Fast-writing E-beam for large arrays of nano-holes

Højlund-Nielsen, Emil; Clausen, Jeppe Sandvik; Christiansen, Alexander Bruun; Greibe, Tine; Mortensen, N. Asger; Kristensen, Anders

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Fast-writing E-beam for large arrays of nano-holes

Emil Højlund-Nielsena, Jeppe Clausenb, Alexander Bruun Christiansena, Tine Greibec, N. Asger Mortensenb, Anders Kristensena

aDTU Nanotech, Oersteds Plads Bygning 345b 2800 Kongens Lyngby, Denmark
bDTU Fotonik, Oersteds Plads Bygning 343, 2800 Kongens Lyngby, Denmark
cDTU Danchip, Oersteds Plads Bygning 347, 2800 Kongens Lyngby, Denmark
E-mail: emiho@nanotech.dtu.dk

Efficient nanoscale patterning of large areas is required for sub-wavelength optics. Here we use a fast-writing strategy described in [1], where electron beam lithography (EBL) with a focused Gaussian beam is used to define shapes directly. The serial technique is optimized for speed and pattern fidelity to a maximum writing speed of around 30 min/cm2 for 200 nm periods in 2D lattices. The overall costs in terms of machine time and feasibility are assessed.

Validation and Experimental Results

The JEOL JBX-9500FS is a prototype EBL 100 keV system with electron-beam scanning speeds up to 100 MHz. Writing time tests of exposing 5 mm x 5 mm can be seen in Fig. 5 as function of dose. The effective current, that is the inverse slope is 28.0 nA, including time for calibration etc. Writing times are below 2 h/cm2 and even a writing time of around 30 min/cm2 for 200 nm periods in 2D lattices can be achieved. Efficient calibration routines become imperative with this method.

Conclusion

An EBL writing time below two hours per cm2 provides new possibilities where sub-wavelength structures can be used to provide functionality such as anti-reflective or plasmonic effects for large area applications in a cost-effective manner, similar to traditional parallel processing techniques.

Work was supported by the EC FP7 funded Plast4Future (Contract No. 314345) project.

References