
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 16, 2024

Large Neighborhood Search

Pisinger, David; Røpke, Stefan

Published in:
Handbook of Metaheuristics

Publication date:
2010

Link back to DTU Orbit

Citation (APA):
Pisinger, D., & Røpke, S. (2010). Large Neighborhood Search. In M. Gendreau (Ed.), Handbook of
Metaheuristics (2 ed., pp. 399-420). Springer. http://www.springerlink.com.globalproxy.cvt.dk/content/978-1-
4419-1663-1#section=777803&page=1

https://orbit.dtu.dk/en/publications/61a1b7ca-4bf7-4355-96ba-03fcdf021f8f
http://www.springerlink.com.globalproxy.cvt.dk/content/978-1-4419-1663-1#section=777803&page=1
http://www.springerlink.com.globalproxy.cvt.dk/content/978-1-4419-1663-1#section=777803&page=1


Large neighborhood search

David Pisinger and Stefan Ropke

Abstract
Heuristics based onlarge neighborhood searchhave recently shown outstanding

results in solving various transportation and scheduling problems. Large neighbor-
hood search methods explore a complex neighborhood by use ofheuristics. Using
large neighborhoods makes it possible to find better candidate solutions in each it-
eration and hence traverse a more promising search path.

Starting from the large neighborhood search method, we givean overview ofvery
large scale neighborhoodsearch methods and discuss recent variants and extensions
like variable depth searchandadaptive large neighborhood search.

1 Introduction

The topic of this chapter is the metaheuristicLarge Neighborhood Search(LNS)
proposed by Shaw [51]. In LNS, an initial solution is gradually improved by al-
ternately destroying and repairing the solution. The LNS heuristic belongs to the
class of heuristics known asVery Large Scale Neighborhood search(VLSN) al-
gorithms [2]. All VLSN algorithms are based on the observation that searching a
large neighborhood results in finding local optima of high quality, and hence overall
a VLSN algorithm may return better solutions. However, searching a large neigh-
borhood is time consuming, hence various filtering techniques are used to limit the
search. In VLSN algorithms, the neighborhood is typically restricted to a subset of
the solutions which can be searched efficiently. In LNS the neighborhood is implic-
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2 David Pisinger and Stefan Ropke

itly defined by methods (often heuristics) which are used to destroy and repair an
incumbent solution.

The two similar terms LNS and VLSN may cause confusion. We consistently use
VLSN for the broad class of algorithms that searches very large neighborhoods and
LNS for the particular metaheuristic, belonging to the class of VLSN algorithms,
that is described in Section 2.

In the rest of the introduction we first define two example problems in Section
1.1. We then define neighborhood search algorithms in Section 1.2 and the class
of VLSN algorithms in Section 1.3. In Sections 1.3.1–1.3.3 we describe three sub-
classes of VLSN algorithms. In Section 2 we describe the LNS heuristic and an
extension called adaptive large neighborhood search. Thisis followed in Section 3
by a survey of LNS applications and the chapter is concluded in Section 4.

1.1 Example problems

Throughout this chapter we will refer to two example problems: theTraveling Sales-
man Problem(TSP) and theCapacitated Vehicle Routing Problem(CVRP). The
TSP is probably the most studied and well-known combinatorial optimization prob-
lem. In the TSP a salesman has to visit a number of cities. The salesman must per-
form a tour through all the cities such that the salesman returns to his starting city
at the end of the tour. More precisely we are given an undirected graphG = (V,E)
in which each edgee∈ E has an associated costce. The goal of the TSP is to find a
cyclic tour, such that each vertex is visited exactly once. The sum of the edge costs
used in the tour must be minimized. We recommend [3] for more information about
the TSP.

In the CVRP, which is a generalization of the TSP, one has to serve a set of
customers using a fleet of homogeneous vehicles based at a common depot. Each
customer has a certain demand for goods which initially are located at the depot.
The task is to design vehicle routes starting and ending at the depot such that all
customer demands are fulfilled.

The CVRP can be defined more precisely as follows. We are givenan undirected
graphG = (V,E) with verticesV = {0, . . . ,n} where vertex 0 is the depot and the
verticesN = {1, . . . ,n} are customers. Each edgee∈ E has an associated costce.
The demand of each customeri ∈ N is given by a positive quantityqi. Moreover,m
homogeneous vehicles are available at the depot and the capacity of each vehicle is
equal toQ. The goal of the CVRP is to find exactlym routes, starting and ending at
the depot, such that each customer is visited exactly once bya vehicle and such that
the sum of demands of the customers on each route is less than or equal toQ. The
sum of the edge costs used in them routes must be minimized. We recommend [55]
for further information about the CVRP and vehicle routing problems in general.
An example of a TSP and a CVRP solution are shown in Figure 1.
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Fig. 1 Left: a TSP solution. Right: A CVRP solution. In the CVRP the depot is marked with a
square and the customersi are marked with nodes each having a demandqi

1.2 Neighborhood search

In this section we formally introduce the term neighborhoodsearch. We are given
an instanceI of a combinatorial optimization problem whereX is the set of feasible
solutions for the instance (we writeX(I) when we need to emphasize the connection
between instance and solution set) andc : X → R is a function that maps from a
solution to itscost. X is assumed to be finite, but is usually an extremely large set.
We assume that the combinatorial optimization problem is a minimization problem,
that is, we want to find a solutionx∗ such thatc(x∗) ≤ c(x)∀x∈ X.

We define aneighborhoodof a solutionx∈ X asN(x) ⊆ X. That is,N is a func-
tion that maps a solution to a set of solutions. A solutionx is said to belocally opti-
malor a local optimumwith respect to a neighborhoodN if c(x) ≤ c(x′)∀x′ ∈ N(x).
With these definitions it is possible to define a neighborhoodsearch algorithm. The
algorithm takes an initial solutionx as input. It computesx′ = argminx′′∈N(x){c(x′′)},
that is, it finds the cheapest solutionx′ in the neighborhood ofx. If c(x′) < c(x) then
the algorithm performs the updatex = x′. The neighborhood of the new solutionx
is searched for an improving solution and this is repeated until a local optimumx is
reached. When this happens the algorithm stops. The algorithm is denoted asteepest
descentalgorithm as it always chooses the best solution in the neighborhood.

A simple example of a neighborhood for the TSP is the2-opt neighborhood
which can be traced back to [15]. The neighborhood of a solution x in the 2-opt
neighborhood is the set of solutions that can be reached fromx by deleting two
edges inx and adding two other edges in order to reconnect the tour. A simple ex-
ample of a neighborhood for the CVRP is therelocateneighborhood (see e.g. [27]).
In this neighborhood,N(x) is defined as the set of solutions that can be created from
x by relocating a single customer. The customer can be moved toanother position
in its current route or to another route.

We define the size of the neighborhoodN(·) for a particular instanceI as
max{|N(x)| : x∈ X(I)}. Let I (n) be the (possibly infinite) set of all instances of
sizen of the problem under study. We can then define the size of a neighborhood as
a function f (n) of the instance sizen: f (n) = max{|N(x)| : I ∈ I (n),x∈ X(I)}.



4 David Pisinger and Stefan Ropke

The 2-opt neighborhood for the TSP as well as the relocate neighborhood for the
CVRP have sizef (n) = O(n2) wheren is the number of cities/customers.

1.3 Very large-scale neighborhood search

Ahuja et al. [2] define and survey the class of VLSN algorithms. A neighborhood
search algorithm is considered as belonging to the class of VLSN algorithms if the
neighborhood it searches grows exponentially with the instance size or if the neigh-
borhood is simply too large to be searched explicitly in practice. Clearly, the class
of VLSN algorithms is rather broad. Ahuja et al. [2] categorize VLSN into three
classes: 1) variable depth methods, 2) network flow based improvement methods,
3) methods based on restriction to subclasses solvable in polynomial time. We will
describe the three classes in more detail in Sections 1.3.1,1.3.2 and 1.3.3, respec-
tively. Notice that although the concept of VLSN was not formalized until recently,
algorithms based on similar principles have been used for decades.

Intuitively, searching a very large neighborhood should lead to higher quality so-
lutions than searching a small neighborhood. However, in practice, small neighbor-
hoods can provide similar or superior solution quality if embedded in a metaheuris-
tic framework because they typically can be searched more quickly. Such behavior
is reported in e.g. [6] and [26]. This shows that VLSN algorithms are not “magic
bullets”. However, for the right applications they provideexcellent results.

As stated earlier, the focus of this chapter is a particular VLSN algorithm called
LNS, which will be described in Section 2. The LNS heuristic does not fit well into
any of the three categories defined in Ahuja et al. [2], but it definitely belongs to the
class of VLSN algorithms as it searches a very large neighborhood.

1.3.1 Variable-depth methods

Larger neighborhoods generally lead to local solutions of better quality, but the
search is more time-consuming. Hence, a natural idea is to gradually extend the
size of the neighborhood, each time the search gets trapped in a local minimum.

Variable-Depth Neighborhood Search(VDNS) methods search a parameterized
family of still deeper neighborhoodsN1,N2, . . . ,Nk in a heuristic way. A typi-
cal example is the 1-exchange neighborhoodN1 where one variable/position is
changed. Similarly, the 2-exchange neighborhoodN2 swaps the value of two vari-
ables/positions. In general thek-exchange neighborhoodNk changesk variables.
Variable-depth search methods are techniques that search the k-exchange neigh-
borhood partially, hence reducing the time used to search the neighborhood. See
Figure 2 for an illustration of variable-depth neighborhoods.

One of the first applications of variable-depth search was the Lin-Kernighan
heuristic [29] for solving the TSP. Briefly, the idea in the Lin-Kernighan heuris-
tic is to replace as many asn edges when moving from a tourS to a tourT. In
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Fig. 2 Illustration of the neighborhoods used by VDNS and VNS. The current solution is marked
x. VDNS typically operates on one type of neighborhood with variable depth, while VNS operates
on structurally different neighborhoodsN1, . . .,Nk.

even steps of the algorithm an edge is inserted into the Hamiltonian path, while in
odd steps an edge is deleted to restore a Hamiltonian path. From each Hamiltonian
path a Hamiltonian cycle is implicitly constructed by joining the two end nodes.
The choice for the edge to be added to the Hamiltonian path is made in a greedy
way, maximizing the gain in the objective function. The Lin-Kernighan algorithm
terminates when no improving tour can be constructed.

The basic idea in a VDNS heuristic is to make a sequence of local moves and to
freeze all moved combinatorial objects to prevent the search from cycling. VDNS
stops when no further local move is possible and returns a best found solution.

An extension of the Lin-Kernighan heuristic, called ejection chains, was pro-
posed by Glover in [19]. An ejection chain is initiated by selecting a set of elements
that will undergo a change of state. The result of this changeleads to identifying a
collection of other sets, with the property that the elements of at least one set must
be “ejected from” their current states. State-change stepsand ejection steps typi-
cally alternate. In some cases, a cascade of operations may be triggered leading to a
domino effect.

Variable-depth and ejection-chain based algorithms have been applied to sev-
eral problems, including the traveling salesman problem [17, 43], the vehicle rout-
ing problem with time windows [52], the generalized assignment problem [57] and
nurse scheduling [13]. Ahuja et al. [2] give an excellent overview of earlier applica-
tions of the VDNS methods.

Frequently, VDNS methods are used in conjunction with othermetaheuristic
frameworks, like the filter-and-fan methods in Glover and Rego [20].

1.3.2 Network-flows based improvement algorithms

This family of improvement algorithms use various network-flow algorithms to
search the neighborhood. In general they can be grouped in the following three,
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not necessarily distinct, categories: (i) minimum cost cycle methods, (ii) shortest
path based methods, and (iii) minimum cost assignment basedmethods. In the fol-
lowing we give a short overview of the methods and refer to thesurvey of Ahuja
et al. [2] for further details.

Neighborhoods defined by cycles

A cyclic exchange neighborhoodconsists of a sequence of elements being trans-
fered among a family of subsets. Thompson [53] showed how to find an improving
neighbor in the cyclic exchange neighborhood by finding a negative cost cycle in
an hereto constructed improvement graph. Finding a negative cost subset-disjoint
cycle in the improvement graph is NP-hard, but effective heuristics for searching
the graph exist.

Thompson and Psarafitis [54] and Gendreau et al. [18] appliedthe cyclic neigh-
borhood to solve the VRP. Ahuja et al. [1] used cyclic exchanges to solve the capac-
itated minimum spanning tree problem.

Neighborhoods defined by paths

Path exchangesis a generalization of the swap neighborhood. A large-scaleneigh-
borhood can be defined by aggregating an arbitrary number of so-calledindependent
swap operations [2]. The best neighbor of a TSP tour for the compounded swap
neighborhood can be found inO(n2) time by solving a shortest path problem in an
improvement graph constructed for this purpose.

For the one machine batching problem, Hurink [26] applies a special case of the
compounded swap neighborhood where only adjacent pairs areallowed to switch.
An improving neighbor can be found inO(n2) time by solving a shortest path prob-
lem in the improvement graph.

Considering the single machine scheduling problem, Brueggemann and Hurink
[8] presented an extension of the adjacent pairwise interchange neighborhood which
can be searched in quadratic time by calculating a shortest path in an improvement
graph.

Neighborhoods defined by assignments and matching

Theassignment neighborhoodwas first presented by Sarvanov and Doroshko [49]
for the TSP. It is an exponential neighborhood structure defined by finding minimum
cost assignments in an improvement graph.

For the TSP, the assignment neighborhood is based on the removal of k nodes,
from which a bipartite graph is constructed. In this graph, the nodes on the left-
hand are the removed nodes, and the nodes on the right-hand side are the remaining
nodes. The cost of each assignment is the cost of inserting a node between two
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existing nodes. Sarvanov and Doroshko [49] considered the case wherek = n/2 and
n is even. Punnen [42] generalized this to arbitraryk andn.

Using the same concept, Franceschi et al. [16] obtained promising results for the
distance-constrained CVRP, reporting 13 cases in which they were able to improve
the best-known solution in the literature. The assignment problem, extended with
additional capacity constraints, is solved as anInteger Programming(IP) problem.
A further improvement is to identify removed nodes and insertion points in a clever
way.

Brueggemann and Hurink [7] presented a neighborhood of exponential size for
the problem of scheduling independent jobs on parallel machines minimizing the
weighted average completion time. The neighborhood can be searched through
matchings in a certain improvement neighborhood.

1.3.3 Efficiently solvable special cases

Several NP-hard problems may be solved in polynomial time when restricting the
problem topology or adding constraints to the original problem. Using thesespecial
casesas neighborhoods, one can often search exponentially largeneighborhoods in
polynomial time.

Ahuja et al. [2] describe a general method for turning a solution method for a
restricted problem into a VLSN search technique. For each current solutionx we
create a well-structured instance of the problem which can be solved in polynomial
time. The well-structured instance is solved, and a new solution x is found. Although
the search method has a large potential, it is not always simple to construct an algo-
rithm which turnsx into a well-structured instance.

A Halin graph is a graph that may be obtained by considering a tree with no
nodes of degree 2 in the plane and by joining the leaf nodes by acycle so that the
resulting graph is planar. A number of NP-hard problems can be solved efficiently
(often in linear time) when restricted to a Halin graph. For instance, Cornuejols et al.
[12] presented a linear-time algorithm for the TSP defined ona Halin graph. Phillips
et al. [39], presented similar results for the bottleneck TSP, and Winter [56] for the
Steiner problem.

Brueggemann and Hurink [8] also present a neighborhood for the single machine
scheduling problem which is based on a dominance rule for sequences. A relaxation
of the dominance rule can be solved in polynomial time by using ashortest process-
ing time first rule.

2 Large neighborhood search

TheLarge Neighborhood Search(LNS) metaheuristic was proposed by Shaw [51].
Most neighborhood search algorithms explicitly define the neighborhood like the
relocate neighborhood described in Section 1.2. In the LNS metaheuristic the neigh-
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Fig. 3 Destroy and repair example. The top left figure shows a CVRP solution before the destroy
operation. The top right figure shows the solution after a destroy operation that removed 6 cus-
tomers (now disconnected from the routes). The bottom figureshows the solution after the repair
operation has reinserted the customers.

borhood is defined implicitly by adestroyand arepair method. A destroy method
destructs part of the current solution while a repair methodrebuilds the destroyed
solution. The destroy method typically contains an elementof stochasticity such that
different parts of the solution are destroyed in every invocation of the method. The
neighborhoodN(x) of a solutionx is then defined as the set of solutions that can be
reached by first applying the destroy method and then the repair method.

To illustrate the destroy and repair concepts, consider theCVRP. A destroy
method for the CVRP could remove, say 15%, of the customers inthe current so-
lution, shortcutting the routes where customers have been removed. A very simple
destroy method would select the customers to remove at random. A repair method
could rebuild the solution by inserting removed customers,using a greedy heuristic.
Such a heuristic could simply scan all free customers, insert the one whose insertion
cost is the lowest and repeat inserting until all customers have been inserted. The
destroy and repair step is illustrated in Figure 3.

Since the destroy method can destruct a large part of the solution, the neigh-
borhood contains a large amount of solutions which explainsthe name of the
heuristic. Consider for example a CVRP instance with 100 customers. There are
C(100,15) = 100!/(15!×85!) = 2.5×1017 different ways to select the customers
to be removed if the percentage or degree of destruction of the solution is 15%. For
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each removal choice there are many ways of repairing the solution, but different
removal choices can of course result in the same solution after the repair.

We now present the LNS heuristic in more details. Pseudo-code for the heuristic
is shown in Algorithm 1. Three variables are maintained by the algorithm. The vari-
ablexb is the best solution observed during the search,x is the current solution and
xt is a temporary solution that can be discarded or promoted to the status of current
solution. The functiond(·) is the destroy method whiler(·) is the repair method.
More specifically,d(x) returns a copy ofx that is partly destroyed. Applyingr(·)
to a partly destroyed solution repairs it, that is, it returns a feasible solution built
from the destroyed one. In line 2 the global best solution is initialized. In line 4
the heuristic first applies the destroy method and then the repair method to obtain a
new solutionxt . In line 5 the new solution is evaluated, and the heuristic determines
whether this solution should become the new current solution (line 6) or whether it
should be rejected. Theacceptfunction can be implemented in different ways. The
simplest choice is to only accept improving solutions. Line8 checks whether the
new solution is better than the best known solution. Herec(x) denotes the objective
value of solutionx. The best solution is updated in line 9 if necessary. In line 11 the
termination condition is checked. It is up to the implementer to choose the termina-
tion criterion, but a limit on the number of iterations or a time limit would be typical
choices. In line 12 the best solution found is returned. Fromthe pseudocode it can
be noticed that the LNS metaheuristic does not search the entire neighborhood of a
solution, but merely samples this neighborhood.

Algorithm 1 Large neighborhood search
1: input: a feasible solutionx
2: xb = x;
3: repeat
4: xt = r(d(x));
5: if accept(xt ,x) then
6: x = xt ;
7: end if
8: if c(xt ) < c(xb) then
9: xb = xt ;

10: end if
11: until stop criterion is met
12: return xb

The main idea behind the LNS heuristic is that the large neighborhood allows
the heuristic to navigate in the solution space easily, evenif the instance is tightly
constrained. This is to be opposed to a small neighborhood which can make the
navigation in the solution space much harder.

In the original LNS paper [51] the accept method only allowedimproving so-
lutions. Later papers like [45] and [50] have used an acceptance criteria borrowed
from simulated annealing. With such an acceptance criteria, the temporary solution
xt is always accepted ifc(xt) ≤ c(x), and accepted with probabilitye−(c(xt)−c(x))/T

if c(x) < c(xt). HereT > 0 is the currenttemperature. The temperature is initial-
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ized atT0 > 0 and is decreased gradually, for example by performing the update
Tnew= αTold at each iteration, where 0< α < 1 is a parameter. The idea is thatT is
relatively high initially, thus allowing deteriorating solutions to be accepted. As the
search progressesT decreases and towards the end of the search only a few or no
deteriorating solutions will be accepted. If such an acceptance criteria is employed,
the LNS heuristic can be viewed as a standard simulated annealing heuristic with a
complex neighborhood definition.

The destroy method is an important part of the LNS heuristic.The most impor-
tant choice when implementing the destroy method is thedegree of destruction: if
only a small part of the solution is destroyed then the heuristic may have trouble ex-
ploring the search space as the effect of a large neighborhood is lost. If a very large
part of the solution is destroyed then the LNS heuristic almost degrades into re-
peated re-optimization. This can be time consuming or yieldpoor quality solutions
dependent on how the partial solution is repaired. Shaw [51]proposed to gradually
increase the degree of destruction, while Ropke and Pisinger [45] choose the degree
of destruction randomly in each iteration by choosing the degree from a specific
range dependent on the instance size. The destroy method must also be chosen such
that the entire search space can be reached, or at least the interesting part of the
search space where the global optimum is expected to be found. Therefore it cannot
focus on always destroying a particular component of the solution but must make it
possible to destroy every part of the solution.

The implementor of an LNS heuristic has much freedom in choosing the re-
pair method. A first decision is whether the repair method should be optimal in the
sense that the best possible full solution is constructed from the partial solution, or
whether it should be a heuristic assuming that one is satisfied with a good solution
constructed from the partial solution. An optimal repair operation will be slower
than a heuristic one, but may potentially lead to high quality solutions in a few it-
erations. However, from a diversification point of view, an optimal repair operation
may not be attractive: only improving or identical-cost solutions will be produced
and it can be difficult to leave valleys in the search space unless a large part of the
solution is destroyed in each iteration. The framework alsoenables the implementor
to choose if the repair method should be hand-coded or if a general purpose solver
like a mixed integer programming (MIP) or constraint programming solver should
be invoked.

It is worth observing that the LNS heuristic typically alternates between an in-
feasible solution and a feasible solution: the destroy operation creates an infeasible
solution which is brought back into feasible form by the repair heuristic. Alternately
the destroy and repair operations can be viewed as fix/optimize operations: thefix
method (corresponding to the destroy method) fixes part of the solution at its current
value while the rest remains free, theoptimizemethod (corresponding to the repair
method) attempts to improve the current solution while respecting the fixed values.
Such an interpretation of the heuristic may be more natural if the repair method is
implemented using MIP or constraint programming solvers.

The concept of destroy and repair methods in large neighborhood lends itself best
to problems which naturally can be decomposed into a master problem covering a
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number of tasks to be carried out, and a set of subproblems which need to satisfy
some constraints. In this case, the destroy methods remove some tasks from the
current solution, and the repair methods reinsert the tasks. Hence, problems where
Dantzig Wolfe decomposition has been used with success are good candidates for
LNS heuristics.

Before closing this section, it should be mentioned that a framework, very similar
to the LNS, has been proposed under the nameruin and recreateby Schrimpf et al.
[50].

2.1 Adaptive large neighborhood search

The Adaptive Large Neighborhood Search(ALNS) heuristic was proposed in [45]
and extends the LNS heuristic by allowing multiple destroy and repair methods to be
used within the same search. Each destroy/repair method is assigned a weight that
controls how often the particular method is attempted during the search. The weights
are adjusted dynamically as the search progresses so that the heuristic adapts to the
instance at hand and to the state of the search.

Using neighborhood search terminology, one can say that theALNS extends the
LNS by allowing multiple neighborhoods within the same search. The choice of
neighborhood to use is controlled dynamically using recorded performance of the
neighborhoods.

Algorithm 2 Adaptive large neighborhood search
1: input: a feasible solutionx
2: xb = x; ρ− = (1, . . . ,1);ρ+ = (1, . . . ,1);
3: repeat
4: select destroy and repair methodsd ∈ Ω− andr ∈ Ω+ usingρ− andρ+;
5: xt = r(d(x));
6: if accept(xt ,x) then
7: x = xt ;
8: end if
9: if c(xt ) < c(xb) then

10: xb = xt ;
11: end if
12: updateρ− andρ+;
13: until stop criterion is met
14: return xb

A pseudo-code for the ALNS heuristic is shown in Algorithm 2.Compared to the
LNS pseudo code in Algorithm 1, the following have changed. Lines 4 and 12 have
been added and line 2 has been modified. The sets of destroy andrepair methods
are denotedΩ− andΩ+, respectively. Two new variables are introduced in line 2:
ρ− ∈ R

|Ω−| andρ+ ∈ R
|Ω+|, to store the weight of each destroy and repair method,

respectively. Initially all methods have the same weight. In line 4 the weight vectors
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ρ− andρ+ are used to select the destroy and repair methods using aroulette wheel
principle. The algorithm calculates the probabilityφ−

j of choosing thej th destroy
method as follows

φ−
j =

ρ−
j

∑|Ω−|
k=1 ρ−

k

,

and the probabilities for choosing the repair methods are determined in the same
way.

The weights are adjusted dynamically, based on the recordedperformance of
each destroy and repair method. This takes place in line 12: when an iteration of the
ALNS heuristic is completed, a scoreψ for the destroy and repair method used in
the iteration is computed using the formula

ψ = max















ω1 if the new solution is a new global best,
ω2 if the new solution is better than the current one,
ω3 if the new solution is accepted,
ω4 if the new solution is rejected,

(1)

whereω1,ω2,ω3 andω4 are parameters. A highψ value corresponds to a successful
method. We would normally haveω1 ≥ ω2 ≥ ω3 ≥ ω4 ≥ 0.

Let a andb be the indices of the destroy and repair methods that were used in the
last iteration of the algorithm, respectively. The components corresponding to the
selected destroy and repair methods in theρ− andρ+ vectors are updated using the
equations

ρ−
a = λ ρ−

a +(1−λ )ψ , ρ+
b = λ ρ+

b +(1−λ )ψ , (2)

whereλ ∈ [0,1] is thedecayparameter that controls how sensitive the weights are to
changes in the performance of the destroy and repair methods. Note that the weights
that are not used at the current iteration remain unchanged.The aim of the adaptive
weight adjustment is to select weights that work well for theinstance being solved.
We encourage heuristics that bring the search forward, these are the ones rewarded
with theω1,ω2 andω3 parameters in (1). We discourage heuristics that lead to many
rejected solutions as an iteration resulting in a rejected solution is a wasted iteration,
roughly speaking. This is achieved by assigning a low value to ω4.

The ALNS heuristic described so far is prone to favor complexrepair methods
that more often reach high quality solutions compared to simpler repair methods.
This is fine if the complex and simple repair methods are equally time-consuming,
but that may not be the case. If some methods are significantlyslower than others,
one may normalize the scoreψ of a method with a measure of the time consump-
tion of the corresponding heuristic. This ensures a proper trade-off between time
consumption and solution quality.



Large neighborhood search 13

2.2 Designing an ALNS algorithm

The considerations for selecting destroy and repair methods in the LNS heuristic,
mentioned earlier, also holds for an ALNS heuristic. However, the ALNS framework
gives some extra freedom because multiple destroy/repair methods are allowed. In
the pure LNS heuristic we have to select a destroy and repair method that is expected
to work well for a wide range of instances. In an ALNS heuristic we can afford to
include destroy/repair methods that only are suitable in some cases — the adaptive
weight adjustment will ensure that these heuristics seldomare used on instances
where they are ineffective. Therefore the selection of destroy and repair methods
can be turned into a search for methods that are good at eitherdiversification or
intensification.

Below we will discuss some typical destroy and repair methods. In the discussion
we will assume that our solution is represented by a set of decision variables. The
term variables should be understood in a rather abstract way.

Diversification and intensification for the destroy methodscan be accomplished
as follows: to diversify the search, one may randomly selectthe parts of the solution
that should be destroyed (random destroymethod). To intensify the search one may
try to removeq “critical” variables, i.e. variables having a large cost orvariables
spoiling the current structure of the solution (e.g. edges crossing each other in an
Euclidean TSP). This is known asworst destroyor critical destroy.

One may also choose a number of related variables that are easy to interchange
while maintaining feasibility of the solution. Thisrelated destroyneighborhood was
introduced by Shaw [51]. For the CVRP one can define a relatedness measure be-
tween each pair of customers. The measure could simply be thedistance between
the customers and it could include customer demand as well (customers with similar
demand are considered related). A related destroy would select a set of customers
that have a high mutual relatedness measure. The idea is thatit should be easy to
exchange similar customers.

Finally, one may usehistory based destroywhere theq variables are chosen ac-
cording to some historical information as presented in [40]. The historical informa-
tion could for example count how often setting a given variable (or set of variables)
to a specific value leads to a bad solution. One may then try to remove variables that
are currently assigned to an improper value, based on the historical information.

The repair methods(Ω+) are often based on concrete well-performing heuris-
tics for the given problem. These heuristics can make use of variants of the greedy
paradigm, e.g. performing the locally best choice in each step, or performing the
least bad choice in each step. The repair methods can also be based on approxima-
tion algorithms or exact algorithms. Exact algorithms can be relaxed to obtain faster
solution times at the cost of solution quality. Some examples are presented in [4]
and [51]. Time consuming and fast repair methods can be mixedby penalizing the
time consuming methods as described earlier.
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x
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N3

N4N5

N∗
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Fig. 4 Illustration of neighborhoods used by ALNS. The current solution is marked withx. ALNS
operates on structurally different neighborhoodsN1, . . . ,Nk defined by the corresponding search
heuristics. All neighborhoodsN1, . . .,Nk in ALNS are a subset of the neighborhoodN∗ defined by
modifying q variables, whereq is a measure of the maximum degree of destruction.

Figure 4 illustrates, in an abstract way, the many neighborhoods in an ALNS
heuristic. Each neighborhood on the figure can be consideredas a unique combina-
tion of a destroy and repair method.

In traditional local search heuristics the diversificationis controlled implicitly by
the local search paradigm (accept ratio, tabu list, etc.). For the (A)LNS heuristic this
may not be enough. It can often be advantageous to use noisingor randomization
in both the destroy and repair methods to obtain a proper diversification. This helps
avoiding stagnating search processes where the destroy andrepair methods keep
performing the same modifications to a solution.

Some optimization problems can be split into a number of sub-problems, where
each sub-problem can be solved individually. Such problemsinclude thebin packing
problemin which a number of bins are to be filled, or thevehicle routing problem
in which a number of routes are to be constructed. For such problems one should
decide whether the subproblems should be solved one by one (sequential heuristics)
or all subproblems should be solved at the same time (parallel heuristics). Sequen-
tial heuristics are easier to implement but may have the disadvantage that the last
subproblem solved is left with variables that do not fit well together. This is to some
extent avoided in parallel heuristics.

A natural extension to the ALNS framework is to havecoupled neighborhoods.
In principle one may, for each destroy methoddi , define a subsetKi ⊆ Ω+ of re-
pair neighborhoods that can be used withdi. The roulette wheel selection of repair
neighborhoods will then only choose a neighborhood inKi if di was chosen.

As a special case, one may haveKi = /0 meaning that the neighborhooddi takes
care of both the destroy and repair steps. One could use an ordinary local search
heuristic to compete with the other destroy and repair neighborhoods, ensuring that
a thorough investigation of the solution space close to the current solution is made
from time to time.
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For some problems it may be sufficient to have a number of destroy and repair
heuristics that are selected randomly with equal probability, that is without the adap-
tive layer. Such heuristics share the robustness of the ALNSheuristics, while having
considerably fewer parameters to calibrate.

2.3 Properties of the ALNS framework

The ALNS framework has several advantages. For most optimization problems we
already know a number of well-performing heuristics which can form the core of
an ALNS algorithm. Due to the large neighborhoods and diversity of the neigh-
borhoods, the ALNS algorithm will explore large parts of thesolution space in a
structured way. The resulting algorithm becomes very robust, as it is able to adapt
to various characteristics of the individual instances, and seldom is trapped in local
optima.

The calibration of the ALNS algorithm is quite limited as theadaptive layer
automatically adjusts the influence of each neighborhood used. It is still necessary
to calibrate the individual sub-heuristics used for searching the destroy and repair
neighborhoods, but one may calibrate these individually oreven use the parameters
used in existing algorithms.

In the design of most local search algorithms the researcherhas to choose be-
tween a number of possible neighborhoods. In ALNS the question is not “either-or”
but rather “both-and”. As a matter of fact, our experience isthat the more (rea-
sonable) neighborhoods the ALNS heuristic makes use of, thebetter it performs
[40, 46].

The ALNS framework is not the only one to make use of several neighborhoods
in a LNS heuristic. Rousseau et al. [48] use two LNS neighborhoods for theVehicle
Routing Problem with Time Windows(VRPTW): one removing customers and an-
other removing arcs. They propose aVariable Neighborhood Descent(VND) where
one neighborhood is used until one is “sufficiently sure” that the search is trapped
in a local minimum in which case the search switches to the other neighborhood.
When the second neighborhood runs out of steam the first neighborhood is used
again and so on.

Perron [36] used an adaptive technique to select repair methods from a portfolio
by assigning weights to the repair methods based on their performance like in the
ALNS. Laborie and Godard [28] propose a framework very similar to ALNS, the
difference being that their framework also dynamically adjusts the parameters of the
individual destroy and repair methods. The ALNS framework described in this sec-
tion assumes that those parameters are fixed in advance. Palpant et al. [35] only use
one destroy and repair method but propose a method for dynamically adjusting the
scope of the destroy operation in order to find the neighborhood size that allows the
repair operation to be completed within reasonable time. The authors use complex,
time consuming repair methods.
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When implementing an LNS or ALNS heuristic one can choose which "outer"
metaheuristic to use to guide the search (if any). Some simply use a descent ap-
proach (e.g. [4, 51]), some use iterated local search (e.g. [35, 48]) and other use
simulated annealing (e.g. [45, 50]). It is our experience that even a simple outer
metaheuristic improves upon a pure descent approach.

The ALNS is related to the VNS metaheuristics [25, 31] in the sense that both
heuristics search multiple neighborhoods. Since a local optimum with respect to one
neighborhood is not necessarily a local optimum with respect to another neighbor-
hood, changing neighborhoods in the search is a way of diversifying the search.

VNS makes use of a parameterized family of neighborhoods, typically obtained
by using a given neighborhood with variable depth. When the algorithm reaches
a local minimum using one of the neighborhoods, it proceeds with a larger neigh-
borhood from the parameterized family. When the VNS algorithm gets out of the
local minimum it proceeds with the smaller neighborhood. Onthe contrary, ALNS
operates on a predefined set of large neighborhoods corresponding to the destroy
(removal) and repair (insertion) heuristics. The neighborhoods are not necessarily
well-defined in a formal mathematical sense — they are ratherdefined by the corre-
sponding heuristic algorithm.

A major challenge in designing a good VNS algorithm is to decide in what order
the neighborhoods should be searched. A natural strategy isto order the neighbor-
hoods according to the complexity of searching them, such that one starts with the
least complex neighborhoods, and gradually include the move expensive. ALNS
take a different approach by using roulette wheel selectionwith adaptive probabili-
ties to decide which neighborhoods to use.

Another related concept is that ofhyper-heuristics. Ross [47] describes hyper-
heuristics asheuristics to choose heuristics, that is, algorithms where a master
heuristic is choosing between several sub-ordinate heuristics. Therefore, the ALNS
heuristic can be seen as a kind of hyper-heuristic: the adaptive component is choos-
ing from the set of destroy and repair methods (which usuallyare heuristics).

A few examples of parallel processing LNS/ALNS implementations exists in the
literature. Perron and Shaw [37] describe a parallel LNS heuristic that is applied to
a network design problem and Ropke [44] describes a framework for implement-
ing parallel ALNS heuristics. The framework is tested on theCVRP and TSP with
pickup and delivery.

3 Applications of LNS

So far the LNS heuristic has been most successful within the areas of routing and
scheduling problems. In this section we review the main results for these two prob-
lem classes.
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3.1 Routing problems

In this section we survey applications of LNS heuristics to variants of the TSP and
VRP. There are many examples of applications of LNS to VRP variants, starting
with Shaw’s [51] definition of the LNS heuristic. Many of the heuristics have been
successful and have provided state-of-the-art results at the time of publication. An
incomplete list of papers describing the application of LNSto VRP variants, in
particular the VPRTW is: [4, 5, 10, 16, 22, 23, 30, 40, 41, 45, 46, 48, 50, 51].
Reference [16] does not make the connection to the LNS heuristic, but the approach
described fits nicely in the LNS framework.

Bent and Hentenryck [4] describe a LNS heuristic for the VRPTW. In the
VRPTW the most common objective is to minimize first the number of vehicles
and, for the same number of vehicles, to minimize the total route lengths. Bent and
Hentenryck [4] propose to solve the problem in a two-stage approach. In the first
stage the number of routes is minimized by a simulated annealing algorithm that
uses traditional, small neighborhoods. In the second stagethe total route lengths are
minimized with an LNS heuristic. The destroy method uses therelatedness princi-
ple described in Section 2.2. The size of the neighborhood isgradually increased,
starting out by only removing one customer and by steadily increasing the number
of customers to remove as the search progresses. At regular intervals, the number of
customers to remove is reset to one and the neighborhood sizeincrease starts over.
The repair method is implemented using a truncated branch-and-bound algorithm.
The LNS algorithm only accepts improving solutions. The results obtained can be
considered as state-of-the-art at the time of publication.A similar algorithm was
also proposed by the same authors [5] for thePickup and Delivery Problem with
Time Windows(PDPTW).

Ropke and Pisinger [45] introduce the ALNS extension of the LNS previously
described in Section 2.1. The algorithm is applied to the PDPTW. Differences with
the method in [4] are: (i) several different destroy/repairmethods are used, (ii) fast,
greedy heuristics are used as repair methods, (iii) the sizeof the neighborhood varies
from iteration to iteration (the number of customers to remove is chosen randomly
from a predefined interval) and (iv) a simulated annealing acceptance criterion is
used. The heuristic has obtained state-of-the art results for the PDPTW. In subse-
quent papers [40, 46] it is shown that many VRP variants (including the CVRP and
VRPTW) can be transformed to a PDPTW and solved using an improved version
of the ALNS heuristic from [45]. For most of the tested VRP variants the ALNS
heuristic must be considered to be on par with or better than competing heuristics at
the time of publication.

Prescott-Gagnon et al. [41] present an LNS heuristic for theVRPTW with an ad-
vanced repair operator that solves a restricted VRPTW through a heuristic branch-
and-price algorithm. Four destroy methods are used and are chosen based on perfor-
mance as in [45]. Overall, the heuristic reaches better solutions than previous LNS
approaches, probably due to the advanced repair operator.

It should be mentioned that the VRPTW is one of the most studied problem class
from a metaheuristic point of view. We estimate that more than a hundred papers
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have been published on the subject. It is therefore remarkable that LNS heuristics,
as a rather young class of heuristics, have been able to be in the forefront of the
development in recent years. We should also mention that thebest solutions for the
VRPTW are currently found using a non-LNS heuristic proposed by Nagata and
Bräysy [34].

We are only aware of a few applications of LNS to TSP variants [14, 38, 50]. An
explanation for the lower number of applications could be that the LNS heuristic
is inherently better suited for VRP variants than for TSP variants because of the
partitioning element present in VRPs.

3.2 Scheduling problems

LNS and ALNS lend themselves well to scheduling problems dueto the tightly
constrained nature of the problems. Laborie and Godard [28]present results for a
self-adapting large neighborhood search, applied to single-mode scheduling prob-
lems. Godard, Laborie, and Nuijten [21] present a randomized large neighborhood
search for cumulative scheduling. Carchrae and Beck [9] present results for job-shop
scheduling problems. Cordeau et al. [11] present an ALNS heuristic for solving a
technician scheduling problem. Instances with hundreds oftasks and technicians are
solved in less than 15 minutes. Muller [33] recently presented an ALNS algorithm
for the resource constrained project scheduling problem. The computational results
show that the algorithm is among the three best on the well known PSPLIB bench-
mark instances. Finally, [32] presented a hybrid ALNS algorithm for the multi-item
capacitated dynamic lot sizing problem with setup times.

4 Conclusion

In this chapter we have reviewed the LNS heuristic and its extensions and we have
briefly explained the central concepts in VLSN. Both are interesting concepts and
we hope that these topics will be subject to increased research in the future. We be-
lieve that we have yet to see the full potential from both LNS and VLSN algorithms
in general.

One of the key benefits of the LNS heuristic is that a heuristiccan be quickly
put together from existing components: an existing construction heuristic or exact
method can be turned into a repair heuristic and a destroy method based on random
selection is easy to implement. Therefore we see a potentialfor using simple LNS
heuristics for benchmark purposes when developing more sophisticated methods.

We do not have any illusions about LNS being superior to all other metaheuris-
tics. We believe that LNS heuristics, in general, work well when the problem con-
sidered involves some kind of partitioning decision, as in e.g. VRP, bin-packing or
generalized assignment problems. Such structure seems to be well suited for the de-
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stroy/repair operations. For problems that do not exhibit this structure it is difficult
to predict the performance of the LNS heuristic and other metaheuristics may be
better suited.

Large neighborhoods are no guarantee for finding better solutions. Increased
complexity of the neighborhoodsearch means that fewer iterations can be performed
by a local search algorithm. Gutin and Karapetyan [24] experimentally compare
a number of small and large neighborhoods for the multidimensional assignment
problem, including various combinations of them. It is demonstrated that some com-
binations of both small and large neighborhoods provide thebest results. This could
indicate that hybrid neighborhoods may be a promising direction for future research.
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