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Research Establishment Risg¢
Physics Department

Abstract

Recent experimental studies of liquids have shown that phonon-like col-
lective excitations seem to exist in some liquids but not in others. Conse-
quently the assumption for the ideal phonon theory used to describe lattice
dynamics is analysed, and non-crystalline materials are classified ac-
cording to which assumptions are obeyed and which are violated. The neu-
tron scattering results from liquid H, are critically analysed with the re-
sult that the concept of phonons must beintroduced to understand this liquid,
and consequently the phonons are quantitatively discussed. In liquid N?. no
evidence of phonons is seen in the neutron scattering pattern, in agreement
with the results obtained for liquid A. The influence of the rotational de-
grees of freedom in liquid N, is briefly discussed. The results presented
together with similar results obtained from the liquids A, He, and Rb sup-
port the classification mentioned above, and indicate how further under-
standing of the dynamics of liquids may be gained. In an appendix the use
of a neutrontriple axis crystal spectrometer in the study of liquids is dis-
cussed,

* This report is submitted to the University of Copenhagen in partial fulfil-
ment of the requirements for obtaining the Ph. D. degree.
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1. INTRODUCTION

Until a few years ago it was generally believed that the high frequency,
low wavelength dynamics of liquids were similar to phonons in crystals.
The experimental evidence supporting this was the observation of well de-
fined collective excitations in superfluid liquid 4He') and further the simi-
larity between raw neutron time of flight data obtained from liquids and
from solids®™3),

The last two years have brought two kinds of experimental information
proving that the concept of phonons does not apply to liquids in general.
Neutron Scattering (NS) data presented as normalized scattering laws (the
Fourier transforms of the van Hove correlation functions), and Molecular
Dynamics (MD) computer simulation on classical fluids with a given inter-
action potential, have shown that the existence of well-defined collective
excitations depends critically on which system is under study. Phonon-like

excitations have been reported in liquid *He*), liquid H,), and liquid RE"7)

-9)

way introduce the concept of phonons for the collective excitations, which

whereas in classical Lennard-Jones liquids8 one cannot in any consistent
here seem to be of an overdamped nature,.

The theoretical attempts to explain the observed phenomena have so
far been rather few and unable to reveal the underlying physical concepts.
Although partial agreement between theories based on memory functions
and the experiments have been found in the case of classical Lennard Jones
liquids1 0), these theories have been based on the use of sum rules rather
than on first principes. Attempts to set up a theory based on first principles
suffer from simplifying assumption as this many-body problem does not in
a natural way reduce to a dynamical problem for a few quasi-particles.

In the long wavelength limit where linear hydrodynamic theory for
viscous fluids gives detailed agreement with the results of light scattering,
complete understanding of the dynamical behaviour exists, but since this
region cannot be reached by NS, it will not be covered here, However MD
results at wavevectors 0.2 A" (w1 A for liquid a9 may be understood
by introducing a coupling between longitudinal and transverse modes. This
wavevector range should be studied in detail by NS in the near future, and
a first attempt of this kind is presented in chapter 4.

Apart from this point the discussion will be restricted to wavevector
and energy regions so far explored by neutron scattering., Further, since
the motion of the only molecular centres in solids are described by phonons,
the discussion will be restricted to cases where this motion can be studied



olely and unambiguously in the liquid phase. Finally the dynamics of the
ftuperﬂmd phase will be omitted, since the existence of the superfluid
‘gondensate does not in a simple way allow relation of the dynamics of this
;,-'{ghase to normal (i. e. not superfluid) liquids. Because of the similarity of
the superfluid transition to solidifying, the lambda point will in the dis-
Ef}—:ussion be analoguous to the triple point, and all liquids discussed in this
"?i‘eport were then studied close to their triple point,

The purpose of this report is to discuss the dynamical behaviour of
the non-crystalline phases as compared with phonons in crystals. Con-
;sVidering the theoretical situation described above even a rough classification
:‘inf liquids from the point of wiew of their dynamical properties may be of
%interest This is tried in chapter 2, where the assumptions obeyed in ideal
onon theory break down in different ways for the different classes. For
ompleteness a brief discussion of the dynamical behaviour of non-crystal-
line solids and supercooled liquids will be given.

e In chapters 3 and 4 the dynamics of liquid H2 and N2 are discussed.

n each case the neutron scattering properties are explained and the dis-
ussion is divided into three parts: First a brief discussion will be given

f what conclusions can be drawn from the structure factor S(x), which is

ie Fourier transform of the static pair correlation function g(r). Secondly
he collective motion are discussed based on the coherent scattering law
COH("“ ), which is the Fourier transform of the total van Hove correlation

anction G(r, t). Thirdly the single particle motion are discussed based on
e incoherent scattering law SINC(u,u), related to the van Hove selfcor-
elation function Gs(r, t).

On the basis of the classification of chapter 2 chapter 5 gives a con-

clusmn about how the dynamical behaviour of liquids may conceptually be

_understood, Further possible future research is discussed,
~ In an appendix the use of a triple axis spectrometer in the study of

nqmds is discussed and compared with the time of flight spectrometer.
2, DYNAMICAL BEHAVIOUR OF NON-CRYSTALLINE MATERIALS

When atoms or molecules are ordered in lattices the dynamical be -
;;,;;féhav:lour can be theoretically understood in terms of phonons. It is instruc-
~Hive to analyse the basic assumptions for this theory in the ideal case, and
to see how these assumptions are fulfilled to various degrees for real
¢rystals, However, even where strong deviations from the ideal case make
" the establishing of a dynamical theory difficult, the resulting excitations

G Y o NN v i
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carry many of the characteristics of good phonons, This indicates that in
the crystalline phase the existence of phonons is relatively insensitive to
the fulfilment of the basic assumptions, After a discussion of these, an
attempt will be made to classify liquids according to which assumptions
break down, and expected similarities within one class will be pointed out.
A brief discussion of the known dynamical behaviour will be given, and it
will be shown why studies of liquid H, and liquid N, are expected to give
useful information.

2.1, Ideal and Real Cqstalline Solids

Four assumptions may be cousidered of basic impertance for estab-
lishing the theoretical picture of phonons in ideal crystals. The first to be
mentioned is the assumption of a perfect periodic structure. This allows
a division of the dynamical problem for all the atoms in the crystal into
independent sets of dynamical problems for 3n phonons, where n is the
number of atoms in the unit cell. For liquids MDB) results show that the
dynamical behaviour is well described with a unit cell of 500-1000 atoms.
This number does not at present allow the dynamical matrix to be solved,
although it indicates that the problem of how the lack of periodicity in-
fluences the dynamical behaviour is numerical in nature rather than con-
ceptual.

A second assumption is that the system is stationary. More general,
the phonons have to be the only excitations of the system, but in liquids in
particular the single particle diffusion is known to be present. If the single
particle diffusion occurs at a time scale much larger than the phonons, one
expects from energetic considerations both excitations to remain well
defined. However, if this is not the case, i. e, if the self diffusion and the
possible phonons occur at similar time scales, the question to be answered
is whether each of the two different kinds of motion retains its simple
character in the presence of the other, or whether a mutual coupling
destroys both,

Thirdly, in setting up the exact theory for phonons, one assumes the
temperature to be zero. At finite temperatures, thermal population intro-
duces phonon-phonon interactions if the interaction potential is not strictly
harmonic, The weak anharmonicity present in any crystal does, how-
ever not manifest itself provided the temperature T is low compared with
the Debye temperature GD of the solid. Consequently 'r/eD will be used
as a convenient measure of the '"dynamical" temperature, At higher tem-
peratures pertubation theory accounts well for the observed changes of the



phonons, so that the assumption of low temperatures can be abandoned in

jthe crystalline case without losing understanding of the system.,

Closely related to this assumption is the fourth to be mentioned, the
When critical phenomena

iseumpuon of a harmonic interacting potential.
_are not considered, anharmonic effects, however, cause rather small

changes in the phonon spectra compared to the ideal case. Even in the

case of quantum crystals ( He, Hz, and D )” ]2), where the particle

positions nave to be changed into single particle wavefunctions, the strong

effective anharmonicity hereby introduced still allows the phonons to be

good quasi-particles.

As appears {:om the above, in real crystals either the assumptions for
ihe ideal phonon theory are obeyed or deviaiions can be treated as pertur-
bations. This is not the case in liquids. In general all four assumptions
cease to be valid, and since no first principles' theory has been established,
very little is at present known about the specific influence on the dynamical
_behaviour in the liquid phase from each of the four basic assumptions men-
tioned. It is therefore interesting that non-crystalline materials can be
classified according to what assumptions are violated. This is shown in
table 1, and in the following a discussion of the classes hereby defined is
given. As a reference the "ideal crystalline solids'" are shown in the first
éolumn, and the second column corresponds to the discussion of real crystals.

Table 1

Possible classification of non-crystalline materials relevant for their
dynamical properties, The assumptions are fulfilled in the exact
theory for phonons but are violated differently by the different classes.
D = "dependent” means that the assumption may be obeyed for some
systems in the class and not for others

i SOLIDS LIQUIDS
e Assumption Ideal Real Amorphous Super- Quantum Metallic Lennard-Jones
1 crystalline crystalline cooled
-1 Periodicity Yes Yes No No No No No
e Stationarity Yes Yes Yes D No No No
'} Low Temperature Yes D D D Yes No No
| marmonic Potential |  Yes D D D No Yes No




2.2. Amorphous Solids

The third column in table 1 shows the amorphous solids only deviating
from the crystalline solids in being disordered. Since the lack of period-
icity is present in all classes, it is of interest that this effect appears
isolated. Both from theoretical and experimental evidence it is now clear
that the dynamical behaviour of non-crystalline solids differs significantly
from that of the corresponding crystal. Kim and Nelkin' 3) have in one
dimension theoretically compared the harmonic solid in the ordered and
the disordered phase. They found a rather small shift in the phonon fre-
quencies, but in addition a finite linewidth in the disordered state. Although
phonon line shapes have not been measured by NS for glasses, two sets of
experiments strongly support the results of Kim and Nelkin, The specific
heat in glasses at low temperaturesu) exceeds the Debye-specific heat
found in crystals. Although several models have been proposed to explain
this frequent anomaly, the most plausible explanation at the moment seems
to be a change of the phonon spectruml 5). Consequently Stephensm) cal-
culated, on the basis of harmonic oscillators, the density of phonon states
Z(w) from the measured specific heat. Owing to the excess specific heat a
considerable excess density of states at low energies is found, in addition
to the density of states prescribed by the Debye model. Recent NS meas-
urements of the phonon density of states in GeI 6) show that at low energies
Z(w) for the amorphous solid exceeds that of the crystal. Further Z(w)
does not seem to approach its Debye value for w - 0, which it does in the
crystalline case.

2.3. Supercooled Liquids

In the fourth column of table | the supercooled liquids appear like
glasses except for the fact that they may be studied where the single par-
ticle diffusion occurs at a time scale gradually approaching that of the col-
lective excitations. Comparison between the dynamical behaviour of
glasses and supercooled liquids may therefore serve as a test for the
importance of the assumption of stationarity., Except for a few examples
such as Ga, which has only been studied by diﬁ'ractionl 9), only rather
complicated materials can easily be supercooled. However, Mdssbauer
effect studies from such ma\'terialsl 8) indicate a correlation between the
collective and single particle excitations; but a discussion of whether good
phonons exist cannot be given at present,
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2,4 Quantum Liquids

, The remaining three columns in table 1 contain the normal thermo-

. cynamically stable liquids. They are disordered and further the non-
stationarity is quantitatively described by the self diffusion coefficient
D=2-6x10"° cmz/s. However, natural abundance provides three
classes to be mentioned according to the two last assumptions discussed
“above. As mentioned in the introduction superfluidity will not be discussed

~in detail, but one comment will be made. In the superfluid phase of 4He,

__very phonon-like excitations are known to exist and have been studied

7‘ extensively4) . The existence of these excitations has often treated as being

closely related to superfluidity, although it is not clear how the superfluid

_ condensate should have a drastic effect on the total short wavelength density

fluctuations.
It is therefore not astonishing, although often overlooked that col-
4)
this fact introduces the question of whether the normal quantum liquids,
4 3
these liquids exist, are in general able to support short-wavelength col-

. lective excitations exist in the normal phase of liquid 4He However,

He, H,, D2, and Ne) because of the low temperatures at which

ective excitations. This problem will be elucidated in chapter 3 where the
tudy of liquid H2 is presented. This liquid is of interest because it exists
at very low temperatures, and further the special neutron scattering proper-
ties makes it possible to study both Scop (%) and SINC (x, w), providing a
stringent test on the possible existence of phonons. Finally it is important
i‘?‘that the phonons have been studied in detail in the solid phase' 2).

In table 1 the interacting potential is listed as being not harmonic for
;!v,‘~.,quantum liquids. The molecules in the quantum liquids are known to interact
:"_lvikvia a Lennard-Jones potential, and quantum effects seem in the liquid phase
~ to be well described as a temperature effect. This is qualitatively shown

- in fig. 1. Although the Lennard-Jones potential appears far from harmonic,
- the low temperature of the quantum liquid may have the consequence that

. only the lowest states are thermally populated.
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Fig. 1. Characteristic potentials and temperatures in quantum liquids,
metallic liquids and Lennard-Jones liquids. ¢ = well depth of potential,
'I‘M = melting point, and OD = Debye temperature of the solid.

2.5, Metallic Liquids

Contrary to quantum liquids, liquid metals appear at high temperatures
with fairly harmonic interaction potentials, As will be seen from fig, 1,
the thermal population in the metallic case is considerable, but the form
of the potential indicates that the populated states are predominantly har-

6) and MD7)
results for liquid Rb show that phonons of intermediate wavelengths (i. e. in
"¢ u 1.2 A7), although heavily damped,

monic in nature, It is therefore interesting that recent NS

the wavevector region 0,3 A~
exist in this liquid.

2.6, Lennard-Jones Liquids

In the last column of table 1 are shown the classical Lennard-Jones
liquids, All the four basic assumptions necessary for establishing an exact
theory for phonons are violated. Consequently, no consistent evidence for



_ phonons was found in the extensive NSS) study of liquid A, neither in
e i / the important question may still
,, SCOH (»,®) nor in SINC (x,w). However, the impo q

" be asked, of whether the Lennard-Jones potential, shown for A in fig. 1,
" is relevant for the understanding of the dynamical properties of these

- liquids. This question has so far been answered positively in part by

. comparison between NSB) and MDg) results; but an alternative test is to

= prepare another Lennard-Jones liquid at a state corresponding to that of

, - liquid A, and to see if scaling according to the potential parameters is

obeyed. The conceptof a state' 9 is briefly discussed below.

s Liquid N, was then studied by NS and the results are ‘p;)esented in -

. chapter 4. The parameters of importance for the scaling are shown 1in

table 2. 3 and €,y are the Lennard-Jones potential parameters use;l/ R
to scale distance and temperature respectively. ¥, ;= (Mdu/(48£IJ)) =,

“where M is the molecular mass, is used to scale time. The states may

. then be described by T* and o".

Table 2

Parameters of importance for the scaling via the principle of
corresponding states for the liquids A, N,, Hz, and 4He.
The reduced state parameters Tx, p* correspond to temperatures

and densities where neutron scattering has been performed

q s8] g /kglK] 7 jps] T p¥ Ax
3. 405 119.8 0.312 0. 71 0.83 0.19
3.70 94, 9 0.234 0. 70 0. 93 0.23
2. 93 37.0 0.114 0.39 .54 ! 1.73
He 2.58 10.2 0. 287 0. 26 0.32 | 2.68

Further in table 2 is shown the de Boer parameter A® = (h/o LJ)(M/ ‘LJ)I /2

- If a state is then defined by T*, ¥, and A%, scaling should be obeyed be-
~_tween all liquids interacting through the Lennard-Jones potential including
" the quantum liquids' 9). However, since no dynamical theory can at present
- relate short wavelength dynamical properties from one state to another,

- only different systems such as N2 and A, prepared in the same state can be

. compared. The quantum nature of a liquid, quantitatively defined by the

- magnitude of A* does not allow a detailed comparison between liquids with

-13 -

small and large A*. This Justifies the fact that the quantum liquids in
table 1 are classified separately according to the low temperature at which
they exist,

3. NEUTRON SCATTERING IN LIQUID H, AT 14,7 K

In the previous chapter liquids were classified according to their ex-
pected dynamical properties, It was mentioned that liquid H., was a good can-
didate for testing whether phonon-like collective excitations— exist in a low-
temperature, anharmonic liquid. In this chapter the results of NS in this
liquid will be discussed. The results for the collective excitations have
been publ.isheds), whereas a more detailed presentation will be published
for the single-particle motionzo). Here the resulis will be reviewed and
compared with the results for liquid A, and when possible also with liquid

4He.

3.1. Neutron Scattering Properties of Molecular Hydrogen

Molecular hydrogen has very special neutron scattering properties.
This is due to the existence of the para and ortho modifications p-H,, and
o-H,. In fig. 2 is shown how the symmetry of the molecular waveﬁ:nction
¢ divides the rotational states into two groups, the para states where the
rotational quantum number J is even and the total spin I=0, and the ortho
states where J is odd and I=1. Because of the small moment of inertia of

the H2 molecule and because the anisotropic interactions are small, J is

J 4 f Y v l/l=0
Even| AS |s|s |as]| para

Ortho

Odd | AS|S | AS|S

1=1

Y=f(r)YJmJ( 8,9 )VI

Fig. 2. Symmetries of the molecular wavefunction ¥, in the case of H,,
when the two protons are interchanged. S * symmetric, AS = antisymmetric.
At the right are shown the resulting spins of the protons corresponding to
the symmetry of the spin function vir
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a good quantum number. Further, since the energy of the first rotational
state AE = E(J=')-E(J=o)=l4.6 meV = 170 K, only p-H2 with J=0 and o-H2
with J=1 are present below the boiling point TB= 20.4 K. One important
consequence of fig. 2 is that pol-l:2 has 1=0 i. e. a spin singlet eigenstate,
This makes the neutron scattering within the J=0 state purely coherent, so
that p-H2 acts as a scatterer with a coherent scattering length per molecule
of 2. bc0 -jg(nd/2). b cop 1S the coherent scattering length for the proton,
E d=0. 746 A is the internuclear bond length, and ] 0 is the zero order spherical
©  Bessel function. » is the wavevector transferred to the liquid by a neutron.
| Sarmazl) has worked out the full expressions for the neutron scattering
from all the combinations of p-H, and o-Hz. The scattering cross sections

for neutrons that do not undergo energy changes large enough to change the

' rotational state are:

1: (J=0) - (J=0) scattering:

2 )

d°c . k h 2 ud

dade - ‘0 X, x °con o (5=)Sconlx @ (1)
where

Scontts®) = 7x | @) ax €2 oy,

2;: (J=1) - (J=1) scattering:

.2, ud i

I')
s h v .

dde 1 Ky
- where

r .
SINC(E'“) = '211?!{ f dtj dr RILES %)GS(_I:, 1) .

If we, however, make the neutron energy large enough to excite the

~ para--rtho transition, the cross-section is:

3: (J=0) = (J=1) scattering:

dzo N .2 md

k k A
dade - o 0T 3% ne 31 &) Sinc®, @ - '1@) : (3)
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In (1)-(3) G(r, t) and GS(E, t) are the total and self-correlation functions
for the molecular centres, respectively. 50 and k are the incoming and
outgoing wavevectors of the neutrons, hx = h(l_ﬁo-_lg) and hw = hz(kg-kz)/ (2m)
are the momentuin and energy transferred to the liquid by one neutron.
%COH - 1. 77 barns ar}d %ne = 79. 9 barns are the nuclear coherent and
incoherent scattering cross sections respectively.

Two simplifying cases occur if either the ortho concentration ¢, or
the para concentraion o becomes unity, and the results are summarized
in fig. 3. In pure o-H,, studied by Egelstaff et al. 22), only scattering

according to (2) occurs, giving the incoherent scattering law SINC(u,u).

P

S pcl®.W) Scopd W W) 2 scmw-8E) W
(a) (b)

Fig. 3. Neutron scattering from molecular hydrogen obtained by a constant
wavevector experiment,
(a) Scattering from o-H2 yielding SINC"'“ ).

(b) Scattering from p-H._, yielding SCOH(" w) and SINC"'“')'

In pure p-H2 studied here, scattering according to (1) and (3) occurs. Since
the total width of the coherent spectrum is observed to be 8 meV, (1) and
(3) show that it is effectively separated from the incoherent spectrum by
the translation in energy AE. In the coherent scattering experiment the
neutron energy is therefore made smaller than 14,6 meV, so that only
scattering according to (1) is possible. For higher incoming energies the
scattering is dominated by the incoherent process (3) when AE ( he ( 2AE.
This is true even if SCOH(“’ w) differs from zero in this range, because of
the large ratio o

inc/°conr .
sentially one-sided. This is a good approximation because of the principle

In fig., 3 the scattering laws are shown es-

of detailed balance;

-ho/kgT g W), (4)

S(x, -w) = e
which together with the energy shift AE provides the separation of the
scattering laws,

Equations 1 and 3 therefore allow the determination of both SCOH and
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SINC' and data were obtained using a triple axis neutron spectrometer. The
instrumental corrections were performed according to the procedure dis-
cussed in the Appendix. The only point where the interpretation of the data
differs from the simple monoatomic case, is the appearance of the mol-

ecular form factors jg and j?. These functions are shown in fig. 4.

10

ol

001 i 1 1 |
4
wii"

Fig. 4. Formiactors of interest for the interpretation of the cross sections

for molecular H2.

Finally it should be mentioned that in practice the concentrations <o
and <, play an important role for the success of an experiment., The
equilibrium value at TB for <, is 0.2%, so that even the slow decay
towards equilibrium changes 2 from its initial room temperature value
of 75% during a neutron scattering experiment on predominantly o-Hz. If
almost pure p-H, is studied, even a small inefficiency in the catalyzation
process to reduce c; immediately introduces a complicated scattering
pattern with both coherent and incoherent scattering according to (1) and(2).

3.2. Experimental Results for Liquid H, at 14,7 K

2
3.2.1, The Structure Factor

Although the liquid structure factor S(x) is not directly dynamical in

’nature, it is usual to start the presentation of the neutron scattering results

TP TR PR T M CR T L R TE e BV e

A SR

g

A B

o S
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.)l
by showing S(x). This is done for the liquids Ag), H,, and 4lle'3) in fig, 5,

|| | I 1
1 /\\7
o
R —
Z
(79}
s 2 - Liquid H, —
©
9
v 1
2
A ﬁf'“
N
Liquid"He

—f

, ANG—

%o
ol 1 l
2

i 3 4

WA

Fig. 5. Structure factor S(s) for the three liquids A, H,, and He.

The peculiar shape of S(x) for H2 was verified through both a diffraction

experiment and the relation:
= (5)
S(n) f SCOH(“’ w)dew .
-00

Fig. 5 shows that the structure factor does not scale in a simple way
according to 91 30 shown in table 2, but indicates that a complicated func-
tion of all three state parameters must be used to describe the structure
at different states, This picture is somewhat simplified when SCOH('" 0)
is studied at the end of the next section,
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3.2.2. Collective Motion

The obtained S
values x = 0.7, 1.1, 1.5, 1.9, 2.3, 2.7, and 3.1 A
been normalized through the ACB sum rule described below.
n's momentum conservation limits the accessible range of v in SCOH(u,u)
for a given energy of the incoming neutrons, which was kept below 14. 6
In liquid hydrogen this means that one cannot at the present tem-

perature measure the longitudinal phonon branch forx ¢ 1,0 A" because

mevV,

) is presented in fig. 6 for the wavevector

con™:® ,

of the high sound velocity.

Scou(l,w) (M']
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AT 147 K

Fig. 6. Coherent scattering law SCOH(l,u) for liquid parahydrogen at
T 2 14.7 K and saturated vapour pressure. In the base plane the recoil

energy curve is shown, and the extension of the position of the Brillouin
peak is indicated.
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Fig. 6 demonstrates that a well-defined peak exists in SC OH(u,u) for
w # 0, signifying the existence of a collective excitation in the density-
density correlation function. In liquid A such peaks are not seen in
SCOH(n' w), but only in the velocity autocorrelation function ugs(u,u), which
of course has a peak at finite energy even if the density-density correlation
function is overdamped. In addition to the maximum at finite frequency in
liquid H, there is also a portion of the spectrum centred at zero frequency,
most pronounced at » = 2 Al , i.e, near the "major" peak in the structure
factor. In this respect liquid H2 is similar to classical liquids.

Compared with liquid *He above the \ point®) liquid H,, is similar in
the sense that both liquids seem to support well-defined p;opagating modes,
but in 4'He no elastic line occurs. This may reflect the fact that the specific
heat ratio Cp/ Cv is close to unity, which in the hydrodynamic region would
make the central Rayleigh line disappear.

After it has been shown that in the quantum liquids the significant in-
elastic part of SCOH("U) indicates the existence of phonons, two rigorous
tests will be made. The first is to compare SCOH(u,u) with that expected
from polycrystalline H,. For instance the energy of the longitudinal phonon
at the first zone boundary in the solid is 10 meV atx = 1,0 A”'. Estimation

from the Gruneisen relation:

v = Sk, (6)
where Y is taken from ref, 12, and p is the density, gives 7.5 meV at
x~1.0 R'l in the liquid. This compares favourably with the peak observed
COH("U) at 7. 2 meV,

At higher »'s, corresponding to the second and third Brillouin zones
in the solid, intensity appears in the liquid at lower energy, resembling of
the neutron scattering law calculated for a polycrystalline powder, In the
latter case this additional feature is related to modes which have an ap-
preciable transverse character, suggesting that transverse modes may
contribute to the scattering in the liquid, although it is not clear how the
neutron can couple to transverse modes in the absence of a reciprocal
lattice. Such a coupling would imply that the liquid as a whole, similar to
a crystal lattice, could take up momentum of huo, where LI is the wave-
vector at which the first peak in the structure factor occurs. In our case
%= 2 K'], which is close to an average of the first three Bragg peaks in
the solid.

in S
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The second test is the ACB (Ambegaokar, Conway and Baym) one-
phonon sum ru1e25) which is a specialization of the universal Placzek sum

rule. The Placzek sum rule states that:

Ip = f du«SCOH(n,u) = uz/(ZM) (7a)

Applying (4), (7a) becomes:

1p = J»rdw(l-exp(—hm/kBT)) wSCOH(u, w) = uz/(‘zM) (7b)

O

For a cubic, harmonic solid the ACB sum rule then states that the one-

PH : .
A . 7 :
phonon part SCOH of SCOH obeys the relation similar to (7)
) fﬁid 1 exp(he/k TIRSFE (0 0) = 2 expl- ba D). (8)
IacB © ! -exp(hu/kg cou™:¥) = 3N XP- 3 .

o

In fig. 7 we show 1, ~p (2M/ uz) obtained from the spectra shown in
fig, 6. The fact that the spectra agree well with a mean square displace-

ment, is a strong indication that the measured portion of SCOH("’ w) in

0 5 10
w43
Fig. 7. The ACB one-phonon sum rule applied to the measured spectra.
The dashed line corresponds to the Placzek sum rule for the total scattering,
The finite slope of the solid line through the measured points corresponds
to a mean square displacement (uz) = 0,62 A%,
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liquid H2 consists of phonon contribution, Consequently (8) was used to
normalize S,y and the value of (uz) was found to be 0.62 3% *. In
liquid A the spectra obeyed eq. (7) and no natural division of the spectra
could be made.

At this point the following conclusion can be drawn about the collective
excitations in liquid Hz. They are qualitatively well described by phonons.
From their "zone boundary value" and the sum rule the phonons are quanti-
tatively defined by the Debye temperature GD - 70 K and the mean square
displacement uz) = 0.62 A%. The corresponding values in the solid phase 2)
are & =102 K and (u?) =0.48 3%, In ‘He, 8, may be taken to be 15 K
in the liquid phase compared with 25 K in the solid, whereas in liquid A,
6, and ( uz) cannot be defined from S (x, ).

Since considerable interest has been devoted to the function SCOH(“' 0),

this function is compared for liquid Aa) and H, in fig. 8. Whereas S(x) is

1 | 1 i
. . N
02 — Py ) LlQUld H2 —
-~ 0} ¢ —
E ": 0.....00...
o o
o
X o
8 2 -
v Liquid A
1l * —
®
_dee® | *ee9°°*%90,

1 2 3 4 (X"

Fig. 8. Comparison of SCOH(" 0) for the two liquids A and H,.

) o .
X The previously reported value (u”) = 1.0 A” in refs. 5, 26, and 27 was

due to misinterpretation of the data.
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the spatial Fourier transform of G(r, 0), i.e. corresponds to a "snapshot"
of the liquid, it appears from eq. 1 that SCOH('" w) corresponds to the time
average of G(r,t). The qualitative similarity between the two curves in

fig. 8 indicates that the latter is more universal for liquids than the former,

shown in section 3. 2.1,

3.2.3. Single Particle Motion

In fig. 9 the incoherent scatiering law S ?(u, w) for liquid I-I2 is shown
SINC(" w) has been

for wavevectorsx =1,4, 2.0, 2.6, and 3.2 A

Suec (. w)[mev'] B

-
040 ¢ m
03} -
0.3 -
0.34 -
0.32
03 —ﬁ
026 A
0.26 '
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o.zzt
0.20 [ ,
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0.1 | S ——
012y L
0.10 0
0.00} ; LIQUID HYDROGEN K
006 s AT 14.7 K
004 } %
o‘ozfv

<

hl Al )

1

L. £ L £, L

P2 SR S A S D S B A
1 23 46 56 7 09 10N 12 13 %15 himev)

Fig. 9. Incoherent scattering law slNC(" w) for liquid H2 at14.7 K and
saturated vapour pressure.

normalized through the sum rule similar to equation 5;

1 = fSINC(u,w)du (9)
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As in the coherent case, experimental constraints limit the accessible
range of (x, w). In agreement with fig. 6 fig. 9 shows considerable inelastic
scattering, and in addition an asymmetric central line. In liquid A only the
central line could be distinguished.

In the coherent case no theoretical model for the scattering law can be
used, but for SINC(u,u) two conceptually different models can be quanti-
tatively discussed. If the single particle motions were due to self diffusion

only, the result would be:

1 Dlz

hu/(2k T)
S (x,w) = = e B/,
INC n (Du‘z)z + ol

(10)

where D is the self diffusion coefficient.

8)

contains the expression for ''simple diffusion"”, but as appears from fig. 9
hof2k T)

Although several more sophisti-

cated models have been proposed2 , only (10) will be discussed here, It

Consequently the exponential e is intro-

29)

SINC is not symmetric.
duced in eq. 10, As proposed by Schofield

this correction, closely
related to the principle of detailed balance shown in eq. 4, may be used as
a first order quantum correction to relate the result of a classical calcu-
lation to an observed scattering law.

If on the other hand the individual particles take part, both in diffusion
(D) and in phonon-like oscillations (PH) the incoherent scattering law consists
of two parts due to the different kinds of motion:

_ <D PH

where
2
D 1 Dn by (2k , T) -2W(») (11b)
S (n,w) = = . e B e
INC n (Duz)zwz
and
2
PH _ W 2wW(n) Z(w) 1 "
SiNct®) = 737 © o TR (He)

In (11b) the simple diffusion result is modified as discussed in ref. 28 by
introducing a Debye Waller factor, and eq. 11c shows the result for one-
phonon scattering, where Z(w) is the phonon density of statesBO).

In the following the measured SINC(' ,w) for liquid H2 will be analysed

according to the two possible interpretations, and the results will be com-

pared with similar results for liquid A.
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The usual way to analyse incoherent scattering laws is to measure the
full width at half maximum (FWHM) of SINC as a function of ®, According
to simple diffusion

FWHM = 2Dx°, (12)

which in the case of liquid H2 is most conveniently analysed using the
"symmetrized scattering law'":

EINC(" @) = Sinc(® @) e h“/(szT) (13)

L T T T 7 [ ‘E | SR R SR | l T T | N |
— --.‘ e
b =144 %= 20K
® LlQUide
® ° at 14.7K
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\";oo
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C n=324"'
0.
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0 5 0 5 10

Mo (meV)

Fig. 10. Symmetrized Mcohorent lcatuﬂu law INC(' w) for liquid llz
The solid line corresponds to s NC(" @) as discussed in the text.
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This function is therefore shown in fig. 10. According to the two inter-
pretations presented above, we then get from eq. 10:;

(x,0) =
Sinc x5y s o (14)
or from eqs. 11:
c(‘ “) = SINC(‘.H) + IN(.'(‘ “) (l Sa)
where
<D _ -2W(n)
(n, ) 15b
"InC (Dw%)* + (130)
and ho/
~ Z(w)k, T bhe/(2k_T)
Pl-l ot B B
Sinc™*) = —omr © (he)?  STRWS JZE.T) (15¢)

In fig. 11 the FWHM has been determined from eqs. 14 and 15b. In

order to substract SP

FWHM [meV)

values for the Debye-Waller factor were taken

— Egelstaft et.al.

1 1
5 10
w(k-2)

Fig. 17. FWHM of the symmetrized incoherent scattering law BINC(" w)
for liquid H, anslysed according to the two interpretations discussed in the text.



- 26 -

from the coherent data together with the Debye energy huD = k@ D determining

the Debye density of states ZD(u) = 3w2/4»3;) for small w's. Also shown in

fig. 11 are the results of Egelstaff et a1.22) together with the results from
eq. 12 of simple diffusion, with the diffusion coefficient D = 4.7 * 10-5
as determined from their data. Although there is significant disagreement

between the data of ref. 22 and the ones reported here concerning the FWHM,

the resulting D agrees fairly well independently of the way the data are
interpreted. Consequently the quoted value for D will be used in the fol-
lowing, It is worth noting that in liquid A, significant disagreement with
eq. 12 was also found.

In liquid A however, perfect agreement with eqs. 10 and 14 for w= 0

was found, i.e.:

= .
SINC(I, 0) = u—[)—u-z— . (l 6)

The alternative interpretation according to egs. 11 and 15 yields:

_.D PH

SINC(I,O) = SINC("O) + SINC("’ 0) (17a)
where

D 1 -2W(n)

Sine (% 0) = e (17b)

INC nDx
and

sPH (, o) - n2x2 ZW() 5 T a1

INC'™ M [ c)

In fig. 12 is shown x°S,, (x, 0) and the deduced x% S2__,0) for

. INC\™ INc™:

liquid Hz. It is seen that an interpretation according to eq. 16 is not
consistent with the observed SINC("' w), since a horizontal line is not ob-
served. Interpretation according to eq. 17b agrees well with the result
deduced independently from the coherent data. Consequently it is not
necessary to distinguish between the two Debye-Waller factors, defined
independently through the ACB sum rule in eq. 8 and through eq. 11b.
Finally the one phonon density of states Z(w) may be deduced from eq.
11c. As mentioned above Z(w) should for small values of w approach its
Debye value ZD(u), but for all values of w a stringent test on the validity
of Z(w) is provided if one calculates Z(w) for different x's. This is shown
in fig. 13 for liquid H,. The result shows that Z(w) - Zp(w) for hw ( 3 meV

cmz/ s,
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Fig, 12. S(u,0) for liquid H, analysed according to the two interpretations

discussed in the text. O indicates independent result using D = 4.7 x 10°°
cmz/ 8, and the solid line indicates the result from coherent scattering.
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Fig. 13. Density of one-phonon states Z(v) for liquid H, deduced from
Sing®v)-
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and that Z(w) is well defined up to he™= 7 meV. For larger energies fig. 13
indicates that multiphonon, which has not been included in the analysis,

. N |
increases with increasing wavevectors., This is observed also 1n liquid "He

and agrees with conventional multiphonon theories. Unfortunately the multi-

phonon region was not investigated in the present experiment,

3.3. Discussion of Liquid H,

In the analysis of the neutron scattering from liquid H, at 14.7T K as
represented by the normalized scattering laws SCOH("’ w) and SINC(R,U),
the result strongly suggests that phonon-like excitations exist in this liquid.
These excitations are well characterized by the Debye temperature 9D"' 70K
as observed through the coherent spectrum and the deduced one-phonon
density of states Z(w). OD is in agreement with a scaling to the solid through
the Gruneisen relation. Further a Debye-Waller factor may be defined and
independent calculations of the ACB sum rule, the contribution to the
scattering from self diffusion, and Z(w) yield consistently the mean square
displacement (uz) = 0.62 KZ' compared with (u2> = 0.48 A% in the solid.

In contrast to liquid A, a consistent analysis cannot be carried out without
introducing the concept of phonons, as contributing to the neutron scattering
from liquid H,.

As discussed in sections 2.4 and 2.6, liquid H2 may be classified as a
low temperature Lennard-Jones liquid. Since MD calculations on these liquids
can be performed, it is natural to predict the possible result of such a calcu-
lation. In fig. 14 is therefore shown the symmetrized coherent scattering law
§COH("' w) obtained from SCDH(u,w) similarly to eq. 13. Together with
SINC("' w) shown in fig, 10, SCOH("’ w) is the expected result of a classical
calculation, The problem, however, arises of how to define the state Tx,
p¥ for liquid H,, and a crude estimate is the following. Owing to quantum
effects, the potential parameters ° 3 and €, j must be renormalized to
OLJ and t'LJ' From S(%,0) in fig. 8 it seems natural to estimate mLJ = 3.4
for H,, since then it T 6.8 is obeyed for both liquid A and liquid H,.

“LJ is then obtained from the value of D, using the MD result of Verlet

31)

et al. . Extrapolating their calculations one gets consistently that €

may be renormalized to C'LJ =172 K. With % and C'LJ the state of
liquid H, at 14.7 K is defined by p* = 0.35 and T™ = 0. 085, differing sig-

nificantly from the values given in table 2,

LJ
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Fig. 14. Symmetrized coherent scattering law gCOH( », w) for liquid H,.

4, NEUTRON SCATTERING IN LIQUID N, AT 66,4 K

Among the classes of liquids defined in chapter 2 that of classical
Lennard-Jones liquids is the most strictly defined. The potential param-

and ¢ can be determined from measurements in the gas phase,

and tog:‘t‘}ller withL'tIhe mass M they should allow a first principles' theory
to be established. Although the Lennard-Jones potential is generally re-
cognized to be a good average potential, more sophisticated potentials have
The
purpose of this chapter is to present neutron scattering results from liquid
Nz, and to test whether the dynamical behaviour of this liquid scales ap-
propriately to that of liquid A, measured by Skdld et al. 8) .

Only the dynamical behaviour of the molecular centres is of interest.
for this discussion., As will be shown below, it can be deduced from the
neutron scattering pattern, It should, however, be mentioned that recently

considerable interest has been devoted to the general dynamical behaviour of

eters ¢

been worked out to account for finer details in experimental results.



- 30 -

the condensed phases of molecular nitrogen. MD results have been pub-
lished for the liquid phase32) and larger computations are in progress, NS
results from liquid N, of which those reported here are only a part will be
published33) and further a NS study of solid N2 has been undertaken by

»

Kjems et al. 34).

4.1. Neutron Scattering Properties of Molecular Nitrogen

The neutron scattering properties of molecular nitrogen differ drasti-
cally from those of molecular hydrogen. The larger moment of inertia of
the N, molecule, makes the energy of the first rotational state AE = 0,49
meV = 5.7 K, compared with the liquid temperature of 66.4 K. AE together
with the parameters introduced below have been defined in chapter 3. It
1s therefore natural to consider the N2 molecule as a totally classical ro-
tator, neglecting the differences between the ortho and para states of the
molecule.

For small wavevectors however, the coherent neutron scattering cross

sections from H, and N2 are similar, Here the molecule may be considered

as a point scatte?;'er with a scattering length of _.bCOHJO(ud/Z) where d =
1.094 A for N »; but whereas in the case of H the incoherent scattering
could be reduced to zero, this is not strictly true for N,.

Sears 5) has calculated the cross sections for a classical system of
diatomic homonuclear molecules.

to be:

The cross section per molecule is found

ho
2 o
ae  __ k T °coH ~ .
Fle "2k ¢ B —am x {acouMScopl @)t apnch Biycine)

oo . (18)
+ T {a (w J‘SINC(‘-Q')S (w')dw' },
g =1 - oo
where °COH - 11.1 b is the coherent nuclear scattering cross sectionss).

Because of the fact that liquid N, is considered to be almost classical,
eq. 18 is written, so that the symmetrized scattering laws, discussed in
the previous chapter, arc shown. Not yet defined in eq. 18 is the rotational
scattering law Sg(w), which is the lburier transform of the £'th rotational

relaxation function Fl(t):

o0

S (w) = 'i fF (t) cos(wt)dt . (19)
0

i e

o TR L, ok A REI E Wesis  50 a
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Further the formfactors for each of the scatteriag laws in eq. 18 are

the following:

acon™ = 2oty
= INC 2 md
(20)
r(2!."'1),]( ) {2+ OINC }, ¢t even
z °con
a (l) = <
2%d . °INC
(2t+1) (=) , L odd
I 77 %on

In (20) j!. is the g2'th spherical Bessel function and %INC is the nuclear
incoherent cross section.

The main difficulty in calculating aNC and the al's lies in the uncer-
tainty of © INC of which no accurate value has been published. From Willis36)

one can estimate UINC/°C0H~ 0.03, but from the results shown in section

4.2.2 it is natural to assume either qINCIOCOH =0 or GINCIGCOH = 0.048.
Consequently in interpreting the spectra, these two possibilities must be
considered separately. '

In fig. 15 are shown the relevant formfactors according to eqs. 18 and
20, presented for m-values of intcrest for the present study. Also shown
is the sum of all a's neglecting incoherent scattering. Fig. 15 shows that
for v {17 A’
rotational transition of ¢ =
coherent scattering. For small wavevectors however, the incoherent
scattering aINC INC(' ¢) may contribute significantly. The total coherent
scattering using the sum rule (5) is aCOHS(u), compared with 3INC which
according to eq. 9 measures the total incoherent scatter.ng. Since S(x)~0.1
for the » { § R" the two contributions are comparable, ii one uses the
finite value of ¢ NC/G COH &iven above.

In analysing the data obtained for liquid N2 one may proceed in the
From the scattering are deduced the nuclear scattering
C(I., W) defined similarly to the simple mono-

only the centre of mass motion through §COH(I,H) and the
2 (the ""d-wave'") play a significant role in the

following way.

,conl®-¥) and S, 1y
atomlc case through the scattermg cross section per nucleus:

laws S
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Fig. 15. Formfactors of interest for the interpretation of the cross section
for molecular N2. The dashed lines correspond to an estimate of

OINC/ oCOH = 0.048 as discussed in the text.

2
d” e _ k _h/(2k,T) ‘COH , = OINC ~
®de "k, ¢ B I {Sn,cont-w)*?&;{ S, INci0) )

(21)

According to eq. (18) and the discussion given above, the molecular
scattering laws are then deduced from:

S0, COnt» ) = acon®) Beopume) + a,m) [ B b u-u) 5, (0)au

and (22a)

~ _ ] A~
Sp, INc(* @) = 7 acoy(®) S;yob,0) (22b)
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From eq. 22 and the values of the formfactors shown 1n fig. 15 it
appears that for 0 Al (w22 A §COH(u,u) is studied solely, whereas
in the region 4.5 A { » (6.5 A7 information about glNC(" w) and S, (w)
is obtained. In the following the results will be presented and compare?i

with the results of liquid A.

4.2, Experimental Results for Liquid N, at 66.4 K

4.2.1. The Structure Factor

In the case of liquid H2 a brief discussion of the_h'quid structure factor
for liquid N2 will be given. As suggested bz' SearsBD), one may define both
a nuclear structure factor Sn(l), related to Sn, C()H(u’ w) through eq. 5 and
directly measured by a diffraction experiment, as well as a molecular

structure factor S(®) related similarly to gCOI (t,w). Using eqs. 18 and 21

together with the sum rules (5) and (9) we get ):

. 2 nd .

S() -1 = (S 0¢) -1 -3 (d)N/(2] (5. (23)
Fig. 16a presents the result of an analysis according to eq. 23, The

data for liquid N2 are taken from the X-ray measurements of Furumoto and
37)

Shaw

et al 38) for A, using scaling according to o When 2’2 ('d) = a is
: ' LJ* Jo'77) " 3con

small, reliable data for S(x) cannot be obtained. Although the dominant

feature of fig., 16a is agreement the fact that the second maxima for A and

, and they are compared to the neutron diffraction result of Yarnell

N2 do not coincide, indicates an insufficiency in the scaling. Sears sug-
gested that a difference in the S(x)'s might be due to a weak anisotropic
coupling, a point discussed in the following sections,

An alternative use of eq. 23 is to take S(x) from liquid A and to deduce
S5, (x). Using scaling, this function would in the absence of anisotropic
interactions reproduce the measured Sn( x) for NZ‘ From fig. 16b it is
seen that the second maximum is shifted similarly to fig. 16a; but the fact
that the two Sn's do not coincide in the region 18 ¢ x - o 26 cannot he
explained by Sears's formulation, In this region, corresponding to 4.8
Aleax ¢ 737 for liquid N,,, any contribution to S (x) from Sk ) is ef-
fectively suppressed, so that equation 23 reduced to Sn = l+jo(ud). How-
ever, a smooth maximum at »° o3~ 22 occurs, in addition to the maximum
ats .0 = 28 as prescribed by eq. 23. The existence of this unexpected

LJ 39
maximum has recently been verified b}’ neutron diffraction ).
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Fig. 16. Comparison between the liquid structure factors measured in

liquid A and liquid NZ'

4,2,.2, Collective Motion

The results of the neutron scattering experiment for liquid N2 are
shown in fig. 17 in the shape of the nuclear scattering law gn, COH( X, W
for the wavevectors x = 0,1, 1,0, 1.3, 1.6, 1.9, 2.2, 4,0, 4.8, 5.6, and
6.4 A'i . Except for the smaller u-value the spectra were corrected in
the way described in the Appendix, S n. C OH(u’ w) was normalized using
eq. 5 and the measured Sn(u) shown in 'fig. 16, Forw =1,0 fg'l andx=1,3
ﬁ'] , the measured spectra are in a natural way divided into a narrow line
and a broader one., Since the width of the narrow line fulfuls eq, 12 for
simple diffusion, where D is determined independently as shown in section

4.2,3, this portion of the spectra may be due to incoherent scattering if
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LIQUID NITROGEN
AT 664 K
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Fig. 17. Coherent scattering law for liquid N, at 66.4 K. The dashed lines
show the corrected scattering law if a possible incoherent scattering is
subtracted as discussed in the text, At x=4.0 A™' the scattering is
separated according to the formfactors shown in fig. 16.

OINC/ %COH - 0.048. This value gives according to eq, 21 the a correct

division of the spectra,
obtains for small wavevectors an alternative Sn COH(u’ w), as mentioned

Subtracting the possible incoherent scattering, one

in section 4., 1.

Only for » = 0,1 K-], is a small peak in gn, COH(“‘ w) for w# 0 seen,
This region, only investigated through the experimentally difficult small
angle scattering, corresponds to wavevectors where the sound wave ac-
cording to linear hydrodynamic theory for viscous fluids should be over-
dampedg). Since most of the width of the line centred around @ = ViR,

where v s is the sound velocity, is due to experimental resolution, the

result indicates that fairly well-defined sound waves exist in liquid N, at
x =0.1 A7, At x=0.23 87! Levesque et al. 9 in a MD calculation found

a broad inelastic line qualitatively in agreement with the present NS result,
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The MD result could be well understood by introducing a coupling between
longitudinal and transverse waves, often neglected in fluid mechanics.
Since the same theory can explain the tails found in the velocity auto-
correlation function in dense fluids40), an NS result is of interest as a
direct experimental verification of the MD results and the mentioned theory.
The quality of the present result does however not permit this verification
to be conclusively made.

For wavevectors x> 1 A~' no evidence is found for well defined col-
lective excitations in liquid N'Z’ since no inelastic peak is seen in

S (% @, for constant values of ®, This conclusion is independent of

tlrrllé ?)ooiible contribution from incoherent scattering, and in this respect N2
is in qualitative agreement with A. Quantitatively the results for the two
liquids may be compared when gCOH(" w) is deduced from eq. 22 and scaled
LJ and of J° na
corresponding to1.3 A  and 2.0 A
shows the results of the comparison. It should be noted that no adjustable

This may be unambiguously done -:. g. for »= g

according to ¢
' 1

for N, and A respectively. Fig. 18

parameters were used.
The detailed agreement between the result for the two liquids at %= ®0

for 0.3 % w- 1. . %2, 2 corresponding to 1 meV { hw (6.7 meV in liquid

Nz, is a stronIgJJindication that the isotropic lL.ennard-Jones potential is
appropriate for the two liquids concerning their dynamical behaviour. For
larger energies the N2 data are probably inaccurate owing to multiple scat-
tering effects, discussed in the Appendix.

The significant deviation between the two ECOH(x,u)'s for small values
of w may be explained in terms of an anisotropic interaction due to roto-
translational coupling in liquid N2. Although this cannot be conclusively
stated it seems plausible, when one compares the frequencies at which the
gCOH" ,@)'s for A and N2 disagree with the characteristic classical rota-
tional frequency of the N, molecule. The latter corresponds to an energy
of h(kBT/I)] /2 - 0.22 meV where I is the molecular moment of inertia>),
Compared with the energy where agreement occurs athw = | meV, this
indicates that disagreement between A and N2 occurs at time scales com-
parable to or larger than the classical rotation period of the N, molecule,
This result also found at other x-values supports the suggestion that the
deviation from scaling is due to anisotropic interactions, whereas the

isotropic part of the interaction potential is well described by o d ¢

LJ 3" 15
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Fig. 18. Comparison between §COH('0") for the two liquids A and NZ'
The levelling-off of the N, data is estimated to be due to multiple scattering.
The dashed line shows possible contribution from incoherent scattering.

Since the deviation from scaling occurs at small frequencies, SC Oll(" 0)
is not expected to agree for liquid A and liquid N,. In fig. 19 this function

is compared for the two liquids. In contradistinction to the structure fac-

tor S(sx), a large deviation is seen even around the first peak at % = LN

when the function S (s, 0) is studied. Similarly significant deviations

COH
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Fig. 19. Comparison of § ,0) for the two liquids A and No.

cou™

are seen in the scaled FWHM of SC OH(N,U). This evidence indicates that
the agreement obtained for S(%) may be fortuitous. MD resultsm) showing

local anisotropy in the pair distribution function seem to indicate this also.

4.2.3. Single-Particle Motion

As discussed above, the scattering at wavevectors 4.0 f\_l s x 7.0 10\.1

consists mainly of a contribution from the last term in eq. 22a. In this

region one has to consider both SINC

the information that can be gained about the two functions.

and S Y which considerably limits

In order to analyse the data, models were used for the two scattering
laws. SINC(u,w) was assumed to be described by simple diffusion according
to eq. 10. Similarly it can be shown to be a reasonable assumption33) that

SP. (@) is well described by rotational diffusion, according to which35):

S @) i (1"'1)Dr .
= - 2
L ((2+1)D )" +u° =4

where D is the rotational diffusion coefficient, Inserting eqs. 24 and 10
into the last term in eq., 22a we get the result for the full width at half
maximum;

-39 -

: 2
FWHM = 12D_ + 2Dx°, (25)

From eq. 25 Dr and D may be determined. This is done in fig, 20,
R -1 -
yielding D = 0.82 (ps) ~ and D=2.7-10 S cmz/s. Only the value of the

self diffusion coefficient D is of importance for the discussion here, and it

5 2
cm”/s and reason-

giving D=3.7-10" cmz/s at the boiling
cmz/s scales well to both MD and the

compares well with the scaled MD resultm) of 3.0- 10
ably with the estimate of Sears35) S
point. In liquid A% D =1.94-10"

value for N2.
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Fig. 20. FWHM of S(x,0) for 43™' «» 6.4 A™!, obtained as a fit to

Lorentzian lines shapes,

Consequently the limited information gained about the single particle
excitations of the molecular centres in liquid N2 leads to the conclusion

and ¢, ,.

that scaling is obeyed according to % 5 LJ

4.3, Discussion of Liquid N

2

The result of neutron scattering in liquid N, has been analysed through
the normalized molecular scattering laws S (x,@) and S (%, ),
assuming a simple model for the rotational relaxations in this liquid. Both

the collective excitations and the single-particle excitations scale well with
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9, 31 :
NS results from liquid A8) and with MD results™ ), according to the

molecular Lennard-Jones parameters, This supports the classification

made in chapter 2, according to which the Lennard-Jones liquids are not
expected to support well-defined, short-wavelength excitations, However,
the preliminary result at x» = 0.1 K'] indicates that the sound wave persists
up to this wavevector in liquid N2. Considerable interest and discussions
have been devoted to the analysis and understanding of related phenomena
in dense ﬂuidsg).

The significant deviation from scaling in liquid N, at small energies is
to some extent unexpected. Since the molecular ordering temperature is
T = 35.6 K in the solid phase, one might not expect the short range aniso-
tropic interactions to be of importance at liquid temperatures. Further
the small bond length d =1.094 A compared with 013" 3.7 A makes the
geometrical shape of the N2 n;g%ecule ra;hzcir isotropic. The experimental
evidence provided through NS and MD results shows, however, that

the anisotropic part of the interaction potential cannot be neglected.
5. CONCLUSION

In the two previous chapters NS results from the liquids H2 and N2
relevant for the dynamical behaviour of the molecular centres have been
presented and discussed. In liquid Hz, the concept of phonons must be
introduced together with the concept of self diffusion in order to interpret
the data consistently. The Debye-Waller factor, the Debye temperature
and the density of one-phonon states can be deduced and agree well with the
results from the so].idl 2) scaled to the density of the liquid. Further the
measured self diffusion coefficient agrees with the previously published

value
Less extensive results from liquid N, indicate that besides an aniso-
tropic contribution to the interactions the dynamical behaviour of the
molecular centres is well described by the isotropic Lennard-Jones potential
parameters, so that the results from A and N, scale appropriately. In these
liquids one cannot from the NS data rigorously deduce any of the character-
istics of phonons. It should at this point be emphasized that the discussion
here has been kept to the normalized density-density correlation functions
as measured by an NS experiment, whereas introduction of e, g. the velocity-
Further
in confining the analysis to correlation functions, one avoids the problems

velocity correlation functions may easily lead to false conclusions,

of the detailed movements of the atoms in the liquid, without loosing any

22)
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physical insight, possibly gained through the experiments.
In liquid Rb, NS®! and MD")
exist in this liquid, although less pronounced than in liquid H,. A pre-

results show that phonon-like excitations

liminary analysis in terms of sum rules indicates that a one-phonon part
of the spectra cannot be isolated in liquid Rb, but a solid-like dispersion
curve for the excitations may be deduced.

The experimental evidence supports the classification presented in
chapter 2. The classes seem uniform and well separated from each other
when their dynamical behaviour is analysed. In quantum liquids, classified
according to table 1 and fig. 1 as low temperature, anharmonic liquids
the phonons are quantitatively well defined. Less pronounced is the
phonon-like behaviour in the high temperature, harmonic liquid, available
for experimental study in the case of metallic liquids. Finally in the case
of the high temperature, anharmeonic liquids, the results for the Lennard-
Jones liquids show that the phonons cannot survive when all four assumptions
basic for the exact phonon theory are violated.

Consequently the following has been learnt about the collective exitations
in liquids. The existence of phonon-like collective excitations depends

critically on the temperature as measured by T/6,,, where OD is the Debye

temperature, together with the details of the formDof the interaction potential.
In contradistinction to what has often been anticipated the fact that the dif-
fusion process occurs at time scales similar to those of the possible phonons
does not seem to have any drastic effect on the collective excitations in the
liquid phase. Finally it is worth noting that the effect of non-periodicity is

a significant change in the phonon spectra] 3,16) which may explain the

»

reported specific heat anomaly at very low temperatures in amorphous

14)

According to table 1 and the discussion in chapter 2 the breakdown of

systems

three out of four assumptions has been studied and can be conceptually

understood. Non-stationarity as well as high temperatures and anharmonic
interactions tend t» destroy the phonons, but only when all three effects are
present does the concept of phonons lose its meaning, Concerning diffusion,
however, it cannot be considered satisfactory that the effect on the col-

lective excitations, has not been seen. Since the phonon spectra character-
ized by OD
diffusion coefficient D varies exponentially with T according to Arrhenius'

are not expected to vary much with temperature, whereas the

law, this effect should be a simple temperature effect for any particular
liquid, However, as discussed in chapter 2, the most fruitful results are

expected from supercooled liquids,
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Nepiecting the classyification according t tuble 1, the dynamical be- The author wishes to thank professor A. Sjdlander, Chalmers Teknisk
haviour in simple liquids ciose o their triple points appears to be con- Hogskola, and dr. A. Rahman, Argonne National Laboratory, for their i
ceplually difficult to understund. Such a classification muy therefore be interest in the work and for helpful suggestions.
useful in the absence of goud theories derived from first principles. On
the other nand it is encoursding thiot such theories bave appeared as exten-

, Y - . - .
sichs of the ordinar. hivdreds namic theory ), but in order to test these

theories, NS experiments must be performed fur smailer wavevectors,
)

3 ; - P 3 st iaary s : - -
The preliminary result for qguid N, shown in section 4. 2,2, points towards

small angle scattering as 1 new and challenging field 10 NS,

Finally it should be ¢emphasized that the materials discussed in this
report constitute oniy a very small fraction of the interesiing and available
non-crystalline materials.  The conlusion of the report is however that

even the maost sireple lquids must o experimental evidence be classified

according to table 1 if 4 mieroscopic wunderswanding of their different dy-
namical behuviour should be anderstood.  Om the otizer hand, conceptual
understanding alonyg the lines discussed here justifies the study of more
complicated (or ['(?{il.iS[i(‘) Hgunds especially if bothi MD and NS experiments

can be made. 1t seerus therefore promising to study the condensed phases
32, 34
of nitrogen through combined efforts from mans laboratories™ ™ ). In the

near future perhaps, water 1) couid be the subject of & similar coliaboration,
based on the knowledge galned from the materials studied in this report,
Much of the interpretation of experimental results obtained from complicated
(or "real'’) materials seems to suffer from lack of precise knowledge of the

simple systems.
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APPENDIX
THE STUDY OF LIQUIDS BY MEANS OF A TRIPLE AXIS SPECTROMETER

In an inelastic neutron scattering experiment the aim is to obtain quan-
titatively the two scattering laws SCOH( %, ®) and SINC(l,u) in a certain
wavevector and energy region. Unlike in solids, where most often the
positions of sharp excitations are studied, the functional form of the two
scattering laws is of importance in liquids. This requires a good under-
standing of how to correct raw data for instrumental effect as well as other
disturbing influences,

Most of the neutron scattering work on liquids has been performed on
neutron time of flight spectrometers (TOF') as the total line shapes of the
scattering laws are easily collected on this instrument. However, the
procedure for conversion of the TOF-spectra in to constant % -scans is not
efficient, whereas such scans can easily be performed on a triple axis
crystal spectrometer (TAS). Since the relevant physical parameters are
most easily extracted when the scattering laws are presented for constant
%'s, this feature is in favour of choosing a TAS. The experiments reported
here are performed on this latter instrument, and below is given a brief
discussion of the instrumental precautions and corrections necessary in
the study of liquids.,

In fig, Al a TAS is shown together with the parameters describing the
instrument, Each of the four Soller slit collimators is defined by a hori-
zontal and a vertical angular width o, and 0. and the monocinromator and
analyser crystals are specified through lattice vector T, mosaic spread y,
thickness t, the structure factor for the Bragg reflection F, and finally the
unit cell volume V., The Bragg reflection angles are denoted 6. Further
in fig, Al is shown the scattering diagram defiuing the scattering process

as presented in section 3,1,
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Fig. Al. Schematic diagran for the triple axis specirometer.
M = Monocromator Crystal, A = Analyser Crystal, and circies

show the position of the coliimators.

A.1. Higher-Order Crystal Reflections

One basic problem of the TAS is the appearance of higher-order re-
flections in the monocromator and analyser systems, Since the whole
spectrum is to be measured one cannot be satisfied with the solution often
used in crystal investigations, viz, that of choosing circumstances so that
intensity due to higher order reflections falls in regions which are not of
interest in the experiment, In the study of liquids it is therefore necessary
to use very pure incoming beams obtained by means of neutron filters or

monocromator crystals with forbidden refiections.

,A' 2. Treatment of the Rezolution Function

When scans are performed the intensity counted I(x,w) in the analysing
system is related to the scattering laws through a convolution of the double
differential cross section d20/’(dudQ) and the resolution function R of the
TAS. R is conveniently divided intc a sensitivity part, R] , and a resolution
part }{2. R] then describes the intensity corrections to the measured
spectra related to the volume of R, and R2 kept at voume unity describes
the instrumental resolution width. In liquids only the energy width is of
practical importance. The absolute magnitudes of R] and R2 can be meas-
ured using the elastic incoherent scattering from a vanadium sample for

which8),
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do _ %INC (—(1!2)
da- = © (A1)

NS ]
where OINC = 5,13 barns and a = 0, 00677 A~ at room temperature, Of
major interest is therefore the relative variation of R] for the two modes
in which the TAS is most conveniently operated, together with the influence
of the finite energy resolutions described by R,,.

A.2.1, The Sensitivity Function R]

In specific constant m-scans on a TAS, two special cases are of interest.

They are the analyser scans (the EA mode) and the monocromator scans
(the EM mode). In the EA mode of the instrument the incoming energy is
kept fixed, and consequently higher-order neutrons are easily filtered out.

If the cross section is assumed to be of the form:

2
d"o _ 0 -1 Kk
@ Cgw K Stee)

o~
—
(W)
g’

then it is convenient to define R] so that:

I(x,@) = R, * S(n,@) (:\3)

1

42)

In the EA mode one obtains from the treatment of Mgller and Nielsen ™7,

when only the varying part in R, is included:

1

Ag
Ry = A 0 Ay 71 ,
where
A, = k2c0t6
1 A
2 2 ... 2
_ 93, t 4n,° sinT0 (A4)
Ay = ko . o 21 o Zvan 2o
3v 4v A A

5/2 . 3 3 .. .
3 = (2%) / (F 4 tA)/(k AN 20A-s1n9A)

>
"

In (A4), A, arises from horizontal collimations, A, from vertical col-

limations as calculated in ref. 42, and A, is the reflectivity of the analyser



- 50 -

crystal as discussed by Riste43) . In fig. A2 is shown R, calculated for a
typical instrumental set up using incident neutron energies of approximately

5, 15, and 40 meV. R, was normalized to unity at bhw= 0.

1
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Fig. AZ. Intensity corrections for the triple axis spectrometer, shown
for a typical set up when operated in the EA mode, discussed in the text,




of the validity of eq. A4 may be of interest,
coherent scattering law S

tained by applying eqgs. A2, A3, and 13,
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- Hl -

Considering the large variations of R, over a typical eneryy scan a test
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Fig. A3. Symmetrized scattering law for liquid N,, to test intensity

corrections for the triple axis spectrometer,

in fig, A3 the symmetrized
(n 0,w) for liquid N, at 66.4 K is shown, ob-
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are used, energy gain and energy loss coincide in fig. A3 showing that
'gCOH(" w) is symmetric, and the difference in the data obtained with 14,7
meV neutrons is probably due to a missetting of the instrument of approxi-
mately 0.1 meV. However, the more significant deviation from symmetry
seen for energies |hw| )6 meV indicates that in this region (13) is no longer
valid for the observed scattering., A natural explanation is that multiple
scattering dominates in this region. This agrees well with the discussion
given in section 4. 2. 2 and the estimates discussed below.

Ar ziternative and more sensitive test is to measure the scattering
from a known system. Hhere phonons in aluminium were chosen as an
example of a harmonic cubic phonon system, and the scans were made in
a way insensitive to the only unknown parameter, the Debye-Waller factor.
Both focused and defocused scans were performed42). The result is shown

in fig. A4 so that the dependence on k is shown separately.
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Fig, A4. Intensity of phonons in aluminium, to test the intensity

corrections for the triple axis spectrometer., According to the

formalism of Mgller and Nielsen, the specific k-dependence should be ka.




The other way of operating the I'AS is the 1°M mede.  Here the anu:sers
energy is kept constant, and if one uses a "1/v" montor before the sample
one gets, when the measurement is carried vut with the monitor counts

constant:

R, = 1 (A1)

This extremely simple resuit can, however, only be used in the swudy
of liquids when the incoming energy is so ilarge that third order reflections
in the monocromator system can be neglected. Only in this case one cun
prepare a clean incoming beam using a inounocromator crvstal with a torbidden
second order reflection at the same time as the incoming neutron encrgy
is varied. A test of the validity of eq. A4 shown in fig. 10, where the solid

dots correspond to hw { 0 and open circles to hw Q.

A.2.2, The Enexﬂﬂesolution Function Rz

The influence on the measured spectruin froin the forin of the resolution
function, described by R,, can in general not be resolved without assuming
a certain form for the scattering law under investigation. In liquids, how-
ever, one can for lack of a model bypass this problem in two ways.

As mentioned above only the energy resolution is of practical importance
in an actual experimental set up, since no strong variation with wavevector
is observed. Further since liquid spectra most often show narrow lines
only around @~ 0 it can be assumed that R2 is only of importance in this
region, In this simplified case one can in principle find the scattering law
without assuming any function for the line shape, using the convolution
theorem. This procedure was used and discussed by Skdld et al. in the
study of liquid A8) .

Considering the numerical problems in performing the actual analysis
by the above mentioned method, an alternative method of treating the con-
tribution from energy resolution seemed more attractive. Because R, is
only of importance in the elastic region of rather small wavevectors, one
can investigate this particular region with sufficiently high energy resolution
by low energy neutrons, so that the influence of R2 can be neglected. Ior
intermediate energies wheze R, plays no role in any case, one can then
match the results from experiments of iow and high incident energies, Such
a procedure, easily carried out on a TAS, worked satisfactorily in the case

of liquid N,.



A.3. Multiple Scattering

In the derivation of absolute scattering laws from neutron scattering
results it is essential to correct the data for the contribution from neutrons
scattered more than once, At the time where the present experiments were
analysed the calculations of Blech and Averbach'H) were the only published
prescription of how to analyse this effect. Their results were used to ensure
that the multiple scattering was small compared with the primary one, and
to choose optimal sample geometries. However, they can only be used as
a crude estimate of multiple scattering in inelastic measurements, but as
mentioned above, the violation of the principle of detailed balance may be
used as an indication that the scattering is no longer dominated by single
scattered neutrons. More satisfactory are the recent Monte Carlo simula-

tions of the multiple scattering effect4a). ‘

~A.4, Comparison Between TAS and TOF

On the basis of the neutron scattering results from liquids using either
a TAS or a TOF, one cannot in general point towards one as being the best.
In favour of the TAS is the flexibility, so that specific constant x-scans can
be performed, and appropriate neutron energies can be chosen to obtain
wanted resolution properties. The second order reflections in the crystals
do not seem to be a limiting deficiency of this instrument., It might be added
that neutron small angle scattering can only be performed on a TAS.

In favour of the TOF in the study of liquids is the better neutron economy
since all the neutrons scattered in one direction are simultaneously analysed.
This gives automatically the scattering law over a large region of wave-
vectors and energies, which is necessary in the study of liquids.

More important than emphasizing a competition between the two types
of instruments is probably that the final results agree well independently of
which instrument is used. This is shwon in fig. 17 in this report and was

also found in ref, 4.




