Planck 2013 results. IV. Low Frequency Instrument beams and window functions

Total number of authors: 209

Published in: ArXiv Astrophysics e-prints

Publication date: 2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Planck 2013 results. IV. Low Frequency Instrument beams and window functions

(Affiliations can be found at the references)

Preprint online version: March 22, 2013

ABSTRACT

This paper presents the characterization of the in-flight beams, the beam window functions and the associated errors for the Planck Low Frequency Instrument (LFI). Knowledge of the beam profiles is the key to determining their imprint on the transfer function from the observed to the actual sky anisotropy power spectrum. The main beam distortions affect the beam window function, complicating the reconstruction of the anisotropy power spectrum at high multipoles, whereas the sidelobes affect the low and intermediate multipoles. The in-flight assessment of the LFI main beams relied on the measurements performed during Jupiter observations. By stacking the data from Jupiter transits, the main beam profiles are measured down to –20 dB at 30 and 44 GHz, and down to –25 dB at 70 GHz. The main beam solid angles are determined to better than 0.2% at each LFI frequency band. The simulated beams are used for the computation of the window functions for the effective beams. The error budget in the window functions was estimated considering both main beam and sidelobe contributions, as well as taking into account the radiometer bandshapes. The total uncertainties in the effective beam window functions are: at \(t = 600 \) % 2% and 1.2% at 30 and 44 GHz, respectively; and at \(t = 1000, 0.7% at 70 GHz.

Key words: methods: data analysis - cosmology: microwave background - instrument: optics

1. Introduction

This paper, one of a set associated with the 2013 release of data from the Planck1 (Planck Collaboration I 2013), de-

1 Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries France and Italy), with contributions from NASA (USA) and telescope reflectors provided by a collaboration between ESA and a scientific consortium led and funded by Denmark.
tion of experiments employ multi-frequency focal plane arrays whose off-axis beams necessarily deviate, to some extent, from an ideal, symmetric, Gaussian shape. The radiation patterns of every individual detector and their projected angular locations need to be reconstructed with great precision to avoid significant systematic effects in the data (Hill et al. 2009; Nolta et al. 2009; Huffenberger et al. 2010).

The Planck optical system is designed to ensure high image quality over a wide field of view, for detectors spanning over 1.5 decades in wavelength (Tauber et al. 2010). The LFI optical layout is composed of an array of 11 corrugated feed horns, each coupled to an orthomode transducer which divides the incoming electromagnetic wave into two orthogonal, linearly polarized components. Thus LFI is observing the sky with 11 pairs of beams associated with the 22 pseudo-correlation radiometers. Each beam of the pair is named LFIXXM or LFIXXS for the two polarization states (Main Arm and Side Arm of the orthomode transducer, respectively). Here XX is the radiometer chain assembly number, ranging from 18 to 28. The beams from LFI18 to LFI23 are in the V-band (nominally from 63 to 77 GHz); we refer to them as 70 GHz. The beams from LFI24 to LFI26 are in the Q-band (from 39.6 to 48.4 GHz); we refer to them as 44 GHz. The beams LFI27 and LFI28 are in the Ka-band (from 27 to 33 GHz); we refer to them as 30 GHz. The optimization of the LFI optical system leading to the focal plane configuration used in flight is described in Sandri et al. (2010), while the preliminary characterisation of the LFI beams based on the first in-flight data are reported in Mennella et al. (2011) and Zacchei et al. (2011).

The LFI map-making procedure does not take into account the beam profile, which is effectively assumed to be a pencil beam. To correct for the beam shape, the angular power spectrum computed from the observed map is divided by the \textit{beam window function} to reveal the intrinsic angular power spectrum of the sky. For this reason, beam knowledge directly affects the cosmological analyses. Typically, the beam should be mapped to less than –30 dB of the peak to achieve 1% accuracy on the angular power spectrum (Page et al. 2003). By stacking the data from the first four Jupiter transits, the LFI beams have been measured down to –20 dB at 30 and 44 GHz, and down to –25 dB at 70 GHz with an uncertainty of about 0.3% on the angular resolution and about 0.5% on the main beam ellipticity. In order to achieve the beam knowledge at lower power levels and improve the accuracy on the angular power spectrum, a substantial effort has been made to tune the Planck optical model, presented in Tauber et al. (2010), to fit the in-flight measurements of the LFI beams. This ensures a good representation of the LFI optics, both in terms of main beam and sidelobes. The separation of the instrumental angular response into main beam and sidelobes can be somewhat arbitrary. In the framework of this paper, we consider three regions defined with respect to the beam line-of-sight and reported in Fig. 1:

1. the \textit{main beam}, which is defined as extending to 1.9, 1.3, and 0.9° at 30, 44, and 70 GHz, respectively;
2. the \textit{near sidelobes}, which are defined as extending between the main beam angular limit and 5°;
3. the \textit{far sidelobes}, which are defined as the beam response more than 5° from the line-of-sight.

Almost all the power falls into the main beam region (more than 99%). The collected power coming from the region outside the main beam is called \textit{straylight} and it is one of the major sources of systematic effects in Planck observations, and in CMB experiments in general. Straylight impacts the measured signal essentially in two ways: (i) through direct contamination; and (ii) in the photometric calibration of the radiometer detected signal. The predicted straylight contamination has been detected in the LFI maps, and is reported in the companion paper Planck Collaboration III (2013). We would like to emphasize that, since no direct measurement of LFI sidelobes was performed in-flight, an accurate knowledge of the main beams provides a crucial means, though indirect, to quantify the straylight contamination, as the sidelobes can be estimated by fitting the electromagnetic model to the main beam data.

For the clarity of the present paper and for consistency with the Planck companion papers, we need to make clear three important definitions: optical beams; scanning beams; and effective beams. The \textit{optical beam} is the optical response of the feed horn coupled to the telescope. It is independent both from the radiometer response (bandshape and non-linearity) and from the satellite motion (spinning and scanning strategy). It represents the pure optical transfer function. The main beam properties of the optical beams can be evaluated using optical simulations performed with methods largely validated by ground measurements. The \textit{scanning beam} is the beam that can be directly measured in-flight using planet observations. It derives from the optical beam coupled with the radiometer response, and smeared by the satellite motion. So, with respect to the optical beams, the scanning beams have slightly larger angular resolution, ellipticity, and solid angle. The \textit{effective beam} is a beam defined in the map-domain, and is obtained by averaging the scanning beams pointing at a given pixel of the sky map, by taking into account the scanning strategy and the orientation of the beams themselves when they point along the direction to that pixel. Therefore, whereas for each radiometer there is one corresponding optical and scanning beam, the same radiometer has as many effective beams as the pixels of the observed sky map. The importance of the effective beams is two-fold: they are used in the window function computation; and the solid angles of the ef-

![Fig. 1. Typical shape of a 30 GHz beam (LFI27M). The plot shows the distinction between the main beam, near sidelobes and far sidelobes. The distinction between “near” and “far” sidelobes is of course arbitrary: we mark their boundary at 5°. The peak of the spillover of the primary mirror is clearly visible, at an angle of roughly 90°.](image-url)
The data analysis pipeline, which starts from Jupiter observations and flows down to the window function characterization, is discussed in this paper according to the following outline: Sect. 2 describes the scanning beams as measured in the first four Jupiter transits, and the simulations which provide their best-fit model; Sect. 3 describes the effective beams, calculated using the simulated beams and taking into account the Planck scanning strategy; in Sect. 4 we present the LFI window functions. An estimate of the propagation of beam uncertainties to the beam window functions is reported in Sect. 5. In this section we also report the impact of the near and far sidelobes to the window function. For the present data release we do not correct the beam window function for the sidelobes. Instead their effect is added to the total error budget. For the next data release, we plan to include a detailed analysis carried out with the in-band integrated beams (main beam and sidelobes) that will be included in the data reduction pipeline, both in the calibration and in the window function estimation. Finally, in Sect. 6 we summarize our conclusions.

2. Scanning Beams

Jupiter is the best source in the sky for mapping the LFI beams with a high signal to noise ratio. The brightness temperature of the planet is close to 150 K and gives an antenna temperature from 40 to 350 mK depending on frequency, when the dilution factor of the beams is accounted for. Because the signal is expected to be unpolarized at LFI frequencies, the detector output (in antenna temperature T_A) is proportional to the power function of the beam as follows:

$$T_A(\theta, \phi) = \begin{array}{c} E(\theta, \phi)_{\text{cp}}^2 | + | E(\theta, \phi)_{\text{sp}}^2 | + \\ \chi_{\text{OMT}} | ^2 + | E(\theta, \phi)_{\text{sp}}^2 | ^2 \end{array} \quad (1)$$

$$T_A(\theta, \phi) = \begin{array}{c} E(\theta, \phi)_{\text{cp}}^2 | + | E(\theta, \phi)_{\text{sp}}^2 | + \\ \chi_{\text{OMT}} | ^2 + | E(\theta, \phi)_{\text{sp}}^2 | ^2 \end{array} \quad (2)$$

where $E(\theta, \phi)_{\text{cp}}^2$ and $E(\theta, \phi)_{\text{sp}}^2$ are respectively the co-polar and cross-polar electric field components of the beam in the M-radiometer and S-radiometer, computed in the main beam frame ($\theta = \theta_{MB}$ and $\phi = \phi_{MB}$); and χ_{OMT} is the OMT cross-polarization. This parameter was measured during the hardware development (Arcangelo et al. 2009) and is always less than -25 dB over the operational bandwidth, so that the terms between the curly brackets are considered negligible. To assess the beam properties we used four Jupiter transits named "J1", "J2", "J3", and "J4". Table 1 reports the date and the corresponding observational day of each transit.

Table 1. Approximate dates of the Jupiter observations. The periods include the scan by the entire LFI field of view.

<table>
<thead>
<tr>
<th>Jupiter transit</th>
<th>Date</th>
<th>OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan 1 (J1)</td>
<td>21/10/09</td>
<td>161 – 176</td>
</tr>
<tr>
<td>Scan 2 (J2)</td>
<td>27/06/10</td>
<td>410 – 425</td>
</tr>
<tr>
<td>Scan 3 (J3)</td>
<td>03/12/10</td>
<td>569 – 584</td>
</tr>
<tr>
<td>Scan 4 (J4)</td>
<td>30/07/11</td>
<td>808 – 817</td>
</tr>
</tbody>
</table>

2.1. Planet Data Handling

The LFI in-flight main beam reconstruction is based on a minimisation code described in Burigana et al. (2001) and incorporated into the Level 2 Planck LFI DPC pipeline. The code exploits the calibrated timelines corresponding to the Jupiter transits on the LFI beams, and performs a fit of the beam shape with an elliptical Gaussian function. With this Gaussian approximation, we have defined the angular resolution in terms of the full width half maximum (FWHM), the beam ellipticity (e), and the beam orientation (ψ_{ell}). Moreover, this fit has been used to define the beam center so that the beam pointing directions agree with the convention adopted in Planck Collaboration II (2013).

The fit is performed in the plane of the Planck field of view, centred along the nominal line of sight (LOS) defined in Tauber et al. (2010). In Fig. 2 the LFI footprint on the sky is reported for both polarization arms. The data selection is done using the pointing information contained in the satellite Attitude History File (Planck Collaboration II 2013), which in turn is used to infer the nominal LOS direction synchronously with the sampled data. The data selected for fits to Jupiter lie on square grids centred with respect to the main beam pointing direction, of about 1.7° in total size at 70 GHz, 2.6° at 44 GHz, and 3.8° at 30 GHz.

For each radiometer arm, the selected data are characterized by an array of data samples specified by the signal amplitude (in thermodynamic temperature) during the transit, the positions (x, corresponding to the scan circles, and y, corresponding to the positions along each scan circle) of Jupiter during the transit, and the distances between Planck and the planet itself during the transit. An initial guess for the main beam input parameters and their possible ranges has been evaluated directly on the measured timelines, together with an estimate of the noise corresponding to the sensitivity of the ensemble of signal data. Since the noise level has an average value far from zero, an offset has been applied in order to have a noise characterized by a null average value. Furthermore, only the data with a signal above the 3σ level from the noise have been considered in the minimisation routine of the fitting code. This implies slightly higher error bars, but guarantees a negligible effect due to the background. No destripping was performed on the timelines because it was found that the 1/f noise does not affect the reconstructed beam shape above -20 dB. In particular, the 1/f noise will not affect our later estimate of the window functions because these are obtained from simulated beams derived from a tuned optical model, as described later in this section. The fit procedure gives an analytical description of the LFI beams, through the parameters that characterize the elliptical Gaussian profile and the corresponding statistical uncertainties; the latter are computed using the Minuit processor MINOS^2 which calculates the parameter errors by taking into account both parameter correlations and non-linearities.

Table 2 reports the main beam descriptive parameters with the estimated uncertainties evaluated from the stacked beams obtained from the four Jupiter transits. In the bar charts, shown in Figs. 3 and 4, the four transits are considered separately and then stacked\(^3\). It is evident that the four measurements give basically the same results. Thus, no optical ageing effects are evident in these data, which were taken from October 2009 to August 2011.

\(^2\) http://seal.web.cern.ch

\(^3\) FWHM = $\sqrt{8 \times \log(2) \times \sigma_{\text{max}}^2 \times \sigma_{\text{min}}^2}$, $e = \sigma_{\text{max}} / \sigma_{\text{min}}$, ψ_{ell} is defined as the angle between the major axis of the ellipse and the x-axis of the LOS frame.
Fig. 2. Scanning beam profiles for both polarization arms, reconstructed from the first four Jupiter transits. The beams are plotted in contours of –3, –10, –20, and –25 dB from the peak at 70 GHz (green), and –3, –10, –20 at 30 (blue) and 44 GHz (pink).

The improvement in terms of the uncertainties obtained using the four scans together is remarkable.

Table 2. Main beam descriptive parameters of the scanning beams, with uncertainties (1σ).

<table>
<thead>
<tr>
<th>Beam</th>
<th>FWHM (arcmin)</th>
<th>Ellipticity</th>
<th>ψ_{ell} (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 GHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18M</td>
<td>13.41 ± 0.03</td>
<td>1.24 ± 0.01</td>
<td>85.51 ± 0.68</td>
</tr>
<tr>
<td>18S</td>
<td>13.47 ± 0.03</td>
<td>1.28 ± 0.01</td>
<td>86.35 ± 0.55</td>
</tr>
<tr>
<td>19M</td>
<td>13.14 ± 0.04</td>
<td>1.25 ± 0.01</td>
<td>78.94 ± 0.67</td>
</tr>
<tr>
<td>19S</td>
<td>13.09 ± 0.03</td>
<td>1.28 ± 0.01</td>
<td>79.12 ± 0.58</td>
</tr>
<tr>
<td>20M</td>
<td>12.84 ± 0.03</td>
<td>1.27 ± 0.01</td>
<td>71.62 ± 0.62</td>
</tr>
<tr>
<td>20S</td>
<td>12.84 ± 0.04</td>
<td>1.29 ± 0.01</td>
<td>72.61 ± 0.61</td>
</tr>
<tr>
<td>21M</td>
<td>12.76 ± 0.03</td>
<td>1.28 ± 0.01</td>
<td>108.00 ± 0.52</td>
</tr>
<tr>
<td>21S</td>
<td>12.87 ± 0.03</td>
<td>1.29 ± 0.01</td>
<td>106.98 ± 0.57</td>
</tr>
<tr>
<td>22M</td>
<td>12.92 ± 0.03</td>
<td>1.27 ± 0.01</td>
<td>102.05 ± 0.57</td>
</tr>
<tr>
<td>22S</td>
<td>12.98 ± 0.03</td>
<td>1.28 ± 0.01</td>
<td>101.74 ± 0.57</td>
</tr>
<tr>
<td>23M</td>
<td>13.33 ± 0.03</td>
<td>1.24 ± 0.01</td>
<td>93.48 ± 0.67</td>
</tr>
<tr>
<td>23S</td>
<td>13.33 ± 0.04</td>
<td>1.28 ± 0.01</td>
<td>93.60 ± 0.59</td>
</tr>
<tr>
<td>44 GHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24M</td>
<td>23.23 ± 0.07</td>
<td>1.39 ± 0.01</td>
<td>89.85 ± 0.53</td>
</tr>
<tr>
<td>24S</td>
<td>23.10 ± 0.07</td>
<td>1.34 ± 0.01</td>
<td>89.98 ± 0.53</td>
</tr>
<tr>
<td>25M</td>
<td>30.28 ± 0.10</td>
<td>1.19 ± 0.01</td>
<td>115.41 ± 1.02</td>
</tr>
<tr>
<td>25S</td>
<td>30.92 ± 0.10</td>
<td>1.19 ± 0.01</td>
<td>117.34 ± 1.02</td>
</tr>
<tr>
<td>26M</td>
<td>30.37 ± 0.12</td>
<td>1.20 ± 0.01</td>
<td>62.13 ± 1.14</td>
</tr>
<tr>
<td>26S</td>
<td>30.61 ± 0.11</td>
<td>1.19 ± 0.01</td>
<td>61.42 ± 1.09</td>
</tr>
<tr>
<td>30 GHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27M</td>
<td>33.06 ± 0.10</td>
<td>1.37 ± 0.01</td>
<td>101.24 ± 0.53</td>
</tr>
<tr>
<td>27S</td>
<td>33.12 ± 0.11</td>
<td>1.38 ± 0.01</td>
<td>101.37 ± 0.54</td>
</tr>
<tr>
<td>28M</td>
<td>33.17 ± 0.11</td>
<td>1.37 ± 0.01</td>
<td>78.53 ± 0.57</td>
</tr>
<tr>
<td>28S</td>
<td>33.28 ± 0.10</td>
<td>1.36 ± 0.01</td>
<td>78.87 ± 0.54</td>
</tr>
</tbody>
</table>

Fig. 3. FWHM at 70 GHz (upper panel) and 30/44 GHz (lower panel) for the four Jupiter scans (grey bars) and for the stacked beams (white bar).

2.2. From optical beams to scanning beams

The optical beams are the optical response of the feed horns coupled to the Planck telescope. They are independent of both the radiometer response (bandshape and non-linearity) and the satellite motion (spinning and scanning strategy). They represent the pure optical transfer function for Planck LFI.
Planck Collaboration: LFI beams and window functions

2.2.1. Main beams

In the main beam region, the optical beams have been evaluated from simulations carried out by the application of physical optics and the physical theory of diffraction using GRASP\(^4\). A dedicated optical study has been carried out with the goal of fitting the simulated beams to the in-flight measurements. The optical model was tuned to minimize the binned residual maps down to –15 dB from the power peak, as described in (Planck Collaboration ES 2013). This approach is preferable to using polynomial fits because it is less affected by the noise and the background: the optical model is much more rigid than polynomial fits, and the full focal plane is simultaneously fitted with a single optical model. The reason for this study is to produce an ensemble of noise-free beams that are representative of the Planck LFI flight optical beams, and also both account for beam aberrations at very low levels and include the cross-polarization response, which was not measured in flight. Of course, before the comparison with the data, the optical beams are properly smeared to take into account the satellite motion. Beam smearing comes from the fact that, while integrating toward a particular direction in the sky, the satellite moves and the optical beam is convolved with a top hat along the scanning direction. Since during the scanning the beam moves rigidly, the convolution is equivalent to an average. Whereas this effect is negligible in the calibration step (Planck Collaboration V 2013), this is not the case for the main beam measurements with planets, for which this effect smears the optical beam along the scan direction, increasing the beam asymmetries in a non-negligible way.

In Fig. 5 the maps obtained from the difference between measurements and simulations for the 70 GHz beams are shown; the same comparison has been plotted for the 44 GHz radiometers in Fig. 6, and for the 30 GHz radiometers in Fig. 7. The colour scale is 2.25 times the rms of the beam difference and the units of the color bar are in thousandths of the peak height, i.e., 0.1% of the beam maximum. The colour scale has been symmetrized around in the minimum and maximum values so that the zero level is green in all the plots. The size of each patch is fixed: 120°×120° for 30 and 44 GHz and 50°×50° for 70 GHz.

\(^4\) The GRASP software was developed by TICRA (Copenhagen, DK) for analysing general reflector antennas (http://www.ticra.it).
Fig. 6. Difference between measured (dashed line) scanning beams and simulated (solid line) beams (44 GHz channel). The colour scale is 2.25 times the rms of the beam difference and the units of the colour bar are in thousandths of the peak height, i.e., 0.1% of the beam maximum. The contours correspond to –3, –10, –20, and –25 dB from the peak. The size of each patch is 120°×120°, centred along the beam line of sight.

Fig. 7. Difference between measured (dashed line) scanning beams and simulated (solid line) beams (30 GHz channel). The colour scale is 2.25 times the rms of the beam difference and the units of the colour bar are in thousandths of the peak height, i.e., 0.1% of the beam maximum. The contours correspond to –3, –10, –20, and –25 dB from the peak. The size of each patch is 120°×120°, centred along the beam line of sight.

Table 3 reports the main beam efficiency of each LFI optical beam, together with the solid angles. The main beam efficiency is defined as:

\[
\eta = \frac{\Omega_{\text{MB}}}{4\pi}
\]

where \(\Omega_{\text{MB}}\) is the main beam solid angle calculated with the pattern normalized to the isotropic level. In the same Table are also reported the main beam solid angles of the simulated and scanning beams; the values agree to better than 1%.

2.2.2. Beam validation through deconvolution

To test the goodness of the beam representation, the maps for each individual horn at 30 GHz and 44 GHz have been deconvolved using the ArtDeco beam deconvolution algorithm described in Keihanen & Reinecke (2012). The code takes as input the time-ordered data stream, along with pointing information and the harmonic representation of the simulated beam, to construct the harmonic \(\theta_{\text{sim}}\) coefficients that represent the sky signal. From the harmonic coefficients we further construct a sky map.
which is now free from the effects of beam asymmetry, assuming that our beam representation is correct.

Before deconvolution we ran the time-ordered data through the Madam map-making code (Keihänen et al. 2010), to remove low-frequency noise. We saved the baselines that represent the correlated noise component, and subtracted them from the original data stream. The cleaned data thus consist of signal with a residual noise component that is dominated by white noise. This was then used as input to the deconvolution code.

The maps were smoothed to 1° (FWHM) resolution in order to suppress noise, and the units are Kelvin. The first row of each image corresponds to the binned map, showing a zoom into the Galactic region slightly left from the centre (left), and into an unidentified point source at location (∼90°,0°) (right). The improvement in the deconvolved images is clear.

We have run the deconvolution on data from each single survey, and looked for residual differences between single-survey maps. Results for horn LFI26 are shown in Fig. 8, where the difference between first “S1” and second “S2” survey maps is reported. The left-hand column shows a zoom into the Galactic region at location (∼40°,0°). One image covers a square of width 13.3°. The right-hand column shows a zoom into a point source near location (∼90°,0°). The width of this image is 16.7°. In the absence of beam asymmetry and other systematics, the difference should be due to noise only.

The top row shows, for comparison, the difference between binned maps. In this case, the maps were binned directly from the time-ordered data, without attempting to correct for beam effects. A given region on the sky is scanned with different beam orientations during the different surveys. This gives rise to the residual signal that is evident in the top row images.

The maps were smoothed to a 1° (FWHM) resolution, in order to suppress noise. In the case of binned maps this was achieved by smoothing with a symmetric Gaussian beam with FWHM of 50°. Combined with the width of the radiometer beam, this gives a total smoothing of approximately 1°.

The bottom row shows the corresponding differences of the deconvolved maps. We show the same regions as in the top row and with the same scaling. We smoothed the deconvolved harmonic coefficients with a 1° (FWHM) Gaussian beam, and constructed a sky map through harmonic expansion. Deconvolution almost completely removes the Galactic residual, as well as the “butterfly” pattern of the point source. This indicates that the simulated beams, based on the tuned optical model, are a good representation of the true beams.

The deconvolution is not part of the nominal pipeline but this test provides an important cross-check on the beam representation since it tests the beam model against the data in a way that is independent from the construction of the model.

2.2.3. Spectral dependence of beam geometry

Throughout this work, we have assumed a monochromatic response at each LFI frequency. In fact, the bandpasses are wide, and vary in detail from one radiometer to another, even within the same band. The effective central frequency for each band used in this paper was calculated assuming a thermal (CMB) spectrum. For different source spectra, the central frequency shifts. We must also take account of the fact that the beam pattern has some frequency dependence. The geometry of the beams is characterized by three parameters described in the previous section: the FWHM; the ellipticity; and the orientation of the beam ψ_{ell}.

We have investigated the effect on the LFI beams of assuming a power-law spectrum with power index α ranging from −6 to +6, where α = 2 is representative of the CMB spectrum and α = 0 of a flat spectrum. We start by generating GRASP models of the main beam B_ν (n) at a set of frequencies defined by splitting the bandpass into 15 equally spaced steps centred on the nominal central band frequency. The 15 beam maps were then averaged by weighting each GRASP map pixel by the bandpass ν^α, giving the effective beam pattern

$$\tilde{B}_\nu (n) = N^{-1} \int d\nu \tau(\nu)\nu^\alpha B_\nu (n), \quad (4)$$

with N = ∫ dν τ(ν)ν^α. We then derived the geometric beam parameters as a function of α. Since the telescope is achromatic, only slight variations of the geometric beam parameters are observed. In addition, the bandpass averaging process further reduces the variability with respect to the monochromatic case. The most interesting result is that the three geometrical parameters vary nearly linearly with α, with different slopes for each radiometer. The most sensitive radiometer in FWHM is LFI28−S, which had dFWHM/dα of about 3×10^{-4} degrees. Changing α from +2 to −2 will cause a relative change of at most 0.2%, 0.3% and 0.4% respectively in the FWHM at 30, 44, and 70 GHz, well below the 1% level. A similar range of relative variations occurs for the beam ellipticity. For the orientation parameter, ψ_{ell}, the amplitude of dψ_{ell}/dα varies from a minimum value of −2×10^{-4} degrees (for the detector LFI24−S) to a maximum of 0.36 degrees (for LFI26−M), so that a change in the spectral index α from −2 to +2 will produce a rotation of the beam of 1.4 degrees at most, in one direction or the other. Those values (assuming a CMB spectrum) contribute to the overall calibration uncertainty (Planck Collaboration V 2013), and we emphasise that these uncertainties in the beam properties are completely independent of the colour corrections needed to adjust intensity scales for sources with non-thermal spectra.
2.2.4. Sidelobes

The response of the beam pattern outside the main beam needs to be carefully understood, as it may have significant impact on the Planck data analysis. Although a full physical optics computation could be developed to predict accurately the antenna pattern of the telescope, this is not the case for the whole-spacecraft simulations since the physical optics approach cannot be easily applied when multiple diffractions and reflections between scattering surfaces are involved. For this reason, we have calculated the sidelobe patterns through the GRASP multi-reflector geometrical theory of diffraction (MrGTD), which computes the scattered field from the reflectors by performing backward ray tracing. This represents a suitable method for predicting the full-sky radiation pattern of complex mm-wavelength optical systems in a reasonable time. The MrGTD sequentially computes the diffraction fields from any reflector surfaces that are illuminated, starting from the feed horn. The sequence of scatterers and the type of interaction (reflection or diffraction, occurring on each scatter) must be defined in the input to the simulation. The simplest (first order) optical contributions producing significant power levels are reflections onto the sub-reflector, onto the main reflector, and onto the baffle, as well as diffractions by the sub-reflector, by the main reflector, and by the baffle. Other non-negligible contributions derive from two interactions with the reflectors (second order – for example, rays reflected on the sub-reflector and then diffracted by the main reflector), three interactions (third order – for example, rays reflected on the sub-reflector, diffracted by the main reflector, and then diffracted by the baffle) and so on. Although MrGTD is, in general, less time consuming than a full physical optics calculation, it should be applied in a rigorous way in order to obtain reliable results, especially at low power levels (down to –50 dBi). In addition, when many scattering surfaces are involved, the number of ray tracing needed may lead to unacceptable computational time, even with MrGTD. Since our analysis requires the production of band-integrated patterns to account for the frequency-dependent beam responses and the radiometer bandpasses, for now the sidelobes simulations have been carried out only up to the first order plus two contributions at the second order (reflections and diffractions on the sub-reflector, and then diffracted by the main reflector).

We found that the beam solid angle in the simulated sidelobe region is about a factor two lower than the expected value (see \(f_i \) reported in Table 3). It is evident that the first order approximation adopted underestimates the actual integrated power in the sidelobes. Consequently, the sidelobes model must take into account the impact of higher-order contributions combined with physical optics analyses. We will do so in the future.

Careful analysis of the LFI 30 GHz data has revealed the imprint of Galactic radiation received through the far sidelobes. Such a detection is amplified when taking the difference between maps of even and odd surveys, because, due to the different satellite orientation, the coupling between the sidelobe pattern and Galactic radiation is reversed. A detailed discussion of the systematic effects introduced by sidelobe pickup at 30 GHz is given in Planck Collaboration III (2013). The expectations of the sidelobe pick-up based on the known level of Galactic emission (as measured by Planck itself) and our sidelobe model, are in good agreement in morphology with the observed effect, as shown in Fig. 9. The residual ring clearly visible in the third panel of Fig. 9 is in agreement with the previous conclusion that the sidelobe model should be improved by adding higher order contributions, possibly combined with full physical optics analyses. In the bottom panel of the Fig. 9 we show the difference between data and the simulations, these being amplified by a factor equal to the ratio of the power entering the sidelobes (computed from the main beam efficiency) and the integral of the simulated sidelobes. It is evident that, once we have re-normalised the sidelobe amplitude, the ring artifact almost completely disappears.

It should be noted that, while the sidelobe effect introduces additional complication in the analysis, its detection at 30 GHz provides an important validation of the simulated beams, which can be trusted even to very low power levels in the higher-frequency Planck cosmological channels as well, for which the sidelobes signatures are not measurable. This has important consequences for our future analysis aimed at CMB polarization. Our plan is to produce refined in-band integrated beams for each radiometer, to be included into the polarization data analysis pipeline.

3. Effective Beams

The effective beam is the average of all scanning beams that cross a given pixel of the sky map, given Planck’s scan strategy. The effective beams capture the complete information about the difference between the true and observed images of the sky. They are, by definition, the objects whose convolution with the true CMB sky produce the observed sky map. Similarly, the effective beam window functions capture the difference between the true and observed angular power spectra of the sky. We compute the effective beam at each sky pixel for each LFI frequency scanning beam and scan history using the FEBeCoP (Mitra et al. 2011) method, as was done in Planck’s early release (Planck HFI Core Team 2011b).

The pre-computation of the effective beams was executed at the National Energy Research Scientific Computing Center (NERSC) in Berkeley (California). The beam data were delivered to the Planck data processing centres (Planck Collaboration II 2013; Planck Collaboration VI 2013) over the network, on tape and disk, and ingested into the Data Management Component (DMC). FEBeCoP associated application software was developed and installed to use the effective beams, e.g., fast Monte Carlo full sky convolution codes.

In estimating the effective beams, a cut-off is applied to the input simulated beams. From several tests performed we converged to a cut-off radius of 2.5 × FWHM. The beam efficiency of the simulated beams within this cut-off radius is reported in Table 4.

For a detailed account of the algebra involving the effective beams for temperature and polarization see Mitra et al. (2011). Here we summarize the main results.

The observed temperature sky \(T \) is a convolution of the true sky \(\hat{T} \) and the effective beam \(B \),

\[
\hat{T} = \Delta \Omega \cdot B \cdot T, \tag{5}
\]

where the effective beam can be written for the temperature in terms of the pointing matrix \(A_t \) and the scanning beam \(b(\tilde{\nu}, \tilde{\rho}) \) as

\[
B_{ij} = \frac{\sum_i A_{ti} b(\tilde{\nu}_i, \tilde{\rho}_i)}{\sum_i A_{ti}}. \tag{6}
\]

Here \(t \) represents time samples, \(A_{ti} = 1 \) if the pointing direction falls in pixel number \(i \), else it is 0; \(p \) represents the exact pointing direction (not approximated by the pixel centre location), and \(\tilde{\nu}_i \) is the centre of pixel number \(j \), where the scanning beam \(b(\tilde{\nu}_i, \tilde{\rho}_i) \) is being evaluated (if the pointing direction...
falls within the cut-off radius of 2.5 FWHM, for LFI channels). An analogous formula can be written for the temperature + polarization effective beam including the weight vector \(w_\ell = [1, \gamma \cos(2\phi), \gamma \sin(2\phi)] \), as:

\[
B_{ij} = \sum_j A_{ij} w_i w_j^*.
\]

As an example, in Figs. 11, 12, and 13 we compare images of four sources (assumed to be unresolved) from the Planck Early Release Compact Source Catalogue (ERCC) (Planck Collaboration VII 2011) and FEEbCoP point spread functions (i.e., the transpose of the effective beam matrix) on the same patch of the sky for the LFI channel maps. The galactic coordinates \((l, b)\) of the four sources are shown under the colour bar: in our sample, these are, respectively, \((305.1^\circ, 57.1^\circ), (86.1^\circ, -38.2^\circ), (290.0^\circ, 64.4^\circ)\) and \((184.5^\circ, -5.8^\circ)\), from left to right in the three figures.

We further performed a 2D Gaussian fit of the effective beam at several positions of the sky and studied the distribution of the effective action on the power spectrum can be written as:

\[
a_{lm} = \int d\Omega \Delta T(\hat{n})Y_{lm}(\hat{n}), \quad \langle \hat{n} \rangle = \sum_{lm} a_{lm} Y_{lm},
\]

where \(\langle a_{lm} \rangle = 0, \quad \langle a_{lm} a_{lm}^* \rangle = \delta_{ll'} \delta_{mm'} C_{ll'}\). The finite angular resolution of an instrument \(b(\hat{n}, \hat{n}')\) can be described through a convolution in real space:

\[
T_{\text{obs}}(\hat{n}) = \int d\Omega b(\hat{n}, \hat{n}') T(\hat{n}'),
\]

which is equivalent to a low-pass filter in harmonic space, and whose effective action on the power spectrum can be written as:

\[
C_{\ell'}^{\text{obs}} = W_{\ell} C_{\ell},
\]

where \(W_{\ell}\) is the beam window function.

As discussed in the previous section, a basic symmetric Gaussian approximation is not a good description of Planck effective beams. Moreover, the combination of intrinsic beam asymmetry and scanning strategy produces effective beams that vary significantly over the sky. Therefore, in order to produce accurate estimates of the beam window functions, we are forced to use detailed Monte Carlo simulations. This has been implemented using two approaches: first, full timeline-to-map simulations, where the CMB signal is convolved with realistic scanning beams in harmonic space, and then projected into a TOD through the Planck scanning strategy and processed in the same way as real data; and second, pixel space convolution of CMB signal only maps using the effective beams derived with FEEbCoP.

In principle, for full-sky maps the effective azimuthally averaged beam window function can be estimated directly from Eq. 11:

\[
W_{\ell} = \langle C_{\ell}^{\text{obs}} \rangle / C_{\ell},
\]

4. Beam Window Function

CMB temperature anisotropies are a scalar random field on a sphere, and can be decomposed in spherical harmonic coefficients:

\[
a_{lm} = \int d\Omega \Delta T(\hat{n})Y_{lm}(\hat{n}), \quad \langle \hat{n} \rangle = \sum_{lm} a_{lm} Y_{lm},
\]

Note that the FWHM and ellipticity in Table 5 differ slightly from the values reported in Table 2; this results from the different way in which the Gaussian fit was applied. The scanning beam fit was determined by fitting the profile of Jupiter on timelines and limiting the fit to the data with a signal above the 3\(\sigma\) level from the noise, while the fit of the effective beam was computed on the maps of the simulated beams projected in several position of the sky; the latter are less affected by the noise.

In Table 6 we indicate with \(\Omega_{\text{eff}}\) the beam solid angle estimated up to a radius equal to the FWHM \(\Omega_{\text{eff}}\) (as defined above), while \(\Omega_{\text{eff}}^0\) indicates the beam solid angle estimated up to a radius equal to twice the effective FWHM \(\Omega_{\text{eff}}\). These were estimated according to the procedure followed in the aperture photometry code for the Planck Catalog of Compact Sources (PCCS) (i.e., if the pixel centre does not lie within the given radius it is not included). These additional quantities were evaluated for the production of the PCCS (Planck Collaboration XXVIII 2013).

Table 4. Main beam efficiencies computed on the simulated beams using a cut-off radius of 2.5 FWHM: main and side arm efficiencies are reported in the first two columns, the average value of the two arms is reported in the third column, and the difference between the two arms is reported in the last column.

<table>
<thead>
<tr>
<th>Horn</th>
<th>Main</th>
<th>Side</th>
<th>Mean</th>
<th>(Diff)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LFI-18</td>
<td>0.99345</td>
<td>0.99262</td>
<td>0.99304</td>
<td>-0.00082</td>
</tr>
<tr>
<td>LFI-19</td>
<td>0.99270</td>
<td>0.99238</td>
<td>-0.00036</td>
<td></td>
</tr>
<tr>
<td>LFI-20</td>
<td>0.99111</td>
<td>0.99084</td>
<td>0.99098</td>
<td>-0.00027</td>
</tr>
<tr>
<td>LFI-21</td>
<td>0.99115</td>
<td>0.99105</td>
<td>0.99110</td>
<td>-0.00001</td>
</tr>
<tr>
<td>LFI-22</td>
<td>0.99259</td>
<td>0.99184</td>
<td>0.99222</td>
<td>-0.00075</td>
</tr>
<tr>
<td>LFI-23</td>
<td>0.99360</td>
<td>0.99274</td>
<td>0.99317</td>
<td>-0.00086</td>
</tr>
<tr>
<td>44 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LFI-24</td>
<td>0.99762</td>
<td>0.99826</td>
<td>0.99794</td>
<td>0.00064</td>
</tr>
<tr>
<td>LFI-25</td>
<td>0.99788</td>
<td>0.99792</td>
<td>0.99790</td>
<td>0.00005</td>
</tr>
<tr>
<td>LFI-26</td>
<td>0.99787</td>
<td>0.99793</td>
<td>0.99790</td>
<td>0.00006</td>
</tr>
<tr>
<td>30 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LFI-27</td>
<td>0.99247</td>
<td>0.99282</td>
<td>0.99264</td>
<td>0.00036</td>
</tr>
<tr>
<td>LFI-28</td>
<td>0.99230</td>
<td>0.99284</td>
<td>0.99257</td>
<td>0.00054</td>
</tr>
</tbody>
</table>
where C_{ℓ}^{obs} is the power spectrum of simulated CMB-only maps, C_{ℓ} is the fiducial model used as input, and the ensemble average is taken over the Monte Carlo simulations. However, in a realistic case we mask out some regions of the sky that are contaminated by foreground, and the above equation no longer applies. Instead, using the same notation as in Hivon et al. (2002), we can write:

$$\langle C_{\ell}^{\text{obs}} \rangle = \sum_{\ell} M_{\ell\ell} W_{\ell\ell} C_{\ell},$$ \hspace{1cm} (13)

where the coupling kernel $M_{\ell\ell}$ encodes the geometric mode-mode coupling effect introduced by masking the sky. However, we have verified that for the Galactic mask used for power spectrum estimation (Planck Collaboration II 2013; Planck Collaboration XV 2013) the differences between full-sky and cut-sky window functions are marginal with respect to the error envelopes discussed in Sect. 5. Therefore, hereafter we’ll use full-sky approximation.

4.1. Timeline-to-map Monte Carlo window functions

Signal-only timeline-to-map Monte Carlo (MC) simulations are produced using Level-5 (Reinecke et al. 2006) and HEALpix subroutines and the frogs map-maker (Kurki-Suonio et al. 2009; Keihänen et al. 2010) on the Louhi supercomputer at CSC-IT Center for Science in Finland; see Appendix B for details.

Starting from a fiducial CMB power spectrum we have generated a set of sky $a_{\ell m}$ realizations of this C_{ℓ} that are convolved with the beam $a_{\ell m}$ obtained from the simulated scanning beams. Note that the main beams do not collect the full power of the signal, since a small part of the signal spills outside the main beam to form sidelobes. In this MC just the main beam up to 4 FWHM was simulated, not the sidelobes, so the calculated signal values were missing that part of the power that goes to the sidelobes. This was taken into account at the map-making stage. Note that the main beam definition used here (4 FWHM) differs from that adopted in the effective beams computation (2.5 FWHM). The consequences are discussed in Sect. 5.

The CMB timelines for each realization were produced according to the detector pointing for each radiometer, and maps were made from these CMB timelines with frogs. The same frogs parameter settings were used as for the flight maps (Zacchei et al. 2011; Planck Collaboration II 2013). The calibration step was not simulated, as the simulated signal was constructed as already calibrated, except for the effect of power lost to the sidelobes. The impact of sidelobes on the calibration of flight data is discussed in Planck Collaboration V (2013), while its effect on the beam window function will be discussed in Sect. 5 of this paper. For the MC, we assumed that the calibration compensates for the missing power in the main beams, according to the discussion in Sect. 2.2 of Planck Collaboration V (2013).

We produced in this way 30 GHz, 44 GHz, and 70 GHz frequency maps, and the “horn-pair” maps for 70 GHz 18/23, 19/22, and 20/21 from the 15.5 month nominal survey. The computational cost of producing one realization of this set was about 2000 CPUh. Given this relatively large computational cost, we have generated only 102 CMB realizations. Although this leaves some residual scatter in the estimated beam window functions especially at low multipoles, these maps have been generated mostly as a consistency check with respect to the FEBeCoP approach as described below, and therefore the number of simulations is adequate for this purpose.

Full-sky, timeline-to-map Monte Carlo based beam window functions are shown in Fig. 15 for 30, 44, and 70 GHz frequency maps. For 70 GHz we also show the beam window functions obtained considering only subsets of detectors, namely LFI18–23, LFI19–22, and LFI20–21.

4.2. FEBeCoP window functions

FEBeCoP beam window functions are shown in Fig. 16 for 30, 44, and 70 GHz frequency maps. For 70 GHz we also show the beam window functions obtained considering only subsets of detectors, namely LFI18–23, LFI19–22, and LFI20–21. These are computed using the effective beams obtained from the simulated scanning beams with a cutoff radius of 2.5 FWHM. The resulting window functions in full sky approximation are obtained by averaging Eq. 12 over 1000 signal only simulations, where every simulated CMB maps is convolved with the effective beams described in Sect. 3.

In Fig. 17 we show a comparison between MC-based and FEBeCoP beam window functions. Although there are some high-ℓ discrepancies at 70 GHz, these are located at $\ell \gtrsim 1300$ where the beam W/δ drop below 0.01.

Table 5. Mean and standard deviation of FWHM, ellipticity, orientation, and solid angle of the FEBeCoP effective beams computed with the simulated beams. FWHM_{eff} is the effective FWHM estimated from the main beam solid angle of the effective beam, $\Omega_{\text{eff}} = \text{mean}(\Omega)$, under a Gaussian approximation.

<table>
<thead>
<tr>
<th>Channel</th>
<th>mean(FWHM) (arcmin)</th>
<th>σ(FWHM) (arcmin)</th>
<th>mean(\theta)</th>
<th>σ(\theta)</th>
<th>mean(\psi)</th>
<th>σ(\psi)</th>
<th>mean(\Omega) (arcmin2)</th>
<th>σ(\Omega) (arcmin2)</th>
<th>FWHM_{eff} (arcmin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>12.352</td>
<td>0.033</td>
<td>1.223</td>
<td>0.026</td>
<td>0.587</td>
<td>55.066</td>
<td>200.742</td>
<td>1.027</td>
<td>13.31</td>
</tr>
<tr>
<td>44</td>
<td>27.005</td>
<td>0.552</td>
<td>1.034</td>
<td>0.033</td>
<td>0.059</td>
<td>53.767</td>
<td>832.946</td>
<td>31.774</td>
<td>27.12</td>
</tr>
<tr>
<td>30</td>
<td>32.239</td>
<td>0.013</td>
<td>1.320</td>
<td>0.031</td>
<td>-0.304</td>
<td>55.349</td>
<td>1189.513</td>
<td>0.842</td>
<td>32.34</td>
</tr>
</tbody>
</table>

Table 6. Band averaged beam solid angles.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Ω_{eff} (arcmin2)</th>
<th>spatial var. (arcmin2)</th>
<th>$\Omega_{\text{eff}}^{(1)}$ (arcmin2)</th>
<th>spatial var. (arcmin2)</th>
<th>$\Omega_{\text{eff}}^{(2)}$ (arcmin2)</th>
<th>spatial var. (arcmin2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>200.74</td>
<td>1.03</td>
<td>186.26</td>
<td>2.30</td>
<td>200.59</td>
<td>1.03</td>
</tr>
<tr>
<td>44</td>
<td>832.95</td>
<td>31.77</td>
<td>758.68</td>
<td>29.70</td>
<td>832.17</td>
<td>31.81</td>
</tr>
<tr>
<td>30</td>
<td>1189.51</td>
<td>0.84</td>
<td>1116.49</td>
<td>2.27</td>
<td>1188.95</td>
<td>0.85</td>
</tr>
</tbody>
</table>
In addition, however, as we will explain in the next section, we should account for the effect of the different choices for the cutoff radius between the two methods. Our FEBeCoP calculations used a 2.5 FWHM cutoff radius for the main beam, while the timeline-to-map, Monte Carlo window functions are derived using a 4 FWHM cutoff. In order to quantify the agreement, we also show in Fig. 17 the ±1σ error envelopes that will be discussed in the next section. So we can fairly conclude that in the “region of interest” the two methods agree to 1% level. Since the FEBeCoP algorithm is faster than the timeline-to-map Monte Carlo, it allows for a significantly larger number of simulations (1000 vs 102), resulting in a more accurate estimation of the window functions. For the same reason, FEBeCoP also allows to perform a robust error assessment as presented in the next section. Hence, the FEBeCoP window functions will be used for the power spectrum analysis (Planck Collaboration II 2013; Planck Collaboration XV 2013), and will be distributed within the data release.

With FEBeCoP we also estimate the level of contamination of the transfer functions due to a non-uniform sky sampling within the pixels, comparing the ideal HEALPix pixel window function, which is derived under the assumption of uniform coverage, with the true one computed with FEBeCoP. This effect acts as a noise term in the maps and it becomes important only at very high ℓ. An analytic treatment of the contamination on the maps is described in Appendix F of the HFI Beam paper (Planck Collaboration VII 2013). We quote here the level of distortion of the window function: 0.1% at ℓ = 600 for 30 GHz, 0.4% at ℓ = 800 for 30 GHz, and 0.5% at ℓ = 1400 for 70 GHz, in all the cases within the error bars.

5. Error Budget

We discuss here the main sources of uncertainties in the window functions that have proven to be relevant for the LFI.

5.1. Main beam knowledge

The propagation of the uncertainties in the beam knowledge to the window function has been carried out with a dedicated MC pipeline on the Planck optics. The tuned optical model (Planck Collaboration ES 2013) was used as the basis to run MC simulations with about 500 realizations of the Planck optics. More specifically, the wavefront at the aperture of the telescope has been artificially distorted by adding to the primary reflector randomly-varying amplitude distortions described as modes of Zernike polynomials, up to the fifth order.

The idea behind this assumption is that the true flight beam comes from a true flight field distribution at the telescope aperture that gives the true wavefront. Any small difference between our telescope model and the real one can be mapped by aberrations on the aperture wavefront. For each wavefront we simulated using GRASP the corresponding beam and we selected only the beams with parameters (angular resolution, ellipticity, and beam orientation) in line with those measured in flight within 3σ level. We used the errors in the determination of each parameter reported in Table 2. We repeated this for all the twenty-two LFI beams producing a set of 3036 beams (corresponding to 138 slightly different optical models). In this way we built a set of beams calculated from plausible optical models of the telescope and whose parameters are in agreement with the parameters we measured in flight. Then this set of beams was used as input to FEBeCoP to compute the corresponding window functions.

The three parameters used in the comparison between simulations and measurements (angular resolution, ellipticity, and beam orientation) are strongly correlated and this original method to obtain the errors on the window function using a MC pipeline on the optics takes this correlation properly into account, avoiding unphysical solutions in which no correlation is assumed. In Fig. 18 we show the beam window functions at 70 GHz for all the 138 simulated optical models. Window functions are normalized to the fiducial for the 70 GHz channel.

5.2. Cutoff radius in the main beam computation and impact of sidelobes

The impact of sidelobes on the calibration has been discussed in Planck Collaboration V (2013). The main result for the discussion presented here is that the gain values are unbiased, and this imposes a constraint on the dipole term of the window function, i.e., W1 = 1, which fixes the normalization. In principle, in order to fully account for beam effects in the window function, one should perform a computation of the window function including the full beam pattern, with either FEBeCoP or the timeline-to-map Monte Carlo. However, this would have a huge computational cost making it unfeasible in a Monte Carlo approach. As a result, LFI beam window functions are derived from Monte Carlo simulations including the main beam only, and therefore it is important to assess the effect of neglecting sidelobes.

We have done a preliminary evaluation by using a analytical approach for calculating the window function. In fact, for a given azimuthally symmetric beam profile b(θ,ψ), the corresponding ℓ-space function Bℓ can be computed using the Legendre transform:

$$B_{\ell} = \Omega_{\ell} b_{\ell} = 2\pi \int dcos(\theta) b_\ell dc_\ell P_\ell(\theta),$$

and $$W_{\ell} = B_{\ell}^2$$. We have then considered the symmetrized beam profile for LFI18M detector, and we have computed the corresponding Bℓ cutting the integration at different angles, namely 2.5 FWHM, 4 FWHM, 2°, and 3°, and imposing the normalization constraint at ℓ = 1. We report in Fig. 19 the relative difference between Bℓs obtained for the four cutoff values and the one resulting from full integration. As expected, results show a small ℓ-dependent correction affecting mostly the large angular scales. In particular, extending the calculation up to the near sidelobes makes this effect negligible.

As already stated in Sect. 4, the combination of intrinsic asymmetries in the Planck beam and scanning strategy forced us to discard a simple beam symmetrization. The same argument applies here, especially considering that near and far sidelobes are even more asymmetric than the main beam. Therefore, we have extended FEBeCoP calculation for the same LFI18M detector to cutoff radii of 4 FWHM and 3° (corresponding to ~ 9 FWHM). In this case we have used the latter window function as a reference to compare with when computing the relative difference. Results are reported in Fig. 20, confirming that similar conclusions can be drawn for a realistic case as well.

A further improvement in the assessment of the sidelobes effect on the window function has been carried out considering the variation across the band of the sidelobes themselves. Whereas the impact of the main beam variation across the band is small, this is not true for the near and far sidelobes. The 4π beams of the radiometer LFI18M (main beam, near and far sidelobes) were computed at about twenty frequencies across the radiometer bandpass and they were averaged taking into account the radiometer bandshape. The resulting averaged beam has been used

Planck Collaboration: LFI beams and window functions
to evaluated the impact on the beam window function using the analytical approach described above. The shape of the bias is very close to that reported in Fig. 19 but the amplitude is slightly different with respect to the monochromatic beam. In the error budget we have considered the worst case in order to be conservative as far as possible.

5.3. Total error budget on window functions

Using the set of simulated beam window functions we have also built the covariance matrix C in ℓ-space computing:

$$C_\ell = \langle (W_\ell - \langle W_\ell \rangle)(W_\ell - \langle W_\ell \rangle) \rangle,$$

where the averaging is performed on the 138 simulations. Then we have decomposed in eigenvalues (Λ_h) and eigenvectors (V_h) the covariance matrix. In Fig. 21 we show the first eigenmodes for the 70 GHz channel. All the error content is substantially encompassed by the first two eigenvalues, that account for cutoff radius and main beam uncertainties respectively. Figures 22 and 23 show the eigenmodes for the 44 and 30 GHz, respectively. The eigenmodes can be used as input of the Markov Chain Beam Randomization (MCRB) marginalization code to account for beam errors in cosmological parameter estimation (Rocha et al. 2010). We apply the MCRB procedure to a simulated 70 GHz dataset and we find that the parameters mostly affected are n_s, $\Omega_b h^2$, $\Omega_c h^2$, and $A_s; \Lambda_h$ the increase of the errors can be quantified respectively as 12% of σ for the first and less than 8% of σ for the others.

6. Conclusions

The optics and electronics of the Planck detectors, combined with the satellite motion, determine the instrumental angular response to a sky signal. An accurate characterization and a thorough understanding of the LFI beam patterns is the key to determining their imprints on the transfer function from the observed to the true sky anisotropy spectrum. In this paper we discussed the algorithms used to reveal the most significant LFI beam features that impact the exploration of the underlying cosmology. The in-flight assessment of the LFI main beam errors relied mainly on the measurements performed during Jupiter crossings. The calibrated data from four Jupiter scans were used to determine the so called scanning beams: the signal-to-noise ratio for this data is such as to make it possible to follow the LFI beams profile down to -20 dB from the peak, corresponding to distances from the beam line of sight of about 1.25 FWHM, i.e., the inner part of the main beams. Fitting the main beam shapes with an elliptical Gaussian, we could express the uncertainties of the measured scanning beam in terms of statistical errors for the Gaussian parameters: ellipticity; orientation; and FWHM. While this method allows the accurate in-flight measurement of the LFI main beams, the (lower) angular response at larger distances from the beam centroid (near and far sidelobes) cannot be directly measured from a single point source signal, mostly because of the noise and background dominance, so it must be modelled differently. Therefore, a further step has been taken to build an optimal model for the full LFI beams profile. We developed a tuned optical model such that the simulated beams would provide the best fit to the available measurements of the LFI main beams from Jupiter: we found that this model represents all the LFI beams with an accuracy of 1%, which has been considered in the propagation of the uncertainties at the window function level. The corresponding simulated sidelobes are, in turn, consistent with the effect induced by the Galactic spillover as observed in survey maps differences. This model, together with the pointing information derived from the focal plane geometry reconstruction (Planck Collaboration II 2013), gives the most advanced and precise noise-free representation of the LFI beams. These were also independently cross-checked through a beam deconvolution test. The simulated beams were the input to calculate the effective beams, which take into account the specific scanning strategy to include any smearing and orientation effects on the beams themselves. The approach was validated by comparing the effective beam Point Spread Functions with images from the Planck Catalogue of Compact Sources.

To evaluate the beam window function, we adopted two independent approaches, both based on Monte Carlo simulations. In one case, we convolved a fiducial CMB signal with realistic scanning beams in the harmonic space to generate the corresponding timelines and maps; in the other case, we convolved the fiducial CMB map with effective beams in the pixel space. The two methods agree to 1% level.

To evaluate the error on the resulting window functions, we took into account the fact that we are assuming full-power main beams. Thus, part of the error budget comes from the propagation of the main beam uncertainties throughout the analysis, while another contribution comes from neglecting near and far sidelobes in the Monte Carlo simulation chain. We found that the two error sources have different relevance depending on the angular scale. Ignoring the near and far sidelobes is the dominant error at low multipoles, while the main beam uncertainties dominate the total error budget at $\ell \gtrsim 600$.

Representative values of the total error, for scales of cosmological interest, range from 0.3% ($\ell \approx 200$) to about 0.8% ($\ell \approx 1200$). The total uncertainties in the effective beam window functions are: 2% and 1.2% at 30 and 44 GHz, respectively (at $\ell = 600$); and 0.7% at 70 GHz at $\ell \approx 1000$.

Acknowledgements. Planck is too large a project to allow full acknowledgement of all contributions by individuals, institutions, industries, and funding agencies. The main entities involved in the mission operations are as follows. The European Space Agency (ESA) operates the satellite via its Mission Operations Centre located at ESOC (Darmstadt, Germany) and coordinates scientific operations via the Planck Science Office located at ESRIN (Madrid, Spain). Office located at ESAC (Madrid, Spain). The two methods agree to 1% level.

To evaluate the beam window function, we adopted two independent approaches, both based on Monte Carlo simulations. In one case, we convolved a fiducial CMB signal with realistic scanning beams in the harmonic space to generate the corresponding timelines and maps; in the other case, we convolved the fiducial CMB map with effective beams in the pixel space. The two methods agree to 1% level.
Appendix A: LFI beams notation

In table A.1 we report a selection of the most important symbols used in this paper.

Appendix B: Timeline-to-map Monte Carlo simulations

Signal-only timeline-to-map Monte Carlo (MC) simulations are produced using Level-S (Reinecke et al. 2006) and Healpix (Górski et al. 2005) subroutines, and the Madam map-maker (Kurki-Suonio et al. 2009; Keihanen et al. 2010) on the Louhi supercomputer at CSC-IT Center for Science in Finland.

Starting from a fiducial CMB power spectrum with \(\ell_{\text{max}} = 3000 \), we used \texttt{syn alm cxx} to generate a set of sky \(\alpha_{\ell m} \) realizations of this \(C_{\ell} \). Starting from the simulated scanning beams we calculated their beam \(\alpha_{\ell m} \) using \texttt{beam2alm} with \(\texttt{beam lmax} = 5400 \) and \(\texttt{beam mmax} = 14 \). The sky \(\alpha_{\ell m} \) were convolved with the beam \(\alpha_{\ell m} \) using \texttt{convq v3} with \(\texttt{convq lmax} = 3000, \texttt{lmax out} = 3000, \texttt{beam mmax} = 14 \). The output is a “ringset” table for each realization, i.e., a grid of observed sky signal values for 6001 values of \(\ell \), 3002 values of \(\theta \) and for 29 beam orientations (\(\phi \)). Note that the main beams do not collect the full power of the signal, since a small part of the signal spills outside the main beam to form sidelobes. In this MC just the main beam was simulated, not the sidelobes, so the calculated signal values were missing that part of the power that goes to the sidelobes. This was taken into account at the map-making stage.

The CMB timelines for each realization were produced with \texttt{multimod}. The detector pointing (\(\phi, \theta, \phi \)) for each radiometer was reconstructed internally using satellite pointing information and the focal plane geometry. The observed CMB signal for each sample was interpolated in \(\theta \) and \(\phi \) from the “ringset” table for its pointing using \texttt{interp order = 9} (the effect of beam orientation \(\phi \) is solved exactly by \texttt{multimod} for the \texttt{beam mmax} representation of the beam) and output to CMB timeline files. The detector pointing reconstructed by \texttt{multimod} was also output to disk for the use of the Madam map-maker. The reconstructed pointing was compared to the pointing used at the LFI DPC for the flight data maps to check that their agreement was satisfactory. There is an option in \texttt{multimod}, “sampler”, to simulate the scanning motion of the radiometer during measurement of one observation sample. This, however, increases the computational cost so much that we turned this sampler off, and simulated this scanning motion by using the scanning beams (see above) instead of the optical beams.

Maps were made from these CMB timelines with Madam using the reconstructed pointing. The same Madam parameter settings were used as for the flight maps, see Zacchei et al. (2011) and Planck Collaboration II (2013). As already discussed in Sect. 4, the calibration step was not simulated.
Table A.1. Selected LFI beams analysis notation.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M, S</td>
<td>Main and Side radiometer arm</td>
</tr>
<tr>
<td>LOS frame</td>
<td>telescope’s Line of Sight reference frame</td>
</tr>
<tr>
<td>θ, ϕ</td>
<td>polar coordinates in the LOS frame</td>
</tr>
<tr>
<td>θ_{MB}, ϕ_{MB}</td>
<td>polar coordinates in the main beam frame</td>
</tr>
<tr>
<td>u, v</td>
<td>cartesian dimensionless coordinates in the LOS frame</td>
</tr>
<tr>
<td>ϵ</td>
<td>beam ellipticity</td>
</tr>
<tr>
<td>FWHM</td>
<td>full width half maximum</td>
</tr>
<tr>
<td>ψ_{eff}</td>
<td>beam orientation defined with respect to the x-axis of the LOS frame</td>
</tr>
<tr>
<td>ψ</td>
<td>polarization angle (angle between the detector’s polarization axis and the local meridian)</td>
</tr>
<tr>
<td>$\sigma_{\max}^2, \sigma_{\min}^2$</td>
<td>standard deviation of the elliptical Gaussian</td>
</tr>
<tr>
<td>η</td>
<td>Main beam efficiency</td>
</tr>
<tr>
<td>$\tau(v)$</td>
<td>bandpass</td>
</tr>
<tr>
<td>$T^M (T^S)$</td>
<td>detector output in antenna temperature for the M (S) radiometer in the main beam frame</td>
</tr>
<tr>
<td>$E_{\theta} (E_{\phi})$</td>
<td>co-polar electric field component of the beam in the M (S) radiometer</td>
</tr>
<tr>
<td>$E_{sp} (E_{sp})$</td>
<td>cross-polar electric field component of the beam in the M (S) radiometer</td>
</tr>
<tr>
<td>χ</td>
<td>cross-polarization of the orthomode transducer</td>
</tr>
<tr>
<td>\hat{p}_i</td>
<td>i-pixel direction for time sample t</td>
</tr>
<tr>
<td>F_i</td>
<td>i-pixel center direction</td>
</tr>
<tr>
<td>A_u</td>
<td>Pointing matrix for pixel i and time sample t</td>
</tr>
<tr>
<td>$B_{ij} \equiv B$</td>
<td>Effective beam for pointing pixel i and beam pixel j</td>
</tr>
<tr>
<td>$b(F, \hat{p})$</td>
<td>Scanning beam at a direction $\hat{r} \equiv [\theta, \phi]$ with the pointing angles \hat{p}</td>
</tr>
<tr>
<td>$b_{opt}(\theta)$</td>
<td>optical beam profile</td>
</tr>
<tr>
<td>γ</td>
<td>polarization efficiency $\gamma = (1 - \epsilon)/(1 + \epsilon)$, being ϵ the cross-polar leakage</td>
</tr>
<tr>
<td>w</td>
<td>polarization weight factor</td>
</tr>
<tr>
<td>Ω_{scn}</td>
<td>solid angle of the scanning beam</td>
</tr>
<tr>
<td>Ω_{opt}</td>
<td>solid angle of the optical beam</td>
</tr>
<tr>
<td>Ω_{sim}</td>
<td>solid angle of the simulated beam</td>
</tr>
<tr>
<td>Ω_{eff}</td>
<td>solid angle of the effective beam</td>
</tr>
<tr>
<td>FWHM$_{eff}$</td>
<td>effective beam full width half maximum</td>
</tr>
<tr>
<td>W_i</td>
<td>beam window function</td>
</tr>
<tr>
<td>Λ_λ</td>
<td>eigenvalues of the covariance matrix</td>
</tr>
<tr>
<td>V_λ</td>
<td>eigenvectors of the covariance matrix</td>
</tr>
</tbody>
</table>

7. CITP, University of Toronto, 60 St. George St., Toronto, ON M5S 3H8, Canada
8. CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4, France
9. California Institute of Technology, Pasadena, California, U.S.A.
10. Centre for Theoretical Cosmology, DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA U.K.
11. Centro de Estudios de Física del Cosmos de Aragón (CEFCA), Plaza San Juan, 1, planta 2, E-44001, Teruel, Spain
12. Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A.
13. Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
14. DSM/Irfu/SPP, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex, France
15. DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Kgs. Lynby, Denmark
16. Département de Physique Théorique, Université de Genève, 24, Quai E. Ansermet,1211 Genève 4, Switzerland
17. Departamento de Fisica Fundamental, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain
18. Departamento de Física, Universidad de Oviedo, Avda. Calvo Sotelo s/n, Oviedo, Spain
19. Department of Astronomy and Astrophysics, University of Toronto, 50 Saint George Street, Toronto, Ontario, Canada
20. Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
21. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, U.S.A.
22. Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, Canada
23. Department of Physics and Astronomy, Dana and David Dornsife College of Letter, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, U.S.A.
24. Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K.
25. Department of Physics, Gustaf Hällströmin katu 2a, University of Helsinki, Helsinki, Finland
26. Department of Physics, Princeton University, Princeton, New Jersey, U.S.A.
27. Department of Physics, University of California, One Shields Avenue, Davis, California, U.S.A.
28. Department of Physics, University of California, Santa Barbara, California, U.S.A.
29. Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois, U.S.A.
30. Dipartimento di Fisica e Astronomia G. Galilei, Università degli Studi di Padova, via Marzolo 8, 35131 Padova, Italy
31. Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, 44122 Ferrara, Italy
32. Dipartimento di Fisica, Università La Sapienza, P. le A. Moro 2, Roma, Italy
33. Dipartimento di Fisica, Università degli Studi di Milano, via Celoria, 16, Milano, Italy
34. Dipartimento di Fisica, Università degli Studi di Trieste, via A. Valiero 2, Trieste, Italy
35. Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 1, Roma, Italy
Fig. 9. Survey 1 – Survey 2 difference maps. Top: 30 GHz map, in μK. Second: simulated Galactic straylight. Third: data minus simulations. The ring still visible in the third panel suggests that the model should be improved by adding higher order contributions, possibly combined with physical optics analyses. Bottom: difference between data and simulations, amplified by a factor equal to the ratio of the power missing the main beam (f_{δ}) and the power entering the simulated sidelobes using the first order approximation (in this case, about 1.93). The grey-band is a lack of data.

Fig. 10. Main parameters of the LFI effective beams: ellipticity (first row); FWHM (relative variation with respect to the FWHM of the scanning main beam, second row); ψ (third row); and beam solid angle (relative variation with respect to the scanning main beam solid angle reported in Table 2, fourth row), for the 70 GHz channel.
Fig. 11. Four ERCSC sources as seen by LFI 70 GHz channel (upper panel); linear scale FEBeCoP PSFs computed using input simulated beams (central panel); both in arbitrary units. Bottom panel: PSF iso-contours shown in solid line, elliptical Gaussian fit iso-contours shown in broken line. PSFs are shown in log scale.
Fig. 12. Four ERCSC sources as seen by LFI 44 GHz channel (upper panel); linear scale FEBeCoP PSFs computed using input simulated beams (central panel); both in arbitrary units. Bottom panel: PSF iso-contours shown in solid line, elliptical Gaussian fit iso-contours shown in broken line. PSFs are shown in log scale.
Fig. 13. Four ERCSC sources as seen by LFI 30 GHz channel (upper panel); linear scale FEBeCoP PSFs computed using input simulated beams (central panel); both in arbitrary units. Bottom panel: PSF iso-contours shown in solid line, elliptical Gaussian fit iso-contours shown in broken line. PSFs are shown in log scale.
Fig. 14. Histograms of the three fit parameters (beam FWHM, ellipticity, and orientation with respect to the local meridian) for the effective beams computed using FEBeCoP with the simulated beams. We sampled the sky (fairly sparsely) at 768 directions, chosen as HEALpix \(N_{\text{side}} = 8 \) pixel centres to uniformly sample the sky.
Fig. 15. Timeline-to-map, Monte Carlo-based beam window functions for Planck 30, 44, and 70 GHz frequency maps. For 70 GHz, we also show the beam window functions for a subset of paired horns, namely LFI18–23, LFI19–22, and LFI20–21.

Fig. 16. FEBeCoP beam window functions for Planck 30, 44, and 70 GHz frequency maps. For 70 GHz, we also show the beam window functions for a subset of detectors, namely LFI18–23, LFI19–22, and LFI20–21.
Fig. 17. Comparison between timeline-to-map MC-based and FEBECoP beam window functions. We also show the ±1σ error envelopes obtained in Sec. 5.
Fig. 18. Beam window functions generated and normalized to the fiducial.

Fig. 19. Relative difference between B/ℓs computed for various cutoff values and the one with full integration. All the functions have been computed using eq. 14 for a symmetrized version of the LFI18M beam profile.

Fig. 20. Same as Fig. 19, but the window functions have been computed with FEBeCoP.

Fig. 21. First four eigenmodes of the covariance matrix of the 70 GHz channel.

Fig. 22. First four eigenmodes of the covariance matrix of the 44 GHz channel.

Fig. 23. First four eigenmodes of the covariance matrix of the 30 GHz channel.