Characterization of Emericella nidulans RodA and DewA hydrophobin mutants

Jensen, Britt Guillaume; Nielsen, Jakob Blæsbjerg; Pedersen, Mona Højgaard; Søndergaard, Ib; Frisvad, Jens Christian; Nielsen, Kristian Fog

Publication date:
2011

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Characterization of *Emericella nidulans* RodA and DewA hydrophobin mutants

Britt Guillaume Jensen*, Jakob Blæsbjerg Nielsen, Mona Højgaard Pedersen, Ib Søndergaard, Jens Christian Frisvad and Kristian Fog Nielsen. Department of Systems Biology, Technical University of Denmark, Denmark, *brgj@bio.dtu.dk*

Hydrophobins are small amphiphilic proteins containing an eight cysteine pattern only found in filamentous fungi. They are involved in the attachment of hyphae to hydrophobic structures and the formation of aerial structures. Five *Emericella nidulans* mutant strains were examined to study the two hydrophobins RodA and DewA. Individual knock-out mutants rodAΔ, dewAΔ and the double deletion strain rodAΔdewAΔ were constructed. Furthermore, two strains containing a point mutation in the first of the cysteines of RodA (rodA-C57G), where one was coupled to the dewA deletion, were included. The reference strain (NID1) and dewAΔ displayed green conidia. However, rodAΔ and rodAΔdewAΔ showed a dark green/brown conidial pigmentation, while rodA-C57G and rodA-C57G dewAΔ displayed lighter brown conidia. rodAΔ and rodAΔdewAΔ displayed a higher degree of hülle cells compared to the moderate amount observed for NID1 and dewAΔ, while rodA-C57G and rodA-C57G dewAΔ displayed a low number of hülle cells. NID1 and dewAΔ conidia were dispersed as spore chains. rodAΔ, rodAΔdewAΔ, rodA-C57G and rodA-C57G dewAΔ spores were associated in large clumps, where the conidia seemed to adhere to one another. The largest degree of spore clustering was observed for rodAΔ and rodA-C57G dewAΔ.