Fabrication and Characterization of Proton Conducting Phosphate Electrolytes for Intermediate Temperature Fuel Cell Assembling

Jensen, Annemette Hindhede; Li, Qingfeng; Anfimova, Tatiana; Christensen, Erik; Barner, Jens H. Von; Bjerrum, Niels J.

Publication date:
2012

Citation (APA):
Fabrication and Characterization of Proton Conducting Phosphate Electrolytes for Intermediate Temperature Fuel Cell Assembling

Nordic conference on ceramic and glass technology, 6th – 7th December 2012


DTU Energy Conversion
Technical University of Denmark, Building 207,
DK 2800 Lyngby, Denmark

Outline
The worldwide development of fuel cells and electrolysers has so far almost exclusively addressed either the low temperature window (20 - 200 °C) or the high temperature window (600 - 1000 °C). The intermediate temperature window enables the possibility of combining advantages from low and high temperature technologies. Fast electrode kinetics and material stability are key parameters. However, in the intermediate temperature interval there are no proton conductors working satisfactorily. The finding of such electrolytes is an ultimate goal of solid electrolyte research. [1]

Certain proton conducting materials are plastic in nature e.g. CsH2PO4, whereas others are not e.g. NdPO4. By combining the materials in a ceramic composite with at least one other component, it is possible that suitable mechanical properties can be reached.

In former work, proton conduction has been demonstrated for ceramic NdPO4-CsH2PO4 composites using EIS. [2][3]

Based on the novel ceramic composite a hydrogen cell and hydrogen-air fuel cells has been constructed and operated. Under these conditions proton conduction was confirmed by EMF and thermal stability in fuel cell conditions was confirmed by OCV.

Acknowledgement
Funding for this work is obtained from the Danish National Research Foundation (the Danish-Chinese Center for Intermediate Temperature Proton Conducting systems (PROCON)).