Downloaded from orbit.dtu.dk on: May 16, 2024

DTU DTU Library

i

Large Neighborhood Search

Pisinger, David; Rgpke, Stefan

Published in:
Handbook of Metaheuristics

Publication date:
2010

Link back to DTU Orbit

Citation (APA):

Pisinger, D., & Rgpke, S. (2010). Large Neighborhood Search. In M. Gendreau (Ed.), Handbook of
Metaheuristics (2 ed., pp. 399-420). Springer. http://www.springerlink.com.globalproxy.cvt.dk/content/978-1-
4419-1663-1#section=777803&page=1

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://orbit.dtu.dk/en/publications/61a1b7ca-4bf7-4355-96ba-03fcdf021f8f
http://www.springerlink.com.globalproxy.cvt.dk/content/978-1-4419-1663-1#section=777803&page=1
http://www.springerlink.com.globalproxy.cvt.dk/content/978-1-4419-1663-1#section=777803&page=1

Large neighborhood search

David Pisinger and Stefan Ropke

Abstract

Heuristics based dlarge neighborhood seardmave recently shown outstanding
results in solving various transportation and schedulirdplems. Large neighbor-
hood search methods explore a complex neighborhood by useueiltics. Using
large neighborhoods makes it possible to find better catelgtdutions in each it-
eration and hence traverse a more promising search path.

Starting from the large neighborhood search method, weagiv@verview ofrery
large scale neighborhoagkarch methods and discuss recent variants and extensions
like variable depth searchndadaptive large neighborhood search

1 Introduction

The topic of this chapter is the metaheuridtirge Neighborhood Seargii.NS)
proposed by Shaw [51]. In LNS, an initial solution is gradyamnproved by al-
ternately destroying and repairing the solution. The LNS8ristic belongs to the
class of heuristics known agery Large Scale Neighborhood sear@iLSN) al-
gorithms [2]. All VLSN algorithms are based on the obseatihat searching a
large neighborhood results in finding local optima of highlify, and hence overall
a VLSN algorithm may return better solutions. However, ebigng a large neigh-
borhood is time consuming, hence various filtering techedoare used to limit the
search. In VLSN algorithms, the neighborhood is typicadigtricted to a subset of
the solutions which can be searched efficiently. In LNS thight®rhood is implic-

David Pisinger
Department of Management Engineering, Technical Unitsersi Denmark, Produktionstorvet,
Building 426, 2800 Kgs. Lyngby, Denmark, e-mail: pisingen@n.dtu.dk

Stefan Ropke
Department of Transport, Technical University of Denmadkgningstorvet, Building 115, 2800
Kgs. Lyngby, Denmark, e-mail: sr@transport.dtu.dk

2 David Pisinger and Stefan Ropke

itly defined by methods (often heuristics) which are useddstry and repair an
incumbent solution.

The two similar terms LNS and VLSN may cause confusion. Wesistently use
VLSN for the broad class of algorithms that searches vegelaeighborhoods and
LNS for the particular metaheuristic, belonging to the sla§ VLSN algorithms,
that is described in Section 2.

In the rest of the introduction we first define two example peois in Section
1.1. We then define neighborhood search algorithms in Sedti® and the class
of VLSN algorithms in Section 1.3. In Sections 1.3.1-1.3683describe three sub-
classes of VLSN algorithms. In Section 2 we describe the LN8ristic and an
extension called adaptive large neighborhood search.ig liidlowed in Section 3
by a survey of LNS applications and the chapter is conclud&eiction 4.

1.1 Example problems

Throughout this chapter we will refer to two example probdetheTraveling Sales-
man Problem(TSP) and theCapacitated Vehicle Routing Problef@VRP). The
TSP is probably the most studied and well-known combinatoptimization prob-
lem. In the TSP a salesman has to visit a number of cities. alesman must per-
form a tour through all the cities such that the salesmarrmstto his starting city
at the end of the tour. More precisely we are given an unditegtaphG = (V,E)

in which each edge € E has an associated cagt The goal of the TSP is to find a
cyclic tour, such that each vertex is visited exactly ondee $um of the edge costs
used in the tour must be minimized. We recommend [3] for mofigrmation about
the TSP.

In the CVRP, which is a generalization of the TSP, one has teesa set of
customers using a fleet of homogeneous vehicles based atraaodepot. Each
customer has a certain demand for goods which initially acated at the depot.
The task is to design vehicle routes starting and endingeatépot such that all
customer demands are fulfilled.

The CVRP can be defined more precisely as follows. We are gimemdirected
graphG = (V, E) with verticesV = {0,...,n} where vertex 0 is the depot and the
verticesN = {1,...,n} are customers. Each edge E has an associated cast
The demand of each customief N is given by a positive quantity;. Moreoverm
homogeneous vehicles are available at the depot and theigapbeach vehicle is
equal toQ. The goal of the CVRP is to find exactigroutes, starting and ending at
the depot, such that each customer is visited exactly oneeviehicle and such that
the sum of demands of the customers on each route is less tiegual toQ. The
sum of the edge costs used in theoutes must be minimized. We recommend [55]
for further information about the CVRP and vehicle routingljems in general.
An example of a TSP and a CVRP solution are shown in Figure 1.

Large neighborhood search 3

. ° 2 3. 02
. . 1 4
° ° ° 2 °
. 3e °
° 3 1 2 *3
° ° ° ° ° ° ° °
° 1 (] 05
7
o ., o o ° E o3 o2
° °
° [2 ol 3
1
° °

Fig. 1 Left: a TSP solution. Right: A CVRP solution. In the CVRP thepdt is marked with a
square and the customerare marked with nodes each having a demgnd

1.2 Neighborhood search

In this section we formally introduce the term neighborhsedrch. We are given
an instance of a combinatorial optimization problem whexds the set of feasible
solutions for the instance (we wri¥(l) when we need to emphasize the connection
between instance and solution set) andX — R is a function that maps from a
solution to itscost X is assumed to be finite, but is usually an extremely large set.
We assume that the combinatorial optimization problem isramization problem,
that is, we want to find a solutioxf such that(x*) < ¢(x) ¥x € X.

We define aneighborhoodf a solutionx € X asN(x) C X. That is,N is a func-
tion that maps a solution to a set of solutions. A soluti@s said to bdocally opti-
mal or alocal optimumwith respect to a neighborhoddif c(x) < c(x) VX' € N(x).
With these definitions it is possible to define a neighbortsestch algorithm. The
algorithm takes an initial solutianas input. It computeg = argmin ey {¢(X") },
thatis, it finds the cheapest solutigrin the neighborhood of. If ¢(X') < c(x) then
the algorithm performs the update= x¥'. The neighborhood of the new soluti@n
is searched for an improving solution and this is repeatéitlaitocal optimumx is
reached. When this happens the algorithm stops. The digoistdenoted ateepest
descentlgorithm as it always chooses the best solution in the eidiood.

A simple example of a neighborhood for the TSP is #hept neighborhood
which can be traced back to [15]. The neighborhood of a smutiin the 2-opt
neighborhood is the set of solutions that can be reached %oy deleting two
edges i and adding two other edges in order to reconnect the tounmlsi ex-
ample of a neighborhood for the CVRP is tleéocateneighborhood (see e.g. [27]).
In this neighborhood\(X) is defined as the set of solutions that can be created from
x by relocating a single customer. The customer can be movaddther position
in its current route or to another route.

We define the size of the neighborhobl-) for a particular instancé as
max{|N(x)| : x e X(I)}. Let .#(n) be the (possibly infinite) set of all instances of
sizen of the problem under study. We can then define the size of @heipood as
a functionf (n) of the instance size: f(n) = max{|N(x)|: | € #(n),x € X(I)}.

4 David Pisinger and Stefan Ropke

The 2-opt neighborhood for the TSP as well as the relocatghberhood for the
CVRP have sizd (n) = O(n?) wheren is the number of cities/customers.

1.3 Very large-scale neighborhood search

Ahuja et al. [2] define and survey the class of VLSN algorithdseighborhood
search algorithm is considered as belonging to the clasd 8N\valgorithms if the
neighborhood it searches grows exponentially with theaimse size or if the neigh-
borhood is simply too large to be searched explicitly in ficgc Clearly, the class
of VLSN algorithms is rather broad. Ahuja et al. [2] categerVLSN into three
classes: 1) variable depth methods, 2) network flow basedowement methods,
3) methods based on restriction to subclasses solvabldyngauial time. We will
describe the three classes in more detail in Sections L3P, and 1.3.3, respec-
tively. Notice that although the concept of VLSN was not fatized until recently,
algorithms based on similar principles have been used foadks.

Intuitively, searching a very large neighborhood shouédilo higher quality so-
lutions than searching a small neighborhood. However,agtire, small neighbor-
hoods can provide similar or superior solution quality ifdded in a metaheuris-
tic framework because they typically can be searched mdokiguSuch behavior
is reported in e.g. [6] and [26]. This shows that VLSN alduris are not “magic
bullets”. However, for the right applications they provighkcellent results.

As stated earlier, the focus of this chapter is a particula8N algorithm called
LNS, which will be described in Section 2. The LNS heuristied not fit well into
any of the three categories defined in Ahuja et al. [2], bugfirdtely belongs to the
class of VLSN algorithms as it searches a very large neididu.

1.3.1 Variable-depth methods

Larger neighborhoods generally lead to local solutions ettds quality, but the
search is more time-consuming. Hence, a natural idea isadugtly extend the
size of the neighborhood, each time the search gets trapgekbcal minimum.

Variable-Depth Neighborhood Sear(iDNS) methods search a parameterized
family of still deeper neighborhoods;, Ny, ... Nk in a heuristic way. A typi-
cal example is the 1-exchange neighborhdadwhere one variable/position is
changed. Similarly, the 2-exchange neighborhbedwaps the value of two vari-
ables/positions. In general theexchange neighborhodd, changesk variables.
Variable-depth search methods are techniques that sesedtiexchange neigh-
borhood partially, hence reducing the time used to searem#ighborhood. See
Figure 2 for an illustration of variable-depth neighbortieo

One of the first applications of variable-depth search waslLiim-Kernighan
heuristic [29] for solving the TSP. Briefly, the idea in thentKernighan heuris-
tic is to replace as many asedges when moving from a to@to a tourT. In

Large neighborhood search 5

VDNS VNS
Nk

N3

=

Fig. 2 lllustration of the neighborhoods used by VDNS and VNS. Tireent solution is marked
x. VDNS typically operates on one type of neighborhood withalale depth, while VNS operates
on structurally different neighborhoodls, . . ., Nk.

even steps of the algorithm an edge is inserted into the Hamdin path, while in

odd steps an edge is deleted to restore a Hamiltonian patm €ach Hamiltonian
path a Hamiltonian cycle is implicitly constructed by jaigithe two end nodes.
The choice for the edge to be added to the Hamiltonian pathaidenn a greedy
way, maximizing the gain in the objective function. The IHe+nighan algorithm

terminates when no improving tour can be constructed.

The basic idea in a VDNS heuristic is to make a sequence of legges and to
freeze all moved combinatorial objects to prevent the $efimm cycling. VDNS
stops when no further local move is possible and returnstefdaasd solution.

An extension of the Lin-Kernighan heuristic, called ejentichains, was pro-
posed by Glover in [19]. An ejection chain is initiated byes#ing a set of elements
that will undergo a change of state. The result of this chdeges to identifying a
collection of other sets, with the property that the elera@rfitat least one set must
be “ejected from” their current states. State-change stepisejection steps typi-
cally alternate. In some cases, a cascade of operationsertagdered leading to a
domino effect.

Variable-depth and ejection-chain based algorithms haen applied to sev-
eral problems, including the traveling salesman problem 4B], the vehicle rout-
ing problem with time windows [52], the generalized assigntrproblem [57] and
nurse scheduling [13]. Ahuja et al. [2] give an excellentrgiew of earlier applica-
tions of the VDNS methods.

Frequently, VDNS methods are used in conjunction with othetaheuristic
frameworks, like the filter-and-fan methods in Glover ang®&E20].

1.3.2 Network-flows based improvement algorithms

This family of improvement algorithms use various netwéide algorithms to
search the neighborhood. In general they can be groupeckifottowing three,

6 David Pisinger and Stefan Ropke

not necessarily distinct, categories: (i) minimum costleyoethods, (ii) shortest
path based methods, and (iii) minimum cost assignment bas¢igods. In the fol-

lowing we give a short overview of the methods and refer tosinevey of Ahuja

et al. [2] for further details.

Neighborhoods defined by cycles

A cyclic exchange neighborhoamnsists of a sequence of elements being trans-
fered among a family of subsets. Thompson [53] showed howmtbe improving
neighbor in the cyclic exchange neighborhood by finding aatieg cost cycle in
an hereto constructed improvement graph. Finding a negatist subset-disjoint
cycle in the improvement graph is NP-hard, but effectivertstias for searching
the graph exist.

Thompson and Psarafitis [54] and Gendreau et al. [18] apgiiedyclic neigh-
borhood to solve the VRP. Ahuja et al. [1] used cyclic exclestg solve the capac-
itated minimum spanning tree problem.

Neighborhoods defined by paths

Path exchangeis a generalization of the swap neighborhood. A large-sueigh-
borhood can be defined by aggregating an arbitrary numbercéliedindependent
swap operations [2]. The best neighbor of a TSP tour for threpmunded swap
neighborhood can be found @(n?) time by solving a shortest path problem in an
improvement graph constructed for this purpose.

For the one machine batching problem, Hurink [26] appliegexi&l case of the
compounded swap neighborhood where only adjacent pairallamed to switch.
An improving neighbor can be found @(n?) time by solving a shortest path prob-
lem in the improvement graph.

Considering the single machine scheduling problem, Bresgmn and Hurink
[8] presented an extension of the adjacent pairwise inéargl neighborhood which
can be searched in quadratic time by calculating a shorg&istip an improvement
graph.

Neighborhoods defined by assignments and matching

Theassignment neighborhoauas first presented by Sarvanov and Doroshko [49]
forthe TSP. Itis an exponential neighborhood structurenedfby finding minimum
cost assignments in an improvement graph.

For the TSP, the assignment neighborhood is based on theva¢ofdk nodes,
from which a bipartite graph is constructed. In this grapie hodes on the left-
hand are the removed nodes, and the nodes on the right-ftenarsithe remaining
nodes. The cost of each assignment is the cost of insertimgda between two

Large neighborhood search 7

existing nodes. Sarvanov and Doroshko [49] consideredabe wher& = n/2 and
nis even. Punnen [42] generalized this to arbitdagndn.

Using the same concept, Franceschi et al. [16] obtainedipnogresults for the
distance-constrained CVRP, reporting 13 cases in whighwleze able to improve
the best-known solution in the literature. The assignmeoblem, extended with
additional capacity constraints, is solved adraeger ProgrammindlIP) problem.
A further improvement is to identify removed nodes and itiserpoints in a clever
way.

Brueggemann and Hurink [7] presented a neighborhood ofrexqtial size for
the problem of scheduling independent jobs on parallel in@shminimizing the
weighted average completion time. The neighborhood canebecked through
matchings in a certain improvement neighborhood.

1.3.3 Efficiently solvable special cases

Several NP-hard problems may be solved in polynomial timemwtestricting the
problem topology or adding constraints to the original peat Using thesspecial
casesas neighborhoods, one can often search exponentially feig@borhoods in
polynomial time.

Ahuja et al. [2] describe a general method for turning a sotutmethod for a
restricted problem into a VLSN search technique. For eackentisolutionx we
create a well-structured instance of the problem which @sdived in polynomial
time. The well-structured instance is solved, and a newtispix is found. Although
the search method has a large potential, it is not alwayslsitogonstruct an algo-
rithm which turnsxinto a well-structured instance.

A Halin graphis a graph that may be obtained by considering a tree with
nodes of degree 2 in the plane and by joining the leaf nodesdygla so that the
resulting graph is planar. A number of NP-hard problems @anmdived efficiently

(oftenin linear time) when restricted to a Halin graph. Fmtance, Cornuejols et al.

[12] presented a linear-time algorithm for the TSP defined btalin graph. Phillips
et al. [39], presented similar results for the bottlenecle;T&d Winter [56] for the
Steiner problem.

Brueggemann and Hurink [8] also present a neighborhoodhéosingle machine
scheduling problem which is based on a dominance rule faresgzps. A relaxation
of the dominance rule can be solved in polynomial time bygisishortest process-
ing time first rule

2 Large neighborhood search

no

TheLarge Neighborhood SeardhNS) metaheuristic was proposed by Shaw [51].

Most neighborhood search algorithms explicitly define teeghborhood like the
relocate neighborhood described in Section 1.2. In the LM&lreuristic the neigh-

8 David Pisinger and Stefan Ropke

2 ER 2 ER
10 2. 04 3 10 2. 04
2 L 2
§ 2‘ o ®3 § 2 ° ®3
°* i - °* n 8
7o, o3 o2 7o J o3 o2
6 6
. °
2 ol e3 2 ol e3
; 3 :
E 1 ° o2
3 ° 2. 04
L 2
E’ 1‘ ° ®3
.
1 0 &
Te s 3)
6
]
2 ol e3
1

Fig. 3 Destroy and repair example. The top left figure shows a CVRIRiea before the destroy
operation. The top right figure shows the solution after ardgsoperation that removed 6 cus-
tomers (now disconnected from the routes). The bottom fighosvs the solution after the repair
operation has reinserted the customers.

borhood is defined implicitly by destroyand arepair method. A destroy method
destructs part of the current solution while a repair metredmlilds the destroyed
solution. The destroy method typically contains an eleroéstochasticity such that
different parts of the solution are destroyed in every imtmn of the method. The
neighborhood(x) of a solutionx is then defined as the set of solutions that can be
reached by first applying the destroy method and then therneygdhod.

To illustrate the destroy and repair concepts, considerGW&P. A destroy
method for the CVRP could remove, say 15%, of the customettseircurrent so-
lution, shortcutting the routes where customers have bemoved. A very simple
destroy method would select the customers to remove at nmnflagepair method
could rebuild the solution by inserting removed customess)g a greedy heuristic.
Such a heuristic could simply scan all free customers, fitiserone whose insertion
cost is the lowest and repeat inserting until all customesstbeen inserted. The
destroy and repair step is illustrated in Figure 3.

Since the destroy method can destruct a large part of thei@oluhe neigh-
borhood contains a large amount of solutions which expl#resname of the
heuristic. Consider for example a CVRP instance with 10Qacusrs. There are
C(100,15) = 100!/(15! x 85!) = 2.5 x 10 different ways to select the customers
to be removed if the percentage or degree of destructiorecdatution is 15%. For

Large neighborhood search 9

each removal choice there are many ways of repairing thaign]wbut different
removal choices can of course result in the same solutien gife repair.

We now present the LNS heuristic in more details. Pseude-tmdthe heuristic
is shown in Algorithm 1. Three variables are maintained teyalgorithm. The vari-
ablex? is the best solution observed during the seaxdh the current solution and
X! is a temporary solution that can be discarded or promoteuktstatus of current
solution. The functiord(-) is the destroy method whilg-) is the repair method.
More specifically,d(x) returns a copy ok that is partly destroyed. Applying-)
to a partly destroyed solution repairs it, that is, it refuenfeasible solution built
from the destroyed one. In line 2 the global best solutiomigailized. In line 4
the heuristic first applies the destroy method and then ih&irenethod to obtain a
new solutiork'. In line 5 the new solution is evaluated, and the heuristierteines
whether this solution should become the new current salytioe 6) or whether it
should be rejected. Thecceptfunction can be implemented in different ways. The
simplest choice is to only accept improving solutions. L&hehecks whether the
new solution is better than the best known solution. Hgéx¢ denotes the objective
value of solutiorx. The best solution is updated in line 9 if necessary. In lihéhke
termination condition is checked. It is up to the implemetdechoose the termina-
tion criterion, but a limit on the number of iterations ormé limit would be typical
choices. In line 12 the best solution found is returned. Ftieenpseudocode it can
be noticed that the LNS metaheuristic does not search tlire eighborhood of a
solution, but merely samples this neighborhood.

Algorithm 1 Large neighborhood search
1: input: a feasible solutiorn

2: X =x

3: repeat

4: X =r(dx);

5. if accept®,x) then
6: x=x

7 end if

8 if c(¥) < c(x®) then
9: X0 =xt;
10: endif

11: until stop criterion is met
12: return xP

The main idea behind the LNS heuristic is that the large r@ghood allows
the heuristic to navigate in the solution space easily, évéite instance is tightly
constrained. This is to be opposed to a small neighborhoadhwdan make the
navigation in the solution space much harder.

In the original LNS paper [51] the accept method only allovimgroving so-
lutions. Later papers like [45] and [50] have used an accegtariteria borrowed
from simulated annealing. With such an acceptance crjtdrégatemporary solution
xt is always accepted #(x') < c(x), and accepted with probabiligy (€)—c)/T
if c(x) < c(x'). HereT > 0 is the currentemperature The temperature is initial-

10 David Pisinger and Stefan Ropke

ized atTp > 0 and is decreased gradually, for example by performing fuaie
Thew= aTog at each iteration, whereQ a < 1 is a parameter. The idea is tHats
relatively high initially, thus allowing deteriorating lsions to be accepted. As the
search progress@sdecreases and towards the end of the search only a few or no
deteriorating solutions will be accepted. If such an aceqe criteria is employed,

the LNS heuristic can be viewed as a standard simulated kngéeuristic with a
complex neighborhood definition.

The destroy method is an important part of the LNS heuri$tie most impor-
tant choice when implementing the destroy method isdibgree of destructiarif
only a small part of the solution is destroyed then the h&amsay have trouble ex-
ploring the search space as the effect of a large neighbdiisdost. If a very large
part of the solution is destroyed then the LNS heuristic antegrades into re-
peated re-optimization. This can be time consuming or ypelor quality solutions
dependent on how the partial solution is repaired. Shawgsdposed to gradually
increase the degree of destruction, while Ropke and Pisjdg§echoose the degree
of destruction randomly in each iteration by choosing thgree from a specific
range dependent on the instance size. The destroy metha@lsaude chosen such
that the entire search space can be reached, or at leastt¢hesting part of the
search space where the global optimum is expected to be fdtwedefore it cannot
focus on always destroying a particular component of thetsol but must make it
possible to destroy every part of the solution.

The implementor of an LNS heuristic has much freedom in cimgpthe re-
pair method. A first decision is whether the repair methodukhbe optimal in the
sense that the best possible full solution is constructaa the partial solution, or
whether it should be a heuristic assuming that one is satigfith a good solution
constructed from the partial solution. An optimal repaiemtion will be slower
than a heuristic one, but may potentially lead to high quadlutions in a few it-
erations. However, from a diversification point of view, gitimal repair operation
may not be attractive: only improving or identical-costugmns will be produced
and it can be difficult to leave valleys in the search spaceasw large part of the
solution is destroyed in each iteration. The framework alsables the implementor
to choose if the repair method should be hand-coded or if argépurpose solver
like a mixed integer programming (MIP) or constraint pragnaing solver should
be invoked.

It is worth observing that the LNS heuristic typically aliates between an in-
feasible solution and a feasible solution: the destroy atpmr creates an infeasible
solution which is brought back into feasible form by the liepauristic. Alternately
the destroy and repair operations can be viewed as fix/aq@imperations: théx
method (corresponding to the destroy method) fixes partoddfution at its current
value while the rest remains free, thptimizemethod (corresponding to the repair
method) attempts to improve the current solution while eetipg the fixed values.
Such an interpretation of the heuristic may be more natbithkirepair method is
implemented using MIP or constraint programming solvers.

The concept of destroy and repair methods in large neiglioatends itself best
to problems which naturally can be decomposed into a mastdtem covering a

Large neighborhood search 11

number of tasks to be carried out, and a set of subproblemshwiged to satisfy
some constraints. In this case, the destroy methods renwwe tasks from the
current solution, and the repair methods reinsert the t&$#sce, problems where
Dantzig Wolfe decomposition has been used with successoare candidates for
LNS heuristics.

Before closing this section, it should be mentioned thaamBwork, very similar
to the LNS, has been proposed under the narnreand recreateby Schrimpf et al.
[50].

2.1 Adaptive large neighborhood search

The Adaptive Large Neighborhood Sea(@.NS) heuristic was proposed in [45]
and extends the LNS heuristic by allowing multiple destnogt eepair methods to be
used within the same search. Each destroy/repair methasigreed a weight that
controls how often the particular method is attempted dpitie search. The weights
are adjusted dynamically as the search progresses so ¢hiagthistic adapts to the
instance at hand and to the state of the search.

Using neighborhood search terminology, one can say thalthNS extends the
LNS by allowing multiple neighborhoods within the same skaiThe choice of
neighborhood to use is controlled dynamically using reedrperformance of the
neighborhoods.

Algorithm 2 Adaptive large neighborhood search
1: input: a feasible solutior

22X =xp =(1,...,0;p"=(1,...,1);

3: repeat

4: select destroy and repair methatls Q~ andr € Q" usingp™ andp™;
5 X=r(dx);

6: if accepty,x) then

7: x=x

8: endif

9: if () < c(x®P) then
10: X0 =,
11: endif

12: updatep~ andp™;
13: until stop criterion is met
14: return x°

A pseudo-code for the ALNS heuristic is shown in Algorithn€2mpared to the
LNS pseudo code in Algorithm 1, the following have changeadek 4 and 12 have
been added and line 2 has been modified. The sets of destragpaid methods
are denoted2~ andQ™, respectively. Two new variables are introduced in line 2:
p~ eR? landpt e RI?"I to store the weight of each destroy and repair method,
respectively. Initially all methods have the same weightirie 4 the weight vectors

12 David Pisinger and Stefan Ropke

p~ andp™ are used to select the destroy and repair methods usmgeite wheel
principle. The algorithm calculates the probabili(g/‘ of choosing thej™ destroy
method as follows

o = 713]-_
T Q| =
ZI‘(:l‘ Px
and the probabilities for choosing the repair methods aterdgned in the same

way.

The weights are adjusted dynamically, based on the recqrdgfdrmance of
each destroy and repair method. This takes place in line h@nvan iteration of the
ALNS heuristic is completed, a scogefor the destroy and repair method used in
the iteration is computed using the formula

w, if the new solution is a new global best

w, if the new solution is better than the current one,
if the new solution is accepted

wy if the new solution is rejected

¥ = max

1)

wherewy, ap, ws andw, are parameters. A high value corresponds to a successful
method. We would normally have; > wp > ws > wy > 0.

Leta andb be the indices of the destroy and repair methods that werkinsiee
last iteration of the algorithm, respectively. The compaseorresponding to the
selected destroy and repair methods ingheandp ™ vectors are updated using the
equations

Pa =Ap; + (1A, py =Apf +(1-A)y, (2)

whereA € [0,1] is thedecayparameter that controls how sensitive the weights are to
changes in the performance of the destroy and repair metNods that the weights
that are not used at the current iteration remain unchafdgedaim of the adaptive
weight adjustment is to select weights that work well forithetance being solved.
We encourage heuristics that bring the search forwardethesthe ones rewarded
with theay, wp andw;s parametersin (1). We discourage heuristics that lead toyman
rejected solutions as an iteration resulting in a rejecvéation is a wasted iteration,
roughly speaking. This is achieved by assigning a low vaduest

The ALNS heuristic described so far is prone to favor compépair methods
that more often reach high quality solutions compared tgkmrepair methods.
This is fine if the complex and simple repair methods are dygtiede-consuming,
but that may not be the case. If some methods are significglatlyer than others,
one may normalize the scoge of a method with a measure of the time consump-
tion of the corresponding heuristic. This ensures a propeketoff between time
consumption and solution quality.

Large neighborhood search 13

2.2 Designing an ALNS algorithm

The considerations for selecting destroy and repair metithe LNS heuristic,
mentioned earlier, also holds for an ALNS heuristic. Howethee ALNS framework
gives some extra freedom because multiple destroy/repetinads are allowed. In
the pure LNS heuristic we have to select a destroy and repmirad that is expected
to work well for a wide range of instances. In an ALNS heucistie can afford to
include destroy/repair methods that only are suitable mesoases — the adaptive
weight adjustment will ensure that these heuristics seldognused on instances
where they are ineffective. Therefore the selection ofrdgsand repair methods
can be turned into a search for methods that are good at elthensification or
intensification.

Below we will discuss some typical destroy and repair meshbuthe discussion
we will assume that our solution is represented by a set dsidexvariables The
term variables should be understood in a rather abstract way

Diversification and intensification for the destroy methods be accomplished
as follows: to diversify the search, one may randomly sealexparts of the solution
that should be destroyethidom destroynethod). To intensify the search one may
try to removeq “critical” variables, i.e. variables having a large costvariables
spoiling the current structure of the solution (e.g. edgessing each other in an
Euclidean TSP). This is known agorst destroyor critical destroy

One may also choose a number of related variables that aydeamerchange
while maintaining feasibility of the solution. Thislated destroyeighborhood was
introduced by Shaw [51]. For the CVRP one can define a reletsimeasure be-
tween each pair of customers. The measure could simply beistence between
the customers and it could include customer demand as weslidmers with similar
demand are considered related). A related destroy woudtttselset of customers
that have a high mutual relatedness measure. The idea i tuld be easy to
exchange similar customers.

Finally, one may uséistory based destroyhere theq variables are chosen ac-
cording to some historical information as presented in.[#8E historical informa-
tion could for example count how often setting a given vdedbr set of variables)
to a specific value leads to a bad solution. One may then tgnmve variables that
are currently assigned to an improper value, based on thexiba information.

The repair method&Q ™) are often based on concrete well-performing heuris-
tics for the given problem. These heuristics can make usardnts of the greedy
paradigm, e.g. performing the locally best choice in eaep,sbr performing the
least bad choice in each step. The repair methods can alsasbe bn approxima-
tion algorithms or exact algorithms. Exact algorithms camédaxed to obtain faster
solution times at the cost of solution quality. Some examplee presented in [4]
and [51]. Time consuming and fast repair methods can be ntiygeenalizing the
time consuming methods as described earlier.

14 David Pisinger and Stefan Ropke

ALNS

__—

DD,

Fig. 4 lllustration of neighborhoods used by ALNS. The currenttioh is marked wittx. ALNS
operates on structurally different neighborhoddis. .., Nk defined by the corresponding search
heuristics. All neighborhood;, ..., Nk in ALNS are a subset of the neighborhoNd defined by
modifying q variables, wherg| is a measure of the maximum degree of destruction.

Figure 4 illustrates, in an abstract way, the many neighbodk in an ALNS
heuristic. Each neighborhood on the figure can be consideredunique combina-
tion of a destroy and repair method.

In traditional local search heuristics the diversificationontrolled implicitly by
the local search paradigm (accept ratio, tabu list, etonthe (A)LNS heuristic this
may not be enough. It can often be advantageous to use naisiagndomization
in both the destroy and repair methods to obtain a propergifi@tion. This helps
avoiding stagnating search processes where the destroyepad methods keep
performing the same modifications to a solution.

Some optimization problems can be split into a number of maiems, where
each sub-problem can be solved individually. Such problanisde thebin packing
problemin which a number of bins are to be filled, or thehicle routing problem
in which a number of routes are to be constructed. For suchlgmes one should
decide whether the subproblems should be solved one bysegaéntial heuristigs
or all subproblems should be solved at the same tipaea(lel heuristic$. Sequen-
tial heuristics are easier to implement but may have thedg&atage that the last
subproblem solved is left with variables that do not fit wetiéther. This is to some
extent avoided in parallel heuristics.

A natural extension to the ALNS framework is to hasaupled neighborhoods
In principle one may, for each destroy methdyddefine a subsdf; C Q" of re-
pair neighborhoods that can be used vdthThe roulette wheel selection of repair
neighborhoods will then only choose a neighborhool;iif d; was chosen.

As a special case, one may hd¢e= 0 meaning that the neighborhodgdtakes
care of both the destroy and repair steps. One could use amoydocal search
heuristic to compete with the other destroy and repair r@ghoods, ensuring that
a thorough investigation of the solution space close to thieeat solution is made
from time to time.

Large neighborhood search 15

For some problems it may be sufficient to have a number of @esind repair
heuristics that are selected randomly with equal prolgditiat is without the adap-
tive layer. Such heuristics share the robustness of the Ahdistics, while having
considerably fewer parameters to calibrate.

2.3 Propertiesof the ALNS framework

The ALNS framework has several advantages. For most ogtiniz problems we
already know a number of well-performing heuristics whieim dorm the core of
an ALNS algorithm. Due to the large neighborhoods and disers the neigh-
borhoods, the ALNS algorithm will explore large parts of g@ution space in a
structured way. The resulting algorithm becomes very mylassit is able to adapt
to various characteristics of the individual instances, seldom is trapped in local
optima.

The calibration of the ALNS algorithm is quite limited as thdaptive layer
automatically adjusts the influence of each neighborhoed.us is still necessary
to calibrate the individual sub-heuristics used for seiaglhe destroy and repair
neighborhoods, but one may calibrate these individualgven use the parameters
used in existing algorithms.

In the design of most local search algorithms the reseattfi®eto choose be-
tween a number of possible neighborhoods. In ALNS the quesinot “either-or”
but rather “both-and”. As a matter of fact, our experienc¢hst the more (rea-
sonable) neighborhoods the ALNS heuristic makes use ofbélter it performs
[40, 46].

The ALNS framework is not the only one to make use of severgihimrhoods
in a LNS heuristic. Rousseau et al. [48] use two LNS neighbods for thé/ehicle
Routing Problem with Time WindowWgRPTW): one removing customers and an-
other removing arcs. They propos¥axiable Neighborhood Descef/ND) where
one neighborhood is used until one is “sufficiently sure't i@ search is trapped
in a local minimum in which case the search switches to theratkeighborhood.
When the second neighborhood runs out of steam the first neigbod is used
again and so on.

Perron [36] used an adaptive technique to select repairadsttiom a portfolio
by assigning weights to the repair methods based on thdonpeaince like in the
ALNS. Laborie and Godard [28] propose a framework very simib ALNS, the
difference being that their framework also dynamicallyustf the parameters of the
individual destroy and repair methods. The ALNS framewakatibed in this sec-
tion assumes that those parameters are fixed in advancanPatml. [35] only use
one destroy and repair method but propose a method for dga#lynadjusting the
scope of the destroy operation in order to find the neighbmtisize that allows the
repair operation to be completed within reasonable time. duthors use complex,
time consuming repair methods.

16 David Pisinger and Stefan Ropke

When implementing an LNS or ALNS heuristic one can choosewhouter"
metaheuristic to use to guide the search (if any). Some ging¥ a descent ap-
proach (e.g. [4, 51]), some use iterated local search (853.48]) and other use
simulated annealing (e.g. [45, 50]). It is our experiencd #ven a simple outer
metaheuristic improves upon a pure descent approach.

The ALNS is related to the VNS metaheuristics [25, 31] in thase that both
heuristics search multiple neighborhoods. Since a lod&amn with respect to one
neighborhood is not necessarily a local optimum with resfmeanother neighbor-
hood, changing neighborhoods in the search is a way of diyerg the search.

VNS makes use of a parameterized family of neighborhoogg;ajly obtained
by using a given neighborhood with variable depth. When therdghm reaches
a local minimum using one of the neighborhoods, it proceeitts avlarger neigh-
borhood from the parameterized family. When the VNS alganigets out of the
local minimum it proceeds with the smaller neighborhood t@mcontrary, ALNS
operates on a predefined set of large neighborhoods cordisigpto the destroy
(removal) and repair (insertion) heuristics. The neighbods are not necessarily
well-defined in a formal mathematical sense — they are ratefined by the corre-
sponding heuristic algorithm.

A major challenge in designing a good VNS algorithm is to dedh what order
the neighborhoods should be searched. A natural stratagyoigler the neighbor-
hoods according to the complexity of searching them, suahdhe starts with the
least complex neighborhoods, and gradually include theemexpensive. ALNS
take a different approach by using roulette wheel seleatitim adaptive probabili-
ties to decide which neighborhoods to use.

Another related concept is that bfyper-heuristicsRoss [47] describes hyper-
heuristics asheuristics to choose heuristicthat is, algorithms where a master
heuristic is choosing between several sub-ordinate hegig herefore, the ALNS
heuristic can be seen as a kind of hyper-heuristic: the agagmponent is choos-
ing from the set of destroy and repair methods (which uswatyheuristics).

A few examples of parallel processing LNS/ALNS implemeiotad exists in the
literature. Perron and Shaw [37] describe a parallel LNSikgeithat is applied to
a network design problem and Ropke [44] describes a frantefeorimplement-
ing parallel ALNS heuristics. The framework is tested on@&RP and TSP with
pickup and delivery.

3 Applications of LNS

So far the LNS heuristic has been most successful within tbasaof routing and
scheduling problems. In this section we review the mainltesor these two prob-
lem classes.

Large neighborhood search 17

3.1 Routing problems

In this section we survey applications of LNS heuristicsaoiants of the TSP and
VRP. There are many examples of applications of LNS to VRRaus, starting
with Shaw’s [51] definition of the LNS heuristic. Many of thedristics have been
successful and have provided state-of-the-art resultsedtirme of publication. An
incomplete list of papers describing the application of LiSVRP variants, in
particular the VPRTW is: [4, 5, 10, 16, 22, 23, 30, 40, 41, 46, 48, 50, 51].
Reference [16] does not make the connection to the LNS heyhsit the approach
described fits nicely in the LNS framework.

Bent and Hentenryck [4] describe a LNS heuristic for the VRPTn the
VRPTW the most common objective is to minimize first the numifevehicles
and, for the same number of vehicles, to minimize the totale¢engths. Bent and
Hentenryck [4] propose to solve the problem in a two-stage@ach. In the first
stage the number of routes is minimized by a simulated amgealgorithm that
uses traditional, small neighborhoods. In the second stegtal route lengths are
minimized with an LNS heuristic. The destroy method useg¢tetedness princi-
ple described in Section 2.2. The size of the neighborhogdadually increased,
starting out by only removing one customer and by steaditygiasing the number
of customers to remove as the search progresses. At regtdarals, the number of
customers to remove is reset to one and the neighborhoodhsizase starts over.
The repair method is implemented using a truncated brandrbaund algorithm.
The LNS algorithm only accepts improving solutions. Thautesobtained can be
considered as state-of-the-art at the time of publicatfosimilar algorithm was
also proposed by the same authors [5] for Biekup and Delivery Problem with
Time WindowgPDPTW).

Ropke and Pisinger [45] introduce the ALNS extension of tihSLpreviously
described in Section 2.1. The algorithm is applied to the PPDifferences with
the method in [4] are: (i) several different destroy/rema@thods are used, (i) fast,
greedy heuristics are used as repair methods, (iii) theo$the neighborhood varies
from iteration to iteration (the number of customers to reeis chosen randomly
from a predefined interval) and (iv) a simulated annealingeptance criterion is
used. The heuristic has obtained state-of-the art resulthé PDPTW. In subse-
quent papers [40, 46] it is shown that many VRP variants (iticlg the CVRP and
VRPTW) can be transformed to a PDPTW and solved using an weprgersion
of the ALNS heuristic from [45]. For most of the tested VRPigats the ALNS
heuristic must be considered to be on par with or better tbarpeting heuristics at
the time of publication.

Prescott-Gagnon et al. [41] present an LNS heuristic foMRETW with an ad-
vanced repair operator that solves a restricted VRPTW tiir@uheuristic branch-
and-price algorithm. Four destroy methods are used anchasea based on perfor-
mance as in [45]. Overall, the heuristic reaches bettetisolsithan previous LNS
approaches, probably due to the advanced repair operator.

It should be mentioned that the VRPTW is one of the most stllieblem class
from a metaheuristic point of view. We estimate that morentheghundred papers

18 David Pisinger and Stefan Ropke

have been published on the subject. It is therefore rembekhat LNS heuristics,
as a rather young class of heuristics, have been able to le ifotefront of the
developmentin recent years. We should also mention thdighkesolutions for the
VRPTW are currently found using a non-LNS heuristic progbbg Nagata and
Braysy [34].

We are only aware of a few applications of LNS to TSP variaids 88, 50]. An
explanation for the lower number of applications could bat the LNS heuristic
is inherently better suited for VRP variants than for TSParg#s because of the
partitioning element present in VRPs.

3.2 Scheduling problems

LNS and ALNS lend themselves well to scheduling problems tduthe tightly
constrained nature of the problems. Laborie and Godardg&&jent results for a
self-adapting large neighborhood search, applied to singdde scheduling prob-
lems. Godard, Laborie, and Nuijten [21] present a randodiiaege neighborhood
search for cumulative scheduling. Carchrae and Beck [$jgmeresults for job-shop
scheduling problems. Cordeau et al. [11] present an ALNSistaufor solving a
technician scheduling problem. Instances with hundretisséd® and technicians are
solved in less than 15 minutes. Muller [33] recently presdran ALNS algorithm
for the resource constrained project scheduling probldm.domputational results
show that the algorithm is among the three best on the welvkr®SPLIB bench-
mark instances. Finally, [32] presented a hybrid ALNS aithpon for the multi-item
capacitated dynamic lot sizing problem with setup times.

4 Conclusion

In this chapter we have reviewed the LNS heuristic and iteresibns and we have
briefly explained the central concepts in VLSN. Both arereséing concepts and
we hope that these topics will be subject to increased relséathe future. We be-
lieve that we have yet to see the full potential from both L8 ®¥LSN algorithms
in general.

One of the key benefits of the LNS heuristic is that a heuristic be quickly
put together from existing components: an existing cowsitbn heuristic or exact
method can be turned into a repair heuristic and a destrolyadddiased on random
selection is easy to implement. Therefore we see a potdatialsing simple LNS
heuristics for benchmark purposes when developing moreistigated methods.

We do not have any illusions about LNS being superior to dleotnetaheuris-
tics. We believe that LNS heuristics, in general, work weflam the problem con-
sidered involves some kind of partitioning decision, as.q ¥RP, bin-packing or
generalized assignment problems. Such structure seerasaelbsuited for the de-

Large neighborhood search 19

stroy/repair operations. For problems that do not exhitié structure it is difficult
to predict the performance of the LNS heuristic and otheraimadristics may be
better suited.

Large neighborhoods are no guarantee for finding bettettisnki Increased
complexity of the neighborhood search means that fewetiters can be performed
by a local search algorithm. Gutin and Karapetyan [24] expentally compare
a number of small and large neighborhoods for the multidsieeral assignment
problem, including various combinations of them. It is derstoated that some com-
binations of both small and large neighborhoods providd#® results. This could
indicate that hybrid neighborhoods may be a promising toador future research.

References

(1]

(2]

(3]
(4]

(5]

(6]
[7]

(8]

(9]

R.K. Ahuja, J.B. Orlin, and D. Sharma. New neighborhoedrgh structures
for the capacitated minimum spanning tree problem. Teethfteport 99-2,
1999.

R.K. Ahuja, O. Ergun, J.B. Orlin, and A.P. Punnen. A syred very large-
scale neighborhood search techniqu&sscrete Applied Mathematicd23:
75-102, 2002.

D.L. Applegate, R.E. Bixby, V. Chvatal, and W.J. Codkhe Traveling Sales-
man Problem: A Computational Studyrinceton University Press, 2006.

R. Bent and P. Van Hentenryck. A two-stage hybrid localsé for the vehicle
routing problem with time windowsTransportation Scien¢&8(4):515-530,
2004.

R. Bent and P. Van Hentenryck. A two-stage hybrid aldoritfor pickup and
delivery vehicle routing problem with time windowSomputers & Operations
Research33(4):875-893, 2006.

T. Brueggemann and J. Hurink. Two very large-scale neighoods for single
machine schedulinddR Spectrun29:513-533, 2007.

T. Brueggemann and J.L. Hurink. Matching based expdakemeighborhoods
for parallel machine scheduling. Technical Report Memdtem No. 1773,
2005.

T. Brueggemann and J.L. Hurink. Two exponential neigthloods for single
machine scheduling. Technical Report Memorandum No. 170@5.

T. Carchrae and J.C. Beck. Cost-based large neighbdrkearch. InNork-
shop on the Combination of Metaheuristic and Local Searth ®@bnstraint
Programming Technique2005.

[10] Y. Caseau, F. Laburthe, and G. Silverstein. A meta-iséafactory for vehicle

routing problemsLecture Notes in Computer Sciendg13:144-159, 1999.

[11] J.-F. Cordeau, G. Laporte, F. Pasin, and S. Ropke. Stingdtechnicians

and tasks in a telecommunications compadgurnal of Scheduling2009.
Forthcoming.

20 David Pisinger and Stefan Ropke

[12] G. Cornuejols, D. Naddef, and W.R. Pulleyblank. Haliaghs and the travel-
ing salesman problenMathematical Programming6:287-294, 1983.

[13] K.A. Dowsland. Nurse scheduling with tabu search amatsgic oscillation.
European Journal of Operations Researtf6:393-407, 1998.

[14] I. Dumitrescu, S. Ropke, J.-F. Cordeau, and G. Laportee traveling sales-
man problem with pickup and delivery: Polyhedral resultd arbranch-and-
cut algorithm.Mathematical Programming009. Forthcoming.

[15] M.M. Flood. The traveling salesman problem@perations Research#(1):
61-75, 1956.

[16] R. De Franceschi, M. Fischetti, and P. Toth. A new ILBdxhrefinement
heuristic for vehicle routing problemMathematical Programmindl05:471—
499, 2006.

[17] D. Gamboa, C. Osterman, C. Rego, and F. Glover. An exprial evaluation
of ejection chain algorithms for the traveling salesmarbpgm. Technical
report, School of Business Administration, University oisslssippi, 2006.

[18] M. Gendreau, F. Guertin, J.-Y. Potvin, and R. SeguinigNkorhood search
heuristics for a dynamic vehicle dispatching problem wittkpups and deliv-
eries. Technical Report 98-10, 1998.

[19] F. Glover. Ejection chains, reference structures, alteirnating path algo-
rithms for the traveling salesman problem. Technical red®92.

[20] F. Glover and C. Rego. Ejection chain and filter-and+fagthods in combi-
natorial optimization.4OR: A Quarterly Journal of Operations Researdh
263-296, 2006.

[21] D. Godard, P. Laborie, and W. Nuijten. Randomized langgghborhood
search for cumulative scheduling. Technical Report TR303; ILOG, 2005.

[22] A. Goel. Vehicle scheduling and routing with driver'®king hours.Trans-
portation Science2009. Forthcoming.

[23] A. Goel and V. Gruhn. A general vehicle routing probleBuropean Journal
of Operational Researgii91(3):650-660, 2008.

[24] G. Gutin and D. Karapetyan. Local search heuristicgtiermultidimensional
assignment problem. IRroc. Golumbic Festschrifolume 5420, pages 100—
115. 2009.

[25] P. Hansen and N. Mladendvi Variable neighborhood search: Principles and
applicationsEuropean Journal of Operational Reseaydl30:449-467, 2001.

[26] J. Hurink. An exponential neighborhood for a one maetbiatching problem.
OR-Spektrun21:461-476, 1999.

[27] P. Kilby, P. Prosser, and P. Shaw. Guided local searcthiavehicle routing
problem. InProceedings of the 2nd International Conference on Metebkeu
tics, July 1997.

[28] P. Laborie and D. Godard. Self-adapting large neighbod search: Applica-
tion to single-mode scheduling problems. Technical RepRr07-001, ILOG,
2007.

[29] S. Lin and B. Kernighan. An effective heuristic algbrit for the traveling
salesman problenOperations Resear¢l21:498-516, 1973.

Large neighborhood search 21

[30] D. Mester and O. Braysy. Active guided evolution stgas for large-scale
vehicle routing problems with time window§&omputers and Operations Re-
search 32:1593-1614, 2005.

[31] N. Mladenovic and P. Hansen. Variable neighborhoodde&omputers and
Operations Resear¢24:1097-1100, 1997.

[32] L. F. Mullerand S. Spoorendonk. A hybrid adaptive langéghborhood search
algorithm and an application to the multi-item capacitadgdamic lot sizing
problem with setup times. IRroceedings of the 9th Workshop on Algorith-
mic Approaches for Transportation Modeling, Optimizatiand Systems (AT-
MOS) 2009. Forthcoming.

[33] L.F. Muller. An adaptive large neighborhood searcloaitthm for the resource-
constrained project scheduling problemMIC 2009: The VIl Metaheuristics
International Conference2009. Forthcoming.

[34] VY. Nagata and O. Braysy. A powerful route minimizatioauhistic for the
vehicle routing problem with time windowsOperations Research Letters
2009. Forthcoming.

[35] M. Palpant, C. C. Artigues, and P. Michelon. LSSPERv8uqj the resource-
constrained project scheduling problem with large neiginbood searchAn-
nals of Operations Research31:237-257, 2004.

[36] L. Perron. Fast restart policies and large neighbodrsmarch. IfProceedings
of CP-AlI-OR’20032003.

[37] L. Perron and P. Shaw. Parallel large neighborhood:bedn Proceedings of
RenPar’15 2003.

[38] H.L. Petersen and O.B.G. Madsen. The double traveBamlgsman problem
with multiple stacks — formulation and heuristic solutigppaoaches.Euro-
pean Journal of Operational Researd®8(1):139-147, 2009.

[39] J.M. Phillips, A.P. Punnen, and S.N. Kabadi. A lineanei algorithm for the
bottleneck traveling salesman problem on a Halin grapiormation Process-
ing Letters 67:105-110, 1998.

[40] D. Pisinger and S. Ropke. A general heuristic for vehiduting problems.
Computers & Operations Resear@d#(8):2403—-2435, 2007.

[41] E. Prescott-Gagnon, G. Desaulniers, and L.-M. Roussk&aranch-and-price-
based large neighborhood search algorithm for the vehaéng problem
with time windows. Technical Report G-2007-67, GERAD, Mesal, Quebec,
Canada, September 2007.

[42] A.P.Punnen. The traveling salesman problem: New pmiyial approximation
algorithms and domination analysi®urnal of Information and Optimization
Sciences22:191-206, 2001.

[43] C. Rego, D. Gamboa, and F. Glover. Data structures agxtien chains for
solving large scale traveling salesman probleEsropean Journal of Opera-
tional Research160:154-171, 2006.

[44] S. Ropke. Parallel large neighborhood search - a softivamework. InMIC
2009. The VIl Metaheuristics International Conferen2809. Forthcoming.

22 David Pisinger and Stefan Ropke

[45] S. Ropke and D. Pisinger. An adaptive large neighbodissarch heuristic for
the pickup and delivery problem with time windowE.ansportation Scienge
40(4):455-472, 2006.

[46] S. Ropke and D. Pisinger. A unified heuristic for a larlgess of vehicle routing
problems with backhaulsEuropean Journal of Operational Reseaydv1:
750-775, 2006.

[47] P. Ross. Hyper-heuristics. In E.K. Burke and G. Kendalitors,Introductory
Tutorials in Optimisation, Decision Support and Search hetology chap-
ter 17, pages 529-556. Springer, 2005.

[48] L.-M. Rousseau, M. Gendreau, and G. Pesant. Using @nsbased op-
erators to solve the vehicle routing problem with time wiwdo Journal of
Heuristics 8:43-58, 2002.

[49] V.I. Sarvanovand N.N. Doroshko. Approximate solutadithe traveling sales-
man problem by a local algorithm with scanning neighborfsooidfactorial
cardinality in cubic time.Software: Algorithms and Programs, Mathematics
Institute of the Belorussia Academy of Science., MiB$ki1-13, 1981.

[50] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and Ge€k. Record break-
ing optimization results using the ruin and recreate ppileciJournal of Com-
putational Physics159(2):139-171, 2000.

[51] P. Shaw. Using constraint programming and local searethods to solve ve-
hicle routing problems. I€P-98 (Fourth International Conference on Princi-
ples and Practice of Constraint Programmingdlume 1520 of_ecture Notes
in Computer Scien¢@ages 417-431, 1998.

[52] H. Sontrop, P. van der Horn, and M. Uetz. Fast ejectiaairchlgorithms for
vehicle routing with time windowd_ecture Notes in Computer Scien8636:
78-89, 2005.

[53] P.M. ThompsonlLocal search algorithms for vehicle routing and other com-
binatorial problems PhD thesis, Operations Research Center, MIT, 1988.

[54] P.M. Thompson and H.N. Psaraftis. Cyclic transfer atpons for multivehicle
routing and scheduling problem®perations Researcd1, 1993.

[55] P. Toth and D. Vigo. An overview of vehicle routing prebts. In P. Toth
and D. Vigo, editorsThe Vehicle Routing Probleniolume 9 ofSIAM Mono-
graphs on Discrete Mathematics and Applicatipobapter 1, pages 1-26.
SIAM, Philadelphia, 2002.

[56] P. Winter. Steiner problem in Halin networksiscrete Applied Mathematics
17:281-294, 1987.

[57] M. Yagiura, T. Ibaraki, and F. Glover. A path relinking@roach with ejection
chains for the generalized assignment problé&uropean Journal of Opera-
tional Research169:548-569, 2006.

