parameters as in the discrete CHMM they rep ort an

accuracy of only ����� for an ML trained mo del compared to ����� for the ML trained

CHMM� Similarly 
 their b est result for CML estimation is ����� accuracy compared to

����� for the discrete CHMM� The reasons for these large di�erences are probably dif

feren t training strategies and the fact that they use diagonal co v ariance Gaussians� The

diagonal appro ximation corresp onds to assuming that the elemen ts of the feature v ectors

are indep enden t whic h is ob viously un true� This assumption is not used in the discrete

distributions� Similarly 
 the large n um b er of co deb o ok v ectors relativ e to the size and dif

�cult y of the task implies that most of the class sp eci�c information in the feature v ectors

can b e retained in the quan tized observ ation sym b ols�

��
 Summary

In this c hapter a discrete CHMM w as ev aluated on the simple task of recognizing �v e

broad phoneme classes in the TIMIT database� Through the exp erimen ts sev eral topics

concerning b oth discriminativ e training and deco ding w ere illustrated� It w as sho wn that

for ML estimated mo dels only one path tends to con tribute to the probabilit y of a sen

tence whereas sev eral paths tend to con tribute for the CML estimated mo dels� Th us
 for

discriminativ ely trained mo dels
 a far b etter recognition accuracy can b e obtained b y a

deco der that considers all paths in the searc h for the b est h yp othesis� Tw o suc h deco ders


namely the simple forw ardbac kw ard and the Nb est deco der
 w ere sho wn to outp erform

the Viterbi deco der� The large gain obtained b y forw ardbac kw ard instead of Viterbi

deco ding is rather surprising as the former is not guaran teed to yield a h yp othesis that

corresp onds to a v alid path through the mo del� This e�ectiv ely means that the mini

m um duration enforced b y the lefttorigh t top ology of the classmo dels is not used during

forw ardbac kw ard deco ding� A nice prop ert y of the forw ardbac kw ard deco der is that it

only requires appro ximately t wice the computation of the Viterbi deco der� Con trary to

this
 the Nb est deco der is computationally v ery exp ensiv e
 and ev en for the simple broad

class task lo cal and global pruning w as a necessit y �

The imp ortance of go o d initial mo dels for incomplete lab el ML and CML training w as

also illustrated� F or the ML estimated mo del w e found that complete and incomplete lab el

training yielded appro ximately the same accuracy � � ����� In con trast
 CML training

based on the incomplete lab eling ga v e a far b etter recognition accuracy than training

based on the complete lab eling� P art of this di�erence is attributed to the sensitivit y of

the CML criterion to outliers� Compared to incomplete lab el ML estimation a gain of

more than �� in accuracy w as observ ed for the incomplete lab el CML trained mo del�



��� Summary ��

Finally 
 it w as sho wn ho w a simple language mo del bias can impro v e the accuracy for

ML and MMI estimated mo dels� A similar gain w as not observ ed for the CML trained

mo del� This indicates that a b etter �balance� b et w een the di�eren t parameter sets in the

CHMM is obtained through training all parameters to minimize the same discriminativ e

criterion�



��



Chapter �

Hidden Neural Netw orks

Ov er the past decade neural net w orks

�

ha v e pro v en v ery useful for complex pattern recog

nition tasks� As sp eec h recognition is basically a pattern recognition task
 a n um b er of

researc hers ha v e recen tly tried to apply a v ariet y of neural net w ork arc hitectures to the

sp eec h recognition problem� The �rst attempts used neural net w orks to classify small

sp eec h segmen ts in to e�g� 
 v oiced�un v oiced classes� The success in these exp erimen ts en

couraged researc hers to try larger tasks lik e static phoneme and w ord classi�cation� It

quic kly b ecame eviden t
 ho w ev er
 that neural net w orks are not v ery go o d at handling

temp oral in tegration o v er long time spans whic h is crucial in con tin uous sp eec h recogni

tion� Th us
 with standard neural net w orks it is di�cult to handle the temp oral v ariation

in e�g� 
 w ords uttered b y di�eren t sp eak ers or at di�eren t sp eaking rates� Therefore


sev eral researc hers started com bining elemen ts of HMMs and neural net w orks� Excel

len t reviews of early neural net w ork approac hes for sp eec h recognition can b e found in

�T eb�� 
 MS�� 
 Lip�� �

An ob vious w a y to com bine HMMs and neural net w orks is to try to implemen t v arious

comp onen ts of the HMM using neural net w orks� F or example
 in �LG��  a sp ecial recurren t

neural net w ork called a Viterbi Net w as in tro duced as a w a y of implemen ting the Viterbi

algorithm for an HMM� In a similar spirit the recurren t A lphaNet w as in tro duced b y

Bridle �Bri�� as a w a y of implemen ting the forw ard recursions of an HMM� Another v ery

in teresting neural net w ork implemen tation of a discrete HMM is the socalled Boltzmann

Chain in tro duced in �SJ�� � The Boltzmann Chain is a particular v arian t of the Boltzmann

machine �AHS��  
 whic h is v ery similar to the globally normalized discrete HMM

�

�P ed�� 


Mac��  � It can b e trained b y a gradien tbased algorithm whic h has man y similarities to

gradien tbased forw ardbac kw ard training for globally normalized HMMs
 see �P ed��  �

Compared to the globally normalized HMM the Boltzmann Chain has the adv an tage that

sev eral c hains can b e in terconnected to form a socalled Boltzmann Zipp er �SJ��
 P ed��  �

The Boltzmann Zipp er can mo del parallel sequences at disparate timescales whic h is v ery

attractiv e in e�g� 
 sp e e ch r e ading applications where the recognition of an utterance is based

on b oth �rapidly v arying� acoustic information and �slo wly v arying� video recordings of

the sp eak ers face� A tutorial st yle review of the Boltzmann Chain and Zipp er can b e found

in �P ed��  �

Rather than simply reimplemen ting the HMM with neural net w orks most curren t re

�

F or an in tro duction to neural net w ork mo deling the reader is referred to the excellen t text b o oks

�HKP�� � Bis�� � Ha y����

�

If the exp onen tial parameter transformation ������ is used for the parameters of the globally normalized

HMM� then P � x j � � in ������ is expressed b y a Boltzmann distribution similar to the one for the Boltzmann

Chain�

��
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searc h in HMM�NN h ybrids fo cus on capitalizing the strengths of eac h of the t w o frame

w orks� the temp oral mo deling capabilities of the HMM and the static classi�cation or

function appro ximation capabilities of neural net w orks� This theme is carried throughout

the rest of this c hapter where a new HMM�NN h ybrid called Hidden Neur al Networks

�HNN� will b e in tro duced�

The c hapter starts out b y elab orating on a particular approac h for alleviating the

assumption of observ ation con text indep enden t matc h and transition probabilities in the

standard HMM� It is sho wn that this approac h quic kly b ecomes in tractable in practice

and the HNN is consequen tly in tro duced as a more �exible arc hitecture for observ ation

con text dep enden t mo deling� Besides mitigating the observ ation con text assumption it

will b e sho wn that the HNN also has a n um b er of other adv an tages compared to standard

HMMs� Then conditional maxim um lik eliho o d estimation and computational complexit y

issues for the HNN is discussed and �nally it is sho wn ho w a n um b er of simplifying

assumptions in the HNN arc hitecture can lead to a socalled tr ansition�b ase d mo del� The

c hapter is concluded b y a comparison of HNNs to related mainstream HMM�NN h ybrids�

	�� Observ ation Con text

Let us consider the expression for the HMM probabilit y P � x j � � giv en in section ��� and

rep eated b elo w


P � x j � � "

X

�

Y

l

P � x

l

j �

l

�

� x

l � �

�

� � � P � �

l

j �

l � �

�

� x

l � �

�

� � �

�

X

�

Y

l

P � x

l

j �

l

� x

l � �

�

� � � P � �

l

j �

l � �

� x

l � �

�

� � � � �����

In the ab o v e appro ximation w e ha v e applied the �rst order Mark o v assumption whic h facil

itates the computationally e�cien t forw ardbac kw ard and deco ding algorithms asso ciated

with the HMM� F or standard HMMs it is assumed that the transition and matc h prob

abilities are indep enden t to the previous or c ausal observ ation sequence x

l � �

�

� Ho w ev er


this assumption is not really necessary as indicated b y ����� and discussed b elo w�

F or simplicit y 
 assume that the observ ations are discrete and that w e condition the

transition probabilities on one previous observ ation x

l � �


 that is
 w e use �standard� matc h

probabilities �

i

� a �� In this case there is one set of transition probabilities for eac h p ossible

observ ation sym b ol a � A 
 �

ij

� a � " P � �

l

" j j �

l � �

" i� x " a �
 and the probabilit y of the

observ ation sequence for this mo del is computed using the standard forw ard �or bac kw ard�

algorithm

�

where �

ij

is replaced b y �

ij

� x

l � �

�� Similarly 
 the con text dep enden t transition

probabilities �

ij

� a � can b e reestimated using the expressions for the standard transitions

�

ij

giv en in c hapter �
 but with the exp ected coun t n

ij

� l � replaced b y n

ij

� l � �

x

l � �

�a

� This

approac h naturally also w orks for matc h probabilities conditioned on one previous obser

v ation and it is easy to generalize to larger observ ation con texts�

A generalization of the ab o v e approac h called Partial ly Hidden Markov Mo dels �PH

MMs� w as in tro duced in �FR��  � Instead of conditioning directly on the causal observ ation

sequence
 the PHMM conditions the matc h and transition probabilities on discrete c on�

text symb ols de�ned b y deterministic discr ete mapping functions of the causal observ ation

�

It is straigh tforw ard to see that these algorithms also apply for observ ation con text dep enden t proba�

bilities� see e�g� � �	���� in section 	���
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sequence or a part thereof�

�

In the PHMM there is one mapping function for the transi

tion probabilities yielding a con text sym b ol v

l

and one mapping function for the matc h

probabilities yielding a con text sym b ol w

l

suc h that

P � x

l

j �

l

� x

l � �

�

� " P � x

l

j �

l

� w

l

� �����

and

P � �

l

j �

l � �

� x

l � �

�

� " P � �

l

j �

l � �

� v

l � �

� � �����

Both mapping functions ha v e to b e c hosen a priori and the v ariables v

l

and w

l

can b e one

of N

v

or N

w

discrete con text sym b ols
 resp ectiv ely � In the simplest form
 the mapping

functions yield a unique con text sym b ol � v

l

or w

l

� for eac h p ossible realization of the

causal observ ation sequence �or part thereof �� This is equiv alen t to the direct approac h

describ ed ab o v e� The mapping functions can
 ho w ev er
 group t w o or more realizations

suc h that the n um b er of p ossible con text sym b ols is reduced� F or some a priori c hosen

mapping functions
 the parameters of the PHMM can b e reestimated in a manner similar

to the parameters of the standard HMM� The reestimation form ulas for the PHMM are

iden tical to those for the standard HMM
 except that the exp ected coun ts � n

ij

� l � or n

i

� l ��

m ust b e m ultiplied b y deltafunctions indicating the observ ed con text sym b ol � v

l

or w

l

�

�FR��  �

The PHMM has b een successfully applied to co ding of bilev el �blac k�white� images

in �FR��  � Because the observ ations in this task can only b e one of t w o distinct sym b ols

�blac k�white� it is p ossible to use large observ ation con texts without limiting N

v

and N

w

� i�e� for one causal observ ation the maxim um n um b er of con text sym b ols is N

v

� N

w

" �


for t w o causal observ ations it is N

v

� N

w

" � etc� �� F or sp eec h recognition with discrete

HMMs
 ho w ev er
 there will often b e a large n um b er of di�eren t observ ation sym b ols in the

alphab et A so as to reduce the distortion in tro duced b y the v ector quan tizer� T ypically 
 A

con tains ��� distinct sym b ols and therefore w e need to estimate ��� times as man y prob

abilities compared to the standard HMM if w e condition on just one previous observ ation�

Naturally the n um b er of parameters can b e reduced b y de�ning deterministic mappings

with N

v

� N

w

� ���� But de�ning suc h functions a priori can b e quite di�cult
 esp ecially

if the observ ations are con tin uously v alued v ectors� F urthermore
 go o d mapping functions

for one task will not necessarily b e go o d for other tasks�

	�� HNN Arc hitecture

Instead of using deterministic discrete mapping functions as in the PHMM
 a more general

approac h is to use con tin uously v alued parameterized functions to estimate sc or es directly

related to the con text dep enden t probabilities� This is the basic idea in the Hidden Neural

Net w ork mo del in whic h the standard probabilit y parameters of a CHMM are r eplac e d b y

the outputs of neural net w orks assigned to eac h state� Th us
 in the HNN it is p ossible to

assign up to t w o

�

neural net w orks to eac h state� �� a match network estimating a sc or e

for ho w w ell the curren t observ ation matc hes the state giv en the observ ation con text and

�� a tr ansition network that outputs transition sc or es dep enden t up on the observ ations�

�

The partially HMM w as originally prop osed for discrete observ ations� but it applies equally w ell to

con tin uous v alued observ ation v ectors if the discrete mapping functions are de�ned on the space of suc h

v ectors�

�

Here only single�lab el�states are considered� F or m ultiple�lab el�states it is p ossible to assign a third

net w ork for estimating lab el probabilities�
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W e ha v e used the term (score� instead of (probabilit y� b ecause the HNN will b e trained

using the CML criterion whic h
 as w as discussed in c hapter �
 automatically ensures glob al

normalization� Th us
 the outputs of these net w orks need not sum to one�

More formally 
 the CHMM matc h probabilit y �

i

� x

l

� of observ ation x

l

in state i is

replaced b y the output of a matc h net w ork
 �

i

� s

l

# v

i

�
 assigned to state i � The matc h

net w ork in state i has only one output
 is parameterized b y the w eigh t v ector v

i

and

tak es the observ ation con text v ector s

l

�de�ned b elo w� as input
 see �gure ���� Using only

a single output allo ws us to treat con tin uously v alued observ ation v ectors and discrete

observ ations in practically the same w a y �

�

Similarly 
 the CHMM probabilit y �

ij

of a

transition from state i to j is replaced b y the output of a transition net w ork �

ij

� s

l

# w

i

�

whic h is parameterized b y w eigh ts w

i

� The transition net w ork assigned to state i has as

man y outputs as there are nonzero transitions fr om state i 
 see �gure ����

According to ����� the net w ork input s

l

at time l should in theory only include causal

observ ations� Ho w ev er
 in the follo wing c hapters w e will see that for the considered sp eec h

recognition problems the �orien tation� of the observ ation con text is not as imp ortan t

as the size of it� That is
 a symmetric con text of � K $ � observ ations s

l

" x

l � K

l � K

"

x

l � K

� � � � � x

l

� � � � � x

l � K

turns out to w ork just as w ell as a left or righ t con text of the

same size s

l

" x

l

l � � K

� In cases where the con text s

l

extends b ey ond the b oundaries of

the observ ation sequence zero padding can b e used to ensure a w ell de�ned input to the

net w orks�

W e note in passing that s

l

can in principle b e an y sort of information related to x

l

or ev en the observ ation sequence in general� In sp eec h for instance
 one could imagine

that other information ab out the signal w as appropriate
 suc h as the t yp e of sp eak er

�male�female# British�American�� W e call s

l

the c ontext of observ ation x

l


 but the reader

should b ear in mind that it can con tain all sorts of information and that it can ev en di�er

from state to state� The only limitation is that it cannot dep end on the path through the

mo del
 b ecause then the state pro cess is no longer �rst order Mark o vian�

The neural net w orks in the HNN can b e feedforw ard or recurren t net w orks� In fact


they need not ev en b e neural net w orks ! they can b e an y parameterized con tin uously

v alued appro ximating function� In this w ork the neural net w orks in the HNN are c hosen to

b e Multi�L ayer Per c eptr ons �MLPs� b ecause �� MLPs are parameter e�cien t and can b e

trained b y the e�cien t b ackpr op agation algorithm �RHW��  and �� MLPs can appro ximate

an y con tin uously v alued function on a compact set of p oin ts to arbitrary accuracy pro vided

the MLPs are su�cien tly complex and �w ell� trained
 see e�g� 
 �Cyb�� or the neural

net w ork text b o oks �HKP�� 
 Bis�� � Con trary to the deterministic mapping functions in

the PHMM
 the MLPs in the HNN are adapted during training to suit the task at hand�

T ypical examples of matc h and transition net w orks used in this w ork are illustrated in

�gure ���

����� Global Normalization

In an HNN sp eci�ed b y the parameter v ector � it is generally not p ossible to mak e

P

x �X

P � x j � � " � b y normalizing lo cally at the state lev el� Ev en though w e can normalize

the transition net w ork outputs lo cally b y e�g� 
 a softmax output function it is in general

	

If the observ ations are discrete �as is inheren tly the case in e�g� � biological sequence mo deling� they

can b e enco ded in orthogonal binary v ectors and used as input to the neural net w ork in the same w a y as

con tin uously v alued v ectors� The binary orthogonal enco ding can result in a large n um b er of w eigh ts in

the neural net w orks and more optimal enco ding sc hemes is sometimes preferable� see e�g� � �RK��a� Rii�� �
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� i(sl;v
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Figure �� � Examples of match and transition net w o rks t ypically used in this w o rk�

imp ossible to do this for the matc h net w orks b ecause their outputs ha v e to normalize

o v er the space of p ossible inputs� A probabilistic in terpretation of the HNN is ensured

instead b y normalizing globally � As discussed in c hapter � suc h global normalization is

automatically ensured when training the mo dels b y CML estimation� Similar to equations

������ and ������ for the CHMM w e therefore de�ne

R � x j � � "

X

�

R � x � � j � � "

X

�

Y

l

�

�

l � �

�

l

� s

l � �

# w

�

l � �

� �

�

l

� s

l

# v

�

l

� � �����

and

R � x � y j � � "

X

� � �

y

R � x � � j � � "

X

� � �

y

Y

l

�

�

l � �

�

l

� s

l � �

# w

�

l � �

� �

�

l

� s

l

# v

�

l

� � �����

The probabilit y of the lab eling is then computed as for the CHMM


P � y j x � � � "

R � x � y j � �

R � x j � �

� �����

The R functions for the HNN are as usual computed b y replacing �

i

� x

l

� and �

ij

with

�

i

� s

l

# v

i

� and �

ij

� s

l � �

# w

i

�
 resp ectiv ely 
 in the forw ard �or bac kw ard� algorithms de�ned

in c hapter � and ��

The global normalization implies that the states in the HNN can b e based on an y

com bination of standard CHMM parameters and neural net w ork estimated scores
 see

�gure ���� F urthermore
 w e ha v e a large degree of freedom in the selection of neural

net w ork output functions� A natural c hoice is a standard asymmetric sigmoid function

�equation �������� Another p ossible c hoice is an exp onen tial output activ ation function


g � h � " exp� h � where h is the input to the output unit in question� In this case the

HNN is equiv alen t to an MLP with a softmax output function pro vided that the HNN

has one state p er class and that these states are fully connected b y uniform transition

scores � �

ij

� s

l

# w

i

� " � for all i� l �
 see �gure ���� F or this particular HNN only one path

is allo w ed in the clamp ed phase for an observ ation sequence x " x

�

� � � � � x

L

with an

asso ciated complete lab eling y " y

�

� � � � � y

L

� Assuming that state i mo dels lab el c

i

" i w e
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Figure �� � P ossible states in an HNN� a� Standa rd CHMM state� b� state with match net w o rk

and standa rd transition p robabilities� c� state with standa rd match p robabilities and transition

net w o rk and d� state with b oth match and transition net w o rks�
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where h

i

� s

l

� is the w eigh ted input to the output unit of the matc h net w ork assigned to

state i � Equation ����� sho ws that the probabilit y of the lab eling is expressed as a pro duct

of �lo cal� lab el a p osteriori probabilities# P � y j x � "

Q

l

P � y

l

j s

l

�� These lo cal probabilities

are computed in the same manner as the output of the softmax normalized MLP sho wn

in �gure ����
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Figure �� � HNN equivalent to a softmax no rmalized MLP � Illustrated fo r the case of three

classes� C " f � � � � � g �

����� Adv an tages

Ev en though the HNN is a v ery in tuitiv e and simple extension of the standard CHMM

it is a more p o w erful mo del� Firstly 
 MLPs can often implemen t complex functions using

few er parameters than e�g� 
 a mixture of Gaussians� F urthermore
 the neural net w orks

in the HNN can directly use observ ation con text as input and thereb y exploit higher or

der correlations b et w een neigh b oring observ ation v ectors� Similarly 
 there is generally no

assumption of indep endence b et w een elemen ts of con tin uous observ ation v ectors� This is

con trary to Gaussian mixture HMMs that use diagonal instead of full co v ariance matrices

in order to reduce the n um b er of parameters
 see c hapter �� Finally 
 in HNNs the transition

probabilities can dep end on the con text s

l

at time l and the underlying Mark o v mo del can

therefore ha v e a �timev arying� dynamics� As discussed in �BF�� 
 BF��  Mark o v mo dels

with �timev arying� dynamics can reduce the di�usion of cr e dit thr ough time whereb y

learning and represen ting long�term dep endencies in the data b ecomes less di�cult com

pared to standard HMMs� The abilit y to learn or represen t the dep endency b et w een the

observ ation at time l and time l $ l

�

can essen tially b e measured in terms of the de

p endency b et w een the state distribution at time l and time l $ l

�

giv en b y the mo del


P � �

l � l



j �

l

� x

l � l



l

� � �� As discussed in �BF��  this quan tit y can b e calculated as a pro duct

of transition matrices



b et w een time l and l $ l

�

#
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F or softmax normalized net w orks the transition matrix is giv en b y �

l

" f �

ij

� s

l

# w

i

� g

whereas it is giv en b y �

l

" f �

ij

g for standard HMMs� Since the basic assumption in stan

dard HMMs is that all relev an t past data can b e summarized in the curren t state v ariable

�the state conditional observ ation indep endence assumption�
 w e see that a dep endency

b et w een state distributions at time l and l $ l

�

also implies a dep endency b et w een observ a

tions at time l and l $ l

�

� Ho w ev er
 the dep endency b et w een state distributions decreases

exp onen tially as l

�

increases unless the transition probabilities are almost deterministic


i�e� 
 ha v e v alues close to � or �� Therefore it is di�cult to learn and represen t longterm

dep endencies in the data with standard HMMs unless the mo del has one�zero transitions




Use the relation P � a � �

P

b

P � a j b � P � b �
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�whic h is not v ery useful in practice.�� On the other hand
 �deterministic� transitions

mak e a lot of sense in the HNN b ecause they can v ary along the observ ation sequence


i�e� 
 a transition probabilit y close to one at time l can v ery w ell b e close to zero at time

l

�


" l due to the observ ation con text dep endency � Therefore
 longterm dep endencies can

in theory b etter b e learned and represen ted b y HNNs than b y standard HMMs� The

problem of learning and represen ting longterm dep endencies in the data with HMMs and

HNNs is similar to that encoun tered in recurren t neural net w ork mo deling of timeseries

�P ed�� 
 BF��  � An additional b ene�t from con text dep enden t transitions is that the mo del

can learn to fo cus more on the nonsteady state or �transitional� regions of the observ ation

sequence� This is con trary to standard HMMs whic h mo del the sequence as a piecewise

stationary pro cess
 i�e� 
 as a sequence of steadystate segmen ts� Th us
 the HNN with con

text dep enden t transitions can in theory b etter mo del �nonstationarities� in the observ ed

sequence� W e will elab orate on this topic in section ����

	�� Conditional Maxim um Lik eliho o d Estimation

As for the CHMM it is not p ossible to do CML estimation for the HNN using an EM or

GEM algorithm and instead w e suggest to train the mo del b y a gradien t metho d� Here

w e deriv e expressions for the HNN gradien ts and giv e a discussion of complexit y issues for

the HNN�

By using the c hain rule w e �nd the follo wing gradien ts of L � � � " � log P � y j x � � �

w�r�t� a generic w eigh t �

i

in the matc h or transition net w ork assigned to state i 
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If w e assume that no w eigh ts are shared b et w een net w orks w e �nd b y using the gradien t

expression for the CHMM ������ giv en in c hapter �
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In the bac kpropagation algorithm for neural net w orks �RHW��  the deriv ativ e of a cost

function w�r�t� a w eigh t � in the net w ork can b e computed e�cien tly b y bac kpropagating

err ors at the output of the net w ork� F or an output activ ation function g and cost function

L the deriv ativ e can b e expressed as


 L


 �

" E 	


 g


 �

� ������

where E is the error to bac kpropagate� W e therefore see from ������ that the gradien ts can

b e computed b y using the standard bac kpropagation algorithm on the neural net w orks in

the HNN
 where the error to bac kpropagate for e ach input s

l

is


E
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i

� s

l

� "

m

i

� l � � n

i

� l �
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� s

l

# v
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������

for the matc h net w ork assigned to state i and
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for output j of the transition net w ork assigned to state i � The exp ected coun ts can b e

calculated b y the forw ardbac kw ard algorithms discussed previously b y replacing �

i

� x

l

�

and �

ij

with �

i

� s

l

# v

i

� and �

ij

� s

l � �

# w

i

�
 resp ectiv ely 
 for those parameters that are esti

mated b y neural net w orks� Since w e need b oth the m and n coun ts w e ha v e to run t w o

forw ardbac kw ard passes for eac h training sequence to �nd the errors to bac kpropagate#

once in the freerunning phase �the n �s� and once in the clamp ed phase �the m �s��

����� Complexit y Issues

When the t w o forw ardbac kw ard passes ha v e b een p erformed there is only little computa

tional o v erhead in calculating the gradien ts for the CHMM� F or the HNN the situation is

di�eren t� F rom ������ w e see that a bac kpropagation pass for eac h con text input s

l

to the

neural net w orks is needed in order to compute the �accum ulated� gradien ts for a particular

training sequence� Since the exp ected coun ts are not a v ailable b efore w e ha v e �nished the

t w o forw ardbac kw ard passes w e ha v e to store copies of the coun ts for eac h timestep l

b efore w e run the bac kpropagation algorithm� This is di�eren t from the CHMM where

w e only need to store the accum ulated coun ts� In a direct implemen tation storage of the

exp ected coun ts th us scales as O � L � N $ N

�

�� for an ergo dic HNN compared to O � N $ N

�

�

for the CHMM� It is
 ho w ev er
 p ossible to reduce this requiremen t to O � LN � for HNNs

and O � N � for CHMMs b y storing the t w o forw ard matrices instead of the exp ected coun ts

and then do bac kpropagation training during the bac kw ard passes� In this w ork the direct

approac h has b een used�

If all net w orks are assumed to ha v e the same n um b er of w eigh ts W then the bac k

propagation of errors results in an added computational complexit y scaling as O � LN W �

b ecause the bac kpropagation algorithm has a complexit y of O � W � for a net w ork ha ving

W w eigh ts� Since the exp ected coun ts cannot b e calculated b efore the t w o forw ard passes

are completed
 it is in principle necessary to store all activ ations of all units in the neural

net w orks for eac h p ossible input s

l

in order to run the bac kpropagation algorithm� F or

man y applications this is unrealistic as L and N can b e quite large and therefore lead

to h uge memory requiremen ts ev en for small net w orks� Alternativ ely 
 one can ev aluate

the neural net w orks to determine the hidden and output unit activ ations just b efore eac h

bac kpropagation pass �whic h w as done in this w ork�� This adds O � LN W � �ops to the

computational complexit y �

In summary w e see that the gradien t calculation for the HNN requires an additional

computation scaling as O � LN W � compared to the CHMM� F urthermore
 for ergo dic HNNs

the memory complexit y of storing exp ected coun ts is at least O � LN � compared to O � N � for

the ergo dic CHMM� In addition
 w e ha v e to ev aluate the neural net w orks for eac h sequence

and store their outputs prior to running the forw ardbac kw ard passes whic h e�ectiv ely

adds O � LN W � to the computational and O � L � N $ N

�

�� to the memory complexit y of the

gradien t calculation�

The additional computational complexit y of CML estimation for the HNN is mostly due

to computations related to the neural net w orks� Th us
 the added complexit y of doing t w o

forw ardbac kw ard passes instead of just one as for ML estimation is negligible compared

to the neural net w ork related computations� This is con trary to the CHMM for whic h

CML estimation generally requires at least t w o times the computation of ML estimation�
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F or the HNN
 a highly optimized implemen tation of the neural net w ork computations is

therefore imp ortan t to fast training and deco ding� In this w ork sev eral �tric ks� w ere used

to sp eed up training� The most imp ortan t ones include a lo w er threshold on the absolute

v alue of the error to bac kpropagate and lo okuptables for the neural net w ork activ ation

functions�

�

The lo w er threshold giv es large computational sa vings b ecause only errors of

a certain �absolute� size are bac kpropagated�

	�� HNNs for T ransitionBased Mo deling

Standard HMM mo deling is based on the assumption that the sequence w e wish to describ e

is piecewise stationary 
 i�e� 
 that it consists of a sequence of steadystate segmen ts� F or the

represen tation of sp eec h signals this is consisten t with a mo del of h uman sp eec h pro duction

where the utterance is organized as a succession of vo c al�tr act states � The v o caltract states

represen t di�eren t con�gurations of the h uman sp eec h articulators and it is generally

assumed that the gestures in v ok ed to actualize these states are relativ ely slo w� In the real

h uman sp eec h pro duction system
 ho w ev er
 the articulators merge spatially and temp orally

in to a con tin uous pro cess whic h can only b e appro ximated b y the v o caltract states of the

ab o v e mo del� In line with this
 sev eral p erceptual and ph ysiological studies ha v e indicated

that h uman p erception of sp eec h to some exten t is based on �transitional� regions of

the sp eec h signal with fast sp ectral c hanges o v er time
 see e�g� 
 �DPH��  and references

therein� As suc h
 the HNN with transition net w orks is a m uc h b etter mo del than the

standard HMM b ecause it can �at least in theory� mo del sp eec h signals as a succession of

steadystate segmen ts connected b y �nonstationary� transitional regions�

More recen tly it has b een sho wn �MBGH�� 
 MBGH�� 
 Kon�� 
 F ur��a 
 F ur��b that

regions of the sp eec h signal con taining signi�can t sp ectral c hange are critical to the recog

nition of sp eec h� In �F ur��a 
 F ur��b  it w as argued that su�cien t information for iden

tifying consonan ts and v o w els in syllables is con tained in those regions of an utterance

with the largest sp ectral c hanges� Exp erimen ts rep orted b y Morgan et al� in �MBGH��  

indicated that go o d sp eec h recognition p erformance can b e obtained in noisy conditions

if the mo del is able to fo cus on socalled auditoryev en t or avent regions of the sp eec h

signal� Morgan et al� used a mo del called a Sto chastic Per c eptual A vent Mo del in whic h

all steady stateregions of the sp eec h signal are mo deled b y the same submo del whereas

�transitional� regions are mo deled b y separate a v en t mo dels� The a v en t mo dels w ere de

�ned as transitional regions b et w een phonemes
 i�e� 
 lo cal timewindo ws around phoneme

b oundaries�

In this section w e will discuss ho w a few constrain ts on the general HNN arc hitecture

can lead to a purely transitionbased mo del� If this mo del is normalized lo cally it is

actually v ery similar to the IOHMM prop osed b y Bengio and F rasconi in �BF��  �

����� The T ransition�Based HNN Mo del

Based on the general form ulation of the HNN in section ��� a purely transitionbased

mo del is easily obtained b y simply setting all matc h �net w orks� to the trivial mapping�

�

i

� s

l

# v

i

� " � � �� F or this arc hitecture w e ha v e the follo wing R functions


�

The algorithms in this thesis ha v e b een implemen ted in the C programming language� In C �as w ell as

man y other high�lev el programming languages� the ev aluation of the exp onen tial function is computation�

ally v ery exp ensiv e� Lo ok�up�tables can sp eed up the calculations signi�can tly � but at the cost of a loss in

accuracy �
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and �for singlelab elstates�
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Because a probabilistic in terpretation of the HNN is ensured b y global normalization it

is not required that the outputs of the transition net w orks sum to one� Ho w ev er
 if w e

force the transition net w ork outputs to sum to one b y e�g� 
 a softmax output function the

transitionbased HNN has a v ery in teresting probabilistic in terpretation� Let us assume

that the transition net w orks are normalized� The conditional probabilit y of the lab eling

can then b e expressed as a pro duct of �lo cal� observ ation con text dep enden t probabilities�

T o see this
 w e write the conditional probabilit y of the complete lab eling as follo ws


P � y j x � � � "

X
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and iterating this w e end up with
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If w e assume that the mo del is �rst order Mark o vian and that the conditional dep endency

on the causal lab el sequence y

l � �

�

can b e ignored
 then P � y � � j x � � � can b e expressed as

a pro duct of �statelo cal� observ ation conditional probabilities
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The last appro ximation in ������ de�nes the synchr onous IOHMM

�

for complete lab el

sequences in tro duced b y Bengio and F rasconi �BF��  � In the IOHMM
 the conditional

probabilit y of the lab eling is th us expressed in terms of �statelo cal� lab el and transition

probabilities whic h are conditioned only on the curren t observ ation x

l

� If the lab eling is

incomplete
 a similar deriv ation can b e done based on the discussion in app endix B
 and

the result de�nes the socalled asynchr onous IOHMM �BB��  �

�

Note that the sequence y can in principle consist of con tin uously v alued scalars or v ectors� This

constitutes a sligh tly more general form ulation than the one considered here �BF�� �� Also note that Bengio

and F rasconi c hose to condition the transition probabilitie on x

l

�or s

l

� whereas the HNN conditions on

x

l � �

�or s

l � �

��
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Since P � y j x � � � is an a p osteriori probabilit y it m ust sum to one for an y observ ation

sequence� This implies that
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b ecause

P

y �Y

Q

l

P � y

l

j �

l

� x

l

� � � " �� This result also holds for incomplete lab eling and

when the lab el and transition probabilities are conditioned on a con text s

l

around x

l

� The

normalization requiremen t stated in ������ can only b e ensured if al l states in the IOHMM

are endstates
 i�e� 
 if the observ ation sequence can end in an y state ev en if it has outgoing

transitions�

If w e no w assume that only one lab el is allo w ed in eac h state in the IOHMM the

con text dep enden t lab el probabilities simplify to deltafunctions and w e �nd
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Comparing ������ and ������ w e see that this IOHMM is v ery similar to a lo cally normal

ized transitionbased HNN when the transition net w orks only tak e the curren t observ ation

as input� W e also note that the more general IOHMM arc hitecture with observ ation con

text dep enden t lab el probabilities corresp onds to a lo cally normalized HNN with b oth

lab el and transition net w orks� In the pap er �KR��  included in app endix F a comparison

b et w een CHMMs
 HNNs and IOHMMs are giv en in terms of socalled gr aphic al mo dels of

pr ob abilistic indep endenc e networks � Graphical mo dels ha v e recen tly gained widespread

in terest in man y researc h comm unities for illustrating conditional dep endencies b et w een

v ariables in globally and lo cally normalized probabilistic mo dels� F urthermore
 a set of

v ery general probabilit y inference algorithms ha v e b een dev elop ed for graphical mo dels of

whic h the forw ardbac kw ard algorithm is a sp ecial case� The in terested reader is referred

to the excellen t review of probabilistic indep endence net w orks giv en in the recen t pap er

b y Sm yth et al� �SHJ��  �

����� Notes on Lo cally Normalized T ransition�Based HNNs

The lo cally normalized transitionbased HNN with singlelab elstates can in principle b e

trained and deco ded in exactly the same w a y as the more general globally normalized HNN

using b oth matc h and transition net w orks� Ho w ev er
 b ecause of the lo cal normalization

it turns out that the computations are simpli�ed somewhat as describ ed b elo w�
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Probabilit y Computation

F or the lo cally normalized transitionbased HNN where all states are allo w ed to b e end

states w e see b y comparing ������ and ������ that


R � x j � � " � � � ������

for all observ ation sequences� This implies that the conditional probabilit y of the lab eling

can b e computed in just one forw ard pass using algorithm ��� for complete lab eling and

algorithm ��� on the temp orary mo del for incomplete lab eling �see section ����


P � y j x � � � " R � x � y j � � � ������

Th us
 for lo cally normalized transitions w e are enforcing discrimination b et w een classes

lo cally at the state lev el� This is di�eren t from the sequence lev el discrimination enforced

in globally normalized HNNs�

Con trary to the case of globally normalized mo dels the forw ard and bac kw ard v ariables

can b e giv en probabilistic in terpretations for lo cally normalized transition based HNNs�

F or complete lab eling w e ha v e �BF��  

*�
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Th us
 *�

i

� l � is the probabilit y of matc hing the partial complete lab el sequence y

l

�

and

b eing in state i at time l giv en the partial observ ation sequence x

l � �

�

� Similarly 


*

�

i

� l � is

the probabilit y of matc hing the rest of the lab el sequence y

L

l ��

giv en x

L

l

and that w e are

in state i at time l �

The fact that R � x j � � " � is a result of in terpreting the forw ard v ariable in algo

rithm ��� as the probabilit y of b eing in state i at time l giv en the observ ations up to time

l � � �BF��  
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Hereb y 
 R � x j � � "

P

i

�

i

� L � " � b ecause all states are end states� The bac kw ard v ariable

corresp onding to �

i

� l � is trivial# �

i

� l � " � for all l and i � This is easily seen b y applying

bac kw ard algorithm ��� to the lo cally normalized transitionbased HNN�

Deco ding

Equation ������ implies that the �allpath� forw ardbac kw ard deco der discussed in sec

tion ����� no w e�ectiv ely computes the a p osteriori probabilit y of lab el y

l

" c at time l

as
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b ecause the exp ected n um b er of times state i is visited at time l is

n
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Th us
 the forw ardbac kw ard deco der is no w e�ectiv ely a �forw ard� deco der where the

most probable lab el at time l is selected based only on the observ ations up to time l � This

is equiv alen t to the deco der prop osed for the IOHMM in �BF��  for the sp ecial case of

singlelab elstates�

��

F or applications suc h as �nancial timeseries prediction it is a v ery

reasonable deco der b ecause w e do not kno w the v alue of future observ ations� Ho w ev er
 in

sp eec h recognition or biological sequence analysis w e usually kno w the en tire observ ation

sequence a priori
 and the �forw ard� deco der th us seems to b e a p o or c hoice b ecause it

do es not mak e use of the information con tained in the rest of the sequence� F or suc h

applications a deco der lik e the Viterbi or Nb est deco der migh t seem more appropriate�

Unfortunately 
 it turns out the these deco ders also do not use �future� observ ations� Th us


for the Viterbi deco der the state at time l in the optimal path can b e computed based only

on the observ ations up to time l # &�

l

" argmax

i

�

�

i

� l �� That is
 the information con tained

in future observ ations is �summed out� b ecause the lo cally normalized transitionbased

HNN mo dels a p osteriori distributions b y pro ducts of lo cally normalized probabilities�

The fact that all states are allo w ed to b e end states implies that the last observ ation

in an y sequence can b e mo deled in an y state� Th us
 the last lab el y

L

corresp onding to

x

L

is allo w ed to b e any of the p ossible classes� Whilst this migh t b e appropriate for

some applications it is not alw a ys reasonable in sp eec h recognition �or biological sequence

mo deling� b ecause the utterance usually ends in the same sound class# silence� This can

ha v e a negativ e impact on the p erformance of the IOHMM as a sp eec h recognizer b ecause

the abilit y of HMMs
 and IOHMMs in particular
 to represen t longterm dep endencies

implies that the en tire lab el sequence ma y b e a�ected b y not constraining y

L

to b e e�g� 


the silence class� In practice
 ho w ev er
 it do es not seem to b e a serious problem
 see the

next c hapter�

CML Estimation

If the transition net w orks are normalized
 CML estimation is simpli�ed somewhat as w e

can no w express the conditional lik eliho o d b y a nonrational function of �statelo cal�

probabilities� It is not di�cult to see that the lo cally normalized transitionbased HNN

can b e trained b y an �G�EM algorithm with an auxiliary function de�ned b y �compare to

�B��� in app endix B� �BF��  
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F or discrete observ ations and transition �net w orks� implemen ted b y lo okuptables the

mo del can b e trained b y a �pure� EM algorithm where the con text dep enden t transitions

are up dated b y reestimation form ulas similar to ������� In the more general case of non

linear transition net w orks w e ha v e to rely on a GEM algorithm
 in whic h the auxiliary

function is not maximized exactly 
 but only increased b y an iterativ e optimization metho d�

In order to do GEM training of a mo del with nonlinear transition net w orks
 w e ha v e to

store the exp ected m

ij

� l �coun ts for al l training sequences b efore iterativ e maximization

�

In the general case of m ultiple�lab el�states� the delta�function �

c

i

�c

is just replaced b y the probabilit y

P � y

l

� c j �

l

� i� s

l

� of lab el y

l

� c �
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of the auxiliary function can b e initiated� As discussed in section ����� the memory

complexit y asso ciated with storing the coun ts for just one sequence of length L scales

as O � LN

�

� for an ergo dic transitionbased HNN with N

�

transitions� Therefore
 storing

the coun ts for all sequences w ould require enormous memory resources� F or this reason


the GEM approac h has not b een used in this w ork� Instead
 the negativ e log conditional

lik eliho o d is minimized directly using a gradien t metho d as usual� Since R � x j � � " � the

gradien t of L � � � " � log P � y j x � � � w�r�t� a w eigh t w

i

k

in the transition net w ork assigned

to state i is simply


 L � � �


 w

i

k

" �


 log R � x � y j � �
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� s
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Hardwired Duration Mo deling

A serious problem of lo cal normalization is related to cases where w e wish to apply a

�hardwired� duration mo del� Consider for example a task where the class submo dels ha v e

a minim um duration of three observ ations as sho wn in �gure ���� Also assume that at

time l some path has just en tered a particular class submo del with lab el c � Then
 for

softmax normalized transitions
 the lab el at time l $ � and l $ � will b e c with probabilit y

one b ecause the path through this submo del cannot b e terminated due to a lo w transition

probabilit y � That is
 w e will either remain in the same state or go to the next state in the

submo del b ecause of the softmax normalization� On the other hand
 if the transitions are

not required to normalize to one it will indeed b e p ossible to terminate a path through

a particular submo del b ecause all outputs of the transition net w orks are allo w ed to b e

close to zero� Th us
 hardwired duration mo deling is not suitable for lo cally normalized

transitionbased mo dels� Ev en for submo dels based on a single state the normalized tran

sitions can lead to p o or p erformance b ecause an y path is allo w ed to pass through an y

submo del at an y time�

	�� Comparison to other HMM�NN Hybrids

In this section w e brie�y review a n um b er of recen tly prop osed HMM�NN h ybrids� Since

the literature in this �eld is v ery large no attempt is made to co v er all prop osed v ariations�

Instead fo cus is put on mainstream HMM�NN h ybrids that ha v e some similarit y to the

HNN�

There are in general t w o w a ys of doing h ybrid mo deling� One approac h is to decouple

the neural net w ork�s� from the HMM during training
 i�e� 
 to train the HMM and neural

net w ork�s� separately and only com bine them for recognition� Alternativ ely 
 one can

join tly estimate all parameters of b oth the HMM and the neural net w ork�s� �as done in

the HNN� b y optimizing a �global� training criterion� The approac hes describ ed in the

�rst t w o subsections b elo w b elong to the former category �

����� Neural Net w orks for Scaled Lik eliho o d Estimation

Some of the �rst attempts for com bining separately trained neural net w orks and HMMs

w ere done sim ultaneously b y researc hers at the In ternational Computer Science Institute


Univ ersit y of California at Berk eley in USA and at the Departmen t of Engineering
 Univ er

sit y of Cam bridge in England� A summary of the early w ork done at Berk eley Univ ersit y
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can b e found in the b o ok b y Herv / e Bourlard and Nelson Morgan �BM��  � The most com

prehensiv e summary of the Cam bridge system is giv en in the b o ok c hapter �RHR��  � In

these approac hes an MLP �Berk eley� or recurren t net w ork �Cam bridge� is trained sep

arately to classify frames of sp eec h in to a set of phonemes� After training
 the MLP

estimates the p osterior probabilit y of the di�eren t phonemes P � c j s

l

�
 c � C 
 giv en a sym

metric con text input s

l

" x

l � K

l � K

� The recurren t net w ork also estimates phoneme p osteriors

after training
 but b ecause of the feedbac k connections in this net w ork the con text is no w

e�ectiv ely equal to the causal observ ation sequence
 s

l

" x

l

�

�

The estimate of p osterior probabilities can b e turned in to �scaled lik eliho o ds� b y di

viding b y the prior probabilities of the phonemes P � c �
 c � C 


P � c j s

l

�

P � c �

"

P � s

l

j c �

P � s

l

�

� ������

The a priori probabilities are estimated b y the relativ e frequencies of the phonemes as ob

serv ed in the training set and the scaled lik eliho o ds r eplac e the standard matc h probabili

ties in an HMM during deco ding� T ypically 
 �hardwired� minim um duration phone mo dels

�see �gure ���� are used suc h that the �single� matc h distribution in eac h phone mo del is

replaced b y the asso ciated scaled net w ork output� Compared to standard HMMs based on

minim um duration phone submo dels
 the scaled lik eliho o d h ybrids ha v e yielded b etter p er

formance on a v ariet y of sp eec h recognition tasks �RHR�� 
 Rob��
 BM�� 
 RMB

�

��  � F or

example
 in �RMB

�

�� 
 RMCF��  a h ybrid with an MLP con taining more than one million

w eigh ts yielded roughly half the error rate of an equally complex HMM on a con tin uous

sp eec h recognition task�

Man y parts of the recurren t net w ork h ybrid dev elop ed at Cam bridge Univ ersit y ha v e

b een optimized through sev eral y ears of in tense researc h for the recognition of phonemes

in the TIMIT database �RF�� 
 THPF�� 
 TF�� 
 Rob��
 Rob�� 
 HRR C��  � It is to da y

b eliev ed to b e one of the b est p erforming recognizers on the TIMIT phoneme recognition

task �Rob��  � The Cam bridge h ybrid has b een named ABBOT and a demo v ersion can

b e obtained from the group�s w ebsite�

��

Sev eral v ariations of the scaled lik eliho o d framew ork is of course p ossible� F or example


in �SL��  a di�eren t kind of net w ork kno wn as a r adial b asis function network w as used

for estimating the scaled lik eliho o ds� Ho w ev er
 they found that the radial basis function

net w orks did not p erform as w ell as MLPs whic h w as also observ ed in �RBF C��  � F ranzini

et al� �FL W��  emplo y ed an Elman t yp e recurren t net w ork �see e�g� 
 �HKP��  � whic h used

a symmetric con text s

l

and the previous �� hidden unit activ ations as input� The net w ork

w as trained to estimate the p osterior probabilit y of state p airs giv en b y a forced Viterbi

alignmen t in a Mealy form HMM� Since the matc h distributions are asso ciated with state

pairs in the Mealy HMM the outputs of this net w ork can b e used for replacing the matc h

distributions in a Mealy HMM� Ho w ev er
 instead of scaling the neural net w ork outputs

b y the corresp onding prior probabilities of state pairs
 F ranzini et al� used the unscaled

outputs directly during Viterbi deco ding�

In �MHJ��  the socalled Sto chastic Observation HMM �SOHMM� w as prop osed as a

w a y of generalizing the scaled lik eliho o d approac h� The basic idea in the SOHMM is to

assign a discrete probabilit y distribution o v er the di�eren t classes to eac h state and view

this distribution as a v ector� This is similar to the matc h distribution in standard discrete

HMMs
 but the SOHMM di�ers b y using sto chastic observation input v ectors instead of

��

h ttp���svr�www�eng�cam�ac�uk
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discrete observ ations� The elemen ts of the sto c hastic observ ation v ector are t ypically esti

mates of class p osterior probabilities and the matc h probabilit y at time l in state i is giv en

b y the dotpro duct of the sto c hastic observ ation input v ector and the observ ation proba

bilit y v ector asso ciated with state i � Giv en the sto c hastic observ ation v ectors the SOHMM

can b e trained b y an EM algorithm with reestimation equations similar to those for the

standard HMM �MHJ��  � The SOHMM can b e com bined with a separately trained neural

net w ork b y simply using the net w ork output v ector as observ ations� Th us
 in �MHJ��  the

Cam bridge recurren t net w ork output v ector of phoneme p osterior probabilities w as used

as sto c hastic observ ations in an SOHMM during training� This h ybrid ac hiev ed sligh tly

higher recognition accuracy on a con tin uous sp eec h recognition task compared to the Cam

bridge recurren t net w ork h ybrid� Note that the SOHMM also has in teresting applications

in biological sequence mo deling where probabilit y pr o�les for eac h sequence p osition
 cal

culated b y aligning familiar sequences
 are kno wn to con tain far more information than

the discrete observ ations corresp onding to a single sequence
 see e�g� 
 �RK��a  � In this

case the sto c hastic observ ation v ectors w ould b e the probabilit y pro�le for eac h p osition

and the matc h probabilit y v ector in eac h state of the SOHMM w ould then represen t a

�template� pro�le�

One dra wbac k of the ab o v e approac hes is that the complete lab eling � i�e� the phoneme

segmen tation� for the training set is required in order to train the neural net w orks� If only

the incomplete lab eling � i�e� the phonetic transcription� is a v ailable
 the h ybrids m ust

b e trained in a t w o step iterativ e pro cedure� First a complete lab eling is obtained b y

p erforming a forced Viterbi alignmen t for eac h training sequence based on the curren t

net w ork and HMM� Then this complete lab eling is used for training the net w orks� This

pro cedure is rep eated un til the lab eling do es not c hange an ymore and is analogous to

the metho d describ ed for standard HMMs in c hapter �� Another dra wbac k is that the

HMM and neural net w ork are trained indep enden tly to solv e di�eren t tasks� the HMM is

trained to recognize phoneme tr anscriptions whereas the neural net w ork is trained to do

phoneme classi�cation on a frameb yframe basis� This is di�eren t from the HNN where

all parameters including the neural net w ork w eigh ts are trained b y minimizing a �global�

training criterion�

����� Neural Net w orks for V ector Quan tization

Instead of using neural net w orks to estimate scaled lik eliho o ds
 some researc hers ha v e

prop osed to replace the v ector quan tizer fron tend in a discrete HMM b y a neural net w ork�

The idea is to train a neural net w ork separately to assign discrete �V Qlab els� to the

sp eec h frames� After training
 the V Qlab el stream from the neural net w ork is used as

observ ations in a discrete HMM�

Le Cerf et al� �LCMC��  trained an MLP to classify sp eec h feature v ectors in to a set

of phoneme lab els� After training
 this net w ork w as used for assigning phoneme lab els

to the input sp eec h frames� The phoneme �V Qlab el� sequence w as then used as an

observ ation sequence in a standard discrete HMM� Instead of using a single MLP 
 Le Cerf

et al� prop osed to use di�eren t MLPs for di�eren t features �cepstral
 deltacepstral etc� ��

By assuming indep endence

��

b et w een the di�eren t MLPs
 the V Qlab el for an y sp eec h

frame w as selected b y the largest pro duct of MLP outputs� On a sp eak er indep enden t

Flemish digit database the m ultiple MLP approac h w as sho wn to outp erform b oth the

��

The indep endence assumption is equiv alen t to using an HMM with m ultiple indep enden t streams� see

section 	�
�
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mo del with only one MLP and an HMM with m ultiple standard Euclidean co deb o oks�

An alternativ e to MLPs is the socalled L e arning V e ctor Quantizer net w ork �KKL T��


KBC��  whic h is a particular neural net w ork arc hitecture trained b y an unsup ervise d

winner�take�al l algorithm to group input v ectors in to a prede�ned n um b er of clusters�

F or sp eec h recognition the clusters are t ypically related to di�eren t phoneme classes and

learning v ector quan tizers can pro duce V Qlab els in m uc h the same w a y as the MLPs

ab o v e� There are sev eral successful applications of learning v ector quan tizers as fron t

ends for standard HMMs
 see e�g� 
 �T or�� 
 MK��  �

A direct comparison b et w een MLPs for v ector quan tization and MLPs for estimating

scaled lik eliho o ds w as giv en b y F on taine et al� �FRL

�

�� � They concluded that the latter

approac h is sup erior in terms of recognizing isolated German w ords�

����� Adaptiv e Input T ransformations

Instead of training the HMM and neural net w orks separately 
 sev eral authors ha v e pro

p osed arc hitectures where all parameters are estimated sim ultaneously as in the HNN�

One w a y to ac hiev e this is b y using the neural net w orks for adaptive input tr ansforma�

tions where the con tin uous observ ation v ectors are passed through one or more net w orks

b efore en tering the Gaussian mixture matc h distributions� Using the c hain rule it is easy

to see that the w eigh ts of these neural net w orks can b e trained b y bac kpropagating errors

calculated b y the HMM just as in the HNN� The result is a nonlinear input transformation

of the feature v ectors whic h is adapted during training�

When training an HMM with an adaptiv e input transformation b y ML estimation

one m ust b e a w are of the abilit y of suc h mo dels to con v erge to trivial solutions� Since

lik eliho o ds are generally un b ounded functions
 an unconstrained maximization can lead

to an in�nite lik eliho o d �DH�� 
 BDMFK��  if the outputs of the neural net w ork con v erge

to constan t v alues� In suc h cases the HMM training will lead to div erging Gaussian

mixture distributions b ecause the mean v ectors con v erge to the constan t net w ork output

and b ecause the v ariances con v erge to zero� The cure is to constrain the co v ariance

matrices or alternativ ely to use discriminativ e training lik e MMI or CML�

In �BDMFK��  a cascade of MLPs w as used to p erform a �global� adaptiv e input

transformation for an HMM� Although this system w as trained b y the ML criterion the

ab o v e problem of in�nite lik eliho o d w as not observ ed for this application� F or a phoneme

recognition task this h ybrid obtained signi�can tly b etter p erformance than a standard

HMM� It w as also sho wn that the join tly trained system p erformed b etter than when

training the neural net w orks indep enden tly of the HMM to p erform sp ecialized mappings

of the feature v ectors� F or the recognition of broad phoneme classes go o d results w ere ob

tained in �Joh��  b y join tly training an MLP input transformation and a Gaussian mixture

HMM to maximize the MMI�CML criterion� V alc hev et al� �VKY��  also used MMI for

join t training
 but a recurren t net w ork w as used instead of an MLP � The recurren t net w ork

approac h w as later extended to use separate net w orks for di�eren t matc h distributions in

the HMM e�g� 
 one net w ork for eac h phoneme mo del �V al��  �

The HNN approac h without transition net w orks is similar to the idea of adaptiv e

input transformations
 but instead of retaining the computationally exp ensiv e mixture

densities w e r eplac e these b y the output of matc h net w orks� This is p ossible b ecause the

mo del is normalized globally � A similar idea w as recen tly used in the CML estimated

�LeRec� h ybrid prop osed b y Bengio et al� �BLNB��  � LeRec is v ery similar to the HNN

without transition net w orks
 but instead of using state lo cal matc h net w orks LeRec uses
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one �global� matc h net w ork with as man y outputs as there are states in the mo del� LeRec

has b een successfully applied to online handwriting recognition and is to da y part of a

commercial system for reading bank c hec ks �LCBB��  �

����� The Discriminan t HMM�NN Hybrid

The discriminant HMM�NN hybrid in tro duced in �BKM��  is a transitionbased mo del

similar to the singlelab elstate transitionbased HNN and IOHMM� As for the HNN this

h ybrid is trained b y the CML criterion

��

to mo del the a p osteriori probabilit y of the

lab eling�

In the discriminan t HMM the probabilit y of the lab eling is expressed as a pro duct of

an acoustic mo del con tribution and a language mo del con tribution


P � y j x � � � "

X

�

P � y � � j x � � �

"

X

�

P � � j x � � � P � y j � � x � � �

�

X

�

P � � j x � � � P � y j � � � � ������

The last appro ximation is based on the assumption that giv en the sequence of states


the probabilit y of the lab eling is indep enden t of the observ ation sequence� The acoustic

mo del is de�ned b y the �rst term � P � � j x � � �� and the language mo del b y the second term

� P � y j � � � ��� As for the HNN
 the acoustic mo del probabilit y in the discriminan t HMM

can b e written as a pro duct of observ ation con text dep enden t transition probabilities#

P � � j x � � � "

Q

l

P � �

l

j �

l � �

� s

l

� � �� F or the discriminan t HMM�NN h ybrid
 Bourlard et al�

prop osed to use a �global� MLP with a softmax output function instead of state lo cal

net w orks as in the HNN to estimate these conditional transition probabilities� This big

MLP tak es the observ ation con text s

l

and the previous state distribution as inputs
 and

outputs estimates of the observ ation con text dep enden t transition probabilities�

In most w ork rep orted for this h ybrid
 see e�g� 
 �Kon�� 
 KBM��  
 the language mo del

con tribution is assumed only to constrain the sequence of acoustic mo dels according to the

observ ed phonetic lab eling� That is
 for a training sequence with an asso ciated phonetic

lab eling the corresp onding concatenation of acoustic mo dels is trained and the language

mo del con tribution is ignored� This implies that ������ can b e written in the same form

as for the lo cally normalized transitionbased HNN
 and the t w o approac hes are therefore

v ery similar except that state lo cal transition net w orks are used in this w ork�

The �rst sp eec h recognition exp erimen ts with the discriminan t HMM�NN h ybrid w ere

based on Viterbi training where ��� targets for the neural net w ork w ere found b y doing a

forced Viterbi alignmen t� These targets w ere then used to train the net w ork to minimize

e�g� 
 the mean squared error b et w een targets and net w ork outputs� Unfortunately 
 this

approac h ga v e v ery p o or results �BKM�� 
 Kon�� mainly b ecause sev eral p ossible com bina

tions of previous and next state w ere not in v estigated b y doing a forced Viterbi alignmen t�

That is
 sev eral p ossible previous and next state com binations w ere not presen ted to the

neural net w ork during training
 thereb y leading to an extremely p o or generalization abilit y

to utterances not presen t in the training set� These �ndings initiated dev elopmen t of the

��

CML estimation w as called MAP estimation b y Bourlard et al� �
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socalled R e cursive Estimation and Maximization of A Posteriori pr ob abilities �REMAP�

algorithm whic h
 instead of ��� targets
 iterativ ely reestimates a set of �soft� targets for

eac h p ossible com bination of previous and next state� As pro v en in �BKM�� 
 Kon�� the

REMAP algorithm is a GEM algorithm whic h is guaran teed to con v erge to a lo cal maxi

m um of the CML training criterion
 ev en though the net w orks are trained to minimize a

di�eren t cost function�

The REMAP trained discriminan t h ybrid w as applied to the recognition of isolated

digits and naturally sp ok en n um b ers o v er a telephone line in �Kon�� 
 KBM��  � F or b oth

of these tasks a discriminan t h ybrid with one state p er phoneme obtained b etter p erfor

mance than a baseline scaled lik eliho o d h ybrid� Ho w ev er
 the comparison w as based on

ignoring the language mo del con tribution for b oth h ybrids� If language mo del informa

tion and minim um duration mo deling w as used in the baseline it clearly outp erformed the

discriminan t HMM�NN h ybrid �KBM��  �

In �HRB

�

��  it w as argued that the discriminan t HMM�NN h ybrid can b e view ed

as a generalization of the scaled lik eliho o d approac h discussed ab o v e� Th us
 instead of

training the neural net w ork separately to estimate phoneme p osterior probabilities it is

p ossible to train the net w ork on �soft� scaled lik eliho o d targets iterativ ely estimated b y

the curren t HMM and MLP � The idea is to apply a �scaled� forw ardbac kw ard algorithm

�HRB

�

��  to the curren t HMM�NN h ybrid in order to calculate estimates of the state

p osteriors P � �

l

j x � � �� The priors corresp onding to the di�eren t HMM states are giv en b y

the a v erage of the state p osteriors o v er all training sequences� In eac h iteration new �soft�

targets for the neural net w ork are then simply giv en b y the state p osteriors divided b y

the appropriate priors� As for the REMAP algorithm it can b e sho wn that this approac h

is also a GEM algorithm� In �SR�� a similar approac h w as prop osed
 but the state priors

where instead obtained b y an initial forced Viterbi alignmen t�

	�	 Summary

In this c hapter w e ha v e in tro duced a v ery general framew ork called a Hidden Neural Net

w ork �HNN� for h ybrids of HMMs and neural net w orks� The ma jor adv an tages of the

HNN include the abilit y to use observ ation con text as input
 the probabilistic in terpre

tation ensured b y global normalization and the �exibilit y of the arc hitecture� W e ha v e

also describ ed a n um b er of similarities of particular HNN arc hitectures to b oth standard

HMMs and other p opular HMM�NN h ybrids� In particular
 it w as found that the HNN

can b e used as a purely transitionbased mo del and that this particular arc hitecture con

tains man y of the ideas in the the recen tly prop osed IOHMM and in the discriminan t

HMM�NN h ybrid�

A p oten tial problem in using the HNN �as w ell as an y other h ybrid� is the com

putational complexit y � Con trary to standard HMMs
 it is not the added complexit y of

discriminativ e training compared to ML estimation that is the main concern for the HNN�

Rather
 it is the added complexit y due to neural net w ork related computations� Ho w ev er


neural net w orks and m ultila y er p erceptrons in particular are highly parallel arc hitectures

and the HNN is therefore w ell suited for implemen tation on parallel computers�

In con tin uation of the CHMM ev aluation on the broad phoneme class task presen ted in

c hapter � the next c hapter will giv e an ev aluation of the HNN on this task� Because of the

limited size of this task it has b een p ossible to ev aluate a n um b er of the ideas presen ted

in this c hapter within reasonable time�
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This c hapter giv es an ev aluation of three di�eren t HNN arc hitectures on the TIMIT broad

phoneme class task in tro duced in c hapter �� In the �rst con�guration
 whic h is consid

ered in section ���
 eac h state in the HNN used a matc h net w ork and standard transition

probabilities� This arc hitecture is somewhat similar to a scaledlik eliho o d h ybrid� Re

call
 ho w ev er
 that the HNN uses separate net w orks in eac h state and that all parameters

are trained join tly to maximize the conditional lik eliho o d� The other t w o HNN arc hi

tectures w ere motiv ated b y the recen t literature on purely transitionbased systems � e�g� 


�BKM�� 
 MBGH��  �� T o asses the imp ortance of fo cusing on the transitional regions of the

sp eec h signal t w o di�eren t HNN arc hitectures using transition net w orks will b e discussed

in section ���# a purely transitionbased HNN and a �mixed� HNN� In the transitionbased

HNN all matc h net w orks w ere set to the trivial mapping �

i

� s

l

# v

i

� " � for all i� l and tran

sition net w orks w ere used for estimating observ ation con text dep enden t transitions� The

�mixed� HNN con tained b oth matc h and transition net w orks�

The discrete CHMM results presen ted in c hapter � serv e as a baseline for the HNN

exp erimen ts�

�


�� Exp erimen tal Setup

F or the HNN exp erimen ts rep orted in this c hapter the same datasets and the same prepro

cessor as describ ed in c hapter � w ere used� Note
 ho w ev er
 that no v ector quan tization w as

needed since the HNN can directly use the con tin uously v alued feature v ectors as input�

Similarly 
 the threestate submo del top ology used in the CHMM exp erimen ts w as also

adopted for the HNNs using matc h net w orks and standard transitions� F or the transition

based HNNs a simpler top ology with only one state p er class w as also ev aluated�

Because of the neural net w ork related computations in the HNN the computational

complexit y is considerably larger for this mo del than for the CHMM� Th us
 training times

for HNNs con taining simple matc h or transition net w orks without hidden units w ere of the

order of �� CPU hours whereas more complex net w orks lead to training times t ypically

around �� CPU da ys� This computational demand made it v ery di�cult to ev aluate a

large n um b er of mo dels or to select stepsizes or pruning thresholds b y trialanderror�

Therefore
 the training strategy dev elop ed for the CHMM w as adopted for the HNN ev en

�

The HNN use the con tin uously v alued feature v ectors directly as input� Since con tin uous densit y

HMMs usually p erform b etter than discrete HMMs for sp eec h recognition one can argue that comparing

the HNN to a discrete CHMM is unfair� Ho w ev er� since the discrete CHMM ev aluated in c hapter � w as

sho wn to outp erform a con tin uous densit y HMM it serv es as a go o d baseline for the comparison�

��
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though there is a risk that it is not optimal for the HNN� Th us
 CML training of the

HNN passed through an appropriate initialization of the net w orks
 initial complete lab el

training and �nally incomplete lab el training�

Although the online gradien t descen t metho d w ork ed w ell for the CHMM other meth

o ds migh t b e b etter for the HNN� Ho w ev er
 in a set of initial exp erimen ts it w as found

that online gradien t descen t consisten tly resulted in faster con v ergence for HNN train

ing than b oth batc h mo de gradien t descen t and appro ximativ e second order metho ds lik e

Quic kProp �F ah��  and GaussNewton

�

training� Consequen tly 
 HNN training w as done

b y sen tence online gradien t descen t using an initial stepsize of � " � � �� for al l parameters�

The stepsize w as adapted according to the p erformance on the v alidation set as describ ed

in c hapter �� The momen tum term w as � " � � � for all parameters and a maxim um of ���

ep o c hs w as enforced�

The large n um b er of parameters in some of the HNNs ev aluated b elo w lead to consid

erable o v er�tting� As for the CHMM w e therefore rep ort training and test set accuracies

for the mo del that obtained the b est p erformance on the v alidation set� Unless otherwise

stated all accuracies w ere computed using an Nb est deco der with the same lo cal and

global pruning thresholds as for the CHMM exp erimen ts � �

l

" ����� and M " ����


�� Matc h Net w orks and Standard T ransitions

W e will start b y considering the HNN with matc h net w orks and standard transitions

� �

ij

� s

l

# w

i

� " �

ij

�
 see �gure ���� The matc h net w orks in this HNN w ere standard m ulti

la y er p erceptrons with a single output� The output activ ation functions w ere asymmetric

sigmoid functions yielding outputs in the range  �# ��� The input to the net w orks w as the

con text v ector s

l

and for a con text size of K feature v ectors the net w orks had �� 	 K real

v alued inputs
 as the dimension of the cepstral feature v ectors w as ��� F or all hidden units

a symmetric sigmoid �tanh � activ ation function w as used� All matc h net w orks shared the

same input and had the same arc hitecture� The standard transition probabilities w ere

initialized b y those from an ML estimated CHMM in all exp erimen ts�

� i(sl;v
i)

� ij

j

sl

vi

i

Figure ��� � An HNN state with a match net w o rk and standa rd transitions�

F or the HNN it is ev en harder than for the CHMM to asses the statistical signi�cance

of the results b ecause of the added computational complexit y � Ho w ev er
 to obtain a feeling

�

Because of the large n um b er of parameters a diagonal appro ximation to the Hessian matrix of second

order deriv ativ es w as necessary in these exp erimen ts�
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of the v ariation due to di�eren t initial conditions for training
 an exp erimen t similar to

the one carried out for the CHMM w as also done for the HNN� Figure ��� illustrates the

errorbars on the a v erage training set log conditional lik eliho o d obtained b y training an

HNN ten times from di�eren t random initial parameters� The matc h net w orks in this

HNN had no hidden units and used only the curren t observ ation as input � s

l

" x

l

��

Comparing to �gure ��� w e see that the errorbars for the HNN are somewhat larger than

for the CHMM� Ho w ev er
 the mo del selection metho d based on the v alidation set lead to

a deviation in the test set recognition accuracy of no more than � � � �� from the a v erage

accuracy o v er the ten runs� Th us
 for the simple HNN considered in this exp erimen t w e

can exp ect the results to b e signi�can tly di�eren t if they deviate b y more than � � �� for

runs with di�eren t initial conditions�
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Figure ��� � Complete lab el online gradient CML training of an HNN where the match net w o rks

a re initialized b y random w eights� All match net w o rks have no hidden units and only use the

current observation as input � s

l

" x

l

�� The mo del contains a total of ��� pa rameters�

	���� Matc h Net w ork Initialization

Con trary to the matc h distributions in the CHMM it is not p ossible to initialize the matc h

net w ork w eigh ts in the HNN b y the e�cien t BaumW elc h reestimation algorithm� Instead

of just using a set of matc h net w orks initialized b y random w eigh ts
 t w o other initialization

metho ds w ere tried�

The �rst initialization metho d is based on in terpreting the matc h net w ork outputs as

a score for ho w w ell the curren t input matc hes the state to whic h the net w ork is assigned�

Since only singlelab elstates are considered this corresp onds to a score for ho w w ell the

curren t input matc hes the lab el of that state� A reasonable initialization is therefore

to train eac h matc h net w ork separately to classify the sp eec h frames in to eac h of the

�v e classes� That is
 a matc h net w ork for e�g� 
 the consonan t class is trained to classify
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the sp eec h frames in to t w o categories� consonan t and nonconsonan t� Since this matc h

net w ork has only one output this can b e ac hiev ed b y bac kpropagation training where the

mean squared error b et w een the net w ork outputs and the observ ed targets is minimized�

The observ ed targets are ��� for sp eec h frames b elonging to the consonan t class and ���

for all other classes
 and the net w ork is initialized using small w eigh ts in the range � � �# � �

After training the same cop y of the consonan t matc h net w ork is used in all three states

of the consonan t mo del� This pro cedure is rep eated for all �v e classes� In practice
 the

easiest w a y to do the initial classi�cation training is to collect the �v e net w orks in to one

big net w ork for training as illustrated in �gure ���� Note that if hidden units are used �as

sho wn in the �gure� they should not b e �shared� b et w een the �v e outputs�

sl sl

S V L N C

Initial consonant submodel

Classification training

C C C

Figure ��� � Initial classi
cation training of the match net w o rks can b e facilitated b y collecting

the match net w o rks into a la rge net w o rk� Note that all output units use an asymmetric sigmoid

activation function� i�e� � they a re not fo rced to no rmalize to one�

The second metho d is sligh tly more direct� It is based on observing that the exp ected

m and n coun ts are deltafunctions if a Viterbi appro ximation is used for b oth the free

running and clamp ed phase lik eliho o ds� That is
 the di�erence m

i

� l � � n

i

� l � is either �


� or $� dep ending on whether the optimal path in the freerunning and clamp ed phase

visits state i at time l or not� As discussed in the previous c hapter
 maximizing the CML

criterion for the HNN corresp onds to bac kpropagation training of the matc h net w orks

where the error to bac kpropagate is E � � m

i

� l � � n

i

� l �� ��

i

� s

l

# u

i

�� Viterbi CML training

is therefore similar to the classi�cation training discussed ab o v e� The standard Viterbi

algorithm can easily b e constrained to searc h for the optimal path only among the allo w ed

ones� F or complete lab eling this is ensured simply b y replacing all m ultiplications b y

�

i

� s

l

# u

i

� with �

i

� s

l

# u

i

� �

c

i

�y

l

in the standard Viterbi algorithm�

�

As for the classi�cation

approac h the matc h net w orks are initialized b y small random w eigh ts prior to training�

�

F or incomplete lab el CML training the Viterbi appro ximation to the clamp ed phase lik eliho o d is

obtained b y using the standard Viterbi algorithm on the temp orary mo del constructed according to the

observ ed incomplete lab eling�
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F or b oth the classi�cation and the Viterbi initialization approac h a maxim um n um b er

of �� training ep o c hs w as used� The set of matc h net w orks giving the largest fr ame

classi�c ation r ate on the v alidation set within the �� ep o c hs w as selected for initializing

the HNN�

Initialization T rain T est

Random w eigh ts ���� ���� ������

Viterbi training ���� ���� ������

Classi�cation training �	�� ���
 �
�
�

T able ��� � Recognition accuracies ��Acc� fo r complete lab el CML trained HNN fo r three

di�erent w a ys of initializing the match net w o rks� The accuracies in pa rentheses a re fo r an

HNN using the initialized match net w o rks� but b efo re CML training� All match net w o rks have

no hidden units and use only the current observation as input � s

l

" x

l

�� The mo del contains

a total of ��� pa rameters�

T able ��� compares the accuracies obtained b y complete lab el CML training of an

HNN where the matc h net w orks are initialized b y three di�eren t metho ds� Surprisingly 


the Viterbi initialization giv es only an insigni�can t gain compared to random initialization

of the net w ork w eigh ts� Ho w ev er
 the accuracy obtained after Viterbi initialization but

b efore �all path� CML training is m uc h b etter than for a random mo del� This indicates

that the Viterbi initialization is actually useful� F rom the table w e see that initializing

the net w orks to classify the frames in to the �v e broad classes yields a considerably higher

accuracy than an y of the other t w o metho ds� Similarly 
 the accuracy obtained b y the

classi�cation initialization
 but b efore CML training of the HNN is ab out ��� higher

than for the corresp onding random mo del� The di�erence b et w een the three initialization

metho ds w as observ ed to b e ev en more pronounced for more complex matc h net w orks�

Therefore
 the classi�cation approac h w as used for initializing the matc h net w orks in

all subsequen t exp erimen ts� The classi�cation training is of course only p ossible when

the complete lab eling is a v ailable� F or the more common case where only the incomplete

lab eling is kno wn one can use another recognizer to giv e a complete lab eling� Alternativ ely 


one ma y use an iterativ e approac h whic h alternates b et w een classi�cation training and

forced Viterbi alignmen t as describ ed for the scaled lik eliho o d h ybrid in c hapter ��

	���� Initial Complete Lab el T raining

As for the discrete CHMM w e found it b ene�cial to do complete lab el CML training

b efore switc hing to incomplete lab el training� T able ��� compares the result of incomplete

lab el CML training with and without initial complete lab el training� The initial complete

lab el training w as done using all training sequences and w as limited to a maxim um of ��

ep o c hs� The mo del that ac hiev ed the highest accuracy within the �� ep o c hs w as used for

subsequen t incomplete lab el training�

As seen in table ��� there is a gain of more than �� in accuracy b y initially training the

mo del using the complete lab eling� This indicates that the initial classi�cation training of

the net w orks is not su�cien t for the class submo dels to attract the righ t p ortions of the

data during incomplete lab el training� Initial complete lab el training w as consequen tly

used in all subsequen t exp erimen ts�

The v ery simple HNN considered in table ��� con tains only ��� parameters� Nev er

theless it yields an accuracy of ������ This compares w ell to the b est result of �����

obtained b y the discrete CHMM ha ving appro ximately nine times more parameters�
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Initialization T rain T est

Scratc h ���� ����

Complete lab el 	��	 	��	

T able ��� � E�ect on recognition accuracy � � Acc � of initial complete lab el CML training b efo re

switching to incomplete lab el CML training� All match net w o rks have no hidden units and use

only the current observation as input � s

l

" x

l

�� The mo del contains a total of ��� pa rameters�

	���� Arc hitecture of Matc h Net w orks

Ha ving c hosen the strategy for initializing and training the HNN with simple matc h net

w orks w e no w turn to w ards �nding the �optimal� arc hitecture of the matc h net w orks�

Belo w the e�ect on the accuracy of b oth the input con text size and the n um b er of hidden

units in fully connected matc h net w orks are in v estigated�

The Con text Input

Belo w in table ��� are sho wn the recognition accuracies obtained b y HNNs using matc h

net w orks with di�eren t sizes and orien tations of the con text input� The matc h net w orks

ha v e no hidden units�

Orien tation K P aram� T rain T est

 � ��� ���� ����

Symmetric � ���� ���� 	���

s

l

" x

l � K

� � � � � x

l � K

� ���� ���� ����

Left � ��� ���� ����

s

l

" x

l � K

� � � � � x

l

� ���� 	��
 ����

Righ t � ��� ���� ����

s

l

" x

l

� � � � � x

l � K

� ���� ���� ����

T able ��� � Recognition accuracies ��Acc� fo r HNN with di�erent sizes and o rientations of the

input context to the match net w o rks� No hidden units a re used�

Although there is little di�erence in accuracy for the di�eren t input con texts sho wn in

table ���
 the symmetric input con text of one �left and righ t� frame seems to b e sligh tly

b etter than an y of the other con text sizes and orien tations� It is in teresting to note that

a symmetric con text larger than one frame actually decreases p erformance on the test

set� This indicates that the information con tained in frames more than one time step

a w a y from the cen tral frame � x

l

� is �noisy� and therefore leads to sligh t o v er�tting of the

training data if used as input� All mo dels in the follo wing therefore use a symmetric input

con text of one frame
 i�e� 
 s

l

" x

l � �

� x

l

� x

l ��

�

Ev en with a symmetric con text of one frame the HNN con tains ab out one third the

parameters of the discrete CHMM� Nev ertheless
 it obtains an accuracy of ����� compared

to ����� for the CHMM� Note that the matc h net w orks without hidden units actually just

implemen t linear w eigh ted sums of the feature v ector elemen ts �passed through a sigmoid

function��
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The Num b er of Hidden Units

The e�ect of using hidden units in the matc h net w orks is sho wn in table ���� It is seen that

a few hidden units impro v e the accuracy on the test set signi�can tly 
 but that they also

in tro duce o v er�tting� Th us
 for more than ten hidden units the test set accuracy drops

b elo w the b est result of ����� obtained b y the mo del with ten hidden units in all matc h

net w orks� F or ten hidden units the mo del con tains ����� parameters�

Hidden P aram� T rain T est

� ���� ���� ����

� ���� ���� ����

�� ����� ���� 	��	

�� ����� 
��
 ����

T able ��� � E�ect on recognition accuracy � � Acc � of using hidden units in the match net w o rks�

All match net w o rks use a symmetric input context of one frame � s

l

" x

l � �

� x

l

� x

l ��

��

F or the mo del with ten hidden units the Viterbi deco der accuracy on the test set is

only ����� or roughly �� lo w er than for the Nb est deco der
 see table ���� Th us
 sev eral

paths con tribute to the optimal lab eling in the HNN as illustrated b y the state a p osteriori

plot in �gure ���� The HNN obtains an Nb est accuracy of ����� for the utterance in the

�gure whic h is appro ximately ��� higher than that of the CML trained discrete CHMM

and ��� higher than that of the ML trained CHMM� P art of this gain is due to a b etter

abilit y of the HNN to lo cate and recognize nasals and liquids
 see �gure ����

F or a test set utterance �gure ��� sho ws the output from eac h of the �v e classi�ca

tion trained matc h net w orks used for initializing the HNN� Ev en though these net w orks

are trained indep enden tly they are capable of discriminating fairly w ell b et w een the �v e

classes� After CML training the output of the matc h net w ork in the cen ter state of eac h

submo del is quite di�eren t from that of the initial net w orks as seen from �gure ���� Th us


the net w orks in the cen ter states ha v e learned a task that is di�eren t from classifying

sp eec h frames in to the �v e classes� In terestingly 
 the output from the matc h net w ork in

the cen ter state of b oth the consonan t and nasal mo del is v ery close to ��� at the end of the

utterance ev en though the asso ciated frames clearly b elong to the silence class� Similarly 


the output of the net w ork in the cen ter state of the silence mo del drops b elo w ��� to w ards

the end of the utterance� Ho w ev er
 in the HNN it do es not really matter what the output

of the matc h net w orks in the cen ter states are at the utterance b oundaries b ecause w e

ha v e constrained the HNN to b egin and end an y utterance in the silence submo del� That

is
 there are no p ossible paths starting or ending in the consonan t submo del �or an y other

nonsilence submo del�� In fact
 b ecause the net w orks in the HNN are join tly trained to

maximize the conditional lik eliho o d it is no longer p ossible to in terpret the output of eac h

of the matc h net w orks indep enden tly � This fact is more clearly illustrated in �gure ���

sho wing the output of the three matc h net w orks assigned to the �rst
 middle and last

state
 resp ectiv ely 
 of the consonan t and nasal submo del� F rom this �gure w e see that the

mo del has learned to distribute the recognition task among the di�eren t matc h net w orks�

Consider for example the plot for the consonan t submo del in �gure ���� The net w ork in

the �rst state of this submo del only giv es a large output �close to ���� for frames in a close

region around the consonan t onset b oundaries� Th us
 it acts so as to ��lter� the p ossible

paths that can pass through the consonan t submo del� As long as the ��lter� net w ork

giv es a lo w output it is not p ossible to en ter the consonan t submo del and the output of
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Figure ��� � Gra ytone plot of state p osterio rs n

i

� l � " P � �

l

" i j x � � � fo r the utterance �But

in this one section w e w elcomed audito rs� �TIMIT id� si����� States ��� b elong to the

consonant mo del� �� to the nasal mo del� ��� to the liquid mo del� ����� to the vo w el mo del

and ����� to the silence mo del� Upp er p anel� The CML trained discrete CHMM �same

as 
gure ����� Sentence accuracy� Acc " �� � �� � L ower p anel� The CML trained HNN�

Sentence accuracy� Acc " �� � �� �
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Figure ��� � Output from match net w o rks in center states of the submo del fo r each class fo r

an example sentence �But in this one section w e w elcomed audito rs� �TIMIT id� si�����

Upp er left p anel� Observed lab eling� Upp er right p anel� Output b efo re CML training�

but after initial classi
cation training� Bottom p anel� Output after CML training� F o r all

three 
gures the dotted ho rizontal lines indicate an output level of ����

the matc h net w orks in the middle and �nal states of this submo del can b e arbitrary � But

if
 for a giv en input frame
 the matc h net w ork in the �rst state giv es a large output a

path through the consonan t submo del is �op ened� and the outputs of the net w orks in

the cen ter and �nal state no w b ecome imp ortan t� Based on this observ ation w e see that

the net w ork in the cen ter state of the consonan t submo del giv es a large output when w e

ha v e en tered the consonan t submo del in go o d agreemen t with the observ ed lab eling
 see

�gure ���� A t some p oin t it is no longer feasible to sta y in the consonan t submo del and

the matc h net w ork in the last state giv es a high output in accordance with the observ ed

lab eling� Th us
 the recognition of consonan ts has e�cien tly b een distributed b et w een the

three matc h net w orks in the consonan t submo del� A similar observ ation can b e made for

the net w orks in the nasal submo del�
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Figure �� � Output from the match net w o rks assigned to the 
rst ���� center ��� and last

��� state fo r an example sentence �But in this one section w e w elcomed audito rs� �TIMIT id�

si����� L eft p anel� The consonant mo del� R ight p anel� Nasal mo del� The top most

curve sho ws the observed complete lab eling fo r the consonant and nasal class� resp ectively �

	���� Reducing Mo del Complexit y b y W eigh t Sharing

The HNN using matc h net w orks with a symmetric input con text of one frame and ten

hidden units o v er�ts the training data seriously due to the large n um b er of parameters�

T o reduce o v er�tting and hop efully impro v e generalization it w as attempted to use a

standard w eigh t deca y regularizer on the matc h net w ork w eigh ts� Ho w ev er
 similar to the

regularization exp erimen t for the CHMM a set of initial exp erimen ts did not indicate an y

impro v emen t in p erformance b y using a w eigh t deca y � Another approac h for impro ving

generalization is to use some automatic metho d for mo del complexit y optimization lik e e�g� 


Optimal Brain Damage �LCDS��  � Optimal Brain Damage is w ell kno wn to the neural

net w ork comm unit y and w orks b y remo ving those parameters of a mo del that lead to

p o or a generalization abilit y according to a socalled saliency measure� Ho w ev er
 pruning

metho ds lik e Optimal Brain Damage ha v e not found widespread use in HMM mo deling for

sp eec h recognition mainly for t w o reasons� First of all
 they are generally v ery exp ensiv e

in terms of computation as they require second order deriv ativ e information and b ecause

the mo del often has to b e retrained eac h time a parameter is pruned a w a y � Secondly 


b ecause of the normalization constrain ts on HMM parameters it is di�cult to handle the

situation where the pruning sc heme leads to the remo v al of e�g� 
 a transition probabilit y �

This conceptual problem can
 ho w ev er
 b e resolv ed b y using globally normalized mo dels�

F or a v ery simple sp eec h reading task Optimal Brain Damage pruning w as ev aluated for

a Boltzmann Chain �similar to a globally normalized HMM� in �P ed��  �

Ev en for the simple broad class task the computational complexit y is far to o large for

metho ds lik e Optimal Brain Damage b ecause retraining the mo dels used here can tak e up

to one or t w o da ys on a fast w orkstation� An alternativ e more direct metho d is to reduce

the mo del complexit y a priori b y parameter sharing �t ying�� An ob vious metho d is to tie

the matc h net w orks within a submo del suc h that the same matc h net w ork is used in all

three states of a submo del� A more elegan t approac h is to apply the parameter sharing

tec hnique directly to the w eigh ts of the matc h net w orks instead of to the �outputs�� Similar

to �RK��b one can share the w eigh ts in the input la y er of a matc h net w ork as illustrated
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in �gure ���� By using the same set of w eigh ts for eac h input feature v ector
 the n um b er

of trainable w eigh ts b ecomes less sensitiv e to the size of the input con text� F urthermore


the w eigh t sharing illustrated in �gure ��� has a v ery in teresting in terpretation� It can

b e view ed as a state sp eci�c adaptiv e input transformation where the high dimensional

input feature v ector is mapp ed on to an input v ector of lo w er dimensionalit y M � Because

the transformation is class and state sp eci�c the dimension M can b e far lo w er than the

dimension of the feature v ector�

sl

xl xl+1xl-1

C

M M M

Shared

Figure ��� � W eight sha ring in input la y er of match net w o rks to reduce complexit y �

Mo del P aram� T rain T est

No t ying ����� 	
�� ����

Tied matc h ���� ���� ����

W eigh t sharing
 M " � ���� ���� ����

W eigh t sharing
 M " � ���� ���� 	���

T able ��� � E�ect on recognition accuracy � � Acc � of using pa rameter sha ring� All match

net w o rks use a symmetric context as input � s

l

" x

l � �

� x

l

� x

l ��

� and have �� hidden units�

The net w o rks with w eight sha ring have an additional hidden la y er of � M units�

T able ��� compares the recognition accuracy for HNNs with and without parameter

sharing� W e see that t ying the matc h net w orks b et w een the states of eac h submo del

leads to a large parameter reduction
 but at the cost of a �� drop in the accuracy � This

indicates that allo wing the matc h net w orks to adapt to statesp eci�c tasks is imp ortan t�

The accuracies obtained b y sharing the w eigh ts in ternally in the matc h net w orks instead

of t ying their �outputs� emphasizes this fact� Th us
 for the �adaptiv e w eigh t sharing�

approac h an accuracy of ����� is obtained for M " �� Although this mo del con tains only

one fourth the parameters of the HNN without t ying
 it obtains a comparable p erformance�

In terestingly 
 for M " � the HNN actually outp erforms the HNN without w eigh t sharing

ev en though the former con tains far few er parameters� Despite the b etter generalization

abilit y of the HNN with w eigh t sharing
 it still tended to o v er�t the data if trained for a

su�cien t n um b er of ep o c hs�
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	���� Imp ortance of Join t T raining

The use of separate matc h net w orks in eac h HNN state constitutes one of the main dif

ferences to other h ybrids� As discussed ab o v e
 this implies that the recognition task can

b e distributed among highly sp ecialized �exp ert� net w orks� Another di�erence to most

early h ybrids is that all parameters of the HNN are trained join tly to minimize a global

discriminativ e criterion� T o illustrate the imp ortance of join t training the HNN w as com

pared to a scaled lik eliho o d h ybrid� As describ ed in c hapter � the scaled lik eliho o ds are

obtained b y training a m ultila y er p erceptron to classify eac h of the input frames in to one

of the considered classes� After training
 the net w ork outputs are scaled b y the corresp ond

ing a priori probabilities of the classes and used as replacemen t for the standard matc h

probabilities in an HMM� T o compare this approac h with the HNN w e used a standard

m ultila y er p erceptron with one output for eac h of the �v e classes
 a symmetric con text

input of one frame and �� hidden units� After classi�cation training
 the scaled outputs

w ere used for replacing the matc h distributions in a CML trained CHMM� Note that the

scaled output corresp onding to e�g� 
 the consonan t class w as used for replacing all three

matc h distributions in the consonan t submo del� The scaled lik eliho o d h ybrid has a total of

���� parameters and obtains an Nb est accuracy of �����
 see table ���� This is far lo w er

than the b est accuracy of ����� rep orted ab o v e in table ��� for the HNN with separate

matc h net w orks in eac h state and a similar n um b er of parameters� Ho w ev er
 part of the

higher accuracy of the HNN is due to the use of sp ecialized matc h net w orks in e ach state�

It is therefore more fair to compare the scaled lik eliho o d h ybrid to an HNN using tied

matc h net w orks in eac h submo del� As sho wn in table ��� suc h an HNN yields an accuracy

of ������ A gain of more than �� in accuracy is th us ac hiev ed simply b y adapting the

matc h net w orks join tly with the transition probabilities instead of separately as in the

scaled lik eliho o d h ybrid� Despite the di�erence in accuracies
 note from table ��� that the

HNN and scaled lik eliho o d h ybrid obtains almost the same frame classi�cation rate� This

indicates the imp ortance of training the �whole� mo del directly for sequence recognition

rather than for frame classi�cation�

Approac h P aram� �F rame �Sub �Ins �Del �Acc

Ra w net w orks ���� ���� ��� ���� ��� ����

Scaled lik eliho o d ���� ���� ��� ��� ��� ����

HNN
 tied matc h nets ���� ���� ��� ��� ���� ����

T able �� � Compa rison of di�erent app roaches fo r b road class recognition� The frame classi
	

cation rate ��F rame� is fo r the HNN and scaled lik eliho o d hyb rid calculated from the complete

lab eling obtained from a fo rw a rd	backw a rd deco ding pass� Only results fo r the test set a re

sho wn�

It is in teresting to see ho w m uc h the Mark o v net w ork actually con tributes to the

recognition accuracy � Based on the complete lab eling from the large MLP with �� hidden

units
 an incomplete broad class lab el string w as created b y �folding� m ultiple o ccurrences

of the same lab el in to one� Although the �ra w net w ork� yields appro ximately the same

frame classi�cation rate as the t w o h ybrids
 the obtained accuracy of ����� obtained

using this metho d is v ery lo w
 see table ���� The reason for this is that the �ra w net w ork�

giv es a v ery p o or duration mo deling� Th us
 it is often the case that a few or ev en a

single frame is assigned a class lab el b y the net w ork whic h is di�eren t from that of the

surrounding frames� When folding the complete lab el sequence in to an incomplete broad
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class lab eling
 suc h �artifacts� will remain and result in a v ery large n um b er of insertions

in the alignmen t b et w een observ ed and recognized lab eling� The temp oral in tegration and

duration mo deling implied b y the Mark o v net w ork is th us crucial for go o d recognition

p erformance�


�� T ransitionBased Mo deling

A serious limitation of standard HMMs and the ab o v e HNN arc hitecture is that they mo del

the sp eec h as sequences of steady state segmen ts connected b y �instan taneous� transitions�

By using transition net w orks in the HNN the transitions b ecome �timev arying� and the

HNN can thereb y mo del the sp eec h as sequences of steady state segmen ts connected b y

transitional segmen ts� As discussed in c hapter � this can b e v ery imp ortan t for automatic

sp eec h recognition b ecause exp erimen tal evidence suggests that the regions of the acoustic

signal that con tain the largest sp ectral c hanges are imp ortan t for h uman p erception of

sp eec h�

W e start b y ev aluating a simple top ology with only one state p er class and then turn

to the threestate top ology used ab o v e and in c hapter ��

	���� ��State Submo dels

In these exp erimen ts only a single state w as used for mo deling eac h class
 i�e� 
 the three

states for eac h submo del in �gure ��� w ere replaced b y a single state� Since eac h state

had a total of �v e outgoing transitions including the one to the state itself
 w e used a

transition net w ork with �v e outputs in eac h state and set all matc h net w orks to the trivial

mapping �

i

� s

l

# v

i

� " � � � for all l �

Lo cally Normalized HNN

If all the transition net w orks use a softmax output function and if the sequences are allo w ed

to end in all states then the mo del is normalized lo cally as discussed in c hapter �� Suc h a

lo cally normalized transitionbased HNN is similar to an IOHMM where only one lab el is

allo w ed in eac h state�

As for the HNNs ev aluated ab o v e
 it is v ery imp ortan t to initialize the net w orks prop

erly b efore CML training� Since the softmax normalized net w orks are used for estimating

transition probabilities of the form P � �

l

" j j �

l � �

" i� s

l � �

�
 a reasonable initialization is

to train the net w orks to learn these a p osteriori probabilities� As usual this can b e done

b y standard classi�cation training with ��� targets� Because the transition net w orks are

assigned to a particular state the conditioning on the previous state � i�e� �

l � �

� is giv en

b eforehand� In the simple �state submo dels this implies that w e should only train the

net w orks on data ha ving a class lab el iden tical to that of the state to whic h the net w ork

is assigned� That is
 for frames with other lab els the output is unde�ned� Unfortunately 


this results in t w o problems� First of all
 the training data for eac h net w ork is v ery sparse


esp ecially for the outputs corresp onding to transitions b et w een states with di�eren t la

b els �only the b oundary frame b et w een t w o broad class segmen ts are used for training��

Secondly 
 b ecause the net w orks are trained only on part of the input space used during

recognition they are lik ely to generalize v ery p o orly to input frames with class lab els dif

feren t from that of the frames used during initial net w ork training� Therefore
 the t w o

initialization metho ds tested for the matc h net w orks w ere also tried� In the classi�cation
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approac h a net w ork with �v e outputs w as simply trained to classify the sp eec h frames

in to eac h of the �v e classes� The same cop y of this net w ork w as then used as an initial

transition net w ork in al l states�

Initialization T rain T est

Random ���� ����

T rans� p osteriors ���� ����

Viterbi ���� ����

Classi�cation 	��	 	���

T able ��� � E�ect on recognition accuracies � � Acc � of di�erent initialization strategies fo r

transition net w o rks in a transition	based� lo cally no rmalized HNN with one state p er class� All

transition net w o rks tak e a symmetric context of one frame as input � s

l

" x

l � �

� x

l

� x

l ��

� and

have �� hidden units� The total numb er of pa rameters is �����

F or the di�eren t net w ork initialization metho ds the results after CML training are

sho wn in table ���� As exp ected
 the metho d of initializing the net w orks to estimate

p osteriori probabilities results in a p erformance that is comparable to that of random

initialization� Although the di�erence b et w een the initialization metho ds is not large
 w e

see that the classi�cation approac h seems to giv e the b est result�

Globally Normalized HNN

T able ��� summarizes the results obtained when using globally normalized transition

based HNNs� F or these mo dels the data sequences w ere only allo w ed to end in the state

corresp onding to the silence class and global normalization w as th us necessary ev en for

softmax normalized net w ork outputs
 see c hapter �� Comparing to the lo cally normalized

HNN w e observ e a small gain b y restricting all sequences to end in the silence state
 see

table ���� Ho w ev er
 if the transitions are allo w ed to b e unnormalized b y using sigmoid

output functions
 a signi�can t impro v emen t is obtained� Th us
 the globally normalized

transitionbased HNN yields ����� accuracy compared to ����� for the lo cally normalized

mo del� By using w eigh t sharing as describ ed ab o v e almost the same accuracy is obtained


but with a mo del con taining only ���� parameters
 see table ���� The reason for the large

di�erence b et w een the lo cally and globally normalized transitionbased HNN can b e found

b y insp ecting �gure ��� sho wing the outputs of the transition net w ork assigned to the state

mo deling the consonan t and silence class
 resp ectiv ely � F rom the �gure w e �rst observ e

that the transition net w orks in the lo cally and globally normalized mo del b eha v e quite

di�eren tly 
 esp ecially for the silence class� Similarly 
 w e see that the net w orks for most

frames either output a v alue close to zero or a v alue close to one and the mo dels therefore

ha v e a somewhat �deterministic b eha vior�� F or the globally normalized mo del w e observ e

that for some frames all the outputs of the transition net w ork in the state for e�g� 
 the

silence class are close to zero� In suc h cases it is not p ossible to en ter or pass through the

silence state� On the other hand
 this is alw a ys p ossible for the lo cally normalized mo del

b ecause at least one of the outputs of an y transition net w ork in this mo del will b e larger

than ��� due to the softmax normalization� Th us
 with lo cally normalized transitions w e

can nev er prohibit a path from passing through a giv en submo del at an y time� Therefore


using submo dels with sev eral states for eac h class to enforce minim um durations do es not

really mak e sense for softmax normalized transition net w orks�
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Mo del Output func� P aram� T rain T est

T ransitionbased Softmax ���� ���� ����

T ransitionbased Sigmoid ���� ���� 	��	

T ransitionbased
 w eigh t sharing
 M " � Sigmoid ���� ���� ����

Matc h 0 transition nets Sigmoid ���� 
��� ����

Matc h nets 0 standard transitions Sigmoid ���� ���� ����

T able ��� � Recognition accuracies � � Acc � b y transition	based HNNs� an HNN using match

net w o rks and standa rd transitions and an HNN using b oth match and transition net w o rks�

Only one state is used fo r each class and all net w o rks tak e a symmetric context of one frame

as input � s

l

" x

l � �

� x

l

� x

l ��

� and have �� hidden units� The net w o rk with w eight sha ring has

an additional hidden la y er of �� hidden units� see 
gure ����
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Figure ��� � Output from the transition net w o rks in the state fo r the consonant and silence class

fo r an example sentence �But in this one section w e w elcomed audito rs� �TIMIT id� si�����

L eft p anels� Lo cally no rmalized mo del� R ight p anels� Globally no rmalized mo del�
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The accuracy of the transitionbased HNN using �state submo dels is somewhat lo w er

than the b est accuracy of an HNN using �state submo dels and matc h net w orks
 see

table ��� and ���� Ho w ev er
 one can argue that it is a bit unfair to compare the �

state and �state mo dels as the former enforces a minim um duration of t w o frames for

eac h class� If matc h net w orks and standard transition probabilities are used instead of

transition net w orks in eac h �state submo del
 the accuracy is only �����
 see table ����

This illustrates the imp ortance of allo wing the mo del to fo cus on the transitional segmen ts

in the sp eec h signal� The di�eren t b eha vior of the transitionbased HNN and the HNN

using matc h net w orks and standard transitions is for an example utterance illustrated b y a

state p osterior plot in �gure ���� F rom the �gure w e observ e that the �state mo del using

matc h net w orks and standard transition is fairly �sure of what it is doing�
 i�e� 
 only a few

paths tend to dominate the probabilit y for the the example utterance� Con trary to this w e

see that sev eral paths con tribute in the globally normalized transitionbased HNN� Th us


the transitionbased HNN is capable of distributing the recognition task b et w een the class

submo dels ev en b etter than the HNN using matc h net w orks and standard transitions�

As a �nal remark for the �state transitionbased HNN it should b e noted that one

can in terpret the transition net w ork outputs for the selflo op transitions as mo deling the

steadystate segmen ts of the sp eec h signal� Th us
 as long as the selflo op output is large

for a giv en net w ork w e can remain in the corresp onding state� Therefore
 one can argue

that using b oth transition and matc h net w orks in a giv en state is not necessary � Indeed


as sho wn in table ��� suc h an approac h actually just leads to serious o v er�tting�
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Figure ��� � Gra ytone plot of state p osterio rs n

i

� l � " P � �

l

" i j x � � � fo r the test set utterance

�But in this one section w e w elcomed audito rs� �TIMIT id� si����� State � is the consonant�

� the nasal� � the liquid� � the vo w el and � the silence mo del� Upp er p anel� �	state HNN

using match net w o rk and standa rd transitions in each state� Sentence accuracy� Acc " �� � �� �

L ower p anel� �	state globally no rmalized transition	based HNN� Sentence accuracy� Acc "

�� � �� �
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	���� ��State Submo dels

By comparing the result of ����� for the �state mo del using matc h net w orks to the result

of ����� for the HNN using a single �tied� matc h net w ork in all states of a �state submo del

w e see that enforcing minim um durations is v ery imp ortan t� Therefore
 an exp erimen t

with transitionbased HNNs using threestate submo dels w as made� The transition net

w orks in the last state of eac h submo del w ere in these exp erimen ts initialized b y the ab o v e

describ ed classi�cation training� This approac h do es not mak e sense
 ho w ev er
 for the

transition net w orks in the �rst and cen ter states of the submo dels b ecause these net w orks

estimate transition scores b et w een states with iden tical lab els� A metho d that seems to

w ork w ell in practice for these net w orks is to cop y the w eigh ts of a classi�cation trained

matc h net w ork as illustrated in �gure ����� This initialization is actually reasonable in the

framew ork of globally normalized HNNs b ecause a state with suc h a transition net w ork is

initially iden tical to a state with a classi�cation trained matc h net w ork and unit transitions

� i�e� 
 �

ij

" � � � for all j �� If the transition net w orks in the �rst and cen ter state are nor

malized b y a softmax output function
 the ab o v e initialization leads to transition net w orks

with outputs that initially are uniform� Nev ertheless
 the metho d of cop ying w eigh ts w as

observ ed to w ork b etter than just using random w eigh ts in softmax normalized transition

net w orks�

sl sl

C C2-C2 C2-C3

Classification
trained match

network

Initial
trainsition
network

Figure ���� � Initializing transition net w o rks b y cop ying w eights of a classi
cation trained match

net w o rk� Illustrated fo r the center state in the consonant submo del �C� is the center state and

C� the last state��

T able ��� summarizes the results obtained b y using �state submo dels� As exp ected


the result is v ery p o or for b oth the training and test set when the transition net w orks are

normalized lo cally b y softmax output functions� If sigmoid output activ ation functions

are used instead the accuracy increases to ����� or ����� when using w eigh t sharing�

This compares fa v orably to the b est result of ����� obtained b y the HNN using matc h

net w orks and standard transitions�

Instead of using transition net w orks in all states one can mo del the steadystate seg

men ts b y states with standard transitions and matc h net w orks� As sho wn in table ���
 an

HNN using matc h net w orks and standard transition probabilities in the �rst and cen ter

states and a transition net w ork in the last state of eac h submo del yields a p erformance

comparable to the purely transitionbased mo del� The reason for this is that the cen ter

states of the t w o t yp es of HNNs p erform a similar task� Th us
 if the standard selflo op



��� Summary ��

Mo del Output func� P aram� T rain T est

T ransitionbased Softmax ����� ���� ����

T ransitionbased Sigmoid ����� 	
�� ����

T ransitionbased
 M " � Sigmoid ���� ���� 	���

Matc h 0 transition nets Sigmoid ����� ���� ����

Matc h net 0 standard transitions
 M " � Sigmoid ���� ���� ����

T able ��� � Recognition accuracies b y transition	based HNN and �mixed� HNN with three

states p er class� The �mixed� HNN uses match net w o rks and standa rd transition p robabilities

in the 
rst and center state of each submo del and a transition net w o rk in the last state� All

net w o rks use a symmetric context of one frame as input � s

l

" x

l � �

� x

l

� x

l ��

� and have ��

hidden units� The mo del with w eight sha ring � M " � � see 
gure ���� has an additional hidden

la y er of �� units�

transition probabilit y is close to one and the transition probabilit y to the �nal state is

close to zero
 the only w a y to exit the cen ter state is b y ha ving a matc h net w ork output

close to zero� Similarly 
 if the matc h net w ork in the cen ter state outputs a v alue close to

zero for a sequence of frames no path can pass through the corresp onding submo del for

these frames� A similar op eration can b e obtained b y an unnormalized transition net w ork

with t w o outputs�


�� Summary

In this c hapter three t yp es of HNNs ha v e b een ev aluated on the simple broad class task

de�ned in c hapter �� In the �rst case
 only the matc h distributions w ere replaced b y

matc h net w orks whereas the other t w o arc hitectures b oth used transition net w orks� F or

all mo dels it w as illustrated that the initialization of the neural net w orks is v ery imp ortan t

for go o d p erformance� F urthermore
 as for the CHMM it w as sho wn that initial complete

lab el training is also v ery imp ortan t for go o d p erformance�

F or the HNN using matc h net w orks and standard transitions it w as illustrated ho w the

matc h net w orks in the di�eren t states of a class submo del adapt to statesp eci�c tasks�

This w as sho wn to lead to a b etter p erformance than when the same net w ork w as used

in all states of a submo del� Similarly 
 it w as sho wn that training the matc h net w orks

join tly with the transition probabilities leads to a v ery large gain in accuracy compared to

a scaled lik eliho o d h ybrid where the �matc h net w ork� and HMM are trained separately �

Con trary to standard HMMs �and HNNs using only matc h net w orks�
 the HNNs with

transition net w orks are capable of mo deling the sp eec h as sequences of steadystate seg

men ts connected b y transitional regions� F or transitionbased HNNs it w as sho wn that the

b est p erformance is obtained when using globally normalized mo dels where all transitions

in a state are allo w ed to b e zero sim ultaneously � Hereb y 
 a transition net w ork in a class

submo del can e�ectiv ely prohibit paths through the submo del whic h is not p ossible when

using lo cally normalized transition net w orks with softmax outputs� This is also imp or

tan t when using m ultiple states in a class submo del so as to enforce minim um durations�

F or threestate submo dels the transitionbased HNN w as sho wn to outp erform the HNN

using matc h net w orks and standard transitions� It w as also sho wn that a �mixed� HNN

using matc h net w orks to mo del steadystate segmen ts and transition net w orks to mo del

transitional regions giv es appro ximately the same accuracy as a transitionbased HNN�
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A problem with the HNN is that it o v er�ts the training data if matc h or transition

net w orks with hidden units are used� T o handle this
 a w eigh t sharing metho d
 whic h

has an in teresting in terpretation as a statesp eci�c adaptiv e input transformation
 w as

prop osed� Ev en though the w eigh t sharing reduced the n um b er of parameters considerably

it did not completely remo v e the o v er�tting tendency � It did
 ho w ev er
 lead to b etter

generalization�

The b est result of ����� on the broad class task w as obtained b y a purely transition

based globally normalized HNN with appro ximately ���� parameters� This compares v ery

fa v orably to the result of ����� obtained b y the CHMM with ab out ���� parameters� F or

comparison the b est result rep orted in the literature for a con tin uous densit y HMM with

a linear adaptiv e input transformation is ����� on this task �Joh��  �

In the follo wing c hapters w e will ev aluate the HNN on t w o more realistic sp eec h recogni

tion tasks
 namely the �standard� �� TIMIT phoneme recognition task and the recognition

of isolatedw ords uttered o v er American telephone lines�



Chapter �

TIMIT Phoneme Recognition

The results presen ted in c hapter � indicate that the HNN is capable of yielding v ery go o d

p erformance on the recognition of broad phoneme classes� Ho w ev er
 the acoustic mo del in

an y sp eec h recognition system cannot b e based en tirely on broad phoneme class mo dels

since it is not p ossible to translate broad phoneme class sequences in to w ords� In this

c hapter w e therefore extend the broad class task to the recognition of �� di�eren t English

phonemes from whic h most American English w ords can b e constructed�

The general exp erimen tal setup will b e describ ed in section ��� and section ��� giv es

an ev aluation of a baseline discrete CHMM on the phoneme recognition task� The HNN

ev aluation for this problem is presen ted in section ��� for HNNs using matc h net w orks

and standard transitions and in section ��� for transitionbased HNNs� A comparison to

results rep orted in the literature for the TIMIT �� phoneme task is giv en in section ����

��� Exp erimen tal Setup

The �� phoneme TIMIT task �rst in tro duced in �LH��  has b een used for preliminary

ev aluation of acoustic mo dels b y sev eral sp eec h groups� Lee and Hon �LH��  de�ned

�� phoneme classes from the full �� TIMIT phone set whic h
 in com bination with the

recommended training and test sets
 giv e a w ellde�ned reference for phoneme recognition

exp erimen ts� The �� phoneme in v en tory is sho wn in table A��� As for the broadclass

exp erimen ts
 one con text indep enden t monophone submo del w as used for eac h of the ��

phoneme classes� The top ology of the submo dels and of the o v erall mo del w as the same

as for the broad class task
 see c hapter ��

W e used the recommended TIMIT training set
 but left out �� of the ��� recommended

training set sp eak ers for a v alidation set� Th us
 the v alidation set con tained a total of ���

utterances and the training set a total of ���� utterances� The v alidation set w as used

for adapting the stepsize during gradien t descen t CML training and for mo del selection

as describ ed in c hapter �� The recommended TIMIT test set of ���� utterances w as used

for ev aluating the mo dels� T able ��� summarizes the dataset details�

The computational complexit y of the �� phoneme task is substan tially larger than for

the simple broad class problem� T raining times of �� CPU w eeks on a fast w orkstation

w ere not uncommon for some of the mo dels ev aluated in this exp erimen t� Therefore


the training strategy dev elop ed for the broad class task w as applied directly to the ��

phoneme task� A maxim um n um b er of �� complete lab el and �� incomplete lab el ep o c hs

w as enforced in all exp erimen ts and the complete lab eling w as obtained from the phonetic

handsegmen tation in the same manner as for the broad phoneme task� Similarly 
 the

��
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Datasets

T raining set

Sp eak ers ���

Di�eren t sen tences ����

Utterances ����

��ms frames ������� � � �h��min�

Phoneme lab els ������

T est set

Sp eak ers ���

Di�eren t sen tences ���

Utterances ����

��ms frames ������ � � �h�min�

Phoneme lab els �����

V alidation set

Sp eak ers ��

Di�eren t sen tences ���

Utterances ���

��ms frames ����� � � ��min �

Phoneme lab els �����

T able ��� � Summa ry of TIMIT datasets used fo r the phoneme recognition exp eriments� See

also table ��� and app endix A�

melscaled cepstral prepro cessor describ ed in c hapter � w as used for extracting feature

v ectors from the ra w sp eec h signal�

As for the broad class exp erimen ts it w as necessary to use b oth lo cal and global pruning

thresholds in the Nb est deco der for computational reasons� Due to the larger n um b er of

submo dels in the task considered here it w as necessary to prune the searc h somewhat more

�aggressiv ely� than for the broad class task� Th us
 a lo cal pruning threshold of �

l

"���

and a maxim um n um b er M " � of activ e h yp otheses w ere used in all phoneme recognition

exp erimen ts�

��� The Discrete CHMM  A Simple Baseline System

As a �rst exp erimen t
 a simple discrete CHMM w as trained using the ML and CML

criterion� The discrete CHMM made use of the co deb o ok of ��� protot yp e cepstral v ectors

describ ed in c hapter � and w as based on the �state submo del top ology sho wn in �gure ����

The CHMM con tains a total of ����� parameters�

Recognition accuracies obtained through ML and CML training are sho wn in table ����

As exp ected there is a fairly large impro v emen t b y using CML training instead of ML

training# The CML trained CHMM obtains an Nb est accuracy of ����� compared to

only ����� for the ML trained CHMM� In terestingly 
 a large impro v emen t in accuracy

for the ML trained mo del w as obtained b y squaring the bigram transition probabilities

b efore deco ding
 see table ���� This w as also observ ed for the broad class task� Also
 there

is a large di�erence b et w een Viterbi and Nb est deco ding results for the discriminativ ely

trained mo del but not for the ML trained mo del
 see table ���� Th us
 sev eral paths tend



��� The Discrete CHMM � A Simple Baseline System �

Criterion T rain T est

Nb est Viterbi Nb est

ML ���� ���� ����

ML �Squared bigram� ���� ���� ����

CML ���� ���� ����

T able ��� � Recognition accuracies � � Acc � fo r discrete CHMM containing a total of �����

pa rameters�

to con tribute to the probabilit y of the utterance in the CML trained CHMM whereas only

a few paths con tribute in the ML trained CHMM� This is clearly illustrated b y the state

p osterior plot for the ML and CML trained CHMM giv en in �gure ���� Note
 that the

plots in �gure ��� ha v e b een thresholded so that all p osteriors smaller than ��

� �

are set

to zero and all others to one�

Before mo ving on to the HNN ev aluation in the follo wing sections it should b e noted

that the accuracies for the discrete CHMM are lo w er than those t ypically rep orted for

con tin uous HMMs applied to this task �see section ����� Ho w ev er
 the discrete CHMM

is a simple mo del based only on a single co deb o ok for b oth cepstral
 +cepstral and log

energy features� In �LH��  an ML estimated discrete HMM emplo ying three separate

co deb o oks
 around ����� parameters and con text indep enden t phoneme submo dels w as

rep orted to yield an accuracy of ��� on the phoneme task�

�

Note that the CML trained

CHMM is capable of outp erforming the m ultiple co deb o ok system used b e Lee and Hon�

�

The test set used b y Lee and Hon �LH
� � is di�eren t from the o�cial TIMIT test set and their

exp erimen ts w ere done using a protot yp e of the TIMIT CD�R OM�


























































































































































































