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The development of a Population Balance Model (PBM) for a pharmaceutical granule drying process requires a continuous
growth term; the latter actually represents the drying process as the moisture content is the internal coordinate of the PBM.
To establish such a PBM, a complex drying model for a single granule needs reduction in complexity. The starting point is a
detailed model that describes the drying behavior of single pharmaceutical granules. A Global Sensitivity Analysis (GSA)
was performed to detect the most sensitive degrees of freedom in the model as these need to be retained in the reduced
model. Simulations of the complex drying model were, in a next phase, used to develop the reduced model, which describes
the decrease of the moisture content in function of the gas temperature. The developed reduced model was then included in
a Population Balance Equation (PBE) to describe the drying behavior of a population of granules. © 2012 American
Institute of Chemical Engineers AIChE J, 59: 1127-1138, 2013

Keywords: drying, pharmaceuticals, mathematical modeling, model reduction, PBM

Introduction
Production of pharmaceutical tablets and its modeling

The production of tablets consists of several consecutive
steps. After blending of the individual components, a granu-
lation step is often performed to agglomerate the particles
into granules. The incorporation of a wet granulation opera-
tion in the tabletting production process requires the drying
of the wet granules afterward. A fluidized bed drying process
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is a commonly used technique for drying in pharmaceutical
applications. The drying process might influence several
properties of the granules and, hence, the further downstream
processing.

Mechanistic modeling of pharmaceutical processes has
proven to be very useful for the pharmaceutical industry,
also because nowadays there is a trend to move toward con-
tinuous production processes.” To fully take advantage of
continuous processes in terms of quality assurance, these
processes have to rely on on-line measurements and real-
time adjustment of controllable input variables. Understand-
ing the process in detail (i.e., how it reacts to changes in
controllable inputs) can be achieved by developing a
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calibrated and validated mechanistic model of the process.
Indeed, the mechanistic model can be analyzed to compare
the relative importance and specific impact of the different
parameters on each model output. Such information can be
used to force the process to stay inside the Design Space.’
To model the entire production process of tablets, all process
steps have to be modeled separately. Here, the focus will
only rely on the drying process.

The development of a complete mechanistic model for the
fluidized bed drying process was discussed by Mortier et al.?
It is a tedious task and requires a step-wise approach. A dry-
ing model to describe the evolution of the moisture content
of one single pharmaceutical granule is used as the starting
point. This model can then be extended toward a population
of granules using Population Balance Model (PBM). The
interaction with the spatial component can further be studied
using Computational Fluid Dynamics (CFD) and its integra-
tion with PBM (CFD-PBM).? Specifically for a drying oper-
ation, the latter combination should allow to describe the
spatial distribution of the moisture content of the granules in
the dryer.

In the frame of this research, a mechanistic model is
developed for a six-segmented fluidized bed drying system,
which is part of a fully continuous from-powder-to-tablet
manufacturing line (ConsiGmaTM, Collette™, GEA Pharma
Systems). A thoroughly calibrated and validated drying
model that describes the drying behavior of single pharma-
ceutical granules in the six-segmented fluidized bed drying
system at different gas temperatures has been presented ear-
lier.> The model developed in this article allows the descrip-
tion of the drying behavior of a population of wet granules
as a function of the temperature of the drying gas. The in-
centive for developing such a model will be explained later.

Introduction to PBM

An often made assumption when modeling the system
behavior of a population of individuals is that the system
can be described by the “averaged” behavior of these indi-
viduals. However, this assumption might not be valid (and is
most probably not) in a real system, as both spatial and pop-
ulation heterogeneity occur, meaning that the ‘“state” of
individual particles can be different and also the environ-
ment they are exposed to is not the same throughout the dry-
ing unit. This is likely to have an impact on the system
behavior, although it is not known how significant this might
be and, hence, needs to be explored. For a more detailed
analysis of particles, interacting with each other and the con-
tinuous phase and, hence, the impact of these heterogeneities
on the system behavior, PBMs can be applied.’

The general Population Balance Equation (PBE) describ-
ing the change of the number density distribution n(x, r, t) is
given by

gn(,n r 1)+ VX(x,r, Y, O)n(x,r,t)
+ VR(x,r,Y,On(x,r,t) = h(x,r,Y,t) (1)

where x, r, t, Y, and h are the internal coordinate (i.e., the
internal property of the particles that is considered to be
distributed), the external (spatial) coordinate vector, the time,
the continuous phase vector, and the net birth rate due to
discrete processes like, for example, aggregation or breakup.
V. the nabla operator, is a vector differential operator. In a
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three-dimensional Cartesian coordinate system, \/ is defined
in terms of partial derivative operators as

0 0

_+A_ Aa
Ox yay

V=x Z&

+ (@)
where %, y, and Z represent the unit vectors in each spatial
direction. X and R are the partial derivatives of the internal and
external coordinates, respectively.4 Drying of wet granules is a
continuous process and, when assuming constant ambient
conditions (i.e., no spatial variation), the general PBE can be
reduced to

iR'W(RW, Y)n(Ry,t) =0 3)

gn(Rw, 1) + R,

ot
where R,, is the wet radius of the particle, which is chosen as
the internal coordinate. In this equation, the growth term is
responsible for the continuous decrease of the moisture
content.

G = Ry(Ry,Y) 4

with G, the growth term. Here, Y refers to the ambient
conditions that the individual particles experience, which in
this case can be the gas temperature, the gas velocity, the
humidity of the air, and, as so forth these are all relevant
variables that can interfere with the drying process. Equations
3 and 4 are according to the authors defined here for the first
time for a pharmaceutical drying process and are, hence,
innovative.

In the literature, population balances with a continuous
growth term have mainly been formulated and used in the
area of crystallization processes, where the size of the crys-
tals is the internal coordinate of interest. There, the growth
term is a positive term.> A growth term dependent on the in-
ternal coordinate is referred to as a size-dependent growth
term. Solution methods for this type of PBE have been
described in the literature.®™

The structure of Eq. 4 for a continuous drying process is,
however, quite complex.2 It cannot as such be implemented
in Eq. 3 and needs to be reduced by means of a model
reduction step. An overview of techniques for that purpose
is given first.

Short review on model reduction techniques

Model reduction techniques are usually described in the
literature for very complex models, for example, semicon-
ductor devices, weather forecast models, molecular systems,
and so forth.” Such detailed complicated physically based
mathematical models are time consuming to solve and
require the use of sophisticated hardware and software
resources. '’

A first group of model reduction techniques are heuristic
model reduction methods. However, these require a lot of
user input. A detailed analysis of the model behavior with
respect to the selected set of parameters is needed. The inter-
action and feedback between model components to identify
key processes of the system should be assessed. The changes
in model structure must be decided upon by domain
experts.”

Another group of model reduction techniques are those
based on mathematical concepts. Several methods are projec-
tion based, that is, where the systems are projected onto a
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lower-dimensional subspace and the model equations are
solved for the substituted projected states.'” A class in this
area is based on Singular Value Decomposition (SVD),
which cannot be applied to highly complex systems. For
nonlinear systems the Proper Orthogonal Decomposition
(POD) methods (also known as Principal Component Analy-
sis (PCA)) is one of the possibilities.9 This method was
applied by Banerjee et al.'” for a Rapid Thermal Processing
(RTP) system.'® The eigenfunctions from the POD method
are subsequently used as basis function in spectral Galerkin
expansions of the governing partial differential equations
solved by the finite element method to generate the reduced
models. A good agreement between the reduced model and
the original model was obtained, and a reduction in execu-
tion time was found.

Krylov-based approximation methods are another class of
methods within the projection-based methods and can be
implemented iteratively. As such, this method can be applied
to systems of high complexity.” Antoulas combined the
SVD-based and Krylov-based methods, which is appropriate
for application to large-scale circuits arising in Very-Large-
Scale Integration (VLSI) chip performance verification.

The most simple nonlinear model reduction methods are
based on linearization or reduced-order series expansion of
the system’s nonlinearities using Taylor or Volterra series.
However, these methods are only applicable for weakly non-
linear systems.'?

Bernhardt'? described a data adaptive model reduction
scheme, which can be applied to the transformation and
reduction of systems of Ordinary Differential Equations
(ODEs). It is a multistep approach using a low-dimensional
projection of the model data followed by a Genetic Program-
ming/Genetic Algorithm hybrid method to evolve the new
model systems.12 POD and parameter tuning importance are
two techniques used and compared by Degenring et al.'
The PCA can be used as a self-controlled routine, which
means that the procedure can be repeated automatically until
a predefined upper-limit of the error-functionals is achieved,
which is advantageous over the parameter tuning importance
technique. The latter should be used step-by-step, and each
model reduction step should be studied critically.

Reduction methods based on evaluating the sensitivity of
the performance indicators to a parameter vector are also
known. The Advanced Rate Elimination Method (AREM)
belongs to this category and focuses on the importance of
individual rates, leading to a reduction of the number of
rates. The Variable Simplification Method (VSM) looks at
the importance of variation of each state variable to indicate
which variable can be set to a constant value. No prior
detailed understanding about the model is required. Both
methods have been used to reduce ecosystem models, which
helped to understand the mechanisms that influence ecosys-
tem health indicators."

In this work, the model reduction is performed on the full
drying model of a single granule. A custom model reduction
procedure is introduced, and the reduced model is imple-
mented and demonstrated in the PBM model for description
of the drying of a population of granules.

Materials and Methods
Drying Model

The drying model under study consists of two submodels
each describing a distinct drying phase. The first drying

AIChE Journal April 2013 Vol. 59, No. 4

Published on behalf of the AIChE

phase entails the evaporation of water from the droplet free
surface. The evaporation rate in this phase is given by

my = hD(pv,s - pv,oc)Ad (5)

where 71, is the mass transfer rate of the first drying phase, /p,
the mass transfer coefficient, p,, the partial vapor density
near the droplet surface, p, ., the partial vapor density in the
ambient air, and Ay, the surface area of the droplet. When the
radius of the droplet equals the radius of the dry particle, the
second drying phase starts, in which two regions are formed: a
wet core and a dry crust. In the second phase, the evaporation
rate is given by

—0.024282+T¢
87’[64912‘4*()' tDv,chng
ER(Tcr‘s + Twc,s)

mv«Z = -

pg _pv,i

x In
§R .
Dg — (4nMwhDR§ my +

— (6)
pfg Tps

with 1, , the mass transfer rate of the second drying phase, €
the crust porosity, D, ., the vapor diffusion coefficient (crust
pores), M,, the molecular weight of the liquid, p, the pressure
of the drying agent, T, and T, respectively, the
temperature of the crust outer surface and of the crust-wet
core interface, p,; and p, .., respectively the partial vapor
pressure at the crust-wet core interface and in the ambient air,
hp the mass transfer coefficient, R, the particle radius, and T,
the temperature of the drying agent. The vapor, evaporated at
the interface between the wet core and the dry crust, diffuses
through the crust pores until it exits the pores, and it forms a
thin boundary layer over the particle surface. This vapor is
removed through advection by the air flow. The complete
drying model is extensively described by Mortier et al.2 who
also calibrated and validated it with experimental data.

Global Sensitivity Analysis

A Global Sensitivity Analysis (GSA) is performed to
detect the most sensitive degrees of freedom in the drying
model. GSA is the study of how the uncertainty in the out-
put of a model (numerical or otherwise) can be apportioned
to different sources of uncertainty in the model input (or
model structure, parameters).16 This provides useful informa-
tion if one is to reduce the model output uncertainty. A GSA
can be carried out by a Monte Carlo procedure, after which
a linear regression is performed. The result is based on
repeated random sampling from probability density functions
that are defined for each source of uncertainty.

The GSA in this study was performed using five degrees
of freedom (r): the gas temperature, the gas velocity (V,),
humidity of the gas (RH), the pressure of the gas, and the
initial temperature of the particle (7},0). These five degrees
of freedom were specifically chosen on the basis of their
sensitivity (evidenced earlier in Ref. 2) and the ability to
adapt or control these degrees of freedom during the opera-
tion of the dryer. Indeed, the gas velocity can be set in the
fluidized bed dryer (ConsiGma™"). The humidity of the inlet
air can be measured and controlled using specialized equip-
ment. The initial temperature depends on the temperature set
point of the granulator. The pressure at the inlet is also
measured. All other degrees of freedom, in the drying model
are fixed and cannot be controlled. For each degree of free-
dom an uncertainty range was determined based on physical
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Table 1. Range of the Degrees of Freedom Used in the
Monte Carlo Simulation

Parameter Range

T, (°C) 20-80

v (m*/h) 150-500
RH (%) 1-15

pg (Pa) 100,500-101,700
Tpo (°C) 25-50

limitations and physical reality. As no prior knowledge
on values for the degrees of freedom is available, the
degrees of freedom are sampled from a uniform distribution
between chosen minimum and maximum values (the uncer-
tainty range). The range of the degrees of freedom was
based on the physical boundaries of the fluidized bed dryer
for which the mechanistic model is developed and is given
in Table 1.

The Latin Hypercube Sampling method was used for the
generation of a probabilistic sampling of the degrees of free-
dom space, proposed by McKay et al.'” It is assumed that
no correlation occurred between the different parameters. In
total, 2000 samples were generated (M is the size of the
Monte Carlo experiment). The matrix of the degrees of free-
dom is denoted by Z. In this matrix, the rows correspond to
a combination of degrees of freedom fed into the drying
model for one simulation

Tg1 Vg1 RHi pg1 Tpon
7| Tez Ve2 RH2 per Tpo2
Ten Vem RHy pey Tpom

The evaluation of the sensitivity analysis is performed for both
drying phases separately. As such, the sensitivity of the model
to the degrees of freedom could be evaluated for both periods
separately and can be different. The output variable used in the
GSA is the evolution of the granule’s water content, which for
the drying model corresponds, respectively, to the decrease of
the radius of the particle (first drying phase) and the decrease
of the wet core radius (second drying phase) as a function of
time. The time step used in the simulation is, respectively, 0.02
and 0.2 s for the first and the second drying phase.

If one assumes that the model has an error-free linear
form, the following is valid'®

Y=Y Q7 @)
=

with Y the output of interest, ; the fixed coefficients, and Z;
the independent variables that are normally distributed [Z; ~
N(z;, JZ) with zZ; = 0 for j = 1, 2...r (where Zz; and 0z, are,
respectlvely, the mean and the standard deviation of the degree
of freedom)]. Additional assumptions are

07,<07,<...<07z, 8)
Q> >... >0 9

The assumption mentioned in Eq. 9 is due to Eq. 8. Because
the independent variables are normally distributed, the output
variable Y is also normally distributed, and the standard
deviation of the output gy becomes
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(10)

If the relative importance of Z; on the output variable Y is of
interest, the partial derivative of Y to Z; is most often taken

oY

d—_
Szf_azj

an

which yields for the linear model S = Q. However, this is
not really reasonable. Because this means that the ordering of
the factors by importance would be

L >Z>...>7, (12)

Equation 11 can be improved by normalizing the derivative by
the input—output standard deviations

- UzjaY O'z/
= -2 13
Zi O'yazj' ! Oy ( )

If Eq. 13 is combined with Eq. 10, then it can be concluded
that

i(sg)zzl (14)

=1

The use of the normalized equation is a good way to rank the
different input factors based on sensitivity. It depends both on
o and €, just as it should, and second the sensitivity measures
are normalized to one.

This is the reason why after performing a Monte Carlo
simulation, the output (Y) at a specific point in time of the
simulation is processed using a linear regression.19 This lin-
ear regression is performed on the scaled output and scaled
degrees of freedom (autoscaling: scaling by first subtracting
the mean followed by division by the standard deviation).

Yoy =bo+ > by2 as)
=1

with Y ;) the output for one simulation (Con81der1ng the growth
for drying periods 1 and 2 separately), Z; ) are the degrees of
freedom used in this simulation, and by and bZ; are,
respectively, the intercept and linear coefficients of the linear
model that is constructed. The coefficients b, and sz are
determined by solving a least squares problem, based on the
squared differences between the output values produced by the
regression model and the actual model output produced by
Monte Carlo simulation. Asymptotically by = 0 and bZ Q;
for j = 1, 2...r. Besides these coefficients, their standardlzed
equivalents ﬁz (the Standardized Regression Coefficient
(SRC) are determined as

BZ/ :};Z/-UZ/-/UY ngGZj/O’y (16)

Comparing Eq. 16 with Eq. 13, it can be proven that ﬁZ,
coincides with ng for linear models. Therefore, for linear
models

r

SE)-SE- W

Jj=1 J=1
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GSA

l Select degrees of freedom

Full model

Y = f(x.P) Model reduction

l Y =g(x,C.D)

PBM

-
“x

Figure 1. Problem statement.

The full model is too complex to be incorporated in the
PBM directly, and therefore GSA is applied in the frame
of achieving a reduced model that can be incorporated
in the PBM.

If the model is nonlinear, both measures (ﬁzj and ng) will be
different, but the ffs will be a more robust and reliable measure
of sensitivity, even for nonlinear models. ffs take the entire
space of input factors into account, which is advantageous
over §7.. To ensure a reliable value for 8, M should be large
compared to . The %, (B, )? equals the fraction of linearity
of the model, more precisely known as the coefficient of
determination, R%, which is equal to the fraction of variance of
the original data (Monte Carlo simulation results), explained
by the regression model (Eq. 15)."° This value should at least
be 0.7 for SRC to be a valid technique.

Solution method for the PBE

The PBE is solved using a High Resolution Finite Volume
(HRFV) scheme.® The high-resolution schemes were devel-
oped for compressible fluid dynamics, resolve sharp peaks,
and shock discontinuities on coarse grids. Less numerical
diffusion and the avoidance of numerical dispersion are the
advantages. The improved numerical accuracy enables to use

a coarser grid and to perform long-term simulations. The
scheme is discrete in space but continuous in time, and the
resulting system of ODEs can be solved by an ODE solver.
More details about the solution method can be found in
Qamar et al.’ In this work, a value of 1/3 for x and the flux
limiting function of Koren were used.

Results
Procedure

Evaluating the different available methods for model
reduction, described in the “Introduction” section, it was
concluded that none of the techniques based on mathemati-
cal concepts was feasible for our specific case. Antoulas’
used the model reduction techniques on a set of n coupled
first-order ODEs to replace them with k coupled first-order
ODEs where k < n.” The reduction of second-order systems
remained an open problem. Chahlaoui et al.>® used a second-
order balanced truncation to reduce a second-order linear
time-invariant system. Stability, error bounds, choice of Gra-
mians (set of vectors) remained a problem.20 In fact for all
projection-based methods, nonlinear model reduction is diffi-
cult.'” The ability to use the reduction method described by
Bernhardt'? depends on the system dynamics being confined
to a low-dimensional subspace. The method is applied for
simple models with oscillatory dynamics. Several reduction
methods are quite complex to use. Van Nes et al.'' formu-
lated “The most drastic way to simplify the model is to
make an independent minimal model that describes the dom-
inant mechanisms of the full model.” This approach is very
powerful, if both models produce qualitatively similar
results.?! A new strategy was developed here. Basically, it
involves a GSA step and a model reduction step (Figure 1).
A GSA is performed on the full model (f) to detect the most
sensitive degrees of freedom. The full model is function of
variables (x) and parameters (P). Second, the outcome of the
sensitivity analysis will be used to develop an empirical

T,(°C)

- ¥ & ®8 8 @&

V, (m/h)

RH (%)

P, (Pa)

T, (°C)

”Tg("C)

V, (m¥h)

" éHm(‘%;)

P, (Pa)

T T,e(°C)

Figure 2. Distribution of the degrees of freedom resulting from applying Latin Hypercube Sampling.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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R. (m)

t(s)

G, (m/s)

G, (mis)

=2k 4

(] 1 2 3 4 5 6 7 [} 9

t(s)
(a) Drying phase 1

20
t(s)

(b) Drying phase 2

Figure 3. Decrease in R,, (top) and resulting growth term (bottom; —55°C).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

model (g), which is function of variables, the selected
degrees of freedom (D), and the determined coefficients (C).

GSA

The distribution of the degrees of freedom, generated by a
uniform Latin Hypercube Sampling technique, is presented
in Figure 2. The degrees of freedom are distributed uni-
formly in the parameter space, which can be seen clearly in
the scatter plots. On the diagonal, histograms of the different
degrees of freedom used in the GSA are presented. The
other plots are normal scatter plots, and it is clear that the
whole parameter space is explored by the Latin Hypercube
Sampling technique.

Each set of degrees of freedom was evaluated and the
growth term for the first and the second drying phase were
calculated. Figure 3 shows the decrease in R,, as a function
of time (top), as well as the resulting growth term (bottom).
The first drying period is characterized by a growth term
that shows an increase in negative rate at the start (i.e.
increased drying rate) but levels off to a constant value near
the end of the phase (Figure 3a). The absolute value of the
growth term for the second drying period decreased strongly
(becoming less negative, meaning drying at a slower rate) in

-8-10° 6 1 1 1

the beginning, but after reaching a minimum rate, it
increased again (Figure 3b). It can be concluded that the dy-
namics of both drying phases are clearly different.

In Figure 4, the growth term is plotted as a function of
time for all different sets of degrees of freedom in the Monte
Carlo analysis. It is obvious that the chosen combination of
degrees of freedom for the sensitivity analysis has an influ-
ence on the drying time and behavior.

The black vertical line crossing the different simulations
in Figure 4a marks the time point that is used for the lin-
ear regression. Results of simulations at this point are
scaled and used in a least squares linear regression. As
the drying model does not reach steady state, the alterna-
tive is that the output of the model has to be compared
after a certain time step. Another choice would have been
to take the average of all outputs for one simulation and
to perform the linear regression with those averaged out-
put values. The disadvantage of this approach is that the
R? can become too low, so no conclusion can be made
about the sensitivity of the degrees of freedom. In the first
drying phase, the linear regression was performed after 3
s, where an R* of 0.97 was obtained. The second drying
phase is longer, and therefore two timesteps were chosen

10 15

t(s)

2 25

(a) Drying phase 1
Figure 4. The growth term for different parameter sets.

1 1 1
150 200 250
t(s

(b) Drying phase 2

1 1
50 100 300

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Table 2. Results of the GSA: SRCs for the Different Degrees
of Freedom

Drying Phase

First Second
Degree of Freedom 3s 1s 11s
T, 0.93 0.87 0.73
Ve 0.29 0.02 0.03
RH 0.13 0.02 0.05
De 0.00 0.00 0.01
Tpo 0.02 0.03 0.03
R 0.97 0.75 0.57

for the linear regression, namely, 1 and 11 s, and a clear
difference in R can be seen (Table 2). An R? of 0.57 is
too low to draw conclusions, because normally a mini-
mum of 0.7 is assumed for R”.

The SRCs for the linear regression were calculated
(Table 2). The ranking can be used to detect the most sensi-
tive degrees of freedom. In both drying periods, the gas tem-
perature clearly comes out as being the most sensitive degree
of freedom. For the first drying phase, the gas velocity is
also a quite sensitive degree of freedom, followed by the hu-
midity. For the second drying phase, a different ranking can
be observed when comparing evaluation after 1 or 11 s.
Because the gas temperature is clearly the most sensitive
degree of freedom in both drying phases, the drying model
was reduced using this degree of freedom.

Model reduction

The reduced model should be able to describe the
decrease of the moisture content for a population of drying
particles when incorporated in a PBE. Analysis of Figure 3

Full model

GSA Y = f(x,P)

M simulations Simulate Y for a range of values of D
h ‘ Develop Analyse the simulated data for one
Y =g(x,P',D) value of D (basic scenario) to reveal g

!

Model verified?

l Yes

Determine
Yes P'={p,p,.. 0’}

7 No

No - Verify g for all other simulations

For all simulations determine pj

Model verified?
Select 1 or

more p}

Based on the sensitivity of the
coefficient

Repeat [ till n functions
h;are [ determined K
Pe_termme Between selected pj and D
p; =hi(c;.D)
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Figure 5. Scheme of the steps taken during the model
reduction procedure.
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Figure 6. Growth term in function of the wet radius for
different gas temperatures for the first drying
phase.
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revealed that the growth term is strongly dependent on the
radius of the particle (first drying phase) and the radius of
the wet core (second drying phase). It was, therefore,
decided to develop a reduced model in function of this ra-
dius, which means a size dependent growth term will be
used in the PBM model (Eq. 4). Based on the GSA, the gas
temperature was chosen as the most sensitive degree of free-
dom. The reduced model, function of the most sensitive
degrees of freedom only, implemented in the PBE should be
able to compute the evolution of the moisture content of a
population of particles that are drying, all subjected to the
same ambient conditions.

The general procedure followed during the model reduction
is presented in Figure 5. More details about the elaboration of
the method are described in the Appendices, where the proce-
dure is worked out in detail for our specific case study.

As mentioned in previous sections, a GSA was performed
to detect the most sensitive degrees of freedom. Simulations
are performed while varying the selected degrees of freedom
(D) in a range between a minimum and a maximum value.
M is the number of simulations that are performed. The
range is based on the physical limitations of the dryer and
the physical reality as for the GSA. The most obvious simu-
lation, which is situated in the middle of the range or is
physically most frequently used, is chosen as basic scenario
to develop a model structure (g) with n coefficients. The
model structure is verified for the other simulations, and
afterward the coefficients (P') are optimized by minimizing
the Root Mean Squared Error (RMSE) between the simu-
lated data and the predictions of the developed model struc-
ture for each value of the selected degrees of freedom in the
range. This results in a matrix with n rows and M columns

I’/u pl1,2 pll,M—l pll,M
P =
P;u p;,z p:z,M—1 p:,,M
with p! ,; the parameter value corresponding to the ith
coefficient and jth simulation. p! is a vector with the values
for coefficient i for all simulations, whereas pj/- is a vector with
all coefficients for one simulation.

The optimized values of the coefficients are plotted in

function of the degree of freedom. One or more coefficients
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are selected, and a relation (/;) is determined between p! and
D with ¢; the introduced coefficients. The sensitivity of the
coefficients (p}) or the absence of noise can help to select
these first coefficients. The relation can be a polynomial
where the order is dependent on the desired accuracy. After-
ward, the relation 4; is implemented as fixed in the devel-
oped model structure, and the other coefficients (P,) are
optimized again. As such a deviation in the relation with
respect to the fitted coefficient can be caught. At certain
steps in the procedure, the global model structure is verified
again. These last steps are repeated till all relations (h; till
h,) between the coefficients (P’) and the selected degrees of
freedom (D) are determined. At the end, a global optimiza-
tion can be performed to optimize the values of all coeffi-
cients (C) of the reduced model simultaneously.

The drying model was simulated for gas temperatures
ranging from 20 to 80 °C with a particle radius of 0.6 mm.
For both drying phases, the growth term, that is, the deriva-
tive of R, (Eq. 18), was calculated numerically with a reso-
lution (Af) of 0.2 s and plotted against the wet radius, R,,
(Figures 6 and 7).

_ Ry (tiv1) — Ry (t;
Ry = Gr‘l(Rw,nonTg) w

1%

(18)

It is obvious that a different model structure will be required
for both drying phases. The objective is the development of a
simpler model able to describe the behavior visualized in

Table 4. Resulting Equations for the Different Coefficients
for the Second Drying Phase

Coefficient Describing function

4 = —expla)) T @)
B = b} - exp(bh - (Tg —20)) — 1 (28)
¢ - —ep(e) T 29)
D = exp(d;) - exp(dh - Ty) — 1 (30)
E = ¢ -exp(ey - (T, —20)) =1 (31)
Ry = R, -Ti" +R, (32

The developed model structure for the first drying phase is

Gr,l (Rw,non Tg) =A+8B- Rw,nor +C- expD.RW'mr (19)

Ry —R,

o (20)
Rwo — Ry

Rw,nor -

with A, B, C, and D empirical coefficients, R, the radius of the
dry particle, and Ry, o the initial (wet) radius. The equations for
the different coefficients of the first drying phase are
mentioned in Table 3. More details about the used procedure
are mentioned in Appendix A.

The global empirical equation for the first drying phase
exhibits a mean weighted relative error of 0.53% between
the simulated detailed drying model prediction and the em-
pirical model.

For the second drying phase the resulting equation is

q

GLZ(R(Jv,nor? Tg) =A" (R(V,nor)B, +C'- (1 +D'- R(N.nor)
FRx(A 055 +C'-(1+D-05) @1)

Ry
Ri\/‘nar = R_p (22)

with A, B', C', D', and E’ empirical coefficients and R} a factor
to reduce the offset. In Table 4, the equations for the different
coefficients are mentioned for the second drying phase. Details
about the procedure can be found in Appendix B.

The global equation for the second drying period has a
mean weighted relative error of 1.97% between the full
model result and the empirical fit.

Table 5. Parameter Values for the First Drying Phase

. a —6.43e—15
Figures 6 and 7. a, —2.74e—12
a —5.28¢—10
ay —7.24e—09
. . . . as —2.35¢—07
Table 3. Resulting Equations for the Different Coefficients by 1.45¢—12
of the First Drying Phase by —1.30e—10
bs —3.99¢e—-09
Coefficient Polynomial function I —2.57e—08
_ 4 3 2 c 4.97e—12
A = @ TitaTitay T +a;Ty+as (23) o 62.4
B = by T2+ by To+by-Ty+b 24 €3 202.82
1 g T2 fg T O3 fg T Da 24 Ca —3.05e—13
c = ¢ - exp(—(Tg + ¢2)*/e3) es 36.43
c 96.14
+ ¢y -exp(—(Tg + ¢5)*/cs)  (25) dﬁl 0.0037
D = di T>+dy Ty +d 26 da —0.408
tlg @t ds @0 dy 235
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Table 6. Parameter Values for the Second Drying Phase

d, 9.93
d, —55.1
b —0.130
b, —0.381
c 10.3
c) ~56.7
d, 0.0995
A ~10.0
e —0.0998
é) —0.486
R}, 7.24¢04
R, -3.51
R{; —0.113

The resulting optimized values for the parameters of the
reduced model for both drying phases are tabulated in Tables
5 and 6, respectively.

PBM

The developed reduced drying model was intended for use
in a PBE. The developed reduced model, a quite straightfor-
ward combination of algebraic equations, can be easily
implemented in different solution methods for PBM, which
was not possible for the original drying model. In this case,
the PBM was solved using HRFV.® The initial distribution
used is a normal probability density distribution with stand-
ard deviation (o) of 3e-6 and mean (u) of 1.02 times R,,
which is a realistic condition for a population of granules
originating from a granulator. The simulation with the PBE
is done at a fixed temperature of 55 °C. The evolution of the
number density in time is presented in Figure 8. As time
evolves, the width of the number density distribution
increases which means that the drying rate of different gran-
ules is different, and results in a broader distribution of
moisture content of the population. The evolution of Ry,
which represent the moisture content of a wet particle, is in
line with the expectations obtained with the full drying
model. Similar simulations can now be run for different gas
temperatures, which indicate the impact on the drying pro-
cess. In Figure 9, the number density after 20 and 40 s is
presented for different gas temperatures, starting from the
same initial condition. It is clear that the decrease of the
moisture content is faster for higher gas temperatures.
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Figure 8. Evolution of number density using PBM at
55 °C.

Finally, also the initial moisture content can be varied.
This is beyond the scope of this article and will be investi-
gated in a future contribution.

Discussion

The procedure mentioned in this article has clearly advan-
tages and disadvantages. It is a heuristic reduction technique,
but as stated by Van Nes et al.?! it is very powerful, if the
complex and the reduced model produces similar results.?!
To start the model reduction procedure, knowledge about the
process is required. Here, the big difference in drying behav-
ior of the first and second drying phase was known a priori,
and this knowledge was used to decide to make a separate
reduced model for both phases. A GSA was used to detect
the most influential input variables but also insight into the
process, and the model was helpful to understand why these
variables were important. If two input variables were equally
influential, a choice was made based on the expected range
in the dryer and experience with the process under consider-
ation. The pitfall of model reduction techniques described in
the literature can be that the result is a reduced model that is
too complex for the purpose. The described approach has the
advantage of allowing full control over the reduction process
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Figure 9. Number density for different gas temperatures at different time steps.
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in the sense that the complexity of the empirical model to be
obtained can be chosen. This will be a trade-off with the
loss of accuracy (i.e., the relative error between the physical
model and the reduced empirical model). In the derived
model here, complexity of the model was not penalized as it
was no restriction for the subsequent step (see Section
PBM). The resulting reduced model contains the input vari-
able that is first of all the most sensitive variable but is also
a variable that is important in further research. The reduced
model will be used in a PBM model, and at a later stage the
PBM model can be extended with the information of a CFD
model of the dryer. The disadvantage of choosing the equa-
tions of the reduced model arbitrarily lies in the fact that
these equations are not necessarily the best equations to
describe the drying behavior. There is always a chance that
more simple equations are sufficient. On the other hand, the
choice of the equations can be made in function of the pur-
pose, in this case the implementation into a PBM model and
maybe later in a coupled PBM-CFD model.

General Conclusion

Starting from a complex model describing the drying
behavior of individual granules, it was possible to develop a
reduced model that can now be used as submodel in other
models, for example, a PBM. A new strategy to perform a
model reduction was introduced and demonstrated. The de-
velopment of the reduced model started with a GSA to
detect the most sensitive degrees of freedom in the model.
The full drying model was simulated for a range of values
of the most sensitive degree of freedom to have some data
to use for the development of the reduced model. Based on
the data, a proposal for an empirical model is made, which
can be reviewed in a later stage of the model reduction pro-
cedure. The coefficients of the proposed reduced model are
described in function of the most sensitive degree of free-
dom. The reduced model is an empirical model able to cal-
culate the decrease in R,, for different gas temperatures
regardless the granule radius. The developed procedure is
able to construct a reduced model with a low mean weighted
relative error.

The empirical model can now be used to further analyze
the drying behavior of pharmaceutical granules in a fluidized
bed dryer. The objective is to study the properties of a popu-
lation of particles and the evolution of the moisture content
in the dryer. To fully understand their behavior, the devel-
oped PBM model should be combined with CFD model to
take into account local variations of temperature and humid-
ity in the dryer and their effect on the drying process.
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Appendix A

For the first drying phase, the curves display an exponen-
tial behavior at fixed gas temperatures (Figure 3a). The data
obtained at a gas temperature of 55 °C were used as a start-
ing point (basic scenario). The nonlinear behavior on a log-
scale suggested that also other terms should be taken into
account. A pure exponential behavior results in a linear
equation on a log-scale.

y = ae™ (A1)
log(y) = log(a) + log(e)bx (A2)

First, R, was normed to simplify the adaptation of the
reduced model to other particle sizes and initial moisture
content (Eq. 20), after which the first-and higher-order deriv-
atives of the simulated G, ; with respect to R,, (same proce-
dure as Eq. 18) were taken. The second-order derivative of
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Figure A1. Coefficients in function of the gas temperature ranging from 35 to 75°C for the first drying period.

the data showed a linear trend on a log-scale. Hence, the
proposed expression for describing the growth term for
the first drying phase was Eq. 19. A first estimate of the dif-
ferent coefficients was based on the first till third derivative
of the growth function

dG; 1 (Ry
r.1 (Rw nor) —B+C-D-ePRvnr (A3a)
de,nor
dz(;rA,I (Rwﬁnor) 2 D-Ry nor
Tmr:C.D.e : (A3b)
d3Gr71(RW.nor) =C. D3 . eD»RW_m,r (A3C)

dR?;v,nor
Using this approach coefficient D could be obtained for each
simulation at a different gas temperature by dividing Eq. A3-c
by Eq. A3-b. Once D is determined, a step-wise approach can
be used to obtain estimates of the other coefficients. C could
be easily determined out of Eq. A3-b or A3-c. Afterward,
coefficient B could be obtained by calculating the offset
between the first derivative and Eq. A3-a. The same proce-
dure was followed for determining coefficient A, but then it
was performed by comparing the original data of the growth
with Eq. 19. Subsequently, the values of the obtained coeffi-
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cients were optimized using an optimization algorithm (i.e.,
fminsearchbnd3 from Matlab®). This procedure can be
repeated for all gas temperatures. Finally, coefficient D was
determined in function of the gas temperature using a polyno-
mial fit. The order of the polynomial was fixed at 2. The
higher the order, the more accurate the polynomial will
describe the behavior, but the more parameters will be intro-
duced. Some outliers were detected (numerical errors resulting
from the computation of derivatives) and removed, after
which the polynomial fit was repeated for the smoothed data.
The resulting polynomial is shown in Figure Ala (Eq. 26).
The reason for the peak in the curve is that the value at this
point has no influence as coefficient C is zero at this point.

Using the fixed relation between coefficient D and the gas
temperature, the other coefficients were optimized again.
This was done, because a deviation in the polynomial with
respect to the fitted coefficient can be caught by this. The
relation between D and T, is a fit and will not give exactly
the correct value for each T,,. To make sure the final reduced
model is able to calculate the growth term as reliable as pos-
sible, the coefficients are optimized again by minimizing the
error between the simulated result and the reduced model
(using fminsearchbnd3 from Matlab®). Afterward, a relation
was looked for between coefficient C and the gas tempera-
ture (Figure Alb; Eq. 25).
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In a similar step-wise fashion, coefficients B and A were
optimized and a polynomial was fit to relate the optimized
value and the gas temperature (Figures Al-c,d) (Eqgs. 24 and
23, respectively). As the polynomial for A was determined in
the final step, the order was chosen somewhat higher.

The resulting gas temperature dependent functions are
summarized in Table 3, where T, represents the gas tempera-
ture in °C.

Appendix B

The behavior of the second drying phase is different
(Figure 7). Again, the data at a gas temperature of 55 °C
were used for the basic scenario. The growth of the second
drying phase showed a symmetric shape around a normal-
ized radius R, . of 0.5. Therefore, it was hypothesized to
use the same function for both parts, which could be easily
added together. The curve also showed an infinite behavior
when Ry, = was approaching zero or one. Therefore, the
most convincing hypothesis was to use a generalized hyper-
bolic function (A’ - R(morB ’) for describing the curve for low
values of R, . For values higher than a normalized radius
of a half a similar equation was used to fit the data, namely
c-(1+D- R(N.nor)E/. By combining the previous functions,
the data could be described in an appropriate way

/ E,
Grl(R:N,noﬁ Tg) =A" (R:x/,nor)B +C'- (1 +D"- R(v.,nor)
(BI)

Using all simulated data (at the different gas temperatures)
and testing global optimization algorithms for all coeffi-

cients, the obtained curves of the coefficients in function
of the gas temperature were not smooth at all, but it could
be concluded that coefficients B’ and E’ could be approached
by —1 in a first trial. With this information, coefficients A’,
C’, and D' were subsequently optimized (with fmin-
searchbnd3 from Matlab®). First, the relation between A’ and
C’ and the gas temperature was determined (Egs. 27 and
29). Because these relations are always an approximation,
coefficient D" is optimized, before its relation with the gas
temperature is determined (Eq. 30). After this step, coeffi-
cients d|, d, ¢, ¢5, d}, and d, were optimized simultane-
ously.

Using these relations for the coefficients, an offset was
found between the simulated result and the empirical model.
The maximum value of the growth function for different gas
temperatures varied between —1.181e—10 and —3.383e—5.
As a result of the large range of values, it is not possible to
minimize directly the difference between the simulated data
and the empirical model. Therefore, a relative adaptation
was introduced to remove the offset, resulting in Eq. 21. R}-
was determined for each simulated data point and in a next
step also fitted in function of the gas temperature (Eq. 32).
Using the calibrated R} relation coefficients a), @5, ¢}, ¢,
d|, and d), were optimized again. In a next step, coefficients
B’ and E’ were optimized and the relation between them and
the gas temperature was determined (Eqgs. 28 and 31). How-
ever, coefficient B’ and E’' display a strong correlation.
Finally all coefficients were optimized. The resulting equa-
tions are given in Table 4.
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