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Section 1. INTRODUCTION 2

1 Introduction

The aim of this document is to evaluate the performance of the SAR altimeter re-tracker
against real data.

According to the project plan the work packet is divided into the following tasks:

� Apply beam selection technique developed in SAMOSA WP8 (Stenseng, 2009) to re-
processed ASIRAS data. This procedure selects only beams with a look angle off less
than 1.4,� as those with higher look angles were found to degrade the waveforms.

� Characterise the parameters to use in the NOCS SAR waveform re-tracker developed
in SAMOSA WP5 (Gommenginger and Srokosz, 2009) to accommodate ASIRAS data.
Provide ASIRAS data in format suitable for ingestion by the NOCS SAR retracker

� Apply the NOCS SAR waveform re-tracker to ASIRAS data.

� Produce Technical Note on the ASIRAS waveforms retracking for purpose of NOCS
retracker validation.

DTU-Space, National Space Institute



3 Section 2. COMPARISON OF SPACE- AND AIRBORNE SAR ALTIMETERS

2 Comparison of space- and airborne SAR altimeters

The differences between space- and airborne altimeters is mainly caused by the different
geometry, but for SAR altimeters the platform velocity and hence the Doppler shift also
play an important role. As a consequence of the geometry the footprint of a space-borne
radar will be pulse limited whereas an air-borne radar often will be beam limited. Table 2
gives an overview of the main properties of the CryoSat-2 SIRAL instrument operating in
SAR mode and ASIRAS operating in HAM.

To obtain a pulse repetition frequency (PRF) high enough to unambiguously sample the
Doppler spectrum of the returned pulses CryoSat uses burst strategy. A burst of 64 pulses
is emitted from the radar with the needed PRF, shortly after the last pulse has been emitted
the �rst pulse arrives back at the radar after being re�ected from the surface. After 11.7 ms1

all 64 pulses has been received and the next burst is emitted.

The short round trip time associated with a low altitude airborne radar allows a pulse
to travel from the radar to the surface and back before the next pulse is emitted. The round
trip time combined with the pulse length dictates the upper limit on the PRF and the lower
limit is limited by the Doppler spectrum that follows the along-track beam width and the
platform velocity. All pulses are separated equally in time which allows the burst size for
the airborne radar to be chosen during post processing.

Parameter Description CryoSat-2 SAR ASIRAS HAM
l Carrier radar wavelength 0.022 m 0.022 m
f Carrier radar frequency 13.575 GHz 13.5 GHz
h Height above surface 717.242 km 2.738 km

aR Orbital factor 1.12 1.00
v Velocity 7 km/s 70.5 m/s

fPRF Pulse repetition frequency 17.8 kHz 2.5 kHz
dfPRF Average pulse repetition frequency 5.47 kHz 2.5 kHz

g Antenna 3 dB beam width (along-track) 1.0766� 10�

Antenna 3 dB beam width (cross-track) 1.2016� 2.5�

Table 2: Properties for CryoSat-2 SAR mode and ASIRAS HAM.

Using the parameters presented in Table 2 and Equation 1 the along-track Doppler res-
olution can be calculated as a function of the burst size.

Dxaz =
l � h � fPRF
2 � v � Nburst

(1)

ASIRAS has been build with a wide along-track beam to accommodate �ight over steep
terrain at a constant height over the surface. Also the pitch of the aircraft will change de-
pending on the amount of cargo and general �ying conditions.

With the high along-track look angle it is possible to get a high number of equivalent
looks for the summation. However at a certain critical angle (qc) the width of the Doppler
beam projected onto the pointing vector becomes comparable to the range resolution and
will no longer bene�t the resulting waveform. Over this critical angle (qc), see Equation
2, the Doppler beams will instead degrade the resulting waveform (Stenseng, 2009). The

1The 11.7 ms burst period is for the SAR mode only. SARin mode uses a burst period of 46.7 ms.

Validation Against ASIRAS



Section 2. COMPARISON OF SPACE- AND AIRBORNE SAR ALTIMETERS 4

scaling factor (a) can be chosen slightly higher than unity to obtain more looks at the cost
of a slightly higher degradation.

qc < a �
Dres
Dxaz

(2)

The average PRF ( dfPRF) is introduced as the number of pulses within a burst divided
by the burst-period. Using the chosen beam width (q) and the average PRF the number of
expected looks can be found.

Nlooks =
q � h � dfPRF
v � Nburst

(3)

DTU-Space, National Space Institute



5 Section 3. ASIRAS DATA AND PROCESSING

3 ASIRAS data and processing

On April 30 2006 ASIRAS HAM data were collected along a pro�le from Danmarkshavn
in Greenland to Longyearbyen on Svalbard, see Figure 1. The data were acquired between
10:08:49 and 10:23:05 UTC and covered a pro�le from 77�57’02.38� N, 4�39’41.85� W to
78�05’29.21� N, 2�08’21.05� W. The �ight was part of the CryoVEx 2006 campaign (Stenseng
et al., 2007) and is one of the very few examples of ASIRAS data from the open ocean.

Figure 2 shows the attitude of the aircraft during the acquisition of the ASIRAS pro�le.
The ASIRAS antenna is mounted looking 2� backwards resulting in an pitch of the antenna
close to 1.6� forward looking. Due to heavy side-wind there is an average roll of �0.9� and
an average yaw of �2.6�.

-20š -10š 0š 10š

76š
76š

78š
78š

80š
80š

Figure 1: April 30 �ight (blue) and pro�le where ASIRAS HAM data were collected (red),
from Stenseng (2009).

3.1 ASIRAS processing

Since further correction and minor updates has been added to the ASIRAS processor and
the default settings (Cullen, 2010), the pro�le has been reprocessed for this study using the
�nal version of the processor (4.02) and the associated con�guration �les.

A series of processing scenarios has been run on the ASIRAS dataset varying the max-
imal look angle and the burst size. First the along-track size of the Doppler cell, the criti-
cal angle and the estimated number of looks is calculated based on the conditions for the
ASIRAS data and a set of three different burst sizes, see Table 3.

Due to the high range resolution of ASIRAS the critical angle is quite small and as a
result the number of equivalent look is reduced to 15. It is unlikely that the speckle noise
will average out using only 15 look, therefore a slightly higher degradation factor (a in

Validation Against ASIRAS
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Figure 2: Attitude of the aircraft during acquisition of the ASIRAS pro�le. Roll in red, pitch
in black and yaw in blue.

Nburst Dxaz qc Nlooks
64 16.69 m 0.30� 15

128 8.34 m 0.60� 15
256 4.17 m 1.2� 15

Table 3: Along track Doppler cell size, critical angle and number of looks as function of the
burst size.

Equation 2) is used. A set of processor setting, including the standard, is prepared and
used to generate four different scenarios from the single L0 ASIRAS pro�le. The discussed
parameters is presented in Table 4.

Run Nburst Used max. look angle Dxaz Nlooks
2001 128 6.0� 8.34 m 159
2002 128 1.4� 8.34 m 37
2012 64 1.4� 16.69 m 74
2022 256 1.4� 4.17 m 19

Table 4: Burst size and used look angle for the ASIRAS processing scenarios.

3.2 Along-track averaging

The high along-track resolution and the narrow cross-track beam width (� 120 m) allows
ASIRAS to sample small fractions of an ocean wave. From the pro�le in Figure 3 the min-
imum wave height can be estimated to 2 m, under the assumption that the vertical spread

DTU-Space, National Space Institute



7 Subsection 3.2 ALONG-TRACK AVERAGING

in the the power arises from ASIRAS sampling the crest and the trough of the wave in sep-
arate samples. To obtain waveforms more representative of the ones CryoSat-2 observes,
the ASIRAS L1b waveforms is averaged along-track.

For each processing scenario an along-track averaging of 10 and 20 waveforms has been
performed. In Figure 4 the effect of the averaging the 2012 run is presented. The L1b wave-
forms without along-track averaging (Figure 4a) is very noisy and several of the individual
waveforms are multi-peaked. The Effect of 10 and 20 waveforms along-track averaging is
seen in Figure 4b and 4c. It is clear that the noise and double peaks is removed after a factor
10 averaging and further averaging only contributes to a more uniform power distribution
in the range direction.

A closer inspection of the individual waveforms reveals almost symmetrical waveforms
with a rapid decaying tail. This is most likely a consequence of the radar being beam-limited
and having a relatively narrow cross-track beam width.

Figure 3: Part of the ASIRAS pro�le (run 2002) showing the power as function of the longi-
tude and ellipsoidal height.

Validation Against ASIRAS



Subsection 3.2 ALONG-TRACK AVERAGING 8

(a) L1b power waveforms from the 2012 scenario without along-track averaging.

(b) L1b power waveforms from the 2012 scenario with a factor 10 along-track averaging.

(c) L1b power waveforms from the 2012 scenario with a factor 20 along-track averaging.

Figure 4: Effect of along-track averaging on the 2012 scenario.

DTU-Space, National Space Institute



9 Section 4. RETRACKING ASIRAS WAVEFORMS WITH THE SAMOSA1 SAR RETRACKER

4 Retracking ASIRAS waveforms with the SAMOSA1 SAR
retracker

The SAMOSA1 SAR retracker was developed in WP5 of the SAMOSA1 contract and WP4000
of the SAMOSA2 Contract Change Note to retrack SAR mode waveforms from spaceborne
SAR altimeters over ocean surfaces. The retracker has been tested so far with SAR data
obtained from CRYMPS scenarios over the open ocean and a small set of Cryosat-2 SAR
waveform data over water (Gommenginger et al., 2010).

4.1 Adapting the SAMOSA1 SAR retracker to an airborne scenario

In this task, the SAMOSA1 retracker is adapted to retrack SAR waveforms from airborne
�ights of the ASIRAS system. The parameters used to run the retracker in an airborne con-
�guration are given in Table 5, compared to the values used for the Cryosat-2 and CRYMPS
con�guration. The PTR Gaussian approximation coef�cient is not know for ASIRAS and is
therefore given the same value as for CryoSat-2.

CRYMPS CryoSat-2 ASIRAS
Transmitted bandwidth 320 MHz 320 MHz 1000 MHz
Gate spacing 3.125e-9 s 3.125e-9 s 0.585e-9 s
Number of gates 128 128 256
PRF 17.8e3 Hz 17.8e3 Hz 2.5e3 Hz
Number of echoes in burst Na 64 64 64, 128 or 256
Antenna 3dB along-track beamwidth FB 1.3� 1.0766� 10.0�

Burst Repetition Interval 11.7e-3 s 11.7e-3 s 2.56e-2 s, 5.12e-2 s
or 1.024e-1 s

Antenna max gain 42 dB 42 dB 26 dB
Pulse length 51e-6 s 51e-6 s 4e-6 s
PTR Gaussian approximation coeff. aP 0.9 0.366 0.366
Mean platform velocity 7000 m/s 7000 m/s 70.5 m/s
Mean platform altitude 717242 m 717242 m 2774 m

Table 5: Parameter values used in SAMOSA1 SAR ocean retracker

We note that the retracker remains based on the same theoretical model and multi-
looking approach as developed in SAMOSA1 for speci�c spaceborne systems. No adjust-
ments were made for fundamental differences between the systems, such as:

� Different structure of the ASIRAS SAR signals from the CRYMPS and Cryosat-2 SAR
Burst mode. Instead of a sequence of bursts of high PRF, ASIRAS emits pulses con-
tinuously at a constant PRF. The PRF around 2500Hz is considerably lower than for
CRYMPS and Cryosat-2, and is only slightly higher than the PRF used by the Envisat
RA-2 pulse-limited altimeter.

� Strongly asymmetric antenna beam width, with ASIRAS featuring a broad beam (10�)
along-track and a relatively narrow beam (2.5�) across-track. The SAMOSA1 retracker
is based on a theoretical model that assumes symmetric narrow beam.

Validation Against ASIRAS



Subsection 4.2 ASIRAS AIRBORNE HAM DATA 10

Figure 5: Simulated Multi-looked L1b waveforms with the SAMOSA1 SAR retracker model
for satellite (Cryosat-2; Blue) and airborne (ASIRAS; Purple) con�guration and two differ-
ent sea state conditions (solid: Hs = 3m; dashed: Hs = 1m)

� Much smaller footprint for ASIRAS than in the case of space borne con�gurations,
leading to different spatial and temporal correlations than in the case of a uniform
rough surface (as assumed in the SAMOSA1 model).

Figure 5 compares the simulated L1b multi-looked SAR waveforms obtained in the air-
borne con�guration to those in a Cryosat-2 con�guration for two different signi�cant wave
height conditions. Both sets of waveforms are normalised. We note that according to the
SAMOSA1 model, the airborne ASIRAS waveforms are expected to be much peakier than
the spaceborne Cryosat-2 waveforms.

4.2 ASIRAS airborne HAM data

In this section, we examine the characteristics of the �ight and ASIRAS waveforms prior
to retracking. Figure 6 and Figure 7 show side and top views of the L1b SAR multi-looked
waveforms as the aircraft travels along its track. The position of the waveforms along-track
is indicated by longitude (vertical axis in Figure 7). The four subplots correspond to the
data obtained for the same �ight but four different processing choices, as described in the

DTU-Space, National Space Institute



11 Subsection 4.2 ASIRAS AIRBORNE HAM DATA

(a) Run 2001. (b) Run 2002.

(c) Run 2012. (d) Run 2022.

Figure 6: ASIRAS L1b SAR waveforms for the same airborne �ight and different processing
runs. The averaging characteristics for each run are shown in Table 4. All waveforms were
scaled to the maximum amplitude in the run.

previous section. Figure 8 shows a zoomed-in section from Figure 7.

Examples of individual L1b waveforms at various positions along the track and for the
different processing choices are shown in Section 4.4

Several observations can be made about the ASIRAS data from these �gures:

� Limiting the Doppler beam angles in the processing leads to peakier waveforms, seen
both as a slight reduction in the width of the waveforms (Figure 6) and an increase in
the peak magnitude (Figure 7).

� There is considerable variability in the position of the leading edge along the �ight
track (Figure 6, Figure 7), including short episodes when the signals almost vanish
(Figure 8).

� As well as the low-frequency variability in range, associated with the height and atti-
tude of the aircraft, we note also some higher frequency wave-like variability. Given
the small footprint of the ASIRAS system, it is possible that the altimeter was able to

Validation Against ASIRAS



Subsection 4.2 ASIRAS AIRBORNE HAM DATA 12

sense the pro�le of individual ocean surface waves.

Figure 7: Same as Figure 6 but viewed from above showing ASIRAS L1b waveforms for
(from left to right) run 2001, run 2002, run 2012, and run 2022. The waveform amplitudes
were not scaled.

Figure 9 presents the evolution of the aircraft height and attitude along the track, to-
gether with the retracked range retrieved from an OCOG retracker (provided by DTU with
the ASIRAS data). All data are plotted against longitude (on the vertical axis) and on the
same scale for ease of comparison. We note:

� the strong correspondence between aircraft height and OCOG retrieved range.

� The reasonably steady (�1 m) aircraft altitude, around 2774 meters.

� The large systematic pitch (i.e. along-track mispointing) averaging around 3.6� not
including the 2� backwards pointing, with rapid sharp changes of the order of �0.2�

degrees in magnitude.

� The oscillating nature of the roll, averaging around �0.9� �0.5�.

The existence of large pitch and roll values are signi�cant for the SAR retracking since:

� Pitch (i.e. along-track mispointing) is expected to strongly affect the positioning of the
SAR waveforms (as well as the waveform shape).

� The magnitude of the roll (i.e. across-track mispointing) is signi�cant in view of the
narrow across-track beamwidth of the ASIRAS antenna. The large roll events may
explain the signal drop-outs observed in the waveforms.

DTU-Space, National Space Institute



13 Subsection 4.3 ALONG-TRACK MISPOINTING IN THE SAMOSA1 RETRACKER

Figure 8: Zoomed-in section from Figure 7.

4.3 Along-track mispointing in the SAMOSA1 retracker

In this section, we examine the sensitivity of the SAMOSA1 retracker to along-track mis-
pointing prior to retracking ASIRAS data. We note that the theoretical model on which the
SAMOSA1 retracker only considers along-track mispointing.

We start by looking in Figure 10 at the waveforms simulated with the SAMOSA1 re-
tracker in the case of zero (blue) and non-zero (green) mispointing for the ASIRAS (left)
and Cryosat-2 (right) con�guration. The top, middle and bottom subplots correspond to the
single-look waveforms at zero Doppler frequency, the L1b multi-looked waveform (used by
the retracker to �t the data) and the 2D Stack at zero Doppler frequency. In these plots, all
waveforms were normalised by the maximum value at the peak. Based on these, one could
conclude that there is no effect of mispointing on the shape of the waveforms.

Figure 11 now shows the same waveforms but without normalisation. It is immediately
obvious that the 0.5 degrees of mispointing used here has a strong impact on the magnitude
of the echo power in the case of CryoSat-2. Unlike expected the ASIRAS echo power is much
less affected by the mispointing, this is due to the wide along-track beamwidth.

Figure 12 and Figure 13 show this effect in the multi-look 2D Stack prior to incoherent
summing. Here, the stacks are shown plotted against Doppler Beam angles rather than
Doppler frequency, and the range of these angles can be seen to span the whole width of
the antenna beam. The main effect of the mispointing is to displace the peak power in the
Stack in Doppler space.

We see from these �gures that the effect of mispointing will be much more dramatic
for space borne systems (Figure 12) than for airborne systems (Figure 13), for which the
waveforms are not expected to be strongly affected. Accordingly, the retracking of ASIRAS

Validation Against ASIRAS



Subsection 4.3 ALONG-TRACK MISPOINTING IN THE SAMOSA1 RETRACKER 14

(a) Aircraft height above WGS84 ellipsoid. (b) OCOG retracker range.

(c) Aircraft Pitch (i.e. along-track mispoint-
ing).

(d) Aircraft roll (i.e. across-track mispointing).

Figure 9: Aircraft height and attitude during the ASIRAS �ight.

DTU-Space, National Space Institute



15 Subsection 4.4 RETRACKING ASIRAS L1B WAVEFORMS

data will not account for along-track mispointing.

(a) (b)

Figure 10: Simulated SAR waveforms for (a) ASIRAS and (b) Cryosat-2 for along-track
mispointing = 0 deg (blue) and 0.5 deg (green). The value of Hs is 3m in all cases. All
waveforms are normalised by their maximum value.

4.4 Retracking ASIRAS L1b waveforms

We now apply the SAMOSA1 SAR retracker to the ASIRAS waveforms. To judge the ap-
propriateness of the retracking, we examine a number of individual L1b waveforms at four
different positions along the �ight track. The locations were chosen at random and are
indicated in Figure 14.

Figure 15 to Figure 18 represent the ASIRAS L1b waveform and the �tted model for the
four different processing schemes, namely run 2001, 2002, 2012 and 2022. The estimated
epoch and signi�cant wave height are indicated in the legend on each plot, as well as the
status of the �tting exit�ag (a value of exit�ag = 3 indicates that the optimisation was suc-
cessful).

We note that in all cases, the best SAMOSA1 �tted model is unable to reproduce the
rapidly decaying trailing edge of the ASIRAS waveforms, although ASIRAS seems to show
stronger trailing edge in the latter part of the �ight (Position 12, subplot d).

As noted previously, the ASIRAS waveforms are narrower in run 2002, 2012 and 2022,
the modi�ed processing being able to reduce the power at the toe of the leading edge.
Consequently, the SAMOSA1 retracker is better able to �t the waveforms in run 2002, 2012
and 2022.

The surface height and signi�cant wave height for all waveforms in Run 2001 are shown
in Figure 19. The average surface height is found to be 36.24 m and the standard deviation
0.365 m when excluding the high roll events, only including points between 4.5� W and 2.5�

Validation Against ASIRAS



Subsection 4.4 RETRACKING ASIRAS L1B WAVEFORMS 16

(a) (b)

Figure 11: Simulated SAR waveforms for (a) ASIRAS and (b) Cryosat-2 for along-track
mispointing = 0 deg (blue) and 0.5 deg (green). The value of Hs is 3m in all cases. The
waveforms in these plots are not normalised.

W. Repeating the calculating in a 100 measurement window gives a mean surface height
between 35.71 m and 36.71 m and a standard deviation between 0.122 m and 0.589 m.

Adding the ASIRAS instrument correction found to be 3.487 m gives an true surface
height of 39.72 m, which compares well with the 40.71 m estimated with the DTU10 Mean
Sea Surface. It should be noted that the obtain surface height has not been applied tide or
barometric corrections.

Repeating the calculations for the signi�cant wave height gives an average of 1.26 m and
a standard deviation of 0.529 m, again excluding points outside 4.5� W and 2.5� W. Using
the 100 measurements window gives a mean between 0.89 m and 1.84 m with a standard
deviation between 0.226 m and 0.772 m. We note again that the SAMOSA1 retracker seems
unable to retrieve values of Hs below about 0.5 meters.

From the ECMWF wave model2 the signi�cant wave height is predicted to be 1.83 m at
06:00 UTC and 1.46 m at 12:00 UTC, which compares well with the signi�cant wave height
determined by the retracker.

From sea-ice data roll events are known to spread the echoes therefore a comparison
between roll and signi�cant wave height is carried out. Indeed Figure 20 shows a high
correlation between roll and signi�cant wave height. A similar investigation of the effect of
pitch showed no signi�cant correlation.

2Courtesy of Dr. Saleh Abdalla

DTU-Space, National Space Institute



17 Subsection 4.4 RETRACKING ASIRAS L1B WAVEFORMS

(a) (b)

Figure 12: Simulated single-look Delay Doppler Maps for CryoSat-2 con�guration for a)
along-track mispointing = 0 deg, b) along-track mispointing = 0.5 deg. The value of Hs is
3m in both cases.

(a) (b)

Figure 13: Simulated single-look Delay Doppler Maps for ASIRAS con�guration for a)
along-track mispointing = 0 deg, b) along-track mispointing = 0.5 deg. The value of Hs
is 3m in both cases.

Validation Against ASIRAS



Subsection 4.4 RETRACKING ASIRAS L1B WAVEFORMS 18

(a) Aircraft pitch during �ight.

(b) Aircraft roll during �ight.

Figure 14: Aircraft pitch during ASIRAS �ight, showing the positions along-track of the
waveforms shown in the �gures below.

DTU-Space, National Space Institute



19 Subsection 4.4 RETRACKING ASIRAS L1B WAVEFORMS

(a) Waveform position 2. (b) Waveform position 4.

(c) Waveform position 6. (d) Waveform position 12.

Figure 15: ASIRAS L1b SAR waveforms and �tted SAMOSA1 SAR waveform model for
run 2001.

Validation Against ASIRAS



Subsection 4.4 RETRACKING ASIRAS L1B WAVEFORMS 20

(a) Waveform position 2. (b) Waveform position 4.

(c) Waveform position 6. (d) Waveform position 12.

Figure 16: ASIRAS L1b SAR waveforms and �tted SAMOSA1 SAR waveform model for
run 2002.

DTU-Space, National Space Institute



21 Subsection 4.4 RETRACKING ASIRAS L1B WAVEFORMS

(a) Waveform position 2. (b) Waveform position 4.

(c) Waveform position 6. (d) Waveform position 12.

Figure 17: ASIRAS L1b SAR waveforms and �tted SAMOSA1 SAR waveform model for
run 2012.

Validation Against ASIRAS



Subsection 4.4 RETRACKING ASIRAS L1B WAVEFORMS 22

(a) Waveform position 2. (b) Waveform position 4.

(c) Waveform position 6. (d) Waveform position 12.

Figure 18: ASIRAS L1b SAR waveforms and �tted SAMOSA1 SAR waveform model for
run 2022.

DTU-Space, National Space Institute



23 Subsection 4.4 RETRACKING ASIRAS L1B WAVEFORMS

(a) Surface height.

(b) Signi�cant wave height.

Figure 19: Surface height (blue) and signi�cant wave height (blue) with the SAMOSA1 SAR
retracker for ASIRAS Run 2001. The results is overlayed with a 100 measurements running
average.

Validation Against ASIRAS



Subsection 4.4 RETRACKING ASIRAS L1B WAVEFORMS 24

Figure 20: Aircraft roll (blue) and smoothed signi�cant wave height (blue) for the
SAMOSA1 SAR retracker for ASIRAS Run 2001.

DTU-Space, National Space Institute



25 Section 5. CONCLUSION

5 Conclusion

The ASIRAS pro�le obtained in HAM over open ocean has been processed using four dif-
ferent processor settings. The different processing runs aimed at providing an optimal pro-
cessing in the sense of providing a waveform closely reassembling a waveform obtained
from a space-borne SAR altimeter, but scaled to airborne conditions.

The SAMOSA1 retracker has been applied on the four runs and waveforms at four ran-
domly chosen positions has been investigated, see Figure 15 to 18. The main output param-
eters from the SAMOSA1 processor for all combinations of runs and positions is presented
in Table 6.

From the �gures and the table the following is noted:

� Run 2001 estimates a higher surface and signi�cant wave height.

� Run 2002, 2012 and 2022 generally agree well on the estimated parameters.

� Except for a toe there is good agreement between the leading edge in ASIRAS data
and model �tted by the SAMOSA1 retracker.

� The rapid decaying trailing edge in ASIRAS data is not captured by the SAMOSA1
retracker.

� Run 2012 has the best overall agreement with the �tted SAMOSA1 SAR waveform
model.

Position / Run 2001 2002 2012 2022

2
-22.6 gate# -22.4 gate# -22.3 gate# -22.3 gate#

0.7 m 0.5 m 0.5 m 0.5 m
0.125 0.105 0.105 0.113

4
-28.3 gate# -27.6 gate# -27.0 gate# -27.5 gate#

2.2 m 1.2 m 1.5 m 1.3 m
0.175 0.178 0.161 0.193

6
-30.6 gate# -29.8 gate# -30.1 gate# -29.6 gate#

1.2 m 0.8 m 0.9 m 0.7 m
0.126 0.120 0.109 0.128

12
-21.8 gate# -19.2 gate# -19.6 gate# -19.7 gate#

2.0 m 1.4 m 1.4 m 1.6 m
0.125 0.118 0.113 0.154

Table 6: Leading edge position, signi�cant wave height and std. residual output from the
SAMOSA1 retracker.

The higher surface and signi�cant wave height found in run 2001 is most likely due to
the degradation associated with the high maximal look angle. The rapid decaying trailing
edge is believed to be related to the narrow cross-track and along-track footprint not cap-
turing an entire wave. The larger along-track Doopler bin in run 2012 is compensating for
the short along-track footprint and a better agreement between the ASIRAS data and the
SAMOSA1 waveform model is found.

The surface height and signi�cant wave height estimated by the retracker is found to
compare well with values obtained from the ECMWF wave model and the DTU10 Mean

Validation Against ASIRAS



Section 5. CONCLUSION 26

Sea Surface. In overall the SAMOSA1 retracker is found to perform well with ASIRAS data
when choosing an appropriate processing and tacking the fundamental differences between
air- and space-borne systems into account.

DTU-Space, National Space Institute
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A Abbreviations and acronyms

ASIRAS Airborne SAR/Interferometric Radar Altimeter System
CryoVEx CryoSat Validation Experiment
DTU-Space National Space Institute, Technical University of Denmark
ESA European Space Agency
HAM High Altitude Mode
OCOG Offset Center of Gravity
PRF Pulse Repetition Frequency
SAR Synthetic Aperture Radar
SARIn SAR / Interferometry
SIRAL SAR / Interferometric Altimeter
TN Technical Note
WP Work Package

DTU-Space, National Space Institute
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B Response to review

Q1: The time gate spacing for CRYMPS and CryoSat is the inverse of the transmitted band-
width; why such relation is not kept also for ASIRAS? .. the table 5 reports a gate
spacing value that is not the inverse of the ASIRAS transmitted bandwidth.

A1: Cullen (2010) derives the range resolution in Equation 3.2-2 as:

DRham =
Tuc � Fs � c

2 � B � NFFT_ham
(4)

For ASIRAS in high altitude mode: Tuc = 4ms (compressed pulse length), Fs = 37.5MHz
(instrument sampling frequency), B = 1GHz (bandwisth), and NFFT_ham = 256 (range
samples). Resulting in a range resolution of DRham = 0.08783m eqvivalent to a two-
way time of 0.585e-9 s.

Q2: How much is reliable the value of 0.366 for ASIRAS PTR? Usually, this (0.37-0.4) is a
pure theoretical value representing generally the minimum possible; given the limited
nature of the on board hardware, usually it is quite hard to obtain in real conditions ...
Has been performed any ASIRAS PTR calibration campaign to measure it? How has
this value been derived?

A2: ASIRAS PTR is unknown, value from CryoSat-2 is adopted. Comment added in Sec-
tion 4.1.

Q3: Please, report somewhere in the section 3 the exact time of acquisition (start time and
stop time) and exact position of the location (start lat/lon stop lat/lon).

A3: Time and position added to Section 3

Q4: From the text, it emerges a pretty basic contradiction: at section 4.2 it is stated: "Pitch
(i.e. along-track mispointing) is expected to strongly affect the positioning of the SAR
waveforms (as well as the waveform shape)" but after it is noticed at section 4.3: "We
see from these �gures that the effect of mispointing will be much more dramatic for
space borne systems (Figure 12) than for airborne systems (Figure 13), for which the
waveforms are not expected to be strongly affected. Accordingly, the retracking of
ASIRAS data will not account for along-track mispointing." : could you accommodate
this contradiction stating in the conclusions that seemingly the actual shape of the
model does not take in count properly the mispointing effects but a more enhanced
version of the model to be provided in future will ??

A4: Section 4.3 rephrased to highlight the effect of the wide along-track beam on ASIRAS.
The effect of mispointing in the SAMOSA1 model shows up only as a change in am-
plitude, not a change of waveform shape nor a shift in the position of the leading
edge. Since we normalised waveforms prior to retracking, there is no effect by mis-
pointing at present. Early results with the SAMOSA2 model suggest that the effect of
mispoitning will be better accounted for in the enhanced model.

Q5: Did the retrieved height have been compensated by shift of the positioning due to the
pitch mispointing? and in af�rmative case how ?

A5: No effect of mispointing on leading edge position and no correction applied.

Validation Against ASIRAS
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Q6: Could you show along with �gure 14 (pitch along track in salient red points) also a
similar graph but now plotting the roll angle in the same salient red points?

A6: Figure with roll and position of waveforms added to Section 4.4.

Q7: In �gure 9 c) and d), we can notice how dramatically and quickly is changing the pitch
and roll. It is presumably ascertainable that over such short over-�own fetch, the sea
state must be constant; hence the only explanation for such dramatic waveform shape
variability may be assigned only to the analogue mispointing variability: did you
notice a correlation between the variability of roll and pitch with the variability of
waveform shape width?

A7: Added comment and Figure 20 showing correlation between SWH and roll to Section
4.4.

Q8: Did you confront the obtained results for the sea surface elevation and SWH with
some a priori known data over the same area: for example the Mean Sea Surface for
the sea surface elevation and the SWH with SWH maps in the zone at the �ight time?
May you operate this in the scope of validation results activity?

A8: Results from the ECMWF wave model and DTU10 Mean Sea Surface added to Section
4.4 and 5.
ECMWF wave model (courtesy of Dr. Saleh Abdalla): Position of (78.1N, 3.4W) on 30
April 2006:

06 UTC 12 UTC
Sig. Wave Height 1.83 m 1.46 m
Peak Period Tp 10.15 s 10.15 s
Mean Period T01 6.67 s 6.41 s
Mean Period T02 5.76 s 5.50 s
Mean Direction 220� 199�

Q9: Always in the scope of validation results activity, could you provide some statistics
(mean, global standard deviation, relative standard deviation (standard deviation in-
side a 1 Hz subset)) for the surface elevation and SWH plots for OCOG and SAR
retracker? Could you overlap the plots for surface elevation in order to visually con-
front the results coming from both methods?

A9: Figure 19 updated with running average on the SWH and surface elevation and com-
ment added to Section 4.4.

Q10: As stated, the absence of the long trailing edge in ASIRAS data (unlike the model) can
be explained by the short ASIRAS 3db beamwidth pattern in across-track direction;
could you state in the conclusions that a more enhanced version of the model taking
in count an asymmetric elliptical antenna pattern to be provided in future may correct
this anomaly??

A10: The exact formulation and implementation of the enhanced model has not been �xed
at this point.

DTU-Space, National Space Institute
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