Radioactivity in the Risø District July-December 2012

Nielsen, Sven Poul; Andersson, Kasper Grann; Miller, Arne

Publication date: 2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Radioactivity in the Risø District July-December 2012

Sven P. Nielsen, Kasper G. Andersson and Arne Miller
DTU-Ntech-R-0005(EN)
June 2013
Abstract (max. 2000 char.): The environmental surveillance of the Risø environment was continued in July - December 2012. The mean concentrations in air were: 0.32±0.31 μBq m⁻³ of ¹³⁷Cs, 3.04±0.99 mBq m⁻³ of ⁷Be and 0.22±0.18 mBq m⁻³ of ²¹⁰Pb (±1 S.D.; N = 26). The depositions by precipitation at Risø in the second half of 2012 were: 0.039 Bq m⁻² of ¹³⁷Cs, 615 Bq m⁻² of ⁷Be, 40.3 Bq m⁻² of ²¹⁰Pb and < 0.6 kBq m⁻² of ³H. The average background dose rate (TLD) at Risø (Zone I) was 54 nSv h⁻¹ compared with 58 ± 8 nSv h⁻¹ (±1 S.D.; N = 3) in the four zones around Risø.
Contents

Table 1. Radionuclides in air 5
Table 2.1. Radionuclides in precipitation 6
Table 2.2. Radionuclides in precipitation 6
Table 2.3. Tritium in precipitation 7
Table 2.4. Tritium in precipitation 7
Table 3.1. Radionuclides in sediment samples 8
Table 4.1. Radionuclides in seawater 8
Table 4.2. Tritium in seawater 8
Table 5.1. Radionuclides in grass 9
Table 5.2. Radionuclides in sea plants 10
Table 7.1. Waste water 11
Table 8.1. Background dose rates around the border of Risø (TLD) 12
Table 8.2. Background dose rates around Risø (TLD) 13
Table 8.3. Terrestrial dose rates at the Risø zones (NaI(Tl) detector) 14

Fig. 1. Map of Risø 15
Fig. 1.1. Caesium-137 in air 16
Fig. 1.2. Beryllium-7 and lead-210 in air 16
Fig. 2.3.1 Tritium in precipitation (1 m² rain collector) 17
Fig. 2.3.2 Tritium in precipitation (10 m² rain collector) 17
Fig. 3.1 Caesium-137 in sediment samples 18
Fig. 4.1 Caesium-137 in seawater 19
Fig. 4.2 Tritium in seawater 19
Fig. 7.1 Total-beta radioactivity in waste water 20
Fig. 8.1. Map of Risø with locations for TLD measurements 21
Fig. 8.2. The environment of Risø 22
Table 1. Radionuclides in ground level air collected at Risø (cf. Figs. 1, 1.1 and 1.2), July - December 2012. (Unit: μBq m$^{-3}$)

<table>
<thead>
<tr>
<th>Date</th>
<th>7Be</th>
<th>137Cs</th>
<th>210Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>02-Jul-12 - 09-Jul-12</td>
<td>3006</td>
<td>0.131</td>
<td>159</td>
</tr>
<tr>
<td>09-Jul-12 - 16-Jul-12</td>
<td>2315</td>
<td>0.103</td>
<td>82</td>
</tr>
<tr>
<td>16-Jul-12 - 23-Jul-12</td>
<td>3656</td>
<td>0.103</td>
<td>103</td>
</tr>
<tr>
<td>23-Jul-12 - 30-Jul-12</td>
<td>5139</td>
<td>0.271</td>
<td>264</td>
</tr>
<tr>
<td>30-Jul-12 - 06-Aug-12</td>
<td>3990</td>
<td>0.117</td>
<td>168</td>
</tr>
<tr>
<td>06-Aug-12 - 13-Aug-12</td>
<td>5266</td>
<td>0.318</td>
<td>244</td>
</tr>
<tr>
<td>13-Aug-12 - 20-Aug-12</td>
<td>3330</td>
<td>0.244</td>
<td>202</td>
</tr>
<tr>
<td>20-Aug-12 - 27-Aug-12</td>
<td>3683</td>
<td>0.147</td>
<td>164</td>
</tr>
<tr>
<td>27-Aug-12 - 04-Aug-12</td>
<td>4645</td>
<td>0.142</td>
<td>227</td>
</tr>
<tr>
<td>04-Sep-12 - 10-Sep-12</td>
<td>3041</td>
<td>0.117</td>
<td>118</td>
</tr>
<tr>
<td>10-Sep-12 - 17-Sep-12</td>
<td>3913</td>
<td>0.161</td>
<td>271</td>
</tr>
<tr>
<td>17-Sep-12 - 24-Sep-12</td>
<td>2550</td>
<td>0.242</td>
<td>168</td>
</tr>
<tr>
<td>24-Sep-12 - 01-Oct-12</td>
<td>2554</td>
<td>0.140</td>
<td>151</td>
</tr>
<tr>
<td>01-Oct-12 - 08-Oct-12</td>
<td>2014</td>
<td>0.161</td>
<td>84</td>
</tr>
<tr>
<td>08-Oct-12 - 15-Oct-12</td>
<td>2734</td>
<td>0.176</td>
<td>234</td>
</tr>
<tr>
<td>15-Oct-12 - 22-Oct-12</td>
<td>2761</td>
<td>0.362</td>
<td>417</td>
</tr>
<tr>
<td>22-Oct-12 - 29-Oct-12</td>
<td>1421</td>
<td>0.264</td>
<td>152</td>
</tr>
<tr>
<td>29-Oct-12 - 05-Nov-12</td>
<td>2021</td>
<td>0.320</td>
<td>292</td>
</tr>
<tr>
<td>05-Nov-12 - 12-Nov-12</td>
<td>2114</td>
<td>0.175</td>
<td>418</td>
</tr>
<tr>
<td>12-Nov-12 - 19-Nov-12</td>
<td>2848</td>
<td>0.398</td>
<td>955</td>
</tr>
<tr>
<td>19-Nov-12 - 26-Nov-12</td>
<td>2608</td>
<td>0.694</td>
<td>88</td>
</tr>
<tr>
<td>26-Nov-12 - 03-Dec-12</td>
<td>3352</td>
<td>0.382</td>
<td>146</td>
</tr>
<tr>
<td>03-Dec-12 - 10-Dec-12</td>
<td>1900</td>
<td>0.494</td>
<td>88</td>
</tr>
<tr>
<td>10-Dec-12 - 17-Dec-12</td>
<td>3035</td>
<td>0.698</td>
<td>321</td>
</tr>
<tr>
<td>17-Dec-12 - 24-Dec-12</td>
<td>1858</td>
<td>1.628</td>
<td>93</td>
</tr>
<tr>
<td>24-Dec-12 - 31-Dec-12</td>
<td>3372</td>
<td>0.251</td>
<td>190</td>
</tr>
</tbody>
</table>

| Mean | 3043 | 0.317 | 223 |
| SD | 986 | 0.313 | 177 |
Table 2.1. Radionuclides in precipitation in the 10 m2 rain collector at Risø (cf. Fig. 1), July - December 2012. (Unit: Bq m$^{-3}$)

<table>
<thead>
<tr>
<th>Month</th>
<th>7Be</th>
<th>137Cs</th>
<th>210Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>July</td>
<td>4967</td>
<td>0.497</td>
<td>321</td>
</tr>
<tr>
<td>August</td>
<td>2387</td>
<td>0.155</td>
<td>136</td>
</tr>
<tr>
<td>September</td>
<td>1712</td>
<td>0.059</td>
<td>106</td>
</tr>
<tr>
<td>October</td>
<td>1230</td>
<td>0.056</td>
<td>92</td>
</tr>
<tr>
<td>November</td>
<td>1243</td>
<td>0.044</td>
<td>52</td>
</tr>
<tr>
<td>December</td>
<td>1613</td>
<td>0.122</td>
<td>131</td>
</tr>
</tbody>
</table>

Table 2.2. Radionuclides in precipitation in the 10 m2 rain collector at Risø (cf. Fig. 1), July - December 2012. (Unit: Bq m$^{-2}$)

<table>
<thead>
<tr>
<th>Month</th>
<th>Precipitation (m)</th>
<th>7Be</th>
<th>137Cs</th>
<th>210Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>July</td>
<td>0.029</td>
<td>144</td>
<td>0.0144</td>
<td>9.3</td>
</tr>
<tr>
<td>August</td>
<td>0.039</td>
<td>93</td>
<td>0.0060</td>
<td>5.3</td>
</tr>
<tr>
<td>September</td>
<td>0.067</td>
<td>114</td>
<td>0.0040</td>
<td>7.1</td>
</tr>
<tr>
<td>October</td>
<td>0.072</td>
<td>89</td>
<td>0.0040</td>
<td>6.6</td>
</tr>
<tr>
<td>November</td>
<td>0.045</td>
<td>56</td>
<td>0.0020</td>
<td>2.3</td>
</tr>
<tr>
<td>December</td>
<td>0.074</td>
<td>119</td>
<td>0.0090</td>
<td>9.7</td>
</tr>
<tr>
<td>Sum</td>
<td>0.326</td>
<td>615</td>
<td>0.0394</td>
<td>40.3</td>
</tr>
</tbody>
</table>
Table 2.3. Tritium in precipitation collected at Risø (cf. Figs. 1, 2.3.1 and 2.3.2). July - December 2012. (Unit: kBq m$^{-3}$)

<table>
<thead>
<tr>
<th>Month</th>
<th>10 m2 rain collector*</th>
</tr>
</thead>
<tbody>
<tr>
<td>July</td>
<td>2.2</td>
</tr>
<tr>
<td>August</td>
<td>< 1.7</td>
</tr>
<tr>
<td>September</td>
<td>< 1.7</td>
</tr>
<tr>
<td>October</td>
<td>< 1.7</td>
</tr>
<tr>
<td>November</td>
<td>< 1.7</td>
</tr>
<tr>
<td>December</td>
<td>< 1.7</td>
</tr>
</tbody>
</table>

Double determinations*.

Table 2.4. Tritium in precipitation collected at Risø (cf. Fig. 1). July - December 2012. (Unit: kBq m$^{-2}$)

<table>
<thead>
<tr>
<th>Month</th>
<th>Precipitation (m)</th>
<th>10 m2 rain collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>July</td>
<td>0.029</td>
<td>0.064</td>
</tr>
<tr>
<td>August</td>
<td>0.039</td>
<td>< 0.066</td>
</tr>
<tr>
<td>September</td>
<td>0.067</td>
<td>< 0.114</td>
</tr>
<tr>
<td>October</td>
<td>0.072</td>
<td>< 0.122</td>
</tr>
<tr>
<td>November</td>
<td>0.045</td>
<td>< 0.077</td>
</tr>
<tr>
<td>December</td>
<td>0.074</td>
<td>< 0.126</td>
</tr>
<tr>
<td>Sum</td>
<td>0.326</td>
<td>< 0.569</td>
</tr>
</tbody>
</table>
Table 3.1. Radionuclides in sediment samples collected at Bolund in Roskilde Fjord (cf. Fig. 3.1) July - December 2012. (Unit: Bq kg\(^{-1}\) dry)

<table>
<thead>
<tr>
<th>Date</th>
<th>(^{137})Cs</th>
<th>K*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 July</td>
<td>2.4</td>
<td>16.6</td>
</tr>
</tbody>
</table>

*Unit: g kg\(^{-1}\) dry

Table 4.1. Radionuclides in seawater collected in Roskilde Fjord (cf. Fig. 4.1) July - December 2012. (Unit: Bq m\(^{-3}\))

<table>
<thead>
<tr>
<th>Date</th>
<th>(^{137})Cs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 July</td>
<td>10.9</td>
</tr>
</tbody>
</table>

Table 4.2. Tritium in seawater collected in Roskilde Fjord (Risø pier) (cf. Fig. 4.2) July - December 2012.

<table>
<thead>
<tr>
<th>Month</th>
<th>kBq m(^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>July</td>
<td>< 1.7 *</td>
</tr>
<tr>
<td>August</td>
<td>< 1.7 *</td>
</tr>
<tr>
<td>September</td>
<td>1.7 *</td>
</tr>
<tr>
<td>October #</td>
<td>-</td>
</tr>
<tr>
<td>November #</td>
<td>-</td>
</tr>
<tr>
<td>December</td>
<td>< 1.7 *</td>
</tr>
</tbody>
</table>

* Double determinations

* starting autumn 2012, tritium in seawater is measured quarterly.
Table 5.1. Radionuclides in grass (* snow) collected at Risø (near the Waste Treatment Station (cf. Fig. 1)), July - December 2012. (**Measured on bulked ash samples)

<table>
<thead>
<tr>
<th>Week no. or month</th>
<th>Date</th>
<th>K (g kg(^{-1}) fresh)</th>
<th>(^{137})Cs (Bq kg(^{-1}) fresh)</th>
<th>(^{137})Cs (Bq m(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>2 July</td>
<td>5.0</td>
<td><0.3</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>16 July</td>
<td>5.3</td>
<td><0.5</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>30 July</td>
<td>4.8</td>
<td><0.3</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>13 August</td>
<td>9.9</td>
<td><1.1</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>27 August</td>
<td>3.9</td>
<td><0.6</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>10 September</td>
<td>6.4</td>
<td><0.5</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>24 September</td>
<td>5.7</td>
<td><0.8</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>8 October</td>
<td>5.5</td>
<td><0.9</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>22 October</td>
<td>4.7</td>
<td><0.4</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>5 November</td>
<td>4.4</td>
<td><0.4</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>19 November</td>
<td>2.8</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>3 December *</td>
<td>< 0.1</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>17 December *</td>
<td>< 0.1</td>
<td><0.2</td>
<td></td>
</tr>
</tbody>
</table>

July 5.4 0.039 0.018

August 6.4 0.121 0.022

September 6.3 0.103 0.029

October 5.2 0.063 0.011

November 3.6 0.044 0.020

December 2.1 0.220 0.046
Table 5.2. Radionuclides in Fucus vesiculosus collected at Bolund in Roskilde Fjord. July - December 2012. (Unit: Bq kg\(^{-1}\) dry)

<table>
<thead>
<tr>
<th>Date</th>
<th>(^{137})Cs</th>
<th>K*</th>
<th>% dry matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 July</td>
<td>3.4</td>
<td>29</td>
<td>18</td>
</tr>
</tbody>
</table>

*Unit: g kg\(^{-1}\) dry
Table 7.1. Waste water collected at Risø (cf. Fig. 1), July - December 2012.

<table>
<thead>
<tr>
<th>Week number</th>
<th>eqv. mg KCl l(^{-1})</th>
<th>(^{137})Cs (Bq m(^{-3}))</th>
<th>(^{131})I (Bq m(^{-3}))</th>
<th>(^{226})Ra (Bq m(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>85</td>
<td>< 72</td>
<td>< 71</td>
<td>< 140</td>
</tr>
<tr>
<td>28</td>
<td>84</td>
<td>< 109</td>
<td>< 108</td>
<td>< 207</td>
</tr>
<tr>
<td>29</td>
<td>73</td>
<td>< 105</td>
<td>< 110</td>
<td>< 216</td>
</tr>
<tr>
<td>30</td>
<td>74</td>
<td>< 106</td>
<td>< 109</td>
<td>< 213</td>
</tr>
<tr>
<td>31</td>
<td>122</td>
<td>< 111</td>
<td>< 116</td>
<td>< 217</td>
</tr>
<tr>
<td>32</td>
<td>163</td>
<td>< 115</td>
<td>< 116</td>
<td>< 224</td>
</tr>
<tr>
<td>33</td>
<td>130</td>
<td>< 111</td>
<td>< 114</td>
<td>< 211</td>
</tr>
<tr>
<td>34</td>
<td>115</td>
<td>< 101</td>
<td>< 110</td>
<td>< 201</td>
</tr>
<tr>
<td>35</td>
<td>117</td>
<td>< 111</td>
<td>< 110</td>
<td>< 225</td>
</tr>
<tr>
<td>36</td>
<td>123</td>
<td>< 107</td>
<td>< 111</td>
<td>< 223</td>
</tr>
<tr>
<td>37</td>
<td>142</td>
<td>< 111</td>
<td>< 113</td>
<td>< 213</td>
</tr>
<tr>
<td>38</td>
<td>148</td>
<td>< 99</td>
<td>< 106</td>
<td>< 202</td>
</tr>
<tr>
<td>39</td>
<td>160</td>
<td>< 106</td>
<td>< 115</td>
<td>< 204</td>
</tr>
<tr>
<td>40</td>
<td>147</td>
<td>< 74</td>
<td>< 175</td>
<td>< 154</td>
</tr>
<tr>
<td>41</td>
<td>136</td>
<td>< 110</td>
<td>< 109</td>
<td>< 209</td>
</tr>
<tr>
<td>42</td>
<td>175</td>
<td>< 116</td>
<td>< 118</td>
<td>< 223</td>
</tr>
<tr>
<td>43</td>
<td>149</td>
<td>< 100</td>
<td>< 106</td>
<td>< 204</td>
</tr>
<tr>
<td>44</td>
<td>211</td>
<td>< 110</td>
<td>< 113</td>
<td>< 205</td>
</tr>
<tr>
<td>45</td>
<td>181</td>
<td>< 122</td>
<td>< 120</td>
<td>< 237</td>
</tr>
<tr>
<td>46</td>
<td>143</td>
<td>< 107</td>
<td>< 107</td>
<td>< 203</td>
</tr>
<tr>
<td>47</td>
<td>113</td>
<td>< 103</td>
<td>< 112</td>
<td>< 202</td>
</tr>
<tr>
<td>48</td>
<td>159</td>
<td>< 112</td>
<td>< 113</td>
<td>< 230</td>
</tr>
<tr>
<td>49</td>
<td>108</td>
<td>< 116</td>
<td>< 115</td>
<td>< 221</td>
</tr>
<tr>
<td>50</td>
<td>109</td>
<td>< 101</td>
<td>< 114</td>
<td>< 205</td>
</tr>
<tr>
<td>51</td>
<td>118</td>
<td>< 107</td>
<td>< 109</td>
<td>< 209</td>
</tr>
<tr>
<td>52</td>
<td>79</td>
<td>< 83</td>
<td>< 175</td>
<td>< 239</td>
</tr>
</tbody>
</table>

| Mean | 129.4 |
| SD | 34.8 |
Table 8.1. Background dose rates around the border of Risø (cf. Fig. 8.1) measured with thermoluminescence dosimeters (TLD) in the period May - October 2012. (Results are normalized to nSv h⁻¹)

<table>
<thead>
<tr>
<th>Location</th>
<th>nSv h⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
</tr>
<tr>
<td>Mean</td>
<td>49</td>
</tr>
</tbody>
</table>
Table 8.2. Background dose rates around Risø (cf. Fig. 8.2 and Fig. 1) measured with thermoluminescence dosimeters (TLD) in the period May – October 2012. (Results are normalized to nSv h\(^{-1}\))

<table>
<thead>
<tr>
<th>Risø zone</th>
<th>Location</th>
<th>nSv h(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>46</td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>79</td>
</tr>
<tr>
<td>I</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
<td>57</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>II</td>
<td>P1</td>
<td>42</td>
</tr>
<tr>
<td>II</td>
<td>P2</td>
<td>63</td>
</tr>
<tr>
<td>II</td>
<td>P3</td>
<td>68</td>
</tr>
<tr>
<td>II</td>
<td>P4</td>
<td>51</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>III</td>
<td>P1</td>
<td>56</td>
</tr>
<tr>
<td>III</td>
<td>P2</td>
<td>57</td>
</tr>
<tr>
<td>III</td>
<td>P3</td>
<td>53</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>IV</td>
<td>P1</td>
<td>39</td>
</tr>
<tr>
<td>IV</td>
<td>P2</td>
<td>38</td>
</tr>
<tr>
<td>IV</td>
<td>P3</td>
<td>50</td>
</tr>
<tr>
<td>IV</td>
<td>P4</td>
<td>51</td>
</tr>
<tr>
<td>IV</td>
<td>P5</td>
<td>42</td>
</tr>
<tr>
<td>IV</td>
<td>P6</td>
<td>43</td>
</tr>
<tr>
<td>IV</td>
<td>P7</td>
<td>50</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>V</td>
<td>P1</td>
<td>49</td>
</tr>
<tr>
<td>V</td>
<td>P2</td>
<td>55</td>
</tr>
<tr>
<td>V</td>
<td>P3</td>
<td>54</td>
</tr>
<tr>
<td>V</td>
<td>P4</td>
<td>40</td>
</tr>
<tr>
<td>V</td>
<td>P5</td>
<td>60</td>
</tr>
<tr>
<td>V</td>
<td>P6</td>
<td>50</td>
</tr>
<tr>
<td>V</td>
<td>P7</td>
<td>45</td>
</tr>
<tr>
<td>V</td>
<td>P8</td>
<td>61</td>
</tr>
<tr>
<td>V</td>
<td>P9</td>
<td>61</td>
</tr>
<tr>
<td>V</td>
<td>P10</td>
<td>61</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>54</td>
</tr>
</tbody>
</table>
Table 8.3. Terrestrial dose rates at the Risø zones (cf. Fig. 8.2 and Fig. 1) July - December 2012. Measured with a NaI(Tl) detector. (Unit: nSv h⁻¹)

<table>
<thead>
<tr>
<th>Risø zone</th>
<th>Location</th>
<th>October</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>September</td>
</tr>
<tr>
<td>I</td>
<td>P1</td>
<td>41</td>
</tr>
<tr>
<td>I</td>
<td>P2</td>
<td>50</td>
</tr>
<tr>
<td>I</td>
<td>P3</td>
<td>366</td>
</tr>
<tr>
<td>I</td>
<td>P4</td>
<td>45</td>
</tr>
<tr>
<td>I</td>
<td>P5</td>
<td>75</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>II</td>
<td>P1</td>
<td>45</td>
</tr>
<tr>
<td>II</td>
<td>P2</td>
<td>45</td>
</tr>
<tr>
<td>II</td>
<td>P3</td>
<td>43</td>
</tr>
<tr>
<td>II</td>
<td>P4</td>
<td>43</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>III</td>
<td>P1</td>
<td>49</td>
</tr>
<tr>
<td>III</td>
<td>P2</td>
<td>50</td>
</tr>
<tr>
<td>III</td>
<td>P3</td>
<td>48</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>IV</td>
<td>P1</td>
<td>37</td>
</tr>
<tr>
<td>IV</td>
<td>P2</td>
<td>48</td>
</tr>
<tr>
<td>IV</td>
<td>P3</td>
<td>48</td>
</tr>
<tr>
<td>IV</td>
<td>P4</td>
<td>47</td>
</tr>
<tr>
<td>IV</td>
<td>P5</td>
<td>46</td>
</tr>
<tr>
<td>IV</td>
<td>P6</td>
<td>42</td>
</tr>
<tr>
<td>IV</td>
<td>P7</td>
<td>46</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>V</td>
<td>P1</td>
<td>43</td>
</tr>
<tr>
<td>V</td>
<td>P2</td>
<td>54</td>
</tr>
<tr>
<td>V</td>
<td>P3</td>
<td>55</td>
</tr>
<tr>
<td>V</td>
<td>P4</td>
<td>46</td>
</tr>
<tr>
<td>V</td>
<td>P5</td>
<td>50</td>
</tr>
<tr>
<td>V</td>
<td>P6</td>
<td>49</td>
</tr>
<tr>
<td>V</td>
<td>P7</td>
<td>40</td>
</tr>
<tr>
<td>V</td>
<td>P7a</td>
<td>46</td>
</tr>
<tr>
<td>V</td>
<td>P8</td>
<td>51</td>
</tr>
<tr>
<td>V</td>
<td>P9</td>
<td>53</td>
</tr>
<tr>
<td>V</td>
<td>P10</td>
<td>42</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>48</td>
</tr>
</tbody>
</table>
Fig. 1. Locations for measurements of gamma-background radiation Zone I and II (cf. Tables 8.2 and 8.3)
Fig. 1.1. Caesium-137 in ground level air collected at Risø in July-December 2012. (Unit: μBq m$^{-3}$)

Fig. 1.2. Beryllium-7 and lead-210 in ground level air collected at Risø in July-December 2012. (Unit: μBq m$^{-3}$)
Fig. 2.3.1. Tritium in precipitation collected at Risø (1 m² rain collector) 1980 - 2012. (Unit: kBq m⁻³; DL = detection limit)

Fig. 2.3.2. Tritium in precipitation collected at Risø (10 m² rain collector) 1980 - 2012. (Unit: kBq m⁻³; DL = detection limit)
Fig. 3.1. Caesium–137 in sediment samples collected at Bolund in Roskilde Fjord. 1980 – 2012. (Unit: Bq kg$^{-1}$ dry matter)
Fig. 4.1. Caesium–137 in seawater collected in Roskilde Fjord 1980 - 2012. (Unit: Bq m$^{-3}$)

Fig. 4.2. Tritium in seawater collected in Roskilde Fjord 1980 - 2012. (Unit: kBq m$^{-3}$; DL = detection limit)
Fig. 7.1. Total-beta radioactivity in waste water collected at Risø 1994 - 2012. (Unit: eqv. mg KCl l⁻¹)
Fig. 8.1. Locations (1-6) for TLD measurements around the border of Risø (cf. Table 8.1).
Fig. 8.2. Locations for measurements of background radiation around Risø in Zones III, IV and V.
Center for Nuclear Technologies is Denmark’s national competency center for nuclear technology. With roots in research in the peaceful use of nuclear power, DTU Nutech works with the applications of ionizing radiation and radioactive substances for the benefit of society.