WAKEBENCH. A new IEA Task for the Benchmarking of Wind Farm Flow Models

Rodrigo, J.S.; Moriarty, P.; Barthelmie, R.; Brand, A.; Ejsing Jørgensen, Hans

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
IEA Wind - Task 31
WAKEBENCH: Benchmarking of wind farm flow models

wind power

Javier Sanz Rodrigo (CENER)
Patrick Moriarty (NREL)
Rebecca Barthelmie (Indiana Univ.)
Hans E. Jørgensen (Risø-DTU)
Arno J. Brand (ECN)
Porto, 26-01-2011
Motivation

Classical wind farm models, typically based on linearized and algebraic approximations, are being complemented with a large variety of numerical models based on Computational Fluid Dynamics (CFD):

- More realistic description of the flow behavior around complex terrain/wind farm topologies
- More degrees of freedom in the modeling chain → more flexibility for the developer and end-user
- More training/experience requirements
- More user-dependency
- Lack of traceability

Need for quality-checked “best practice” procedures for...

- The evaluation of the numerical models
- The validation and verification strategy
- The selection and definition of test cases for validation

EU TPWind 3% Vision: Model uncertainties below 3% by 2030 regardless of site conditions → Realistically the vision is now around 30% → long way to go!
Main Objective

To improve wind farm modeling techniques and provide a forum for industrial, governmental and academic partners to develop, evaluate and improve atmospheric boundary layer and wind turbine wake models for use in wind energy

- from flat to complex terrain,
- from single to multiple wakes,
- both onshore and offshore,
- using well defined test cases from the literature and test wind farms (“research” conditions) as well as from industrial sites (“real-life” conditions)

Aligned with the activities of Working Group 2 of the EERA Wind Conditions sub-programme.

- Investigation of the model chain
- Evaluation of model performance and uncertainties using the data generated by WG1
Model Evaluation Procedures: Metrics

What makes one modelling approach better than the other?
Initial deliverable will be a consensus on metrics used for comparing data to simulations
Test Cases. Example 1: ABL models

- Single-column model intercomparison for stably stratified Atmospheric Boundary Layer (ABL) (Cuxart et al., 2005)
 - ABL parameterizations from the major climate research centres
 - First-order (RANS-type) and LES turbulence closures
 - Very large dispersion of results!
Test Cases. Example 2: Complex Terrain

- Bolund experiment and blind comparison (Bechmann et al., 2009)
 - Well defined boundary conditions
 - 52 model runs: RANS, LES and wind tunnel models
 - Very large dispersion of results! Errors in wind speed ~ 15%

![Wind speed-up, Line B, Dir: 270°](image1)

![Relative position along line B](image2)

![Map of area](image3)
“WINDBENCH” Web Portal

Administrator: CENER

Scientific Committee

Registered Users

Test Case Portal

Reports

Dissemination
- e-News
- Forums
- Workshops
- R&D Projects

Benchmark of Models and Test Cases
- State-of-the-art models
- Good practice procedures
- Standards

Repository
IEA Task 31 was approved by the IEA-Wind ExCo in October 2010.

The Task has two operating agents:
- Javier Sanz (CENER), to take the overall management of the Task and the “wind” programme
- Patrick Moriarty (NREL), to manage the “wake” programme

Now assembling participants from IEA-Wind countries:
- Australia, Austria, Canada, China, Denmark, European Commission, EWEA, Finland, Germany, Greece, Ireland, Italy, Japan, Korea, Mexico, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, United States
- 28 expressions of interest received so far from 12 countries

Negotiation with IEA members for budget allocation under way.

Task 31 to effectively start in the second half of 2011.