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Preface

The present thesis is submitted in partial fulfilment of the requirements for the de-
gree of PhD at The Technical University of Denmark. The thesis is structured as a
summary of and additions to the work of five publications which are appended. The
work results from a collaboration between Siemens Wind Power A/S and the Wind
Energy Department at Rise DTU. The project has been sponsored jointly by Siemens
and the Danish Ministry of Science, Technology, and Innovation through the Indus-
trial PhD programme.

The work has been carried out between August 2007 and October 2010 under
guidance of senior scientist Morten Hartvig Hansen from Rise as main advisor and
Rune Rubak (until July 2010 where he left Siemens) and Kenneth Thomsen as ad-
visors at Siemens.

I would like to thank the following persons for helping me reach the end of this
project. Kenneth Thomsen was the initial driving force for realising the project
at Siemens and has followed it with a helicopter overview since. Jorgen Thirstrup
Petersen at Siemens has been helpful guiding me through the mazes of BHawC.
Rune Rubak was always full of good ideas and showed an admirable ability to delve
right into the details at project meetings distant in time. Jesper Winther Staerdahl at
Siemens has given many valuable tips on how to handle the aerodynamics. Olivier
A. Bauchau, professor at Georgia Tech, received me for a rewarding stay in Atlanta
and widened my horizons. Last, but not least, Morten Hartvig Hansen has guided
me through these three years with a stream of ideas, abundant experience, fruitful
discussions, and encouragement both in moments of crisis and success.

Copenhagen, 3rd March 2011

Peter Fisker Skjoldan
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Abstract

Several methods for aeroelastic modal analysis of a rotating wind turbine are de-
veloped and used to analyse the modal dynamics of two simplified models and a
complex model in isotropic and anisotropic conditions.

The Coleman transformation is used to enable extraction of the modal frequen-
cies, damping, and periodic mode shapes of a rotating wind turbine by describing
the rotor degrees of freedom in the inertial frame. This approach is valid only for an
isotropic system. Anisotropic systems, e.g., with an unbalanced rotor or operating
in wind shear, are treated with the general approaches of Floquet analysis or Hill’s
method which do not provide a unique reference frame for observing the modal
frequency, to which any multiple of the rotor speed can be added. This indetermin-
acy is resolved by requiring that the periodic mode shape be as constant as possible
in the inertial frame. The modal frequency is thus identified as the dominant fre-
quency in the response of a pure excitation of the mode observed in the inertial
frame.

A modal analysis tool based directly on the complex aeroelastic wind turbine
code BHawC is presented. It uses the Coleman approach in isotropic conditions
and the computationally efficient implicit Floquet analysis in anisotropic condi-
tions. The tool is validated against system identifications with the partial Floquet
method on the nonlinear BHawC model of a 2.3 MW wind turbine.

System identification results show that nonlinear effects on the 2.3 MW turbine
in most cases are small, but indicate that the controller creates nonlinear damp-
ing. In isotropic conditions the periodic mode shape contains up to three harmonic
components, but in anisotropic conditions it can contain an infinite number of har-
monic components with frequencies that are multiples of the rotor speed. These
harmonics appear in calculated frequency responses of the turbine. Extreme wind
shear changes the modal damping when the flow is separated due to an interaction
between the periodic mode shape and the local aerodynamic damping influenced
by a periodic variation in angle of attack.
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Resumé

Denne athandling har udviklet flere metoder til aeroelastisk modalanalyse af en ro-
terende vindmelle og har brugt dem til at analysere modaldynamikken for to for-
simplede modeller og en avanceret model under isotropiske og anisotropiske betin-
gelser.

Coleman-transformationen bruges til at bestemme modale frekvenser, deemp-
ninger og periodiske modalformer for en roterende vindmelle ved at beskrive ro-
torens frihedsgrader i inertialsystemet. Denne fremgangsmade geelder kun for iso-
tropiske systemer. For anisotropiske systemer, der fx har en ubalanceret rotor eller
er pavirket af en vindgradient, bruges en generel metode som Floquet-analyse eller
Hill’s metode, som ikke definerer en unik referenceramme hvori modalfrekvensen
bestemmes. Der kan derimod leegges et vilkarligt multiplum af rotorhastigheden til
frekvensen. Denne ubestemthed afklares ved at sorge for at den periodiske modal-
form er sé konstant som muligt i inertialsystemet. Modalfrekvensen bliver dermed
den dominerende frekvens i responset for den rent ansldede modalform observeret
i inertialsystemet.

Et veerktoj til modalanalyse baseret direkte pd det avancerede aeroelastiske vind-
molle-beregningsveerktoj BHawC praesenteres i athandlingen. Det bruger Coleman-
fremgangsmaden under isotropiske betingelser og implicit Floquet-analyse, som er
en beregningsmaessigt effektiv metode, under anisotropiske betingelser. Varktojet
er blevet efterprovet ved sammenligning med en systemidentifikation med den par-
tielle Floquet-metode anvendt pa en ikke-linezer BHawC-model af en vindmolle pa
2.3MW.

Resulter af systemidentifikationen viser at de ikke-lineere effekter for denne
vindmelle i de fleste tilfeelde er sma, men de viser til gengeeld at mollestyringen
kan skabe en ikke-lineaer dempning. Under isotropiske betingelser har den periodi-
ske modalform op til tre harmoniske komponenter, mens den under anisotropiske
betingelser kan have et uendeligt antal harmoniske komponenter med frekvenser,
som er et multiplum af rotorhastigheden. Disse harmoniske komponenter indgar i
mollens beregnede frekvensrespons. En ekstrem vindgradient eendrer modaldeemp-
ningen ndr stromningen er separeret som folge af et samspil mellem den periodiske
modalform og den lokale aerodynamiske deempning, som er pavirket af en periodisk
variation af angrebsvinklen.
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Nomenclature

Symbols are presented in the text. only the most common notation is listed here.

Notation
X scalar
X vector (lowercase)
X  matrix (uppercase)
XT  transpose

B iRal

time derivative
approximate quantity

Symbols

;"_'O?>”

ENcoT 2R

=1
S

k

De e Y X <

Q6

k

aerodynamic state vector

state matrix

Lyapunov-Floquet transformed state matrix
damping/gyroscopic matrix

imaginary unit, v/—1

integer identifying the modal frequency
stiffness matrix

Lyapunov-Floquet (L-F) transformation
mass matrix

number of state variables

nodal positions

nodal quaternions

time

rotor period

vector of degrees of freedom

periodic mode shape

eigenvector matrix

perturbation to aerodynamic state vector
perturbation to degrees of freedom or state vector
eigenvalue (characteristic exponent) diagonal matrix
fundamental solution

azimuth angle

frequency of mode k

rotor speed

fundamental solution

damping rate of mode k



Mode names

Index Component
1 T tower
2 E rotor edgewise
F rotor flapwise

DRV drivetrain

Direction
LO longitudinal
LA lateral
Y yaw
T tilt
\% vertical
H horizontal
S symmetric
BW  backward whirling
FW  forward whirling



Chapter 1

Introduction

Wind turbines are a proven and mature technology for generation of electricity from
renewable sources. But the ongoing effort of lowering the cost of energy compared
to traditional sources depends on the continuous optimisation of the turbines. This
optimisation consists of increasing the efficiency of the turbine through better aero-
dynamics of the rotor, smaller loss in the drivetrain and energy conversion, and
more intelligent control. On the other hand it also consists of making the turbines
cheaper by minimising the material needed for the structure to withstand the aero-
dynamic and inertial loads or by minimising the load itself. Both the assessment
of the loads and the design of control algorithms require a thorough understanding
of the dynamics of the turbines. A decomposition of the turbine dynamic response
into modal contributions, which is the subject of this thesis, is indeed an effective
way to gain this understanding of the dynamics and the factors contributing to the
loads.

This chapter introduces the basic concepts related to modal analysis of a rotating
wind turbine, gives a summary of the state of the art on this subject, and details the
motivation for and structuring of this thesis.

1.1 Concepts

A wind turbine in operation is subjected to loads from a variety of sources. The
wind deflects the blades and the tower, and the rotation produces strong centrifu-
gal forces in the blade. The wind is, however, not constant: it varies with the height
due to wind shear and in general due to turbulence. These factors generate a very
dynamic loading scenario. In the design process this scenario is determined by a
standard suite of time simulations of the response to the varying loading. The time
simulations yield detailed, important design loads, but they disclose little of the un-
derlying phenomena causing the loads. A modal analysis divides a small-amplitude
free response to perturbations about a steady state into modal contributions. Each
contribution is characterised by a modal frequency, modal damping, and a mode
shape. These results, which are in the frequency domain, directly show if the steady
state equilibrium is stable and can be used to explain frequency spectra determined
from time simulations.
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Figure 1.1: Siemens 3.0 MW prototype direct drive wind turbine with 101 m rotor.

In this section the fundamental concepts used in this thesis are defined. The
terminology might be slightly different from that used in the publications appended
to this thesis, illustrating that this has been a progressive work.

Modal analysis of numerical models consists of three steps:

1. Location of a steady state operating condition;
2. Linearisation of the equations of motion about the steady state;

3. Modal decomposition of the linearised system providing modal frequencies,
modal damping, and mode shapes.

The nature of the steady state depends on the characteristics of the rotor and the
external, or environment, conditions. Isotropic external conditions are defined as a
uniform wind field constant in time and aligned in tilt and yaw to be perpendicular
to the rotor plane and no gravity present, or the academic special case of the rotor
rotating in vacuum. An isotropic rotor is defined as being polarly symmetric and bal-
anced. The presence of these two conditions of isotropy result in a stationary steady
state with constant deflections of the turbine members. In the general case of an-
isotropic external conditions, an anisotropic rotor, or simply anisotropic conditions
in case either is present, the resulting steady state is periodic. In a periodic steady
state the deflections of the turbine members are periodic with the rotor period, and
the rotor speed varies periodically with the mean rotor speed determined by the ro-
tor period. Non-periodic effects like turbulence are not included in the steady state,
but rather considered a source of excitation of different modes under the assump-
tion that the turbulence does not change the mean rotor speed significantly. Lar-
ger non-periodic variations in the rotor speed must be modelled by different steady
states.



The linearisation of the equations of motion about the steady state is necessary
to make the linear concept of modal decomposition possible. It can either be done
analytically or approximately by considering small perturbations to the steady state
calculated with a nonlinear model.

The equations of motion for a wind turbine in steady state operation have peri-
odic coefficients caused by the rotor rotation. Therefore, a coordinate transforma-
tion that yields an equivalent set of equations of motion with constant coefficients,
must be performed before the modal properties, consisting of a modal frequency,
modal damping, and a mode shape for each mode, can be extracted by eigenvalue
analysis. In isotropic conditions, defined by isotropic external conditions and an iso-
tropic rotor, such a transformation is known a priori as the Coleman transformation,
which describes the blade degrees of freedom in the inertial frame, or ground-fixed
frame. The resulting mode shapes are constant for degrees of freedom on the sup-
porting structure. For degrees of freedom on the blade the mode shapes are peri-
odic, containing as many harmonic components as the number of blades, which
can result in whirling motion of the blades. In anisotropic conditions, the coordin-
ate transformation is included implicitly in a general method such as Floquet ana-
lysis or Hill's method. The resulting periodic mode shapes can contain an infinite
number of harmonics both on the supporting structure and on the blades, allowing
for more complex motion.

Modal analysis predicts the stability of the steady state equilibrium determined
by the lowest modal damping. Stability analysis is often used to denote a modal ana-
lysis including aerodynamics, because the aerodynamic forces are the most com-
mon cause of instabilities. In other cases stability analysis refers to the search for
stability boundaries under variation of some parameter. In this thesis the term is
avoided, and modal analysis is used about any structural or aeroelastic system.

On three-bladed wind turbines the anisotropy mainly stems from wind shear
and a possible yaw error, making the effect modest. Two-bladed turbines, on the
other hand, have inherently anisotropic rotors, resulting in a significantly different
dynamic behaviour. This thesis, however, focuses on three-bladed horizontal-axis
wind turbines because they are the most commercially viable type.

1.2 State of the art

The methods for modal analysis of wind turbines, build to alarge extent on methods
developed in other fields, which include general rotating systems and in particular
helicopters. This section presents selected literature from these fields to give an idea
of the chronology and span of the approaches.

1.2.1 Theoretical foundations

The theory for solution of differential equations with periodic coefficients has been
known for over a century. Floquet (1883) is the first to show that the solution to a
system of homogeneous linear ordinary differential equations with periodic coeffi-
cients consists of a product of a purely periodic term and a time-dependent expo-
nential term, determined from a set of fundamental solutions to the system. His
achievement has since become known as Floquet theory, allowing modal analysis of
periodic equations. While calculating the motion of the lunar perigee, Hill (1886)
solves an equation with periodic coefficients by setting up a determinant of infinite
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size containing the terms of a series expansion of the coefficients. He shows that
the eigenvalues calculated from the determinant converge when the determinant is
truncated, an idea that subsequently has developed into Hill's method. Lyapunov
(1896) is the first to specifically mention a coordinate transformation as a way to
form the solution derived by Floquet, and it has been aptly named the Lyapunov-
Floquet transformation.

These theories are now standard material in text books on mathematical ana-
lysis and on dynamics, see, e.g., Whittaker and Watson (1927), Coddington and Lev-
inson (1955), Meirovitch (1970), Yakubovich and Starzhinskii (1975), and Nayfeh and
Balachandran (1995).

Coleman (1943) derives the first example of a Lyapunov-Floquet transformation
for bladed rotors. The Coleman transformation introduces multi-blade coordinates
describing the rotor motion in the inertial frame of reference, thereby eliminating
the periodic coefficients in the equations of motion for systems with isotropic rotors.

1.2.2 Analytical modelling approaches

The earliest modal analyses on bladed rotor systems are carried out for simplified,
analytical models of helicopters. Coleman and Feingold (1947) apply Hill’s method
to determine the stability of an anisotropic two-bladed rotor on an anisotropic sup-
port, where the equations of motion still have periodic coefficients after introduc-
tion of the Coleman transformation. Hill's method is basically a harmonic balance
method, which is described by, e.g., Krylov and Bogolyubov (1947) or Nayfeh and
Mook (1979).

The advent of the digital computer in the second half of the 20t century allows
performing modal analyses of more complex models. Early Floquet analyses are
performed by Lowis (1963) who determines the stability of a helicopter rotor system
by numerical integration of the equations of motion to find the transition matrix,
which maps the fundamental solution from one point in time to another. Peters
and Hohenemser (1971) study the stability properties of a helicopter rotor where
they obtain the transition matrix using a predictor-corrector integration scheme.
In this thesis a distinction is made between the terms Floquet theory and Floquet
analysis: the theory states the form of the solution, and the analysis is a practical
application of the theory, which typically means that the fundamental solution is
obtained numerically. Hill's method also sees advantage of the computer, applied
by Crimi (1969) to the problem of stability of a rotor blade which is in forward flight,
thus introducing anisotropy.

Floquet analysis is applied to calculate the aeroelastic modal parameters of a
wind turbine by Kirchgéssner (1984) who uses mode shape expansion of tower and
blades separately to obtain a model with a small number of generalised degrees of
freedom.

The computational effort in performing Floquet analysis on these models is still
substantial, and to allow the treatment of models with more degrees of freedom, im-
provements to the numerical schemes are suggested by several researchers. Peters
(1994) introduces Fast Floquet Theory where it is only necessary to compute the
transition matrix over 1/ B of a rotor period, where B is the number of blades on the
isotropic rotor. Sinha and Pandiyan (1994) approximate the transition matrix based
on an expansion of the equations of motion in Chebyshev polynomials, thereby con-
verting the differential equations into a small set of algebraic equations. Bauchau
and Nikishkov (2001) develop the implicit Floquet analysis, which approximates the



lowest damped modes from a partially calculated fundamental solution, and they
apply it to a large finite element model where the transition matrix is furthermore
calculated using a nonlinear model, avoiding the task of linearising the equations of
motion.

Another approach to handling small periodic terms in the equations of motion,
caused by anisotropic effects, is taken by Johnson (1972) who solves the problem of
helicopter rotor flapping stability using the perturbation method of multiple scales.
The equations of motion are described in the rotating frame with the anisotropy
caused by forward flight, and the advance ratio (the ratio of the helicopter forward
speed to the rotor tip speed; equivalent to yaw error for a wind turbine) is used as
the small parameter in the perturbation analysis.

1.2.3 System identification

An alternative to the analytical modelling of the rotor systems is enabled by ad-
vances in experimental modal analysis made by, e.g., Hammond and Doggett (1975)
who determine the damping of helicopter rotor systems by analysis of the time re-
sponses to a random excitation of the system. Similar methods are used by Carne
and Nord (1983) in NExT (Natural Excitation Technique) to identify the modal prop-
erties of a vertical axis wind turbine with the advantage that the excitation is pro-
vided by the turbulence in the wind and that it is not necessary to measure the ex-
citation force. This technique is subsequently refined as operational modal analysis
and applied by, e.g., Hansen et al. (2006) who determine the damping of edgewise
modes using measured response signals from an operating wind turbine and com-
pare it to results from an analytical model.

These system identification approaches suffer from being based on theoretical
models that do not take effects of anisotropy into account. Liu (1997) derives a
methodology for system identification of linear time-varying systems, and in par-
ticular periodically varying systems, which, however, requires the measurement of
both input and output. It is not always straightforward to obtain a linear version
of a complex analytical model, which leads Wang and Peters (1998) and Fuehne
(2000) to introduce generalised Floquet theory. They use elements of experimental
signal analysis to eliminate noise from modelled nonlinearities or measurements
and approximate the modal parameters from the free response to an excitation. The
method is subsequently refined by Bauchau and Wang (2008) in the partial Floquet
analysis. The assumption of a free response causes some difficulties in the applica-
tion of these methods to measurements from wind turbines in operation because of
turbulence acting as a source of excitation.

A system identification method that successfully combines time-variance, ad-
mits input from natural excitations, and only requires measurement of the system
response has, to the author’s knowledge, yet to be derived.

1.2.4 Benchmark tools

There already exists a number of tools able to calculate the modal parameters of a
rotating wind turbine, which the work in this thesis must be held up against. These
methods are best compared by considering them using the following framework.
The starting point of a bottfom-up approach is the solution procedure, which limits
the complexity of the model to allow for an exact solution. In this way the results are
based on sound physical and mathematical principles and are easy to interpret, but
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more complex effects cannot be modelled. An example of a bottom-up approach is
an isotropic model solved using the Coleman transformation. On the other hand, a
top-down approach starts off with a given model (or experiment) with all its com-
plexities and obtains an approximate solution based on a practical solution proced-
ure. This approach can deal with complex effects, but it can be more difficult to tell
whether the results are physically based or are artefacts of the method, because the
model and solution procedure are inconsistent. An extreme case of a top-down ap-
proach would be a black-box system identification where no knowledge of the phys-
ical system is assumed. Most existing tools are based on a compromise between a
bottom-up and a top-down approach.

All current wind turbine modal analysis tools considered here are based on the
Coleman transformation. The most bottom-up approach is HAWCStab (Hansen,
2004), which models a wind turbine with an isotropic rotor using linear finite beam
elements where three identical elements on each blade are formulated directly in
the inertial frame by the Coleman transformation. Unsteady aerodynamic forces
are derived from a blade element momentum (BEM) method providing for isotropic
external conditions. TURBU (van Engelen and Braam, 2004) is based on a nonlin-
ear structural model with spring- and damper-connected rigid bodies and a BEM
aerodynamic model, performing modal analysis for an isotropic system. Bir and
Jonkman (2007) use the mode shape-based structural model FAST coupled to the
aerodynamic code AeroDyn and obtain the modal properties after application of the
Coleman transformation (MBC). The periodicity remaining in the Coleman trans-
formed system equations due to anisotropy from external conditions or the rotor is
averaged over a rotor rotation to allow an approximate modal analysis of an aniso-
tropic system from a standard eigenvalue problem. Riziotis et al. (2004) base their
stability tool on the GAST nonlinear aeroelastic code, which features aeroelastic fi-
nite beam elements with both structural and aerodynamic degrees of freedom. The
periodic steady state due to a general inflow is found by time simulation, and an
eigenvalue problem is set up after averaging over a rotor rotation. In case of an in-
stability the steady state is obtained as the periodic part of the response.

The tools mentioned above and the tool presented in this thesis together with
some of the approaches mentioned in the previous sections are inserted approxim-
ately on a ‘bottom-up/top-down’ scale in Figure 1.2.

1.3 Motivation

The motivation behind the work contained in this thesis is two-fold, relating to its
status as an Industrial PhD project: on the practical side, Siemens Wind Power has
wished to gain the ability to apply aeroelastic modal analysis on operating turbines;
on the scientific side, the goal has been to develop methodologies for modal ana-
lysis of complex models of rotating wind turbines and through these models to gain
additional insight into the dynamics of wind turbines influenced by anisotropic ef-
fects.

Aeroelastic modal analysis of an operating wind turbine has not yet seen much
use in the industry. This situation has arisen because the modal analysis tools are
most often based on simplified models obtained separately from the complex aer-
oelastic codes used for time simulation, necessitating a fitting of the models used
for modal analysis and causing a possible discrepancy between results from modal
analysis and time simulation. Also, there is a lack of experience with the practical
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Figure 1.2: Selected approaches and tools inserted approximately on a ‘bottom-
up/top-down’ scale characterising the modelling and solution procedure.

use of aeroelastic modal analysis in the industry, where the focus has been mostly
on time simulations mandated by the certification standards.

Even though modal analysis of rotating systems has been researched for more
than half a century, the focus has been mostly on the question of stability and not
so much on the physical understanding of the motion causing the behaviour. The
effects of anisotropy are more apparent in the periodic mode shape, determining the
local motion, than in the modal damping, dictating increase or decrease of motion
amplitude over a period. There is still a need for a more thorough understanding of
what is the importance of the periodic mode shape, and whether anisotropic effects
need be investigated at all.

The work on which this thesis is based has sought to provide a state of the art
aeroelastic modal analysis tool based directly on the aeroelastic code BHawC used
at Siemens Wind Power. In this process, analysis methods novel in the wind tur-
bine community, have been used to obtain a tool that is able to correctly handle
anisotropic effects. This tool is placed higher on the bottom-up/top-down scale in
Figure 1.2 than existing tools for wind turbines, because it is built on a complex mo-
del not designed for modal analysis and because approximate solution methods are
used. As a side-effect this frequency-domain tool can provide a means of validation
and insight into the BHawC code. The tool is used for modal analysis of operating
wind turbines and for examining the effects of anisotropy on the modal parameters.

The methods presented in this thesis can be applied to examine instability phe-
nomena like stall-induced edgewise vibrations and flutter described by, e.g., Hansen
(2007). This thesis does not, however, contain an investigation into these phenom-
ena because the focus has been on the implementation of methods for modal ana-
lysis of anisotropic systems and the effects on the dynamics that the anisotropy has.

1.4 Structure

The goal of this thesis is to provide a coherent overview of the material contained
in the papers [P1-P5] and also to present material that did not make it into these
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papers. Writing this thesis has been an exercise in logically dividing three years’
work. The outcome is a separation of modal analysis methods and their perform-
ance, which are covered in Chapters 2 to 4, and the modal dynamics of wind tur-
bines, which is covered in Chapters 5 and Chapter 6.

Chapter 2 describes the three models used to illustrate the modal analysis meth-
ods: a simple model of flapwise vibrations, a simple model of edgewise vibrations,
and the BHawC model. Chapter 3 defines modal analysis on a periodic system and
describes the methods of Floquet analysis, Hill's method, the Coleman transform-
ation approach, and partial Floquet analysis for a generic model. In Chapter 4 the
implementation of the main analysis tool based on the linearised BHawC model
and the approaches of Coleman transformation and implicit Floquet analysis is de-
scribed in more detail. Chapter 5 describes the modal dynamics of wind turbines
in isotropic conditions. In Chapter 6 the effects of an anisotropy on the rotor or the
external conditions are assessed. Chapter 7 contains the conclusions and sums up
suggestions for future work.

The original contributions of this thesis are:

1. arigourous application of periodic modal analysis to an existing complex aer-
oelastic wind turbine code, which is the subject of Chapters 2 to 4, and

2. asurvey of the modal dynamics in anisotropic conditions, which is the subject
of Chapter 6.



Chapter 2

Wind turbine models

This chapter presents the three different models of a wind turbine that are used in
this thesis. A simple model with flapwise vibrations is used as a testbed for the mo-
dal analysis methods. Another simple model with edgewise vibrations is used to
simulate the lowly damped edgewise modes that are most easily identifiable on a
realistic model. Finally, the aeroelastic BHawC model including a linearised version
is presented.

2.1 Simple model of flapwise vibrations

A simple model that still represents some of the essential dynamics of a wind tur-
bine is very useful for obtaining an understanding of the dynamics and for testing
different solution methods with a minimum of implementation effort and compu-
tation time. Figure 2.1 shows such a model containing flapwise blade motion and
a coupling between the blades through tilt and yaw of the nacelle for a total of five
degrees of freedom. The nacelle and blades are modelled as rigid bodies connected
by rotational springs and dampers. The model is purely structural.

The equations of motion are derived using Lagrange’s equation, then linearised
analytically around the steady state of zero deflections and written as

M(#)ii+C(t)a+K(f)u=0 (2.1)

Figure 2.1: Simple model of wind turbine with five rotational degrees of freedom:
flapwise blade deflections 6, 8,, and 65, and nacelle tilt §, and yaw 6,. From [P1,
Fig. 1]
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Figure 2.2: Simple model of wind turbine with four degrees of freedom: edgewise
blade deflections 6, 8,, 05, and tower top lateral displacement u,. From [P5, Fig. 2].

where M, C, and K are the mass, damping/gyroscopic, and stiffness matrices, re-
spectively, given in [P1, App. A.2], uis the vector of degrees of freedom, and () = d/d¢
denotes a time derivative. To simplify the notation in Equation 2.1 and onwards the
time-dependence of the degrees of freedom or state variables is not explicitly stated.

This modelis used in [P1], and in [P2] it is formulated in multi-blade coordinates.
The parameters of the model are fitted to represent the dynamics of a generic multi-
MW wind turbine [P1, Tab. 1].

2.2 Simple model of edgewise vibrations

A model derived similarly to that presented in the previous section but with edge-
wise blade deflections is used in [P5] for modelling the edgewise rotor modes and
lateral tower mode that are lowly damped and thus easily identifiable on a real tur-
bine. Figure 2.2 shows the purely structural model consisting of three blades mod-
elled as rigid bodies connected with rotational springs and dampers to a tower top
mass which can move laterally, for a total of four degrees of freedom. The linearised
equations of motion are of the form given in Equation (2.1) with the matrices given
in [P5, Sec. 3.1.1] in non-dimensional form.

This model is used in [P5] in a linearised version and also with cubic damping
and stiffness terms to examine the effects of nonlinearities. The non-dimensional
parameters of the model are chosen to represent the dynamics of a generic wind
turbine [P5, Sec. 3.2].

2.3 The aeroelastic code BHawC

The nonlinear aeroelastic code BHawC has been developed in-house at Siemens
Wind Power over the last eight years. It is used for design and certification of wind
turbines, and it is continuously being validated against measured data. BHawC is a
complex entity; this section serves to provide an overview of the underlying theory
and the features most relevant for the modal analysis tool.

The main purpose of BHawC is to simulate the dynamic response of and calcu-
late the loads on three-bladed wind turbines. The model consists of substructures
for foundation, tower, nacelle, drivetrain, shaft, hub, and blades as shown in Fig-
ure 2.3. The structure is modelled primarily with finite beam elements and the aero-
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Figure 2.3: Sketch of BHawC model substructures. From [P3, Fig. 1].

dynamics is modelled using blade element momentum theory. The code is coupled
to a controller identical to that on the real turbine.

2.3.1 Structural formulation

The finite beam element model in BHawC uses a co-rotational formulation where
each element has its own coordinate system that rotates with the element. BHawC
uses linear two-node Timoshenko beam elements derived by Petersen (1990) with
12 degrees of freedom: three positions and three rotations in each node. Special
elements are introduced where bearings are present, and the drivetrain consists of
purely torsional elements.

The substructures are connected through a predefined, direct kinematic coup-
ling. The structural degrees of freedom for all elements are given relative to a co-
ordinate system fixed at the turbine base (tower or foundation bottom), i.e., the
coordinates are absolute and global. The configuration of the turbine is given by
the nodal positions p and nodal orientations q, and their velocities and accelera-
tions. In a model valid for arbitrarily large rotations of the elements, special care
must be taken of the representation of the orientations. In BHawC the orientations
of the nodes are expressed as quaternions, a four-parameter equivalent to a rota-
tion matrix (Krenk, 2009, Nikravesh, 1988), as a practical way of handling the non-
commutativity of finite rotations. The derivatives of the orientations are expressed
as angular velocities and accelerations about the three axes represented by the re-
spective quaternions. Velocities and accelerations of the positions and orientations
are collected in the vectors u and ii, respectively.

The equilibrium equation is stated in global coordinates as

fine:(p, g, 0, 1) + fdamp(q, W) +fin(p, @) = fexe(p, q, 0, 1) 2.2)

where fi,; is the inertial force vector, fgamp is the structural viscous damping force
vector, i is the internal force vector corresponding to elastic deformation, and fey
is the external force vector. The inertial force vector is written as

finer(py q; l:l, ll) = M(q)u + C(Q» u)u + finer,stiff(py q, l:l; ll) (23)

where M and C are mass and gyroscopic matrices, respectively, and finer stifr is the in-
ertial stiffness force. In element coordinates M is constant, C depends on the angular

11
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velocities of the elements, and finersiifr is due to elastic deformation and depending
on the angular velocities and accelerations. All three terms are transformed into
global coordinates using rotation matrices represented by the nodal quaternions q.
Because the formulation is in global coordinates M provides the majority of the iner-
tial forces, and the two last terms in Equation (2.3) are in fact negligible. The damp-
ing force is obtained as fyamp(q, ) = Cdamp(q) 01, where Cqamp is @ combined mass
and stiffness proportional damping matrix transformed into global coordinates us-
ing the quaternions. To obtain the element internal force, an equilibrium format is
used to retrieve the elastic deformation separated from the rigid body motion (Krenk
et al.,, 1999). The equilibrium displacement is found from the nodal positions and
orientations, and the internal force vector is transformed into global coordinates us-
ing the quaternions. The external force vector consists of aerodynamic, gravity, and
applied forces and is dependent on the configuration of the turbine.

For a given configuration (p, q, 1w, ii) and a given external force fey, say an initial
guess, the system might not be in equilibrium, i.e., Equation (2.2) might not be sat-
isfied. To find this equilibrium, increments of the positions and orientations ou,
velocities 6u and accelerations oii are found using the tangent relation, obtained
from a variation of the equilibrium equation (2.2) and written as

M(q)oii+C(q,u)ou+K(p,q,a,ii)ou=r 2.4)

where M, C, and K are the tangent matrices for mass, damping/gyroscopic forces,
and stiffness, respectively, and r = oy — finer — faamp — fint is the residual. The tangent
mass and damping/gyroscopic matrices are largely equal to M and C in the equi-
librium equation (2.2) but contain contributions from the inertial force, which are
negligible because the formulation is in global coordinates. The tangent stiffness
matrix consists of constitutive stiffness, geometric stiffness due to both internal and
external forces, and inertial stiffness. The updating of the configuration is accom-
plished through Newton-Raphson iteration using Equation (2.4) combined with a
suitable solution procedure (the Newmark method, generalised-a method (Chung
and Hulbert, 1993), or a steady state solution (described in Section 4.1)) to predict
velocities 61 and accelerations dii and reduce the problem to the determination of
ou. In each step the tangent matrices and the residual including the external force
are updated to reflect the new configuration. The Newton-Raphson procedure is
continued until equilibrium is sufficiently satisfied around r ~ 0. In this way a geo-
metrically nonlinear model is achieved from a linear finite element model through
the updating of the orientation and length of the elements. Increments to the ro-
tations in 6u, which are assumed infinitesimal, are for each node represented as a
rotation pseudo-vector, whose direction determines the axis of rotation and whose
length determines the magnitude of rotation. The quaternion for node number i is
updated as

q; ‘= quat(aui,rot)*qi (25)

where 6u; ;o contains three rotations that are assumed infinitesimal and thus com-
mute, and where this rotation vector is transformed by the function termed quat
into a quaternion, which is used to update the nodal quaternion q; employing the
special quaternion product denoted by * which maintains the unity of the qua-
ternion (Krenk, 2009). The nodal positions p and nodal velocities 1 and acceler-
ations ii are updated by regular addition of the positional part of 6u, 6u and 61,
respectively, as determined by the solution procedure.

12



2.3.2 Aerodynamics

The aerodynamic force in BHawC is calculated in a number of points on the blades
positioned independently of the structural nodes with finer spacing near the blade
tips. Blade element momentum theory is applied to determine the tangential and
axial induced velocities in these aerodynamic calculation points, and Prandtl’s tip
loss correction as well as a correction for the thrust at high induction values are
implemented. The blade element momentum theory is expanded to allow a skewed
inflow and an unsteady inflow by filtering the induced velocities as described by
Bjorck (2000).

The aerodynamic force is based on 3D corrected stationary airfoil data with lift,
drag, and moment coefficients, but is corrected by a Beddoes-Leishman-type dy-
namic stall model described by Petersen et al. (1998). The dynamic stall model takes
the circulatory and impulsive loading into account, and the effects of trailing edge
separation of the flow are determined from an expression for the lift as function of
the separation point position due to Qye (1991), replacing the original expression by
Leishman and Beddoes (1986). For each calculation point the flow is described by
four state variables. In addition, BHawC contains a model for the tower shadow, and
it also calculates the aerodynamic forces on the nacelle and tower.

The unsteady effect of trailing edge separation is modelled by the position of the
separation point f, related to the lift coefficient C; as

Cr=Crrala)f + Crss(a)(1— f) (2.6)

where Cy ¢, is the lift curve for fully attached flow, Cy g is the lift curve for fully sep-
arated flow, and «a is the angle of attack. The dynamics of the flow separation is
modelled as

. 2w
f= T_fc(fst(a) -1 2.7)

where W is the relative wind speed, c is the chord length, 7¢ is a constant, and f; is
the stationary separation point position obtained from Equation (2.6) with C taken
as the stationary value.

2.3.3 Linearised model for modal analysis

The tangent relation in Equation (2.4) describes small perturbations to the equilib-
rium configuration and can therefore by used as the linearised equations of motion
for the structural part in modal analysis [P3]. The linearisation of the aerodynamic
force, contributing with aerodynamic damping and stiffness and a coupling to the
aerodynamic state variables, is performed numerically [P4]. In the current imple-
mentation only the unsteady aerodynamic effect of trailing edge separation is in-
cluded in the linearised model. The separation point positions f for all calculation
points are collected in the vector a, and the linearised version of Equation (2.7) is
written as

x=Aq4(p,q,1,a)x+ Cyua(p,q,1,a) ¥+ Kua(p,q,1,a)y 2.8)

where Aq is the aerodynamic system matrix, and C,, and K, are the aerodynamic
velocity and displacement coupling matrices, respectively, all determined by nu-
merical linearisation about the equilibrium configuration (p, q, @, i, a) [P4]. The de-
grees of freedom y contain perturbations to both positions p and orientations q, its
derivatives y and ¥ contain perturbations to @ and ii, respectively, and x contains
perturbations to the aerodynamic state variables a.

13



Chapter 2. Wind turbine models

The structural equations of motion from Equation (2.4) including aerodynamic
forces become

M(q)y+ (C(q,w)+Ca(p,q,1,2)) y+ (K(p, q, i, it) + Ky(p, q, 01,2)) y + Ar(p, q, 1, 2)x =0

(2.9
where Ay is the aerodynamic flow coupling matrix determined by numerical linear-
isation, and all matrices are evaluated at the equilibrium configuration (p, q, @, ii, a).
The implementation is described in more detail in Chapter 4.

The combined linearised structural and aerodynamic equations of motion ((2.8)
and (2.9)) form the basis of the aeroelastic BHawC modal analysis. Currently, ef-
fects of dynamic inflow and speed and pitch control are not included in the modal
analysis. The structural model is used in [P3] and the aeroelastic model is used in
[P4]. In both cases the BHawC model is a 2.3 MW pitch-regulated wind turbine with
three 45m blades, hub height 80m, and nominal speed 16rpm. The model has 381
structural degrees of freedom and 153 aerodynamic state variables.

14



Chapter 3

Methods for modal analysis of
periodic systems

There are three steps to modal analysis with a numerical model: obtaining a steady
state, linearisation of the equations of motion, and decomposition of the linearised
motion into modal contributions. The first and last of the steps are described in
this chapter with emphasis on the modal decomposition. The linearisation step de-
pends on the model and is not treated in this chapter.

The described methods are either already existing or combined from existing
methods, but most of them have not seen extensive use in the wind turbine com-
munity. The description is based on a generic state-space model of a bladed rotor
system and the methods are validated by numerical results using the models de-
scribed in Chapter 2.

3.1 Steady state calculation

The simplest case of a steady state is that with no deflection of the structure, and
it need not be calculated. In the case of a non-zero deflection the steady state can
be found as a periodic steady state solution directly from the equations of motion,
or by time simulation until a sufficient approximation to steady state is obtained.
The direct steady state method is fairly simple to implement in isotropic conditions
([P3, P4], see Section 4.1 for details), because the rotor speed and the blade deflec-
tion in the rotating frame are constant, hence the inertia and aerodynamic forces
depend only on the rotor speed and the deflection state, and it can be calculated for
a single azimuth angle at a time.

In anisotropic conditions the task is more demanding, because the members of
the turbine, both on the supporting and rotating structures, exhibit periodic motion,
meaning that inertia, damping, and aerodynamic forces must be calculated over a
period of rotor rotation concurrently. One way of enforcing a periodic solution is
to apply the period shooting technique (Nayfeh and Balachandran, 1995), which
however requires multiple integrations of the system over a period of rotation of the
rotor, and is therefore computationally very demanding. Another way is to construct
afinite difference solution (Nayfeh and Balachandran, 1995) for which the linearised

15



Chapter 3. Methods for modal analysis of periodic systems

@ s ‘ ‘ : ‘ : ) g

Deflection []
Velocity [°/s]

-15
0

60 120 180 240 300 360 0 60 120 180 240 300 360
Azimuth angle [?] Azimuth angle []

Figure 3.1: Anisotropic steady state calculation for the nonlinear simple flapwise
model with rotor speed of 1.4m/s and forcing simulating a logarithmic wind shear.
Time simulation (—) and finite difference after six iterations using 32 points (e).
Blades 1 (—), 2 (—), and 3 (—); nacelle tilt (—), and yaw (—).

equations of motion are written as

YZA(t,Y,Y)Y‘Fb(Ey,Y) (3.1)

where y is the state vector with N state variables, A is the linear system matrix,
and b is the forcing vector. A periodic solution y(t + T) = y(¢), where T is the ro-
tor period, is sought by discretising the period into m equal intervals with time
points t; = ih and time step h = T/m. Equation (3.1) is written at the midpoint
of interval i with the derivative approximated using a central difference scheme as
V(t;i — h/2) ~ (y; —yi-1)/h, and the other terms approximated by the mean value
written as A(t; — h/Z)y(ti —h/2)~ (Aiy,' +A,'_1y,'_1)/2 and b(t; —h/2)~(b; +b;_1)/2,
where the shorthand notation y; = y(¢;) is used. These approximate equations of
motion for i =1,2,...,m are assembled in total form using y, =y, as

Ay=b 3.2)

where the expanded state vector with m N components isy= {y} ys ... y!}T and the
coefficient matrix A and forcing vector b are given as

Al—él 0 0 An+ 21 b, +b,
Ai+5T A - 21 0 0 by +b,
A= " . , b=-—
0 Apa+ 21 Apq—21 0 bym_o+byy
0 0 Apa+31 Ay —2I b1 +by
(3.3)

This system is solved using Newton-Raphson iteration updating A and b with the
new value of §, and converges to the exact solution for an increasing number of time
steps m.

Figure 3.1 shows a finite difference solution to a steady state caused by forcing
simulating a logarithmic wind shear on the nonlinear simple flapwise model de-
scribed in Section 2.1. Comparing to a time simulation the agreement for the de-
flections is better than for the velocities.

The advantage of the direct steady state method is that the solution is exactly
periodic and that a solution can also be found in an unstable steady state, where
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a time simulation would enter into a limit cycle oscillation or simply blow up. The
direct steady state method is, however, complex to set up for a large model, and
it has not been attempted here. One practical method to obtain an unstable steady
state in isotropic conditions by time simulation is to increase the structural damping
to make the equilibrium stable. In anisotropic conditions, however, this procedure
would change the steady state because the elastic deformation is time-variant and
thus dependent on the damping. Another approach is suggested by Riziotis et al.
(2008) who use only the periodic part of the response growing in time, i.e., that with
frequencies of multiples of the rotor speed. This approach could be problematic if
the frequency of the mode causing the instability is close to a multiple of the rotor
speed.

Modal analysis considers the free response of the system and depends only on
the homogeneous part of the equations of motion. Therefore it is important to lin-
earise as much of the various forces as possible to have them included in the ho-
mogeneous part and hence in the modal analysis. Details on the linearisation of the
BHawC model are given in Section 4.2.

3.2 Modal analysis as an eigenvalue problem

The equations of motion linearised about a periodic steady state are typically cast
in a second order form with mass, damping, and stiffness matrices for the structure,
and in a first order form for the aerodynamics. To facilitate the modal analysis the
homogeneous equations are written in first order form [P1] as

y=A(t)y, A(t+T)=A(1) (3.4)

where y is the state vector with N state variables consisting of the perturbations of
the structural degrees of freedom and their velocities as well as the aerodynamic
state variables and A is the T-periodic system matrix. A modal analysis cannot be
directly performed on the periodic system, therefore the Lyapunov-Floquet (L-F)
transformation L, which transforms the system into a time-invariant one, is intro-
duced as

y=L(1)z (3.5)

where z is the L-F transformed state vector. The time-invariant transformed system
given as
z=Arz, A =L"'(1)(A(z)L(z)—L(1)) (3.6)

has the simple solution z = eA’z(0) because the L-F transformed system matrix Ay,
is constant.

A modal decomposition of the time-invariant system in Equation (3.6) is readily
obtained from the standard eigenvalue analysis of the system matrix

AL =VIAV]! 3.7

where Vi, contains the eigenvectors of A;, as columns and A is a diagonal matrix
containing its eigenvalues, assuming that a complete set of linearly independent
eigenvectors exist for A;. This assumption is made in this thesis. A detailed discus-
sion of the general Jordan decomposition applicable in the case of linearly depend-
ent eigenvectors is made by Nayfeh and Balachandran (1995). The free response of
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Chapter 3. Methods for modal analysis of periodic systems

the system is found by inserting the modally decomposed system matrix of Equa-
tion (3.7) into the solution of Equation (3.6) and transforming back into the original
coordinates using Equation (3.5) as

N
y=_uk(t)e™! qi(0) 3.8)

k=1

where u; are the periodic mode shapes contained as columns in the matrix U(t) =
L(¢)Vy, Ak = O + iwy with i = /=T are the eigenvalues containing the damping
o and frequency wg, and g(0) is the initial content of mode number k. Note that
the free response is a sum of modal contributions, like in the case of time-invariant
systems, but the mode shape is periodic with the rotor period. The damping ratio is
defined as

4 2 (3.9)
k= ——————— .
lwily/14+0%/wi
and the logarithmic decrement as
—2no
Ok=—1 |k (3.10)
k

The following sections describe different approaches to obtaining the modally
decomposed solution given in Equation (3.8), either by an explicit L-F transforma-
tion or with it implicitly built into the method.

3.3 Floquet analysis

Floquet theory (Coddington and Levinson, 1955) shows that an L-F transformation
exists, but it does not provide an explicit means of obtaining it. Floquet analysis
is an application of Floquet theory using a numerically integrated set of solutions
to Equation (3.4) from which the modal decomposition is obtained. This section is
divided into classical Floquet analysis, which is a straight-forward numerical imple-
mentation of Floquet theory, and implicit Floquet analysis which is an approximate
implementation to efficiently extract the least damped modes of large systems.

3.3.1 Classical Floquet analysis

A fundamental solution of Equation (3.4) consists of N solutions obtained, e.g., by
numerical integration, over ¢ € [0; T] with linearly independent initial conditions
written as

p()=lpi(1) ¢,(1) ... en(1)] 3.11

such that ¢(t) = A(t) ¢(t). Because A is T-periodic, ¢(¢ + T) is also a solution to
Equation (3.4), ¢(t + T) = A(t) ¢(t + T), and therefore ¢ (¢ + T) must be a linear
combination of ¢(¢) written as

p(T)=¢(0)C (3.12)

where C is the monodromy matrix, and ¢ = 0 is introduced without loss of generality.
Any particular solution within ¢ € [0; T] can be written as a linear combination of
the columns in the fundamental solution as y = ¢(#)(¢ ~1(0)y(0)), which indicates
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that the fundamental solution contains all information about the dynamics of the
system.

The principal result of Floquet theory is that the fundamental solution can be
written as a product of a purely periodic matrix and a matrix exponential (Codding-
ton and Levinson, 1955, see [P2] for details)

e(t)= (L(t)L7'(0)p(0)) e (3.13)

where the system matrix R of this time-invariant system is defined in terms of the
monodromy matrix as C = eR”, and the term L~1(0) ¢(0) is introduced to make the
L-F transformation independent of the particular choice of fundamental solution.
The initial condition L(0) is arbitrary but can be selected to give physical meaning
to the transformation. The L-F transformation can thus be written in terms of the
fundamental solution and the eigenvalue decomposition R=VAV~! as

L(t)=(t)Ve MV 1y 1(0)L(0) (3.14)
and the system matrix of the corresponding time-invariant system is
AL=L"'(0)p(0)R(L™'(0)p(0)) " (3.15)

which is similar to R and therefore has the same eigenvalues [P1]. The characteristic
exponents A; obtained from the characteristic multipliers py, the eigenvalues of C,
as Ay =In(py)/ T yield the modal frequencies and damping as

wpr=arg(pr)/T, wpr€1-92/2;Q/2]
Wi = wpk+ jr il (3.16)
or=In(lpk))/T

where the modal frequency wy is not unique because of the infinite branches of the
complex logarithm and can be obtained by adding any integer multiple j; of the
rotor speed 2 to the principal frequency w,, ;. This choice of frequency is addressed
in Section 3.6. The periodic mode shapes are obtained as

wi(t)=p(t)vee ! (3.17)

which also depend on the choice of frequency contained in Ak, such that the solu-
tion in Equation (3.8) is not dependent on that choice.

Floquet analysis can be characterised as a time domain method, in that it relies
on integration in time of the system equations and that the periodic mode shapes
result in the time domain. These mode shapes can subsequently be described in the
frequency domain by a Fourier transformation.

Floquet analysis can also be classified as a system identification method because
it relies on the response of the system and not the system equations directly. It is,
however, exact in the sense that the consistency between the response and the mo-
del is determined only by the precision of the integration algorithm. The response
from a nonlinear model where the perturbations to the steady state are small can
be used in the fundamental solution, thus avoiding the step of linearisation. This
possibility, mentioned in [P2], is here applied to the simple flapwise model. Fig-
ure 3.2 shows the error in frequency from a Floquet analysis using the linear and
nonlinear responses compared to the exact solution as function of initial condition
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Figure 3.2: Error in frequency compared to exact solution as function of magnitude
of initial condition of a Floquet analysis of the simple flapwise model. Linear re-
sponse (x) and nonlinear response (o).

magnitude. In each calculation the initial conditions have the same mechanical en-
ergy as the flapwise symmetric mode with the given deformation. The error using
the linear response decreases with the magnitude of the initial condition because
the signal to noise ratio decreases due to a constant error tolerance in the integra-
tion. The same is the case for the nonlinear response until around 10~3 rad where
nonlinear effects become significant and introduce errors in the modal decompos-
ition. Thus, this approach requires that one find this window in the magnitude of
initial condition, where the precision is acceptable.

In Floquet analysis a number of authors use the state transition matrix ®(#,, fo)
that maps the fundamental solution from one point in time to another, such that
p(t1) = ®(t1, ) p (%) Johnson, 1980). The relation between the state transition
matrix after one period and the monodromy matrix is C = ¢ ~1(0)®(7,0) ¢(0). The
matrices are similar and have the same eigenvalues, which means that modal damp-
ing and frequency can be found from either of them. The eigenvectors wy of ®(T,0)
are related to the eigenvectors v, of C as wi = ¢(0)vg, which must be taken into
account in the calculation of the periodic mode shapes if the initial condition of the
fundamental solution is not the identity matrix.

The practical applicability of Floquet analysis is very dependent on the rotor
speed. For speeds tending to zero the rotor period tends to infinity but the integra-
tion time step must be held at a certain value to resolve the dynamics of the system,
and thus the computation time tends to infinity. But at very low speeds the effects of
rotation are negligible and the analysis might be replaced by several standstill ana-
lyses for different azimuth angles. Classical Floquet analysis is prohibitive, or at best
impractical, for large systems, where a more efficient method such as implicit Flo-
quet analysis, considered in the next section, should be used. Therefore the classical
Floquet analysis is applied only to the simple flapwise model in [P1, P2].

3.3.2 Implicit Floquet analysis

Implicit Floquet analysis (Bauchau and Nikishkov, 2001) exploits the feature of the
Arnoldi algorithm (see, e.g., Golub and van Loan (1989)) for eigenvalue extraction
of a matrix, that it requests the product of this matrix with a vector. The matrix in
question is the state transition matrix after a period, the vector is an initial condition
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of the system, and the product is thereby the response after one period to the given
initial condition. The Arnoldi algorithm successively determines the initial condi-
tion in each step such that all initial conditions form an orthogonal subspace after
m Arnoldi steps written as

P=[p: p2 ... Pml] (3.18)

where the first initial condition p; = ¢,(0) is arbitrary. The algorithm also builds the
projection of the transition matrix in the subspace, written as

H=P'®(T,0)P (3.19)

of size mxm. If N Arnoldi steps were performed, requiring N integrations of the sys-
tem over a period, P would constitute the initial conditions of a fundamental solu-
tion and classical Floquet analysis could be performed on either ®(7,0) or H. But
the eigenvalues of H approximate those of ®(T,0) with the characteristic multipliers
of largest magnitude converging first, so after much fewer than N steps a good ap-
proximation of the lowest damped modes (the characteristic exponents with largest
real part) can be obtained.

The m approximate modal frequencies &, damping G, and mode shapes i
are determined after m Arnoldi steps as

Opx =arg(pr)/T
O = Op,k + jik 2
Gr=In(|pi))/T
w()=[p,(1) @) ... @,(0)]We

(3.20)

where p. are the eigenvalues of H and Wy, are its eigenvectors. The issues with fre-
quency non-uniqueness described for classical Floquet analysis also apply to the
implicit Floquet analysis.
The dynamics of the system is determined by the m -dimensional subspace pro-
jected system
V=AY (3.21)

where y=PTy, with L-F transformation
L(t) =P p(r)We MW (PTp(0)) 'L(0) (3.22)

and system matrix
AL=In(H)/T=WAW! (3.23)

where A contains the characteristic exponents A; = In(p;)/T in the diagonal, W
contains the eigenvectors of H as columns, and the initial condition L(0) is arbitrary.

The advantage of the implicit Floquet analysis is that it has the same qualities as
classical Floquet analysis, but that it makes the treatment of larger systems possible
due to the reduced computation time. Hence it is used in [P3, P4] on the BHawC mo-
del. Figure 3.3 shows the convergence of the modes as function of the Arnoldi step
[P3] where 19 modes are converged after 50 steps. An equivalent classical Floquet
analysis would require 762 integrations. The modes with lowest damping, which are
obtained from an implicit Floquet analysis, are the most important modes with re-
gard to stability, and for a purely structural model they typically correspond to the
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Figure 3.3: Normalised real part of implicit Floquet characteristic exponents of the
structural BHawC model as function of Arnoldi steps. Non-converged eigenvalues
(¢) and converged eigenvalues (o). From [P3, Fig. 3].

modes with lowest frequency which describe the most important dynamics of the
system.

Another advantage of the implicit Floquet analysis is that the number of Arnoldi
steps, i.e., system integrations, necessary for a given number of modes to converge
is believed to be independent of the detail, i.e., number of state variables, of the
model and is instead a characteristic of the system dynamics. So the computational
burden increases only in view of the larger system matrices to integrate, whereas
for a classical (or even Fast) Floquet analysis it would also increase the number of
integrations. For example, 50 Arnoldi steps are required to extract the 19 modes with
lowest frequency of the structural model [P3], and 56 steps are required to extract the
19 modes with lowest damping (including the 14 modes with lowest frequency) of
the aeroelastic model [P4] which has more state variables. This hypothesis needs to
be confirmed by analyses with models of different complexity.

3.4 Hill's method

Floquet theory shows that the free response of a system with a periodic system mat-
rix contains a mode shape periodic with the same period (cf. Equation (3.8) and see
[P1] for more details). Therefore the system matrix and periodic mode shapes can
be expressed as the Fourier series

o0
At)= D ael™

[=—00

(3.24)

00

u(r)= Z ug, €1
I=—00
where 4; and u; contain the harmonic components with frequency /2 of A and uy,
respectively. Inserting the expansion of the mode shape into the solution given in
Equation (3.8), then inserting this expression and the expansion of the system mat-
rix into Equation (3.4), and finally collecting coefficients of equal harmonics yields
the eigenvalue problem (Xu and Gasch, 1995, see [P2] for more details)

(A=A, Diy,;=0 (3.25)
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Figure 3.4: Hill's method applied to the simple flapwise model. (a) Eigenvalues (x)
and basis eigenvalues (o) for two harmonic terms included in the expansion; (b) er-
ror in frequency for different numbers of harmonic terms compared to the solution
with eleven terms.

where A is of infinite size and i ; is of infinite length. For each mode k there ex-
ists an infinite number of eigenvalues Ay ; with the same damping values and with
frequencies differing by multiples of the rotor speed Q2. Similarly, there exist infin-
itely many eigenvectors iy ; containing the harmonic components of the periodic
mode shape. These components are shifted integer multiples of the rotor speed in
frequency between different values of j. Because all pairs of A;; and i ; produce
the same solution, only one pair need be included.

Hill’s method is applied to the simple flapwise model in [P2], where the infinite-
dimension eigenvalue problem of Equation (3.25) is truncated to include a finite
number of terms in the expansion. This truncation introduces errors in Ax ; and
iy, ; such that the eigenvalues belonging to one mode are then in general not exactly
equal in the real part, neither differing exactly by 2 in the imaginary part, nor do
the eigenvectors contain the exact same components [P2]. This situation is illus-
trated in Figure 3.4(a) where the inclusion of two harmonic terms should yield five
complex conjugate eigenvalues for each mode. But for the highest damped mode,
for example, it is only possible to identify three eigenvalues, where the remaining
two eigenvalues contain significant errors caused by the truncation. This observa-
tion indicates that eigenvalues that are centred in frequency, also termed the basis
eigenvalues (Christensen and Santos, 2005), contain the most precise solution, be-
cause the harmonic components that are included in the truncated eigenvector i ;
are those with the largest relative magnitude [P2] (see also Section 3.6). The figure
also shows that it can be difficult to identify the basis eigenvalue, especially for a low
number of terms included. Figure 3.4(b) shows that the solution using the basis ei-
genvalues converges for an increasing number of terms included. Choosing which
eigenvalue to use for each mode also determines the modal frequency, which is non-
unique like in Floquet analysis. This choice is addressed in Section 3.6.

The periodic mode shape is thus given by Equation (3.24) with [ = —m, ..., m,
where m is the number of harmonic terms included. Because the method operates
directly on the periodic mode shape, this might be considered the L-F transform-
ation, L(t) = U(¢), and the time-invariant system matrix becomes A; = A, which is
already diagonalised.
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Figure 3.5: Multi-blade coordinates for flapwise motion of a three-bladed rotor.

Hill's method can be characterised as a frequency domain method because the
Fourier series of the system matrix is used and because the periodic mode shape
results in frequency domain. Eliminating the need for time integration of the sys-
tem makes Hill’s method fast in use when applying the computationally efficient
Fast Fourier Transform algorithm. The expanded eigenvalue problem does, how-
ever, become very large for large systems, which necessitates a formulation in sparse
matrices and a reliable solver that can retrieve selected modes, e.g., with lowest
damping. Friedmann (1986) notes that Hill's method is not convenient for imple-
mentation on computers in comparison with Floquet analysis. He does not sub-
stantiate this statement, but he might be referring to the problem with the large
eigenvalue problem or to the problem with choosing which eigenvalue to use for
each mode. In this work, Hill's method has been applied only to a model of small
dimension because, indeed, the reliability of the sparse eigenvalue solver was not
satisfactory.

3.5 Coleman transformation approach

Coleman (1943) introduces a transformation to describe the degrees of freedom on
a bladed rotor in the inertial, or non-rotating, frame. The transformation makes the
system matrix time-invariant when the system is isotropic, and it is thus a special
case of the L-F transformation [P1]. What makes the Coleman transformation espe-
cially useful is that it is known a priori for a given system and that it is based on a
physically meaningful coordinate transformation.

The transformation uses multi-blade coordinates which for a three bladed rotor
are given as

3 3 3
1 2 2 '
a0=§;uj: a1=§;COS(wj)uj, bl:gj;SHl(wj)u]' (3.26)

where 1y; =, +27(j —1)/3 is the azimuth angle for blade number j and u; are a set
of state variables, which are identical in the local blade frame. For u; representing
flapwise motion and ; = 0 for blade j pointing down, Figure 3.5 shows that a, is
symmetric flapwise motion, a, is tilting motion of the rotor, and b, is yawing motion
of the rotor. For u; representing edgewise motion, a, is the symmetric edgewise
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motion coupling to the drivetrain, a, is horizontal motion of the rotor, and b, is
vertical motion of the rotor.
The inverse transformations of those in Equation (3.26) are collected in matrix
form as
u=B,(t)z (3.27)

withu={u; us u3}T, z={ao a, b1}* and

1 cos(y1(t)) sin(y1(t))
B,(1)=|1 cos(ya(t)) sin(y(r)) (3.28)
1 cos(ys(t)) sin(ys(t))

where B, has the convenient properties B, !(¢) = uB (#) and B,(t)=B,(t)® with u
and & constant matrices known a priori in isotropic conditions (Hansen, 2003). The
transformation matrix in Equation (3.28) can be expanded into a matrix B(¢) includ-
ing transformations for all sets of corresponding state variables on the blades, and
including simple rotational transformations for state variables on the non-bladed
rotating members, e.g. the shaft, as well as including the identity transformation
for state variables on non-rotating members. Thus, the matrix B(#) transforms the
original state variables into the inertial frame, which makes an isotropic system
time-invariant. After the system is transformed into the inertial frame, a stand-
ard eigenvalue analysis of the transformed system matrix given by Equation (3.6)
with B(#) =L(¢) yields the modal frequencies and damping, and the eigenvectors in
multi-blade coordinates. This approach is used for modal analysis in [P1-P5].

The advantages of using the Coleman transformation for modal decomposition
are that the approach is simple, fast, and physically based, such that there is no am-
biguity with respect to the frequencies. But it only allows an exact modal analysis
of isotropic systems. In case of anisotropic systems the Coleman transformation
still makes the system less time-variant, and the approach can be used in combin-
ation with the methods mentioned previously. Applying the Coleman transforma-
tion before using Hill's method [P2] results in fewer harmonic terms needed in the
expansion to give a good approximation to the solution. In combination with Flo-
quet analysis the Coleman transformation provides no saving in computation time,
on the contrary it might ruin the sparsity of the system matrices and increase the
computation time, but it is useful for identification of the modal frequency.

3.6 Identification of modal frequency

As seen in the previous sections the L-F transformations associated with Floquet
analysis and Hill's method are not unique, which means that the frequency content
in the solution is arbitrarily divided between the eigenvalue and the periodic mode
shape.

For an isotropic system the Coleman transformation provides an L-F transform-
ation which is unique and known a priori for a given system, and which transforms
the system into the inertial frame. To give physical meaning to the modal frequency
determined from Floquet analysis and Hill's method it is defined as that which can
be measured in the inertial frame, i.e. for an isotropic system the L-F transforma-
tion is chosen to be equal to the Coleman transformation [P1]. This choice is done
by requiring that the periodic mode shape for components in the inertial frame be
constant as is the case for a system described in multi-blade coordinates.
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Figure 3.6: Norm of harmonic components of periodic mode shape in multi-blade
coordinates for the simple flapwise model with anisotropic rotor. (a) Floquet ana-
lysis, principal (- -) and identified (—) mode shapes; (b) Hill's method, mode shapes
of basis (—) and other (- -) eigenvalues. The norm is calculated from the amplitude
of the position parts in the mode shape. The spectrum is discrete and represented
by the dots; the lines are drawn only to aid in separating the series.

By extension of this principle to anisotropic conditions the periodic mode shape
for anisotropic systems is required to be as constant as possible for state variables in
the inertial frame [P1]. In this way, for mildly anisotropic systems, the frequencies
will be close to those obtained using the Coleman transformation on a correspond-
ing isotropic system, but the periodic mode shapes will correctly reflect the aniso-
tropy of the system.

That the modal frequency is not uniquely determined in Floquet analysis and
Hill's method is a consequence of the ability of these 