Fast-writing E-beam for large arrays of nano-holes

Højlund-Nielsen, Emil; Clausen, Jeppe Sandvik; Christiansen, Alexander Bruun; Greibe, Tine; Mortensen, N. Asger; Kristensen, Anders

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Efficient nanoscale patterning of large areas is required for sub-wavelength optics. Here we use a fast-writing strategy described in [1], where electron beam lithography (EBL) with a focused Gaussian beam is used to define shapes directly. The serial technique is optimized for speed and pattern fidelity to a maximum writing speed of around 30 min/cm² for 200 nm periods in 2D lattices. The overall costs in terms of machine time and feasibility are assessed.

Single shot Exposure

 Conventionally, EBL uses multiple exposures of slightly overlaying spots. Instead, the fast-writing strategy uses the machine as a raster scan tool to write a large rectangle, using a beam step size larger than the spot size [1,2].

Validation and Experimental Results

The JEOL JBX-9500FS is a prototype EBL 100 keV system with electron-beam scanning speeds up to 100 MHz. Writing time tests of exposing 5 mm x 5 mm can be seen in Fig. 5 as function of dose. The effective current, that is the inverse slope is 28.0 nA, including time for calibration etc. Writing times are below 2 h/cm² and even a writing time of around 30 min/cm² for 40 µC/cm² can be achieved. Efficient calibration routines become imperative with this method.

Conclusion

An EBL writing time below two hours per cm² provides new possibilities where sub-wavelength structures can be used to provide functionality such as anti-reflective or plasmonic effects for large area applications in a cost-effective manner, similar to traditional parallel processing techniques.

Work was supported by the EC FP7 funded Plast4Future (Contract No. 314345) project.

References

Presenting Author

Emil Højlund-Nielsen

PhD-student

emiho@nanotech.dtu.dk