Filtration in Porous Media
Influential Parameters and Comparison with Experiments

Yuan, Hao; Shapiro, Alexander

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Filtration in Porous Media: Influential Parameters and Comparison with Experiments

Hao Yuan, Alexander A. Shapiro

Introduction

There is a considerable and ongoing effort aimed at understanding the transport and the deposition of suspended particles in porous media, especially non-Fickian transport and non-exponential deposition of particles [1-6]. In this work, the influential parameters in filtration models are studied to understand their effects on the non-Fickian transport and the non-exponential deposition. The filtration models are validated by the comparisons between the modelling results and the experimental data.

Modeling non-Fickian transport

\[
\frac{\partial c_j}{\partial t} + v \frac{\partial c_j}{\partial x} = D_c \frac{\partial^2 c_j}{\partial x^2} + D_s \frac{\partial^2 c_j}{\partial t^2} - \lambda c_j;
\]

\[
\frac{\partial s_i}{\partial t} = \lambda c_i;
\]

Temporal dispersion term for non-Fickian transport

The elliptic equation stems from the microscopic description of particles in pores in the framework of continuous time random walk theory [1-3]. It is applied to model non-Fickian transport in heterogeneous porous media. The additional term compared to the classical advection dispersion equation (the temporal dispersion term) describes the non-Fickian behaviours of particles. The temporal dispersion coefficient, by its definition, is the variance divided by the mean value of the particle residence time.

Heterogeneous particle-grain interactions

\[
p(\lambda) = \frac{1}{\lambda \sigma \sqrt{2\pi}} \exp \left[\frac{(\ln \lambda - \mu)^2}{2\sigma^2} \right]
\]

\[
p(\lambda) = a(\lambda)^b
\]

Log-normal, power-law and other distribution types are applied to describe heterogeneous particle-medium interactions, such as heterogeneous surface charges, energy minima, distributed particle sizes via size exclusion [3,6].

Released and migratory deposition

\[
\frac{\partial c}{\partial t} + v \frac{\partial c}{\partial x} = -\left(\lambda + \lambda_d\right)c + \lambda_s s + \lambda_m s_m;
\]

\[
\frac{\partial s_i}{\partial t} + v \frac{\partial s_i}{\partial x} = \lambda c - \lambda_m s_m - \lambda s_m;
\]

\[
\frac{\partial s_i}{\partial t} = \lambda_m s_m + \lambda_d c - \lambda s_i;
\]

A third equation is applied to describe the released and migratory particles. The third particle population may be the surface-associated particles or the released large aggregates. The boundary condition for the third population is zero at the injection side [5].

Conclusions

1. The elliptic equation can be applied to model the non-Fickian transport. It results more dispersed breakthrough curves and hyperexponential deposition.
2. The consideration of a third migratory particle population may result in non-monotonic deposition and long tails after the end of injection in the breakthrough curves.
3. Distributed filtration coefficients can be applied to model heterogeneous particle-medium interactions. The modelling results can match the hyperexponential deposition in experiments.
4. The elliptic equation and the CTRW equation expressed in Laplace space can both catch the non-Fickian transport of tracers in heterogeneous porous media, while the advection dispersion equation cannot.

References