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to get a trustworthy sampling of the coherence. The study is

carried out by utilizing the statistical results available for

complex Gaussian product sums (Goodman statistics).
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1. INTRODUCTION

A common tool for the study of random stationary time series is

the so-called spectral coherence or just coherence as discussed

in many textbooks, e.g. Lumley and Panofsky (1964) and Panofsky

and Dutton (1984). Following their definition the spectral co-

herence

(t)xy(o))
coh(o)) = - (1)

) <t>yy(<A>)

is given by the absolute square of the cross-spectrum

between the two time series x(t) and y(t) f divided by the pro-

duct of their power spectra. By this definition coh(a)) is always

greater than or equal to zero and by Schwarz's inequality less

than or equal to one. Alternatively, the coherence has been de-

fined as the square root of the right side of (1) (Goodman, 1957)

We are adhering to the first definition in the following.

In practical applications when dealing with geophysical time

series, only one or a few realizations can usually be obtained

and since cfrxy^) is defined as ensemble averages over infi-

nitely many realizations there is a statistical uncertainty in

the experimentally determined spectral coherence. This is brought

out rather dramatically if one tries to compute the coherence by

using a discrete Fourier transform on only one realization. In

this case the coherence becomes identically one for all fre-

quences a) (as rediscovered the hard way by many inexperienced

scientists, including the authors). With one realization avail-

able one can subdivide the record in a number of shorter records

and in this way obtain an ensemble with a finite number of re-

alizations M. In general the estimated coherence, which in any

case is bounded by zero and one, will attain values different

from one. Alternatively, one can block-average the spectral

estimates <t>Xy(^) from one realization. We will show that by

averaging M estimates around each frequency we get what is
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roughly equivalent to a subdivision of the original record in M

subrecords. Both techniques are applied and the product of the

number of subdivisions and the number of averaged spectral esti-

mates is often considered the so-called number of degrees of

freedom. If special windows or weighting functions are used the

definition is not so simple. Here we stay away from these com-

plications and refer to the literature (Bendat and Piersol 1971,

Koopmans 1974f Amos and Koopmans 1963). However, we shall in-

clude a discussion about how the finite record length modifies

our simple concept and how it is possible to define an effective

number of degrees of freedom.

From this discussion we conclude that M = 1 is certainly insuf-

ficient for making a coherence estimate. How large must M then

be? Is two good enough? or ten? or should M = 100? It is the

purpose here to bring to attention the work by Goodman (1957)

on distributions of spectral parameters in Gaussian processes,

which enables us to answer the question: How large must M be in

order to obtain a given statistical confidence in coh(co)? We do

not want to let M be larger than absolutely necessary since an

increase in M for a given record length means a decrease in

spectral resolution and an increase in spectral distortion.

2. BASIC CONSIDERATIONS

In this and the following section we want to go in some detail

in showing that the theory of Goodman's can be applied to spec-

tral coherences. We shall demonstrate that the procedures we

use to calculate spectra by themselves secure that the criteria

for the validity of the theory are satisfied.

Let x(t) and y(t) be two ergodic time series with ensemble means

equal to zero. Since an ergodic time series is stationary there

is no loss of generality in assuming that the ensemble means

are zero. We imagine that x(t) and y(t) are defined for all

times, but only sampled over the time T. In order to set the
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stage we first assume that x(t) and y(t) are known for all t in

the interval [-T/2,T/2]. We define the Fourier amplitudes by

1 T/2
xU;T) = J x(t) eiwt dt (2a)

2% -T/2

and

1 T/2
y(a>;T) = j y(t) e 1 ^ d t , (2b)

2% -T/2

and the covariance between these amplitudes by

U 1 , ^ 1 ; ^ = < x(o)f;T) y*U";T) > , (3)

where the brackets mean ensemble averaging, superstars complex

conjugation, and where we have used that <x(t)> = <y(t)> = 0

implies <x(u>;T)> = <y(oo;T)> = 0.

By substituting (2a) and (2b) in (3) we obtain

1 T/2 T/2
E (a)1,^1,^) = / dt1 J dt" R (t',tn) e-i (a)

1^11-^)11' )
X Y (2ix)2 -T/2 -T/2 X Y

(4)
where

RXy(t
f rt11) = <x(t' )y(t")> (5)

is the cross-covariance function. Since the time series x(t) and

y(t) are stationary RxyCt'rt") depends on t1 and t" only through

the difference t" - t1 and we may write

Rxytt'rt11) = RxytOrt11 - f ) = Rxy(t
M-tf) , (6)

suppressing the first argument for convenience. By introducing

the variable transform
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t = (t1 + t")/2
} (7)

T = t" - t1

(4) becomes

. _ T-1 T

J R ( x)e 2 dx / e - i ( a)"-^ ) t d t

T X y T | T |
Evv(u>\oo";T) = J R ( x)e dx /

X Y ( 2 i c ) 2 - T X y T - | T |
7 ~ (8)

or

T s i n ( 2 [ | | ] ) ^
T) e ^ dx

( 2 n ) 2 -T a)"-a)'
2 (9 )

In the l imit T-»-» this equation becomes

l i m E x y ( w ' ,u)";T) = 6 ( u " - w ' ) 4>xy ( ) , ( 10 )
T 2

where

1 sinKx
6(x) =— lim (11)

7C K + 0 0 X

is the Dirac delta function and

00

the cross-spectrum of x(t) and y(t). By the Fourier inversion

rule we obtain from (12)

00

Rxy(x) = J 4>xy(u>) e
la)T du> . (13)

— oo
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Equation (10) states that Fourier amplitudes of different fre-

quencies are uncorrelated in the limit T+«; thus it seems natural

to assume that for "large enough" values of T we need not be con-

cerned with EXy (a)
1 , a)";T) for a>' # u)". For a)1 - GO" = w (9) reads

1 T
E (a>,a>;T) = / (T-|T|) R (T)e~

y (2%)2 -T y

1 1 T
J ( ) xy

A a) 2n -T T J dx , (14)

where

2-n;
Act = (15)

T

is the smallest frequency that can be resolved by a Fourier ana-

lysis of the time series x(t) and y(t) over the finite time of

duration T. If T is large enough we see, by comparing (12) and

(14), that

= EXy(o)fo);T) Aoo « <|>Xy(u>) . (16)

We note that

00 00

dw = R x y ( 0 ) = / <|>xy(w) du> (17 )
-••00 -~ 00

by use of (11) and (13) and conclude that YXy(co;T) and <t>Xy(o))

cover the same area, equal to the total covariance RXy(0). In a

loose way we can say that ¥Xy(a);T) is a distorted estimate of

<t>xy(w)' in which covariance is moved from low to high frequencies

without loss of total covariance.

Another observation is that (3) and (16) state that for x(t) =

y(t), ¥Xy(u);T) = Yxx(a);T) is never negative. Since this is

true for all values of T we conclude that the power spectrum

<|>xx(a)) is real and non-negative.
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With these basic concepts it is now possible to introduce in a

natural way the effects of the discrete, rather than continuous,

sampling and Fourier analysis. The invention of the Fast Fourier

Transform (FFT) by Cooley and Tukey (1965) made it more efficient

to Fourier-transform the time series themselves rather than the

covariance functions in the calculation of the spectra. This is

of course history now, but let us recapitulate the line of ar-

guments that justifies the common approach to spectral analysis

by use of digital computers.

The two time series x(t) and y(t) are sampled over the period T

at times separated by the increment At. The total number of sam-

pling times is N and we have

T = NAt (18)

Instead of (2a) and (2b) we now write

1 N-1
x[k;N] = — I x[l] e2*i*k/N (19a)

N A=0

and

1 N-1
y[k;N] = — I y[l] e2^i^/N , (19b)

N A=0

where

x[l] = x(AAt)
} I = 0,1,2,..., N-1 . (20)

y[A] = yUAt)

On comparing (20) with (16) we infer that

¥xy[k;N] = <x[k;N] y*[k;N> (21)

will be closely related to the spectrum <J>Xy(u>) at the frequency

2%
a) = a>fc = kAco = k . (22)

T
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If we substitute (19a) and (19b) in (21) and use (20) and (5) and

(6) we get

2 i ' / 2 ir ; [ k ; N ] = I e
2 * i A ' k / N I e - 2 * i A " k / N R (At( V'-V ) ) .x y

 N2 r=o r=o x y

( 2 3 )

We want to obtain a relation between ¥Xy[k;N] and <l>xy(wk) and

therefore we use (13) to eliminate RXy ( At( A
11 —Jl' ) ) in (23). Re-

arranging the order of summations and integration leads to the

following expression

oo s i n 2 { T}
¥ [ k ; N ] = J I 4>Xy (a ) ) da) ' ( 2 4 )

N2sin2

2N

where w^ is given by (22). In general, (24) is a rather com-

plicated convolution integral, but fortunately N is usually so

large that we can use the approximation

sin2{ T}
2 2% «> 2%

* I M m+ur-a)k) (25)
0) T m=-«> AtN2sin2 { T}

2N

Introducing the so-called Nyquist frequency

= %/ At (26)

and making use of (15), (24) may be written in the form

The left-hand side constitutes what we hope to be a good approxi-

mation to the spectral density at frequency oofc, obtained by a

discrete finite Fourier (DFT) technique, and the right-hand side

is an infinite sum of true spectral densities separated by 2a)jsj.

If the time series contains most of its turbulent energy at low
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frequencies, i.e. frequencies absolutely smaller than o^, then

the m = 0 term is dominant. However, higher terms often cannot

be neglected. This "spectral contamination11 is called spectral

aliasing. We see that ¥Xy[k;N] i
s periodic in k with the period

N, corresponding to the increment 2-rc/At in cofc. Further, we see

from (19) and (21) that ¥ [-k;N] = ¥* [k;N]. Therefore, we need

only be interested in ¥Xy[k;N] in the interval (0,N/2). It is

possible by suitable low-pass filtering to suppress the effect

of spectral aliasing. In the following section we shall assume

that disregarding spectral aliasing is justified. We can then

concentrate on the problem that in geophysics we never have an

ensemble of infinitely many realizations; as a rule we have only

one.

3 . SMOOTHING

The ensemble averaging in (21) is a mathematical idealization

that does not correspond to reality in geophysics. Instead we

form from our single realization

XXy O ; N ; 1 ] = x [ k ; N ] y * [ k ; N ] . (28)

In order to improve the statistical confidence we average

XXy[k;N;i] over a number M of consecutive values:

1 M-1

X x y [ k ; N ; M ] = — I xXy
M m=0

This is called smoothing. We shall investigate how good an ap

proximation Xxy[k'#N'"M] i s t o ^xy[k'-N] given by (21). First we

note that

1 M-1 M-1

=— I
M m=0

(in this context we allow the first argument of xxy t o b e non

integral with an obvious meaning).
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Thus Xxytk?N/#M] c a n naturally be interpreted as an estimator of

YXy evaluated at a point halfway between k and k+(M-1). If ¥Xy's

variation with k is linear over this interval, the estimator is

unbiased. Otherwise the averaging introduces a systematical error

or bias B roughly proportional to M2 and to the second derivative

of <|>Xy:

1 M-1 M-1 Aa) n
B E ~ I Yxv[k+m;N] - *XVI>+ ;N] - (MAa))2 •xv(a>k) . ( 31

y y yx v XV
M m=0 y y 2 2 4

In addition, there is an error of a statistical nature associated

with the fluctuation of Xxy[k>N'Ml around its ensemble mean

<Xxy[k;N;M]>. The variance of this error is

xxy [k;N; M ] - < xxy [k;N;M ]> |
 2> . (32)

A small value of this quantity means a precise estimator, and if

the bias is negligible we may expect Xxy[^;N;M] t o be close to

¥Xy[k+(M-1)/2;N]. In the following we shall make an approximate

calculation of the error variance.

Substitution of (29) and (28) in (32) yields

axy[k;N;M] =

1 M - 1 M - 1
— I I {<x [k+m f ; N ] y * [ k + m ' ;N ] x * [k+m" ;N ]y [k+m11 ;N
M2 m '=0 m"=0

- < x [ k + m ' ; N ] y * [ k + m ' ;N ] > < x * [k+m" ;N ]y [k+m11 ; N ] > } . ( 3 3 )

We see that fourth-order moments of Fourier amplitudes are in-

volved and this usually will make the task intractable. However,

if the Fourier amplitudes are joint Gaussian distributed then

fourth-order moments can be expressed by second-order moments.

This is probably the case to a good approximation, because each

amplitude is a complex, weighted sum of a large number N of

random numbers as (19a) and (19b) show; according to the central

limit theorem the amplitudes will be asymtotically Gaussian for

N+°°. Then the well-known Isserlis relation for four joint-Gaussian

real variables A, B, C and D with zero means,
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<ABCD> = <ABXCD> + <ACXBD> + <ADXBC>, (34)

generalized to the case of arbitrary complex joint Gaussians A,

B, C and D (Koopmansf 1974) can be applied. Using (34) , (33)

reduces to

1 M-1 M-1
a2

xy[k,N,M]
 = — I_ I_ {Exx[k+m

l;k+m";N] E*y [k+m • ; k+m" ;N

Exy[k+m',-k-m";N] Eyx[k+ra
1,-k-m";N]} (35)x y [ k + m , k m ; N ] E y x

where

'»k";N] = <x[k';N]y*[k";N]> . (36)

We get, by substitution of (19a) and (19b),

— "I 1 e 2 l t i r k ' / N N"l1 e - 2 ^ A » k » / N R ( A t ( r ' - r ) ) , (.37)
N 2 A ' = 0 A" = 0 y

and by i n s e r t i n g (13) we o b t a i n , a l m o s t a s in c a s e of ( 2 4 ) ,

E x y [ k \ k " ; N ] =

k " — k '

( " 1 ) k " k e N I <|>vl,(a))
sin(Ttk'-coT/2) s in ( Ttk"-wT/2

— 00

Nsm ( jj J Nsm( jj-

(38)

Since we are disregarding spectral aliasing, (38) is well approxi

mated by

E x y [ k ' , k " ; N ] -

kM-kf

00 sin( 7ckf-a)T/2 ) sindtk11-

7ikI-coT/2 7ik"-a)T/2J ™̂ 00

(39)
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We see that (39) is a convolution of the spectrum <J>Xy(w) with

the product of two, rather peaked functions with maxima at k'Aw

and k"Aw. The integrand is therefore significantly different from

zero only when k'Aw and k"Aw are close to each other. We approxi-

mate (39) by

k'+k"
E x y [ k ' , k " ; N ] » ( - 1 ) k ~ k e N <|>xy(Aw

0 s i n ( nk'-wT/2 ) s i n ( itk"-wT/2 )
dw . (40)

nk' - wT/2 iik " - wT/2

As shown in Appendix A we find

sin(nk'-wT/2) sin( Ttkn-wT/2 ) 2 sin( it(k"-k') )
dw = (41)

oo (nk'-wT/2) (-rck"-wT/2) T k"-k'

so that (40) reduces to

Exy[k\k";N] =
x y

k'+k" sin(n(k"-k'„ , iit ( ( ) )
-k e N * (Aa) ) A a ) ( 4 2 )

or, since k1 and k" are integers,

k'+k"
EXy[k',k";N] = Aw <t>xy (Aw ) 6kik" . (43)

The e x p r e s s i o n (35) reduces t o

2
1 M-12

a [k;N;M] I (Aw)2 4> (Aw(k+m)) «* (Aw(k+m) ) (44)
y M2 m=0 y y

since the second term gives zero contribution for k > 0. We can

reduce the right-hand side even further by assuming that the

spectra <|>xx and <|>yy vary insignificantly over the range MAw:
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M-1 * M-1
—
±

M

(45)
M

We see that in this approximation the error variance is inversely

proportional to the number of estimates entering the averaging

(29), and we may write

- a2
xy [k;N; 1 ]/M . (46)

The value of M becomes equal to the number of degrees of freedom

and aXy[k;N;M] and aXy[k;N;i] are the standard errors for M

and one degree of freedom, respectively. This interpretation is

equivalent to the statement that neighbour spectral estimates are

statistically independent. However, we expected that, depending

on the length of the record Tf there would be some statistical

dependence between neighbour spectral estimates. This dependence

would be assumed to disappear as T increases without limit. It

turns out that in going from (39) to (40), where we take the

spectrum outside the integral, we are making an approximation

that is slightly incorrect. In other words, the statistical de-

pendence is hidden in the difference between the right-hand sides

of (39) and (40). We shall return to this rather difficult sub-

ject in the next section. The opposite dependencies of the bias

(31) and the error variance (45) on M render the practical choice

of this parameter a matter of compromise.

We conclude this section by showing that block averaging of M

spectral estimates is roughly equivalent to subdivision of the

original record of length N numbers in M subrecords of length L

= N/M numbers. This subdivision is illustrated in Fig. 1.
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0 1
i 1—

3 4
1

M-2 M-1
4 1 1

N

Fig« 1. I l l u s t r a t i o n of the record subdiv i s ion in M records ,
each of length L.

For convenience we repeat (19a) and (19b)

x[k;N] =
1 N-1

x[n] n/N
N n=0

y[k;N] =
1 N-1
— I y[n]
N n=0

n/N

(19a)

k = ( 0 , 1 , . . . , N-1) mod N

(19b)

Their inverse transformations are

x [ n ]
N - 1

x[k;N] n/N
k=0

(47a)

y[n] I y[k;N] e-2nik n/N
k=0

From x[k;N] and y[k;N] we f irst form an estimate of the
spectral density at frequency ŵ  = k 2n/NAt

= xXy[k;N;1
NAt

x[k;N]y*[k;N

(47b)

(48)

For each of the M subintervals we write, in analogy to (19a) and

(19b)
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1 L-1
x[k;m;L] = — I x[mL+A]

L A=0

1 L-1
y[k;m;L] = — £ y[mL+Jl]

L Jl=O

(49a)

= 0,1..., M-1;m

k = (0,1,...,L-1) mod L

(49b)

For a particular value in we define

LAt
Xxy x [k;m; L ]y* [k;m; L ] (50)

and the average spectral estimate becomes

1 M-1
Xxy ( wk'" T/M) = — I Xxy ( wk'" T/ M '*m)»

M m=0
(51 )

where now w^ = kMAca. We want t o show t h a t t h i s a v e r a g i n g i s

r o u g h l y e q u i v a l e n t t o b lock a v e r a g i n g of Xxy(wk;T) o v e r M

n e i g h b o u r i n g v a l u e s of k. We s u b s t i t u t e (50 ) and (49) i n (51)

and u s e (47) and (48) t o o b t a i n

1 M-1 LAt
X x y (u) k ;T/M) = - I x [ k ; m ; L ] y * [ k ; m ; L ]

M m=0 2%

N-1 N-1

k'=0 k"=0
x [ k ' ; N ] y * [ k " ; N ] x

k k1 k k" m
At L-1 2 n i J l l ( ) L-1 -2-rei Jl" ( ) 1 M-1 2 n i ( k " - k ' ) -

I e L N £ e L N. _ J e M
2nL A'=0 A"=0 M m=0

k' a
N-1 At L-1 2ni (k ) -

I x [ k ' ; N ] y * [ k ' ; N ] »| I e M L
k'=0

N-1
I

k ' = 0

1 sin2(u(k-k'/M) )
" — : 1
M L2sin2(u(k-k'/M)/L)

(52)
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We see that Xxy((A)k?T/M) ^s a non-uniformly weighted mean of

XXy(oi)k;T) , where the "width" is about M "raw spectral esti-

mates". This is so becauce Xxy((A)k?T) ^s periodic in k with

the period N, so that (52) also can be rewritten in the form

k1

N/2-1 1 sin2 [*~=r)
Xxv(^k;T/M) = I Xxv(w, >t;TJ _ ™

K W / Z M M 2 • 2(
 k 1 ̂

M L

(53)

with an even weighting function, and because the norm of this

weighting function is unityf i.e.

N/2-1 1 sin2(* z)
I - — * = i (54)

„ k i
Lzsinz( TC - - J

M L

an equation which follows easily from the last rewriting in

(52).

4. EFFECTIVE DEGREES OF FREEDOM

In the preceding section we pointed out that we expected the

following: If we consider the number of degrees of freedom as-

signed to a smoothed spectral estimate equal to the arithmetic

mean of M raw spectral estimates from one realization of finite

length T, it then would be less than M because the raw spectral

estimates are statistically independent only in the limit T-><*>.

This was based on our considerations about the error variance

(32). We will now discuss this problem in more detail; howeverf

this will take us on a detour from the direct road to the main

goalf namely to obtain knowledge about the statistics of sampled

coherence. Since we are going to neglect the difference between



- 20 -

ference between M and the degrees of freedom anyway in the

following sections, we suggest that the reader skip the present

section in the first perusal.

It has not been possible for us to derive a general relation

between the number of degrees of freedom Meff, corrected for

the finite duration of the time series, and the number of raw

estimates M in the smoothing process. However, we have gained

some insight by studying a particular case where x(t) = y(t)f

and the spectrum has the specific form (Cauchy)

1
<t>xx(u)) = <j>(a)) = , (55)

1 ( # ) 2

corresponding to a first-order Markov process. Here a2 is the

ensemble variance of the time series x(t) and

00

a2 a2
= % — — (56)

the integral scale. Substituting (55) in (39) we obtain

E x x [ k \ k " ; N ] = E [ k !
f k " ? N ] = ( - 1 ) k " ~ k l e N

L 00 1 sin Ink1 J sinfnk" )
2 v 2}
. v — ,— ^— dw (57)

nk"
2

Introducing

s = uT/2 (58)

as integration parameter and

9 = T/(2r) (59)

as a dimensionless measure of the duration of the time series,

we can write
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k "-k '

E[kf,kH;N] = (-1) e N *
71 6

• sintitk'-s) sin( itk"-s) ds
* (60)

ick'-s 7ik"-s 1 + (s/9)2

It is shown in Appendix A that the integral in (60) can be evalu-

ated analytically, and we can rewrite (60) in the following way:

E[kf,k";

k"-k'

2 e
 N

 f s i n (n (k " - k 1 ) )
J 9(292+1t2k l 2+1 i2k"2)

2(92+1t
2kl2)(92+rc2k"2) I n(k--k')

- (92-Tt2kIk") cos(n(k"-k') )

+ e-2e((02-u2k1k")cos(it(kl+k"))-0Tt(kI+k")sin(Tt(k
1+k11)))

(61)

Since k1 and k" are integers we get

E [ k ' , k " ; N ] =

k " - k '
9 1 i*^-±- 02-n2k'k"

o2 ' 6 k i k n — e lN

* - 9 2 + n 2 k l 2 2 ( 9 2 + i t 2 k ' 2 ) ( 9 2 +
( 6 2 )

According to (35) we must now evaluate the sum of two terms

A = Exx[k',k";N] E*y[k',k";N] = |E|V ,k";N] |
2 (63)

and

B = Exy[k',-k";N] Ejx[k'f-k";N] = |E[k',-k";N ] |
 2 , (64)

where

d-e"29)}.
7l2k"2) J
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f k 1 i r k + m 1 i{ \ = { } .
k" J L k + m" J

(65)

Without loss of generality we can assume that k > 0 in these

considerations and we get

9
A = II.II - (1-e~ y)

k

9 ( 9 2 - i t 2 k ' 2 )

( 9 2 + * 2 k l 2 ) 3

1
+ -

4

(9 2--it 2k lk") 2

2 ( e 2 + T t 2 k " 2 ) 2 J
(66)

and

B =
9

(9 2+n 2k' 2) 2
6k, _

, 9 ( 9 2 - * 2 k l 2 )
_ ( 1-e-29) 6

( 9 2 + n 2 k l 2 ) 3 k, _

1 ( e 2 + T t 2 k ' k " ) 2

- ( 1 - e - 2 0 ) 2

4 (92+it2k' 2) 2( 92+n
\
J

(92+Tt2k'k") 2

(92+it2k'2)2 (92+it2k"2)2
( 6 7)

where in (67) there is only one term since both k' and k" are

assumed positive. We want to find the sum of (66) and (67) and

we write it in the form

A+B =
r 9(9-1+e-2e) it2k'2

6 + 29(1-e~2e'w» + 29(1-e~2e)k k

+ _ (1_e-29)2
2 (9 2+n 2k l 2) 2

(68)

Substituting in (35) we get
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xy
[k;N;M] = 02[k;N;M]

9(9-1+e"2e)
M-1 1

M m=0 (92+u2(k+m) 2 ) 2

2a
+ ed-e-26)

n2(k+m)2

M m=0 (92+n2(k+m)2)3

9

M2 2

, M-1
(1-e-29)2r l

0 (92+it2(k+m)2)2

M2 2

n2(k+m)2 2

m=0 (92+it2(k+m) 2 ) 2
(69)

We are considering only cases for which the record length T is

much larger than the integral scale tT. This means that

9 >> 1 (70)

and since

M-1 i t 2 (k+m) 2 M-1 9 2 + i t 2 ( k + m ) 2 M-1 1
I < I = I

m=0 ( 9 2 +n 2 (k+m) 2 ) 3 m=0 ( 9 2 +n 2 (k+m) 2 ) 3 m=0 ( 9 2+it 2 (k+m) 2 ) 2

(71 )

the second term in (69) can be neglected in comparison with the

first. The error variance can therefore be well approximated by

IX . . -I «f

O r 1*1"" I I

cr2[k;N;M] * \ 92 I
M2 I m=0 ( 92+n;2(k+m) 2 ) 2

9 M - 1 1
I

m=0 ( 9 2 + n 2 ( k + m ) 2 ) 2

2 1 [M-1 n 2 (k+m) 2

*-Ai2 m=0 ( 9 2 + n 2 ( k + m ) 2 ) 2

( 7 2 )

Note that itk is not considered small compared to 9 in this

derivation.
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Using (55), (59) and (22) we can now reformulate (72):

a2[k;N;M] «
(Ato)2

 fk+M-1
<j>2(mAa)) + -

M 2 >• m=k 2

r Ad) k+M-1
I <|>2(mAa))

m=k

1 rAa) k+M-1

m=k

We define

M-1
= (k + ) Au

{ JJ (73)

(74)

and obtain the approximate result

a2[k;N;M] «
r 1 1
I - + -

(75)

In this equation we recognize the first term as (45). The two

following terms are corrections due to the finite record length

T. We may recast (75) in the form

a2[k;N;M] =
1

M
(76)

with

MO =2 (77)

The function \(o)^) varies between 1 and 2, such that \(0) =

\(<*>) = 2, and the minimum 1 is attained for GO* = 1/*T« Thus for

both a) -»• 0 and to^ •> » we have

a 2[k;N;M] = ( <()( u* ) Aw) 2
1
- + 2
M

(78)
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If we use the correction term 2 ( J 7 T ) 2 in (78) we make a conserva-

tive estimate of the effect of the finite record length. Consider-

ing (78) a good estimate of the error variance we have obtained

an expression which is just of the form we expected: the error

variance is close to being inversely proportional to the number

of degrees of freedom M except if the record length is too small.

Strictly speaking the result is valid only for power spectra of

the Cauchy form (55), and to investigate how generally (78) can

be applied to other power spectra, in Appendix B we have carried

through a similar analysis for a power spectrum of the form

(79)

where a is a positive constant and cT is given by (56). The con-

stant a is given by the constraint that the integral over <j>(o))

from -°° to + °° is equal to the variance a2* A simple calculation

shows that

r(a)
a = S% T~ . (80)

r(a )
v 2J

It turns out that for 1/2 < a < 1 (78) is still conservative in

the limits of small and large values of cô  and we therefore

suggest this equation be used in general. We can then define an

effective number of degrees of freedom Meff by the equation

1 1 «*
= — + 2(-l2 (81 )

Meff M

or

M
Meff ' r- (82)

1 + 2(0*/T)2M

and we see the effect of the "principle of diminishing return"

when M ~ (T/^T)2. In view of the fact that we in general will
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lose information about the curvature of the spectrum and also

introduce a bias by smoothing, we have demonstrated that there

is an upper limit to how large we want M to be.

5. GOODMAN DISTRIBUTIONS

Goodman (1957, 1963) has derived a number of important distri-

butions connected with sampling in complex Gaussian processes.

Particularly interesting to us among these results is the distri

bution of the so-called sample coherence of two complex observa-

tion sequences, defined by

IIn j =
I X [ J ] Y * [ J ] | 2

z2 =

(" X |X[J]|2)(- I |Y[j]|2)
n j = 1 n j = 1

(83)

In this expression (x[j], Y[j]), (j=1,...,n) are identically dis-

tributed complex Gaussian random variable pairs. In the Cartesian

expressions

X = Xr + i

Y = Yr + i

(84a)

(84b)

we shall require that the real random variables Xr, Xi, Yr,-Yj_,

are distributed four-variate Gaussian with zero means and a dis

persion matrix with the following structure

V =

0

0

<xcxcry

a0x0y

aa x a y

0

0

(85)

This equation causes some restrictions on the complex variable

pair (X,Y). On the stated assumptions, Goodman (1957) worked
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out an expression for the probability density function of Z, the

square-root coherence:

2(1- Y
2) n • Y

2k((n+k-1)l)2

q(z) s z(1-z 2) n~ 2 I z 2 k ,
(n-1)!(n-2)i k=0 (k!)2

(86)

where

|<XY*>|2

Y2 = (87)
<XX*XYY*>

is the true coherence. The probability density function p for the

quantity U = Z2
f which in our terminology is the sample coherence,

is easily derived from (86) since

dz 1
p(u) * q(z) = q(z) . (88)

du 2z

(Unfortunately, in Goodman's report there is notational confusion

between Z and Z 2). The probability density function (86) and

many similar distribution results were derived with the aid of

the complex Wishart distribution (see Goodman (1963)) which has

a relatively simple characteristic function. In (87) "<>" means

expectation and is in fact the same operator as the ensemble

averaging used in our previous sections. For the variance we

shall use the notation Var[ ] here. Note that the expression

(87) is the theoretical or "true" coherence between X and Y, in

contrast to the estimated or measured coherence given by (83).

A coherence estimator based on the block-averaged spectral esti-

mates given in section 3 is

.XXyl>;N;M]|
2

2 = , (89)
Xxx[k;N;M] Xyyl>;N;M]

valid for the frequency coĵ  (or rather co* , see (74)). We shall

presently show that such an estimator is approximately compatible

with (83) - (85). With this proviso we may proceed to draw in-

ferences from the probability density expressions (86) and (88).
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In (83) and (86) n plays the role of the number of degrees of

freedom, a quantity we denoted M and to which we paid much atten-

tion in sections 3 and 4, We shall later compute <Z2> as well as

Var[z2] and find asymptotic formulas for these statistics for

large n. Though Xxy[k'N/#M] a s stated in (28) - (29) is a block

average it may in a first approximation be considered as a simple

average over M statistically independent terms x[j;N]y*[j;N] •

In the Cartesian representation of the Fourier amplitudes x[j;N]

and y[j;N]:

x [ j ; N ] = x r + i x i i (90a)

y [ j ; N ] = y r + i y i J , (90b)

we must show that the distribution of (xr,Xj>,yr,yj>) is joint

Gaussian with a dispersion matrix V of the same structure as (85).

The Gaussian property holds approximately for the same reason as

given in connection with (33), If in (36) and the approximate

relation (43) we let k1 = -k" = j it follows that

<x[ j ;N]y [ j ;N]> - 0 (91)

o r , u s ing (90)

< x r y r - x^yjL> + i<x r y^ + ^ iYr > ~ ^ • (92)

Consequent ly ,

<x r y r > = <Xiyi> = no (93)

and

<x r yi> = -<5ciyr> = M (94)

If we l e t x = y in (93) we deduce t h a t

<xr> = <x i> = ax (95)

and
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= a. (96)

Similarly, x = y in (94) yields

<xrxi> = <yryi> = 0 . (97)

Now we are equipped to construct the dispersion matrix of (xr,

becomes

V =

o

0
2

y

\x

0

0

(98)

We see that it fulfills the requirements of (85)f permitting

Goodman's theory to be used.

A natural question to ask at this point is: In what manner does

the refined analysis given in section 4, which ended up with

the "effective" number of degrees of freedom Meff in (82), af-

fect the validity of the heuristic justification given for the

use of Goodman's distribution results? It is not easy to give

an exact treatment of this issue. Though Meff was derived from

a study of the error variance, it seems very plausible that a

good approach will be to take n = Meff in Goodman's formulas,

and we believe that this procedure will account for the essen-

tial features of coherence sampling. The very fact that (82)

need not assign an integral value to Meff precludes an exact

treatment; however, we shall assume for simplicity that hence-

forward n = Meff is a given natural number.

We observe that by (88) and (86) p(u) can be expressed by a

hypergeometric function:

p(u) = (n-1)(1-Y2)n(1-u)n"2 F(n,n;1;y2u) . (99)

When n = 1 (99) degenerates to p(u) = 6(1-u), expressing that

u = 1 with probability one (cf. remark in the Introduction).
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Amos and Koopmans (1963) have devoted much effort in devising

sophisticated computational procedures for (86), and they give

extensive tables for q(z) for a range of values of z, n, and y

However, we are more interested in U = Z 2 than in Z itself. We

notice that by use of the well-known hypergeometric relation

F(afb;c;x) = (1-x)
c~a~"b F( c-bf c-a;c;x (100)

(99) can be written as a finite sum:

p(u) = (n-1)
(1-Y 2) n (1-u)n-2 n- (n-2)2...(n-k)

I
(1-Y 2u) 2 n~ 1 k=0 (kl)2 Y

2 k u k .

(101)

Equation (101) is well suited for a direct calculation of the

probability density, at least when n is not excessively large.

In this way we computed the graphs in Figure 2, which show p(u)

for n = 5f 10, and 50 degrees of freedom, and for the "true" co-

herence Y 2 = 0.1, 0.5, and 0.9.

We have also investigated the sample phase $s. This may be de-

fined with reference to (83) as

1 n
arg(- I x[j]Y*[j]) (102)

n j =

We shall consider the distribution of 4>s, or rather its devia

tion from the "true" phase <l>0,

<t> = • « - (103)

where

0 = arg<XY*> . (104)

Fig. 2. Probability density p(u) for the sample coherence U=Z2

for three values of the true coherence: 0.1 (dashed line), 0.5

(solid line), and 0.9 (dot-dashed line). The corresponding true

coherences y2 are shown. The three frames correspond to different

numbers of degrees of freedom.
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Based on the previously discussed assumptions, Goodman (1957)

found that the probability density function for <|> is:

(1- Y
2) n - 2k-1Y

k T(n+k/2) r(1+k/2)
p((p) = £ coskcp , (105)

n(n-1)! k = 0 k!

where cp ranges over the interval {-%,%]. Figure 3 shows p(cp) for

n = 5, 10 and 50 degrees of freedom, and for y2 = 0.1, 0.5 and

0.9.

The joint probability density function for sample coherence and

phase is also found in Goodman (1957) (apart from the variable

transformation U = Z 2):

( 1 ~ Y 2 ) n oa Y
p(u,cp) = (1-u)n~2 I u k / 2 coskcp.

2 i t ( n - 1 ) ! ( n - 2 ) l k = 0 k!
( 1 0 6 )

We see from this expression that sample coherence and phase are

uncorrelated.

6. COHERENCE AND PHASE STATISTICS

Inspection of Fig. 2 reveals several interesting features of

the sample coherence. The probability density function (99) is

broader and more skew, the smaller the true coherence or the

smaller the degrees of freedom. We suspect that the mean, mode,

and median for a particular probability density function charac-

terized by the true coherence y2 and degrees of freedom n are

all greater than the true coherence, and the more so the smaller

Y2 and n. If this is true there will be a general tendency to

overestimate the coherence experimentally, unless this is taken

Fig. 3. Probability density function p(cp) for the sample phase

deviation <t> for three different values of the true coherence:

0.1 (dashed line), 0.5 (solid line), and 0.9 (dot-dashed line).

The three frames correspond to different numbers of degrees of

freedom.
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into account. Figs. 2 and 3 show that the widths of the prob-

ability density functions for the sample coherence (83) and the

sample phase (102) are both decreasing functions of y2 and n.

In this section we will therefore determine all these quantities

to develop a practical tool in judging how large n should be in

a particular experiment and also possibly in making corrections

for bias of the sample-coherence estimate of the true coherence.

First we shall present analytical results for the moments a« and

a^, where

1
am = / um p(u) du (107)

o

The necessary algebra is somewhat involved, in particular for

a^. For details we refer to Appendix C. Here we just quote the

results:

n - 1
a 1 = 1 ( 1 - Y 2 ) n F ( n f n ; n + 1 ; y 2 ) ( 1 0 8 )

n

a n d

n
ou = 1 - ( 1 - y 2 ) n ( n - 1 ) f F ( n + 1 , n ; n + 2 ; y 2 )

Z ln+1
n-2

F(n,n; n+1; Y
2 ) \ • (109)

n

Equation (108) is at the same time the expectance of U = Z2,

<Z2> = a., , (110)

Fig. 4. Ratios of the expectance (solid line), the median (dotted

line) and the mode (dashed line) of Z2 to the true coherence y2

as functions of the number of degrees of freedom. The three

frames correspond to three different values of y2.
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whereas the variance of Z2 is computed from

Var[z2] = a2 - a-| . (111

In devising algorithms for (108) and (109) we found it useful

to recast these formulas in terms of the incomplete beta func-

tion (see e.g. Kristensen et al. (1983), Appendix A).

Bx(a,b) = J t
a~1(1-t)b~1 dt , (112)

o

for which there is the relation

xa

Bx(a,b) = F(a,1-b; a+1 ; x) . (113)
a

The r e s u l t s were

<Z2> = tt1 = 1 - ( n - 1 ) ( ) n B _ ( n , 1 - n ) , (114)
2 v 2

a2 = 1 " (n-1) ( — ) n ( n — - B (n+1,1-n)
Y2 I y2 Y2

- (n-2) B ,(n,1-n) } , (115)

and

r 1 ~ Y 2 n f n

Var[z2] = (n-1) f ) B ,(n,1-n) < n
V 2 V* I

1-Y2 n 1 1"Y2 I
-(n-1) ( ) B ,(n,1-nU + n . (116)

y2 Y J Y2

From (114) and (116) it is possible, after lengthy calculations,

sketched in Appendix C, to derive asymptotic results for <Z2>

and Var[z2] for large n:
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Fig. 5. Ratio of the asymptotic expression (117) to the exact

expression (114) as function of the number of degrees of freedom

for three values of the true coherence y2: 0.1 (dashed line),

0,5 (solid line) and 0.9 (dot-dashed line).

1
<Z2> = y (1-Y2)2 + 0(n-2) (117)

n

and

1
Var[z2] - — 2Y

2(1-Y2)2 + 0(n~2)
n

(118)

We see that Z2 is asymptotically unbiased and taken together

(117) and (118) express that the limiting form of the probability

density function p(u) = pn(u) is

lim pn(u) = Poo(u) = 6(U-Y 2) r (119)

a result which one would naturally anticipate.

The expressions (114), (116), (117) and (118) are illustrated

in Figures 4, 5, and 6. In Fig. 4 we have shown, as functions

of the number of degrees of freedom, the expectance <Z2>, the
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median value of Z2 (50% fractile) and the mode of Z2 (the event

for which the probability density function has maximum), all

divided by the true coherence y2 • We have selected three differ-

ent values of y2, 0.1f 0.5 and 0.9. From this figure we conclude

that/ except perhaps for the smallest values of the true coher-

ence/ we will overestimate the coherence by just applying "eye-

ball fitting11 to experimental data, no matter whether this fit-

ting is unconsciously based on the expectance, median, or mode.

A bias correction to the fit may be obtained by use of (114) or

(117). The last equation is considerably easier to use in cases

where it is accurate enough. Figure 5 indicates when this is the

case. Here we show for y2 = 0.1, 0.5f and 0.9 the ratio of ex-

pression (117) to (114) as a function of the number of degrees

of freedom. Somewhat dependent on the value of y2 it seems that

if the number of degrees of freedom is greater than about 10

then the approximate equation (117) for <Z2> is sufficiently

accurate to estimate the positive bias and the appropriate cor-

rection needed.

Figure 6 illustrates (116) and (118). Instead of the variance

we have chosen to show the standard deviation, i.e. the square

root of Var[z2]. Again, we see that for a number of degrees of

freedom of 10 or more we can use the asymptotic expression (118)

to estimate the standard deviations when we analyse our exper-

iment.

A sketched outline of the deduction of the following results

for the phase is given in Appendix C. First we notice that for

symmetry reasons we have

= 0 (120)

Fig. 6. Standard deviation of Z2 as function of the number of

degrees of freedom for three different values of the true coher-

ence y2: 0.1 (top frame), 0.5 (middle frame), and 0.9 (bottom

frame). The solid lines correspond to the exact expression (116)

and the dashed lines to the asymptotic expression (118).
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and consequently

Var|>] =

The e x a c t formula fo r Var [<t>] i s compl i ca t ed :

1
Var |>] = - %2

3

K . K

2 2
-1 )! k 2 2

(121

; Y
2

(122)

In the completely incoherent case Y = 0 (122) reduces to

1
Var|>] = - n2

3

corresponding to <t> equidistributed on {-%,%]. For small y (122)

gives the expansion

(123)

Var
1 r(n+i) n

= - n 2 - 2 n l / 2
 Y + - Y

2 + O(Y
3) .

3 (n-1)! 2
(124)

In the perfectly coherent case Y = 1 it can be shown from (122)

that

Var[<t>] = 0 f (125)

as was to be expected.

The variance of sin<() is simpler to compute than that of $ itself.

An objection against the use of Var[sin<)>] is that in using the

sin function we are unable to discern <|> from its supplement % - <j>.

However, in the most interesting cases we have sin<() « 4> and the

following simple result holds:

Fig. 7. Standard deviation of the phase deviation $ (solid line)

and sin<)> (dashed line) as function of the number of degrees of

freedom for three different values of the true coherence y2: 0.1

(top frame), 0.5 (middle frame), and 0.9 (bottom frame). The

dot-dashed line in the top frame shows the square root of the

approximate expression (124) for the variance of $.



- 41 -

90

60 -

30 -

0

1 
1 

1 
1

**-

-

i

i

N
Y\

1

True coherence =

i i i p • i

= 0.

—•—-~—«

1

1 :

-

-

-

0 10 20 30 40 50

60

30 -

0

True coherence

0 10 20 30 40 50

15

10 -

5 -

0

True coherence

0 10 20 30 40 50



- 42 -

1-Y2

Var[sin<|)] = [1 - (1-y2)n~1] . (126)
2(n-1)Y

2

For y = 1 we again find that the variance is zero. Equation (126)

can also be written as a polynomial in y2:

1 1 n-1 n
n

Var[sin<t>] = - + I ( - 1 ) k ( ) Y
2 k • (127)

2 2(n-1) k=1 k + 1

For Y 2 6(0,1) and large n we have the asymptotic result

1-Y2
Var[sin4>] « . (128)

2ny2

For completeness we also quote the statistics for cos<|):

r(n+|) 1 / 2 1 3
<COS(|)> = % (1-Y2)n Y F(n+-,-;2;y2) . (129)

2(n-1)! 2 2

From (129) and the relation

<cos2<i>> + Var[sin*] = 1 (130)

we may then ca lcu la te

Var[cos<t>] = <cos2<|>> - <cosc()>2 . (131)

Figure 7 shows Var[<t>] and Var[sin<|>] as functions of the degrees

of freedom for y2 = 0 . 1 , 0.5 and 0.9 . In the top frame the ap-

proximate expression (124) for Var[<t>] i s a lso shown. Figure 7

also shows tha t (124) i s a poor approximation except for small

values of the number of degrees of freedom and the t rue coher-

ence.
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7. CONCLUSION

We can now return to our original question: How large must the

number of degrees of freedom M be to obtain a good estimate of

the spectral coherence?

First we note that any smoothing of spectral estimates will in

principle destroy information about the fine structure of the

spectrum* In other words, the larger we permit M to be in order

to improve the statistical confidence the higher will be the

chance that we make a simultaneous spectral distortion and lose

significant information. As there is an upper limit to the ef-

fective number of degrees of freedom Meff for a given record

length T, we conclude that there probably is an optimal value of

M in most cases for which we can obtain a good statistical esti-

mate without sacrificing too much information. Just how large is

this value of M depends on the particular circumstances. We have

given a few quantitative tools to aid in this judgment. One is

(31), which gives an estimate of the bias that is introduced

because of the curvature of the spectrum. This bias is propor-

tional to the square of M. Another is (46), which shows that the

standard error of a smoothed spectral estimate is approximately

inversely proportional to the square root of M, or rather the

square root of Meff. Finally, the effect of the final record

length on the statistical dependence between "raw" spectral esti

mates has been discussed in a refined analysis in section 4.

From this we learned that the effective number of degrees of

freedom Meff is less than M. We also suggested that an approxi-

mate relationship (82) between them exists. Equation (82) shows

that the upper limit to Meff is (T/$")
2/2, where 5T is the inte-

gral scale. Often it is possible to obtain an approximate value

for & and we suggest that M is never chosen larger than (T/^)2

since the statistical confidence is not improved significantly

by using larger values and also there is subsequent penalty in

that information is destroyed.
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Assuming that we have determined an upper limit to M by taking

the considerations above into accountf we can use the results

from section 6 to make the final decision as to how large M

should be. If we specify the standard error, (118) or, if necess-

ary, (116) will tell us, for a given value of y2, how large M = n

must be. We also showed in section 6 that for a finite value of M

we will always overestimate the coherence. It is possible, how-

ever, to determine how much this overestimation amounts to by

using (117) or, if necessary, (114). These expressions relate the

true coherence y2 to the sample coherence Z2 (strictly speaking

the ensemble value of Z2) and they can be solved for y2.

If we want to provide confidence intervals we must use the re-

sults from section 5, where the probability density functions

for the coherence and the phase are given. In this connection

it should be pointed out that, in particular for small values

of the coherence and the degrees of freedom, the sample coher-

ence is very far from being Gaussian.

With these remarks we consider the discussion about the statisti-

cal uncertainties of experimentally determined coherences con-

cluded.
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APPENDIX

We collect here a number of mathematical auxiliaries which with

their rather technical nature would be inappropriate in the main

text. The following material, which falls naturally into three

parts, may serve to document our findings; some of the equations

and their derivation might be interesting in their own right.

A. Trigonometric Integrals

We shall prove the following two integral formulas

I• sin(x'-x) sin(x"-x) sin(x"-x')
dx = % (A1 )

-co x'-X X"-X X M-X'

and

i <*> sin(x'-x) sin(x"-x) 1
dx =

'-co x'-X X"-X 1 +(x/9) 2

sin(x"-x'
9(292 + x'2 + x"2)

2(92+x' 2)(0 2+x" 2) x"-x'

- ( e2-x'xII)cos(xll-x' )

+ e*"2e[(92-xlxll)cos(x'+x") - e(xl+x")sin(x'+x") ] I . (A2)

In (A1) and (A2) x1 and x" are real numbers, and 0 is real and

positive. Not even (A1) could be found in standard integral

tables. Of course (A1) comes out as a limiting case of (A2) when

9 •> °°, once the latter is established. But (A1 ) is easily proved

directly: The first factor in the integrand can be written

sin(x'-x)
( ' ) t (A3)

x'-x 2 -1

1 M
= _ ei(x'-x)t
2 1

and similarly for the other. By reversing the order of integra-

tion, introduction of 6 functions, and once more use of (A3),
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(A1) follows. The proof of (A2) is more complicated. We write

the left-hand side of J of (A2) as the sum of two Cauchy prin-

cipal-value integrals

J = J-j + J2 (A4)

where

1 , • 1 1
J-| = - cos 2a -- yT5—\ " dy (A5)

2 J-oo 1 + (. ) y2 _ a2
9

and

<=o ' cos2y
J2 •-It 1 J. r V 2 2

e
J

and where we have introduced the new parameters

1
a = - (x" - x') (A7)

2

and

1
b = - (x1 + x") (A8)

2

To evaluate (A5) and (A6) let us consider the integral

GO

(A9)
OO

f °°J3 = J3(a,p,c) = 0(x)cosx dx,
J — 00

where

0(z) = . (A10)
(z-a)2 + p2 z2 + c2

a and p are real with p > 0; we temporarily assume c real and

positive. 0(z)elz is analytic in the halfplane Im(z) > 0 except

for simple poles at z= ic and z = a + ip where the residues are
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,-c
R1 = (A11)

(ic-a)2 + p2 2ic

and

R2 = . (A12)
2ip (a+ip) 2 + c2

Contour integration yields

L
00

00

0 ( x ) e i x dx = 27ni(R1 + R2) , (A13)

and if we take the real part of (A13) we get

p c [ ( a 2 + p 2 + c 2 ) 2 - 4 p 2 c 2 ]
f ( A 1 4 )

which, by analytical continuation, extends to all complex c for

which (A14) is finite. We now apply the operator J3(a,p,iy) +

J3(a,p,-iy) to (A14) and substitute k(a,p,YrX) for (a,fl,y,x) in

the integral (A9) (k > 0). Then we get

f. coskx
dx =

(x-a)2+p2 x2-y2

-psinky( a2+P2+Y2) + ye"k P [ ( a2- p 2 - Y2)coska+2apsinka]
(A15)

In particular we find for k •*• 0:

£ dx = — . (A16)
» (x-<x)2+p2

 X 2 - Y 2 P U 2+p 2 -Y 2 ) 2 +4p 2Y 2

(A16) and (A15) are applied to express (A5) and (A6):

b2-92-a2

cos2a (A17)
(b2+92-a2) 2 + 492a2

and
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nQ 9sin2a(b2+92+a2) - ae" 2 e [(b2-92-a2)cos2b+2b9sin2b]
j 2 = — #

2a (b2+92-a2) 2 + 492a2

(A18)

Going back to the original parameters x1 and x" we arrive at

(A2). Numerical check calculations confirm the correctness of

this expression.

B. Reduction of Degrees of Freedom. Alternative Approach

In section 4 it was mentioned that the spectrum (79) also could

be analysed to yield information about the error variance and

effective number of degrees of freedom. The method we shall use

may be seen as an interesting alternative to the outline in

section 4 for the Cauchy case. It involves a temporary detour to

the time domain, exploiting the Fourier-transform duality between

power spectra and autocovariance functions:

1 r •
w) « R(T) e-lu* d-c , (B1 )

2% i -co

00

R( T) = [ + (o>) e i w x dw . (B2)
J— 0 0

We begin wi th (39) wi th x = y :

E[k\k";N] »

k " " k ' - sinUk'-coT/2) sin(nk"-MT/2)

•n;kl-uT/2 nk"-wT/2

(B3)

Using (B1) and (A3) we obtain
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E [ k ' , k " ; N ] =

K — K 1

[ ~ dt1 | 1 dt"R(t"-t')
(B4)

This integral is essentially the same as (4) and hence can be

recast immediately in the form (9):

k"—k ' 1i fl
E [ k ' , k " ; N ] » ( - i ) k - - k ' e

 N -
T

J.
T i-¥)) -i.k'+k-

(B5)
T Tt(k"-kl)

T -in(k'+k")nr

T J-T

e N 1 r T_ R(
n(k"-k') T J-T

dx.

(B6)

If the in tegra l scale $T<< T we have

E[k',k";N

i n ~
% e ^

Aw J • ( — (k'+k11)) Sk'k" " ~ —

1 r°° i i - -L.
x R ( T ) s i n d i C k ^ k 1 ) - L i ! ) ^ ^ ( k ' + k " ) Y d ^ ( B ? )

We s e e f r o m ( 3 5 ) t h a t we n e e d t o e v a l u a t e | E [ k f
f k " ; N ] | 2 a n d

|E [k 1 , - k " ; N ] ( 2 . T h u s we g e t
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| E [ k ' , k " ; N ] | 2 = ( A w ) 2 / <|>( k 1 ) [ • ( — k 1 ) -
IT L T

2 -» T 2 n
R( x) - c o s ( — k1 x) d t

w Jo T T
6k'k"

1

n2(k"-k' )2

r 1 . • | x\ x . 2
R( T)sin(i t(k"-k ') ) cost n(k'+k" )—) d-c

2% J - oo

(B8)

a n d

| E [ k ' , - k " ; N ] | 2 = (Ao>) 2

t t 2 ( k ' + k " ) 2

r _
L 2% i :

T | T 2
) cost Tc(k"-kf )—) dt . (B9)

T J

Note t h a t t he re i s only one term in (B9) s ince according to (35)

both k1 and k" a re p o s i t i v e . We need the sum S of (B8) and (B9)

and wr i t e i t in the form

S [ k l
f k H ; N ] = | E [ k f , k f f ; N ] | 2 -I- |E [ k 1

 f - k l f ; N ] | 2 =

2%
(Aoo)

n J
k 1 ) • ( — k 1 ) I R( T) — c o s ( — k ' - u ) d%

L J
6k 'k"

1 1 _ 1 » 2u 1 " 2% _ 2
+ R(T)s in (—k"-r )d ir | R ( - c ) s i n ( — k ' t ) d T

%2 ( k " - k ' ) 2 L 2% Jo T 2% Jo T

1 1

i i 2 ( k ' + k 1 1 ) 2

.1 °° 2 it 1 oo 2-n; 2
— [ R ( x ) s i n ( — k ' t j d t + — f R(T)sin(—k"ir)dT 1 1

.2% Jo T 2% Jo T J J

(B10)

The integrals in (B10) are cosine and sine-transforms of R(T)T/T

and R(-c), respectively; the first follows from the second by deri

vation, but neither are sufficient to reconstruct R(x) and



- 52 -

In view of this we are unable to pursue the general development

further and are forced to assume, as in section 4, a particular

form of the spectrum in order to obtain a useful expression for

the error variance. We take (79) - (80) as a slightly more

general spectral shape than (55). Note that a = 5/6 corresponds

to the von Karman spectrum and a = 1 to the Cauchy case. Using

(B2) we get

2 a
R ( T ) =

r(a-i)
a T N a-

sr (B11)

where Kv is the modified Bessel function of the second kind

(for convenience we assume T > 0). If we substitute (B11) in

(B10) and use the two formulas (see e.g. Gradshteyn and Ryzhik,

1980f p. 747):

i
CD

i(x)cospxdx

and

00

f xa~*K i(x)sinpxdx = 2
Jo

1
a ~ * pr(

we f i n d

1
- (B12)

3

2
(B13)

S [ k ' , k " ; N

29 it

2%
— 1
T

2a-1

1 3

2 ' '2

2a-1
— k ' )
T e - n

1 3

2 '2

P" -

3

' 1

+ p"

1 3

2 ' ' 2

6k'k"

(B14)

where
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= 1 ( B 1 5 )
1 p" J T a <• k" J

2n $* , k'
=

p J

and

2 ii a2T 1
• (—k1) = . (B16)
T % (1+p l 2) a

We first evaluate s[k',k";N] for small and large values of p'

and p".

p' << 1 and p" << 1;

In this limit we have

F(a + 1 / 2 , 1 ; n / 2 ; - p 2 ) = 1 (B17)

so that

a2®' , 2a-1 1 ! 2a-1 1
s [ k ' , k » ; N ] « (Aw)2 ( ) 2 J(1 - ) 6 k . k «

\ 2
) k k (

2 9 2 a2 8

(B18)

p' >> 1 and p" >> 1:

Here we use the well-known continuation formula for hypergeometric
functions:

r(c)r(b-a)
F(afb;c;z) = (-z)~a F(a,1-c+a;1-b+a;z"1)

r(b)T(c-a)

r(c)r(a-b)
b F(b, i-

r(a)T(c-b)
(B19)

This gives
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1 n
(-,1,-;

(1+0(p~2))
f

I1
-a)

n-1
—

n-2

2a-1
p"2 } • (n=1,3)

(B20)

We shall assume a > 1/2, and keeping only the dominant term we

get

1 n
-,1;-
2 2

n~2

2 a-1
p" 2

Further, we have for large p

(B2 1)

-2a
•n;

Substituting in (B14) we get

• 2 ( a-1 )
1 +

(B22)

1 1 1

2 ( a 2 9 ) 2 p ' 2 p"

(B23)

Combining (B18) and (B23) and reintroducing (B16) we can write

S[k' ,k";N] =
2 it
— k1
T

2a-1 i 2a-1
- ~ ) Vk« + r(—r-)2 ' 1 O II,P" << 1

p'2(a-1) pi 2(o-1) pn 2( a-1)
1 ,P" >> 1

(B24)

The error variance (35) becomes
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1 M-1 M-1
o2[k;N;M] = I I S [k+m1 ,k+m" ;N ] « J HuJAo) 1 *

M2 m'=O m"=O I J

2a-1 1 1 2a-1 a T
— )2 , k « -

a2e M 2 a2e 2%

A / 1 \ 1 a T
n+T" ( ) ) - + - ( ) — ~ r k » — -,

a2e a M 2 a a402 2%

(B25)

where u)̂  is given by (74). We assume, as stated before, that

0 >> 1, but not necessarily that 9 >> /fiT. Therefore, for a < 1,

we can write

o r . _ _ _ i f . .. 1 2
0 Z [k;N;M] « j <t>( co* ) Aw 1

1 2 a - 1 c^ a).c/

M a2 T
) 2 (^)2 for

a
(B26)

- + 2 (-1-) (2)2 for -^— » 1
M ak a T a

We see that when a is greater than 1/2 and also bounded away from

this limit then (78) is a conservative estimate in both frequency

limits.

C. Derivation of Statistics in Goodman Distributions

In the following we shall give the necessary justifications of

the results presented in section 6.

Equation (108) is derived from (99) and (107) by term-by-term

integration, g iving
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1 » (k+n-1)! k+1
a-, = (1-Y2)n I Y2k , (CD

(n-1)! k=0 k! k+n

followed by use of the identity

k+1 n-1
= 1 . (C2)

k+n k+n

Similarly we find

1 <» (k+n-1 )! (k+1)(k+2)
«2 = d - Y 2 ) n I Y2lS (C3)

(n-1)! k=0 k! (k+n)(k+n+1)

which by the identity

(k+1)(k+2) n-1 n-1 (n-1)2

= 1 + (C4)
(k+n)(k+n+1) k+n+1 k+n (k+n)(k+n+1)

is transformed into

<x2 = 1- (1-Y
2 ) n { F(n+1,n;n+2;Y

2)

n-1
F(n,n;n+1;y2)

n

(n-1)2 ,
F(n,n;n+2;Y

2) j . (C5)
n(n+1)

The last F function can be expressed in terms of the two others

by aid of the fifth Gaussian contiguity relation:

(c-a-1)F + aP(a+1) - (c-1)F(c-1) = 0, (C6)

resulting in (109).

From (111), (114) and (115), we compute
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1-Y2 n r r 1-Y2

Y
Var[z2] = (n-1) ( )" B , (n, 1 -n) / n- ( n-1 ) ( )" B 0(n,1-n)l

Y2 L y I Y2 ' J

n
B „ (n+1,1-n)

2 Y2
(C7)

and equation (116) is obtained from (C7) by use of the recurrence

relation

3 1

Bx(a+1fb) = Bx(afb) xa(1-x)b , (C8)
a+b a+b

which is derived from Abramowitz and Stegun's (1964) formula

26.5.16 p.944; in this way B 2(n+1,1-n) is eliminated.

In the derivation of the asymtotic expressions (117) and (118)

let us write x for y2 for convenience and introduce the quantity

1-x n

U(n,x) = (n-1) ( ) Bx(nf1-n)
x

n-1
= (1-x)n F(nfn;n+1;x) (C9)

n

By Rummer's relation,

x
F(a,b;c;x) = (1-x)~a F(afc-b;c; ) (C10)

x-1

(C9) is transformed to

n-1 x
U(nrx) = r P(nr1;n+1; ) . (C11)

n x-1

Nowf if x £ [0,1/2)(this restriction is relieved in the final re-

sults by analytical continuation), (C11) can be expressed as the

convergent series
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1 x

U(n,x) = (n-1) I ( )
k=0 n+k x-1

(C12)

We shall make use of the expansion

1 1

n+k n

kr

n n s + 1
(C13)

and the identities

00

I yk = d-y)"1

k=0
(C14)

00

I k y k = y ( 1 - y ) " 2

k=0
(C15)

oo

I k 2 y k = y ( 1 + y ) ( i - y ) " 3 ,
k=0

(C16)

oo

I k 3yk =
k=0

(1+4y+y2) , (C17)

all of which can be deduced from the summation formula

oo

I k(k-1)...(k-r+1) yk = r!yr(1-y)"r"1

k=0
(C18)

To e v a l u a t e <Z2> a s g i v e n i n ( 1 1 4 ) we l e t s = 1 i n ( C 1 3 ) , s u c h

t h a t (C12) g i v e s

n-1 °° ^
U = U ( n , x ) = I (1 — ) y k + 0 ( n " 2 ) ,

n k=0 n
(C19)

w h e r e
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y =
x-1

(C20a)

x =
y-1

By (C14) and (C15), (C19) becomes

(C20b)

1
U = (1-y)-1 - - (1-y)~ 2 + 0(n~2)

n

(C21 )

We get

1
<Z2> = 1-U = x + - (1-x) 2 + 0(n~2) ,

n

(C22)

which is equivalent to (117). To derive (118) it is necessary

to take s = 3 in (C13). Then

n-1

n k=0 n
hi

3 (C23)

and by (C14) - (C17) , we o b t a i n

U = ( 1 - y ) " 1 - - ( 1 - y ) - 2 + ~ r 2 y ( 1 - y ) " 3

n n

n
2y(1-y)"'4 (C24)

From (116), (C9) and (C20) we get

1-y
Var[z2] = U ( n2 + n - u) - n2/y + n/y

y
(C25)

When (C24) is inserted in (C25) we see, after reduction, that

1
Var[z2] = 2y(1-y)~3 + 0(n~2) ,

n
(C26)
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which is equivalent to (118).

Next we shall consider the calculations involving the phase sta-

tistics. We first observe that there is an alternative expres-

sion in Goodman (1957) to p(cp) in (105):

d - Y 2 ) n r ns rr(i)r(n+*)
P(<P) =

2% L (1-s2)n+

rr(i)r(n+J) -,.
\ ± B 2(J,n+i) \ ,
L n! s 2 JJ

(C27)

where

s = -ycoscp (C28)

In (C27) the sign " + " should be selected if |cp| € [0,iii], and "-"

if | cp | 6 [jitfit]. Equations (105) and (C27) were derived by con-

traction of joint probability densities over different coordinate

variables. It is possible to resolve the sign ambiguity in (C27)

by (113):

B 9(1/2,n+1/2) = 2 | s | F(1/2,1/2-n;3/2;s
2) . (C29)

s z

This results in

(1- Y 2 ) n
r ns rr(i)r(n+J) „

p(cP) = U — - 2sF(1/2,1/2-n;3/2;s2)U>
2% I (1-s)n+iL n! JJ

(C30)

Equation (C27) is well suited for a calculation of p( ) itselff
but we prefer (105) for moments calculations. For the variance

of $ we find

( 1 _ Y 2 ) n a, 2 k" 1Y k T(n+k/2)r(1+k/2)
Var[<D] = I I k, (C31)

n(n-1)! k=0 k!

where
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—• <

1t

-11

k
k

(p2cosKpdtp = ( -1)
2 it

r=0 rI )

3 , k even

0, k odd

Equation (C32) follows from the expansion

1
k J (C32)

in conjunction with

-n

k

r=0 r

•{
2n2/3

(-Ds

(C33)

s » 0

s * 0

(C34)

When (C32) is inserted in (C31) we arrive, after some algebra,

which includes the identity

1 00 ( n + m - 1 ) !
2m = (i-Y2)-n (C35)

(n-1)! m=0 m!

to the expression

Var[* ] =

1 %2
2 ( 1 - y 2 ) n

(n-1)! k=1

-
2

(k-1)! k2
;y 2),

(C36)

which in turn is transformed to (122), when (100) is used. To

derive (125) (the perfectly coherent case) we use the well-known

identities
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r(c)r(c-a-b)
F ( a , b ; c ; 1 ) = (C37)

r(c-a)r(c-b)

and

« 1 It2

I (-i)k = (C38)
k=1 k2 12

The variance of sine)) is computed in the same way as Var[<|>]f but

the algebra is simpler and leads to the series

1 (1-Y2)n °° ( )
Var[sin*] = - I Y2m • (C39)

2 (n-1)! m=0 (m+1)!

This can be reduced furtherf as we infer from (C35)

• (n+m-1)! 1 _n+1

I Y2m = (n-2)l [d-Y2) " 1] (C40)
m=0 (m+1)! Y2

whereafter (C39) can be written in the form (126).

We shall finally give a short account of the numerical procedures

used for evaluating the three location parameters for the sample

coherence Z2: expectance, median and mode. These were mentioned

in section 6 and illustrated in Fig. 4.

The expectance E [ Z 2 ] = <Z2> is computed directly from (114). The

median u = Ui is a special case of the a-fractile u = ua de-

fined as the solution of

F(u) = a, (C41)

where the cumulative distribution function F(u) is found by in-

tegrating (99) :

u
p(t)dt = (n-F ( U ) * ~ M V U / V - I U — V 11 "" i / V • I / /. I " n V * . • i »»i iy T .

r(n+r-1)n+r- i j !-, i

B
n-r)!r!-l

2 rY
r=0

(C42)

The equation (C41) is solved numerically by a Newton-Raphson

process:
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F(uk) - a
>

P(uk)

a sensible initial guess for the median will foe

uo = Y
2 • (C44)

The mode u = u* is the point (if it exists) where

p'(u) = 0 . (C45)

u* is the most probable outcome in a single realization. Using

the derivation formula for hypergeometric functions

d ab
—F(a,b;c;z) = F(a+1,b+1;c+1;z) (C46)
dz c

we are led to solve

tp(u) =n2Y2(1-u) F(n+1 ,n+1 ;2 ; Y 2U)

- (n-2) F(n,n;1;Y2U) = 0 . (C47)

Like (C41), (C47) is solved by the Newton-Raphson method:

tp(uk)
"k+1 = uk * (C48)

with the initial iterate this time chosen by the empirical rule

9 1
uo » min(Y

2 + -, 0.99) .
n

For the derivative of V we find the following expression,

cp'(u) =-[n(n+1)]2 Y**(1-U) F(n+2,n+2;3;Y2U)
Art

- n2(n-1)Y2F(n+1rn+1;2;Y
2U) . (C50)

For n < 2 the mode u* does not exist. For n > 2 the distributi

is unimodal.
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