WDM-PON-compatible system for simultaneous distribution of gigabit baseband and wireless ultrawideband services with flexible bandwidth allocation

Pham, Tien Thang; Yu, Xianbin; Gibbon, Timothy Braidwood; Dittmann, Lars; Tafur Monroy, Idelfonso

Published in:
IEEE Photonics Journal

Link to article, DOI:
10.1109/JPHOT.2010.2095834

Publication date:
2011

Citation (APA):
A WDM-PON-Compatible System for Simultaneous Distribution of Gigabit Baseband and Wireless Ultrawideband Services with Flexible Bandwidth Allocation

Tien-Thang Pham, Member, IEEE, Xianbin Yu, Member, IEEE, Timothy Braidwood Gibbon, Member, IEEE, Lars Dittmann, Member, IEEE, Idelfonso Tafur Monroy, Member, IEEE

DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

DOI: 10.1109/JPHOT.2010.XXXXXXX
1943-0655/$25.00 ©2010 IEEE

Manuscript received October 27, 2010; accepted November 21, 2010. Corresponding author: T. T. Pham (e-mail: ptit@fotonik.dtu.dk)

Abstract: In this paper, a novel and simple scheme to realize flexible access for gigabit wireline and impulse radio ultrawideband (IR-UWB) wireless services is proposed. The UWB signals are generated by multi-carrier upconverting and reshaping the baseband signals. The proposed system was experimentally demonstrated with the performances of 2.0-Gbps data in both baseband and UWB formats after 46-km single mode fiber transmission and further 0.5-m wireless for UWB data. The flexibility of the system is confirmed by investigating the system performance at different data rates including 1.0 Gbps and 1.6 Gbps. Optical wavelength independency and data-rate variability of UWB signal generation makes the system attractive for potential wireline and wireless applications in existing WDM-PON systems.

Index Terms: microwave photonics, ultrawideband (UWB), radio over fiber, wavelength division multiplexing (WDM), passive optical network (PON).

1. Introduction

Ultrawideband (UWB) is finding its application in high-speed wireless communication systems as well as sensor applications [1]. Regulated by the U.S. Federal Communications Commission (FCC) for the spectral band from 3.1 to 10.6 GHz, the power spectral density (PSD) of a UWB transmitter is limited to -41.3 dBm/MHz [2], below the noise level of other wireless communication systems such as the Global Positioning System (GPS), Global System for Mobile Communications (GSM) and Worldwide Interoperability for Microwave Access (WiMAX). The low emitted PSD causes the wireless transmission distance to be limited within a few meters. In this context, UWB-over-fiber is a promising technology for extending the coverage of UWB services. Recently, several techniques have been proposed to optically generate impulse radio UWB (IR-UWB) signals using a fiber-Bragg-grating-based frequency discriminator [4], a gain-switch laser [5] or relaxation oscillations of a laser [6].

On the other hand, passive optical networks (PONs) are highly recognized as the most promising candidates for next generation optical access systems to satisfy the increasing bandwidth demand
from households as well as enterprises [8]. The convergence of distributing wireline and wireless services including IR-UWB service over a common PON architecture is regarded as a potential solution to exploit cost-efficiently and with high degree of flexibility the benefits of low-loss and high-bandwidth optical fiber access plants. However, to realize this vision, it is mandatory to conceive simple approaches for photonic generation of IR-UWB signals with common photonic PON components as well as to develop simple and flexible methods for service differentiation and dynamic bandwidth allocation. Recently, Pan et al. have demonstrated an electrically generated UWB signal that can share a single wavelength with a baseband signal in a wavelength division multiplexing PON (WDM-PON) system [9]. The authors also have demonstrated the seamless integration of UWB service in a WDM-PON system that supports a variety of wireline and wireless services [10].

In this paper, we propose and experimentally demonstrate a novel, simple and flexible method to generate gigabit FCC-compliant IR-UWB signals by optically up-converting baseband signals using their clock signal as a source of multiple sinusoidal signals. Assisted by a digital signal processing (DSP) receiver, the data in both baseband and UWB formats at 1 Gbps, 1.6 Gbps and 2 Gbps are recovered without error bits after 46-km single mode fiber and 0.5-m wireless further for the UWB signal. The fact that the baseband bandwidth for the wireline service can be shared with the wireless service just by switching on the clock signal enables flexible access connectivity for end-users with a less complex architecture. Additionally, wavelength-independent operation makes our proposed system compatible with existing WDM-PONs.

2. Proposed system and operation principle

Fig. 1 depicts the diagram of the proposed WDM-PON supporting UWB and wireline baseband service distribution. The operation principle of this scheme is based on the use of the same wireline baseband data source for UWB service. At the central office (CO), for each end-user, an electrical baseband signal drives a directly modulated laser (DML). The baseband data is then mixed with multiple optical-intensity-modulated sinusoidal signals at a Mach-Zender modulator (MZM). Due to the nature of the sum of sinusoidal signals at different frequencies, the clock signal is utilized to drive the MZM. There are 2 options for the position of the MZM as shown in the figure. If the MZM and the clock signal is used separately by a single channel it is placed after the DML (Option 1). Optical signals from all WDM channels are combined by an array waveguide grating (AWG). The MZM and clock signal also can be shared by by several WDM channels if they operate at the same data rate (Option 2). In this case, the MZM is placed after the AWG. The combined optical signal is transmitted to an AWG-based remote node (RN) through a fiber. At the output of the photodiode (PD) of each optical network unit (ONU), there are copies of the data at both the baseband and the harmonic frequencies of the modulating sinusoidal signals. Therefore by using appropriate electrical filtering at the ONU, both wireline baseband and FCC-
compliant wireless IR-UWB signals are achieved for service distribution. This scheme provides wireless service dynamically as connectivity to the UWB service is simply enabled by switching on or off the clock signal.

3. Experimental setup

The experiment setup of the proposed system is shown in Fig. 2. A 4-Gbps programmed pattern from a pulse pattern generator (PPG) was used to drive a directly modulated laser (DML). The reversed lasing threshold and bias currents of the DML were -11 mA and -31 mA, respectively. A sequence of 2 bits from the PPG was used to generate one UWB bit. Due to the negative bias of the DML, "0" and "1" UWB bits are represented by the sequences of "11" and "10", respectively. The data from the PPG is thus 50% inverted return-to-zero (RZ) and the effective bit rate of the UWB signal is 2 Gbps. The output of the DML was then launched into a 10-GHz Mach-Zehnder modulator (MZM). The clock signal from the PPG at 4 Gbps was used as a multiple-subcarrier source to drive the MZM. The MZM biased at 3 V operated at nonlinear region to modify the amplitude of subcarriers and consequently shape the waveform of generated UWB signal. An Erbium-dropped fiber amplifier (EDFA) and a tunable optical filter (TOF) with 0.9-nm 3-dB bandwidth were employed to amplify the optical signal and reject out-band amplified spontaneous emission (ASE) noise. The optical signal was transmitted over a 46-km link including 23-km standard single mode fiber (SMF) and dispersion-matched 23-km inverse dispersion fiber (IDF) and then detected by a photodiode (PD) with 12-GHz bandwidth. The losses of SMF and IDF fibers were 5.1 dB and 7.7 dB, respectively. The detected signal was filtered by a commercially available high-pass filter (HPF) with 3.1-GHz cutoff frequency to form UWB pulses. The detected signal was also used to recover the transmitted data in the baseband. The UWB signal was radiated into the free space by an Omni-directional antenna (Skycross SMT-3TO10M-A). The wireless transmission distance was set at 0.5 m. The radiated UWB signal was received by a directive antenna (Geozondas AU-3.1G10.6G-1). Data in both the UWB and baseband formats were sampled, stored at 40 GSa/s by a digital sampling scope (DSO Agilent Infiniium 8000B), and then processed offline by using a DSP receiver.

4. Experimental results and discussions

Fig. 3a and Fig. 3b illustrate the electrical spectra of the UWB signals with a $2^7 - 1$ pseudo-random binary sequence (PRBS) pattern length after 46-km fiber transmission at -19 dBm received optical power with and without the HPF. The effective mask is the allowed mask when the frequency response of the transmitting antenna is taken into account [3]. As shown in the figure, the obtained UWB signals were fully compliant with the FCC mask. Fig. 3c and Fig. 3d show the detected electrical spectra when the clock signal and data were off, respectively. When the clock signal was off, some frequency components (<-50dBm/MHz) could be observed in the UWB frequency band, which was caused by the relaxation oscillations of the DML operating close to the threshold.
current. When the clock signal was applied to the MZM, power spectral density at high-frequency band increased over 10 dB and the generated UWB signal met the FCC requirements from 3.1 GHz to 10.6 GHz. Fig. 4a and 4b show the detected waveform of the sequence "001011001110" before and after the HPF. We can notice that the waveform of the generated UWB pulse is similar to fifth order Gaussian derivative which is known to agree well with the FCC spectra requirements for UWB systems [6]. Fig. 4c illustrates the waveform of the received UWB signal after wireless transmission.

4.1. Performance of 2-Gbps UWB signal

To assess the performance of the UWB signal, 100,000 UWB bits were recorded and processed offline using a DSP algorithm. The DSP comprises of noise filtering, bit correlation and threshold detection functions [7]. In the final step, value of each detected UWB bit was determined by comparing the sum of some sampled points within each bit slot to an optimally determined decision threshold. The measured bit-error-rate (BER) curves of the UWB data at back-to-back (B2B), after
46-km fiber transmission and 0.5-m wireless transmission are shown in Fig. 5a. Without wireless transmission, errors appeared when optical power was -25 dBm. The inset is the eye-diagram of the UWB signal at this optical power after 46-km fiber. There was no power penalty after fiber transmission as the dispersion induced by the SMF was completely compensated by the IDF. After wireless transmission, errors were recorded at -21 dBm. The received optical power to achieve the forward error correction (FEC) limit (BER = \(10^{-9}\)) was approximately -22.7 dBm. Therefore, at this BER requirement, 0.5-m wireless transmission introduced about 4.5-dB power penalty.

4.2. Performance of 2-Gbps baseband signal

For the baseband data, the corresponding DSP algorithm includes low-pass filtering and threshold decision functions to demodulate the received signal. The cutoff frequency of the digital low-pass filter was 4 GHz. Unlike the UWB data, the logic value of each bit was determined by comparing the value at only one sampled point to an optimally determined decision threshold. This process emulated a conventional receiver. The measured BER curves of 100,000-bit baseband data with and without fiber transmission are also in Fig. 5b. Similar to the performance of the UWB signal, there was no power penalty after 46-km fiber transmission. The required optical power to achieve the same BER for the baseband signals was about 4 dB lower than for the UWB signals without wireless transmission, because the baseband signals had higher signal to noise ratio (SNR), as shown in Fig. 3a. Moreover, by extrapolating the linearized BER curves, BER < \(10^{-9}\) of the baseband can be approximately achieved at -26 dBm for both B2B and fiber transmission which is compatible with existing WDM-PON systems. The inset displays the eye-diagram of the baseband data at -26 dBm.
4.3. Flexible data-rate allocation

To investigate the data-rate flexibility of our proposed method, we varied the frequency of the PPG to 3.2 GHz and 2 GHz without any other changes of the setup, thus the data rates of both the baseband and UWB signals were lowered to 1.6 Gbps and 1.0 Gbps. The maximum received optical powers to fit the FCC mask were approximate -20 dBm for both 1.6 and 1.0 Gbps data. The electrical spectra of detected UWB signals at this optical power level are shown in Fig. 6. The correspondant waveforms of the sequence "001011001110" at these bit rates with and without HPF are displayed in Fig. 7. The transmission performances of both the baseband and UWB signals are illustrated in Fig. 8. Compared to the 2-Gbps case, the baseband signals had similar performance. However, the sensitivities of the 1.6-Gbps and 1.0-Gbps UWB signals at BER of < 2x10^-3 were about 1.0 and 1.3 dB better, respectively because they required received optical power to fit the mask about 1 dB lower than 2-Gbps case. Longer wireless transmission distances for the UWB signals at these bit rate can be achieved at the same received optical power and BER requirement.
5. Conclusions

A simple system supporting flexible gigabit wireline and IR-UWB wireless access for IR-UWB-over-fiber based on multi-subcarrier up-conversion has been proposed and experimentally demonstrated. The same wireline baseband data is used for the UWB service. The FCC-compliant UWB signals were generated by multi-carrier upconverting and reshaping the baseband signals. This method offers very simple UWB generation and efficiently improves access flexibility. Both wireline and UWB wireless connectivity to end-users can be easily realized using common PON component and fiber plant. The performance of the proposed system was evaluated by the BER of both the wireline baseband and wireless UWB signals. Additionally, optical wavelength independency and data-rate flexibility of UWB signal generation makes the system compatible with existing WDM-PON systems.

References