Conceptual Model for Life Cycle Sustainability Assessment

Bozhilova-Kisheva, Kossara Petrova; Olsen, Stig Irving

Publication date: 2012

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Introduction and Objectives

Life cycle sustainability assessment is a new field of application of life cycle costing together with life cycle costing and social life cycle assessment. The purpose of the study was to identify and to make a review of literature relevant to formulate a conceptual model for life cycle sustainability assessment (LCSA). The purpose of the model is to systematize and illustrate approaches to LCSA results calculation on the basis of the purpose of the assessment, the number of decision-makers, the level of assessment (micro, meso or macro), etc. The LCSA is understood according to the following formula:

\[\text{LCSA} = \text{LCA} + \text{LCC} + \text{S-LCA} \]

Materials and Methods

The study began with identifying the science fields, which could contribute both to the implementation and the development of a consistent methodology for LCSA. The following areas of interest were identified as relevant to contribute to the implementation and the methodology development for an integrated assessment of environmental, economic and social aspects in a life cycle perspective:

- utility theory and valuation of preferences (contingent valuation, willingness to pay, etc.),
- decision analysis,
- mathematics (including scoring, weighting, aggregation functions, composite indexes, game theory etc.),
- social choice theory,
- planning in the supply chain, etc.

The study relies mainly on secondary sources of information: books and articles and is based on a literature review of those.

Results & Discussion

The Supply Chain Planning Matrix (adapted from Fleischmann et al. in Stadtler et al, 2008)

GOAL & SCOPE DEFINITION: Ideally System Definition the Same for LCA, LCC and S-LCA

LIFE CYCLE INVENTORY (LCI): LCI, Supply Chain Analysis and Advanced Planning

- Raw materials -> Procurement
- Production
- Distribution
- Use stage

LCA Decision Context Classification (EU, 2008)

- Long-term: Situation A: Micro-level decision-support
- Mid-term: Situation B: Macro leve decision
- Short-term: Situation C: Accounting

The Supply Chain Planning Matrix (adapted from Fleischmann et al. in Stadtler et al, 2008)

INTERPRETATION of LCSA, LCC and S-LCA results depending on the goal of the LCSA and the area of application

- **Micro-level DM**: Product development & improvement;
- **Company’s sustainability performance improvement (eco-and socio-efficiency)**;
- **Other**

Meso-level DM: Strategic planning;
- **Public policy-making (municipalities, cities, sectors, etc.)**;
- **Other**

Macro-level DM: Strategic planning;
- **National/EU policy-making**;
- **Other**

IMPACT ASSESSMENT: Environmental and Social Life Cycle Assessment, no LCC LCA (Swarr et al, 2011) **FOCUS:** Social

Type 1 Indicators Selection:
- Top-down: Bottom-up

Type 2 Indicators Selection:
- Social impact pathways

Characterization:
- Company performance assessment:
 - Arithmetic aggregation of results/impact per stakeholder/impact

Supply chain assessment:
- Arithmetic aggregation of company performance per stakeholders/impact

Conclusion

The results from the analysis show that several methods and tools can be used to strengthen the implementation of LCSA and serve as a basis for the development of a robust LCSA methodology. When applying these methods or tools, the purpose should be to take advantage of their strengths and avoid or reduce the occurrence of their weaknesses, when applied to the field of life cycle assessment.

References

Acknowledgements: This paper is supported through the financial support of the European Commission in the framework of the FP7 Collaborative project Advanced Technologies for the Production of Cement and Clean Aggregates from Construction and Demolition Waste (C2A2), Grant Agreement No 265189.