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Motivation
Objectives

Why we started with this research topic?

Offshore structure and foundation failures
due to seabed instability (liquefaction) are
observed.

Integrated numerical modelling of
seabed-wave-structure interaction is
demanding.

OpenFOAM as an open source FVM
library facilitates the customer solver
developments.

Figure: An illustration of
wave-seabed-structure

interaction
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Motivation
Objectives

Our Goals

Current goal: Development of an efficient soil solver with
plastic soil deformation and pore pressure coupling.
Future goal: Multiphysics modeling by combining the
developed soil solver with existing fluid and structure solvers

Figure: The multiphysics solver structure using OpenFOAM
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Soil Mathematical Model
Governing Equations:

Total momentum balance for the soil mixture (steady-state)

∇ · σ −∇p = 0

Storage equation for pore fluid flow

n
K ′
∂p
∂t −

k
γw
∇2p +

∂

∂t (∇ · u) = 0

σ: soil effective stress, p: pore fluid pressure,
u: soil skeleton displacement,
n,K ′: soil porosity and pore fluid bulk modulus,
k, γw : soil permeability and water specific weight.
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Soil Mathematical Model
Governing Equations:

Total momentum balance for the soil mixture (steady-state)

∇ · σ −∇p = 0

Storage equation for pore fluid flow

n
K ′
∂p
∂t −

k
γw
∇2p +

∂

∂t (∇ · u) = 0

nonlinear consitutive relation & displacement-pressure coupling

σ: soil effective stress, p: pore fluid pressure,
u: soil skeleton displacement,
n,K ′: soil porosity and pore fluid bulk modulus,
k, γw : soil permeability and water specific weight.
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Soil Mathematical Model
Constitutive relations:

Linear elasticity

dσ = Ce : (dε− dεp) , dε =
1
2
{
∇(du) + [∇(du)]T

}
Mohr-Coulomb perfect plasticity

Yield surface f = (σ1 − σ3) + (σ1 + σ3) sinϕ− 2c cosϕ
Plastic potential g = (σ1 − σ3) + (σ1 + σ3) sinψ

Flow rule dεp = d� · ∂g
∂σ

, d� =

(
∂f
∂σ

)T
Cedε(

∂f
∂σ

)T
Ce ∂g

∂σ

σ1, σ3: maximum and minimum principal stress,
ϕ, c, ψ:soil friction angle, cohesion, and dilation angle,
C e : linear elastic stiffness tensor.
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Discretization & Solution procedure

Cell-centered finite volume discretization
Global solution procedure:
1. Partitioned (segregated) approach

fvScalarMatrix pEqn
(

fvm::ddt(p) == fvm::laplacian(Dp, p) - fvc::div(fvc::ddt(Dp2,U))
);

fvVectorMatrix dUEqn
(

fvm::laplacian(2.0*mu + lambda, dU, "laplacian(dU)")
==

- divDsigmaExp
+ fvc::div(2.0*mu*(mesh.Sf() & fvc::interpolate(dEpsP)))
+ fvc::div(lambda*(mesh.Sf() & I*fvc::interpolate(tr(dEpsP))))
+ fvc::grad(dp)

);
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Mathematical model
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Test cases

Discretization & Solution procedure
2. Fixed Point iteration + Underrelaxation

Figure: The iterative solution strategy of nonLinearBiotFoam in OpenFOAM
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Discretization & Solution procedure

Local stress update

Figure: Illustration of
return mapping

Stress return algorithm
INPUT: du, displacement increments

σA, initial/old-time stress

1. Compute the elastic trial stress σB by:
σB = σA + {µ∇(du) + µ[∇(du)]T + λItr[(du)]}

2. Transform σB into principal space as σB
prin . Store the principal directions.

3. Evaluate the yield function f (σB
prin):

if f < 0, EXIT, σC = σB , dεp = 0
if f ≥ 0, CONTINUE

4. Determine the right stress return type.
Obtain the principal plastic corrector stress σC

prin .
5. Reuse the preserved principal directions and transform σC

prin back to σC

6. Calculate the plastic strain increment dεp

OUTPUT: σC , dεp
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Test cases

Elastic consolidation test

Drained triaxial compression test

Elasto-plastic consolidation test
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Test cases: Elastic consolidation test
A saturated soil column subjected to a surface step loading:

Figure: Case definition
Figure: Pore pressure distribution

along the depth after different
consolidation time
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Test cases: Drained triaxial compression test
A drained soil cube compressed by constant strain rate:

Figure: Simulated elastic perfect-plastic soil response
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Test cases: Elasto-plastic consolidation test
A layer of saturated soil loaded by a strip footing with different
loading rate:

Figure: A sketch of the case geometry (left); OpenFOAM mesh and boundary
conditions (right)
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Test cases: Elasto-plastic consolidation test
A layer of saturated soil loaded by a strip footing with different
loading rate:

Figure: FEM results by Small et al. (left); FVM results by nonLinearBiotFoam (right).
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Test cases: Elasto-plastic consolidation test

Animations: Pore pressure variation + Yielding zone

(Loading Video...) (Loading Video...)

(displacement exaggerated by a factor of 10)
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Modeling more soil features: Large deformation

Linear elastic stress-strain + Nonlinear strain-displacement
relation (Total Lagrangian format):

All the nonlinear terms treated explicit + Fixed point iteration:

Extend to small strain large displacement elasto-plastic solver
(similar solution procedure to small strain small displacement
EP solver)
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Modeling more soil features: Large deformation

Verification: a simple tension test

(a) (b)

Figure: a) Resulting stress-displacement relationships from soilEpTLFoam prediction;
b) Resulting force-displacement relationships from soilEpTLFoam prediction
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Modeling more soil features: Anisotropy

Soil deposits are inherently anisotropic due to the process of
sedimentaton followed by predominantly one-dimensional
consolidation. Soil anisotropy is used in reference to soil structure,
soil strength, and soil permeability changes with direction of
measurement.

Assumption: cross-anisotropic soil

Ce =


C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 (C11 − C12)/2

 k =

 k1 0 0
0 k1 0
0 0 k3


Ce : cross-anisotropic elastic stiffness tensor, k: permeability coefficient
tensor.
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Modeling more soil features: Anisotropy

Implementation:

∇ · (K · ∇(du))︸ ︷︷ ︸
Implicit

+∇ · (C : dε)−∇ · (K · ∇(du))−∇p︸ ︷︷ ︸
explicit

= 0

n
K ′
∂p
∂t −

1
γw
∇ · (k · ∇p)︸ ︷︷ ︸

Implicit

+
∂

∂t (∇ · u)︸ ︷︷ ︸
explicit

= 0

Tested by a case of standing wave induced cross-anisotropic
seabed response.
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Modeling more soil features: Anisotropy

Figure: Standing-wave induced anisotropic and isotropic soil response. Isotropy(right):
E = 107Pa, ν = 0.3, cross-anisotropy(left):

Ez = 107Pa, νxx = νzx = 0.3, n = m = 0.6, kx = kz = 10−4m/s.
19 / 24
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Convergence consideration

Fixed point iteration method in FVM has both advantages and
drawbacks:

No need to form and update the Jacobian matrix. ,
Create diagonally dominant sparse matrices ideally suited

for iterative solver. ,
No convergence for some highly nonlinear and strong
coupling problems. If combined with fixed
underrelaxation, slow convergence./
Seek for adaptive underrelaxation → Aitken’s method
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More soil features
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Convergence consideration: Aitken’s method
Aitken’s method is most useful for accelerating a linear convergent
sequence:

x i+1 = ~x i+1 + θi+1r i

r i = ~x i+1 − x i

θi+1 = −θi r i−1 (r i − r i−1)
(r i − r i−1) (r i − r i−1)

where, x is the solving variable (or variable vector). The tilde sign
denotes the solved value before underrelaxation.

Apply to a large deformation elastoplastic simple tension test case:

Number of outer iterations total CPU time (s)
(plastic step)

Fixed under-relaxation 618 38.34
Aitken’s relaxation 264 15.79
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Summary & Future works
Summary:

FVM soil solver has been developed using OpenFOAM, it has
the following features:

elasto-plastic soil deformations
pore pressure coupling

The nonlinearity and coupling in the equations are tackled by
partitioned approach and fixed point iteration.
Large deformation and soil anisotropy added to the soil solver.
Aitken’s method is applied for convergence acceleration.

Next step:
Implementaion of advanced soil solver based on critical state
and cyclic plasticity.
Further convergence improvement.
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Thank you for your attention!
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