Filtration in Porous Media
Influential Parameters and Comparison with Experiments

Yuan, Hao; Shapiro, Alexander

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Filtration in Porous Media: Influential Parameters and Comparison with Experiments

Hao Yuan, Alexander A. Shapiro

Introduction
There is a considerable and ongoing effort aimed at understanding the transport and the deposition of suspended particles in porous media, especially non-Fickian transport and non-exponential deposition of particles [1-6]. In this work, the influential parameters in filtration models are studied to understand their effects on the non-Fickian transport and the non-exponential deposition. The filtration models are validated by the comparisons between the modelling results and the experimental data.

Moldeling non-Fickian transport

\[
\frac{\partial c}{\partial t} + v \frac{\partial c}{\partial x} = D_s \frac{\partial^2 c}{\partial x^2} + \frac{1}{\lambda_s} \frac{\partial^2 c}{\partial t^2} - \lambda_s c; \\
\frac{\partial s}{\partial t} = \lambda_s c; \\
\text{Temporal dispersion term for non-Fickian transport}
\]

The elliptic equation stems from the microscopic description of particles in pores in the framework of continuous time random walk theory [1-3]. It is applied to model non-Fickian transport in heterogeneous porous media. The additional term compared to the classical advection dispersion equation (the temporal dispersion term) describes the non-Fickian behaviours of particles. The temporal dispersion coefficient, by its definition, is the variance divided by the mean value of the particle residence time.

Heterogeneous particle-grain interactions

\[
p(\lambda) = \frac{1}{\lambda \sigma \sqrt{2\pi}} \exp\left[\frac{(\ln \lambda - \mu)^2}{2\sigma^2}\right] \\
p(\lambda) = a(\lambda)^b
\]

Log-normal, power-law and other distribution types are applied to describe heterogeneous particle-medium interactions, such as heterogeneous surface charges, energy minima, distributed particle sizes via size exclusion [3,6].

Released and migratory deposition

\[
\frac{\partial c}{\partial t} + v \frac{\partial c}{\partial x} = -\left(\lambda_i + \lambda_d\right)c + \lambda_i s + \lambda_m s_m; \\
\frac{\partial s_m}{\partial t} + v \frac{\partial s_m}{\partial x} = \lambda_m c - \lambda_m s_m - \lambda_m' s_m; \\
\frac{\partial s}{\partial t} = \lambda_m s_m + \lambda_d c - \lambda_s s
\]

A third equation is applied to describe the released and migratory particles. The third particle population may be the surface-associated particles or the released large aggregates. The boundary condition for the third population is zero at the injection side [5].

Results

Conclusions
1. The elliptic equation can be applied to model the non-Fickian transport. It results more dispersed breakthrough curves and hyperexponential deposition.
2. The consideration of a third migratory particle population may result in non-monotonic deposition and long tails after the end of injection in the breakthrough curves.
3. Distributed filtration coefficients can be applied to model heterogeneous particle-medium interactions. The modelling results can match the hyperexponential deposition in experiments.
4. The elliptic equation and the CTRW equation expressed in Laplace space can both catch the non-Fickian transport of tracers in heterogeneous porous media, while the advection dispersion equation cannot.

References