<table>
<thead>
<tr>
<th>Time</th>
<th>Monday 15 August 2011</th>
<th>Tuesday 16 August 2011</th>
<th>Wednesday 17 August 2011</th>
<th>Thursday 18 August 2011</th>
<th>Friday 19 August 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 - 10:00</td>
<td>Check-In 07:30 - 09:00</td>
<td>Onburst Ceremony 09:00 - 09:45</td>
<td>Podium sessions</td>
<td>Podium sessions</td>
<td>Podium sessions</td>
</tr>
<tr>
<td>10:00 - 10:30</td>
<td>Break 10:15 - 10:45</td>
<td>Break</td>
<td>Break</td>
<td>Break</td>
<td>Break</td>
</tr>
<tr>
<td>10:30 - 11:50</td>
<td>Podium sessions</td>
<td>Podium sessions</td>
<td>Podium sessions</td>
<td>Podium sessions</td>
<td>Podium sessions</td>
</tr>
<tr>
<td>12:00 - 12:30</td>
<td>Keynote, p21</td>
<td>Keynote, p78</td>
<td>Keynote, p128</td>
<td>Keynote, p162</td>
<td>Keynote, p163</td>
</tr>
<tr>
<td>12:30 - 13:00</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
</tr>
<tr>
<td>13:00 - 14:15</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
</tr>
<tr>
<td>14:15 - 15:45</td>
<td>Discussion sessions</td>
<td>Discussion sessions</td>
<td>Discussion sessions</td>
<td>Discussion sessions</td>
<td>Discussion sessions</td>
</tr>
<tr>
<td>15:45 - 16:15</td>
<td>Break</td>
<td>Break</td>
<td>Keynote, p173</td>
<td>16:55 - 17:25</td>
<td>Closing Ceremony 16:25 - 17:00</td>
</tr>
<tr>
<td>16:15 - 17:45</td>
<td>Discussion sessions</td>
<td>Discussion sessions</td>
<td>Discussion sessions</td>
<td>Discussion sessions</td>
<td>Discussion sessions</td>
</tr>
<tr>
<td>Welcome Drinks 17:45 - 19:30</td>
<td>City Hall Reception 18:30 - 20:00</td>
<td>Boat Trips, p141 18:30 - 19:30</td>
<td>Gala Dinner, p141 19:30 - 23:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sunday Evening Conference Check-In at Imperial Hotel 17:00 - 20:00
ICED11 Social Events calendar on p17
CONFERENCE AFFILIATES

CONFERENCE PROTECTOR

His Royal Highness Crown Prince Frederik of Denmark is the official protector of the ICED11 conference.

CONFERENCE SPONSORS

We are proud of the collaborations formed with the conference sponsors listed below, and are very grateful for the contributions they have made to the conference.

PREFACE BY THE CONFERENCE CHAIR

With these, the proceedings of the eighteenth International Conference on Engineering Design, ICED11, it can safely be stated that engineering design research is firmly established as a strong research discipline. In its 30 year history this is the first time that an ICED conference has returned to the same city, "Wonderful Copenhagen". In the Danish official "Year of Design" the city is the perfect conference location, hosting the highest quality design, ranging from industrial design, through stunning architecture, to a dynamic engineering design industry, which has extensively backed the ICED11 conference.

As design researchers, design practice is our research object and industry companies are our research laboratories. Based on our observations, discussions and participation in design activities, we gather knowledge and insights and crystallise these into both academic models and practical methods. Our customers are students, in training as the product developers and innovators of the future, and industrialists, engaging with us to get insight into tools and methods, which fit to their practices and empower them to meet the challenges of global competition.

The theme we have chosen for ICED11 is Impacting Society through Engineering Design. Design has a central role in bringing engineering and technology to practical use. Each of the 416 papers in these proceedings provides its own contribution to the ICED11 theme. We're delighted to see the variety and the quality of contributions that our colleagues from the design research community have contributed to ICED11.

We have taken great care to create a conference showing leading edge research into engineering design and product development practice and to provide a lively backdrop for knowledge exchange and research discussion.

Our goals with ICED11 have been to place particular emphasis on industry participation, provocative and relevant keynote speeches, maximum time for debate and discussion, and space to go into depth, via the SIG workshops. And all this with a Danish flavour, which we hope you find welcoming, fun and "hyggelig"!

Welcome to ICED11!
WELCOME TO THE ICED11 PROCEEDINGS!

A large team of individuals working together are responsible for the selection of the 416 papers being presented here at ICED11, the establishment of the themes, sessions and the creation of the podium and discussion activities. This team consists of the programme chairs, the theme chairs and their assistants, and last but by no means least the reviewers. In particular, the written comments of the reviewers have been critical to the programme team in making their final choices and grouping papers into the conference themes.

The papers have been collated into a multiple range of formats: a book of abstracts, a memory stick of full proceedings and ten volumes of proceedings, available via a print-on-demand supplier. These have been numbered against both Design Society and ISSN referencing. This will enable more extensive access, referencing and citation in the future.

For ICED11 there is no difference in prestige between the papers in podium and discussion sessions. All have passed the ICED quality threshold and papers in the discussion sessions have been selected and grouped to stimulate fundamental and exciting debate. To facilitate this we have put in place a new 5 x 5 format – 5 slides in 5 minutes. We are also introducing a number of techniques to encourage audience participation and for the first time we are trialling live minute taking – so as to provide a record of the debates. Further to this, recorded interviews with all the theme chairs will be undertaken on the final day of the conference so that there is also a persistent summary of each theme, following the conference. The records from the discussion sessions will be made available at the conference and also uploaded to the DS website alongside the interviews with the theme chairs.

We hope that you enjoy the programme and participate fully in what is arguably the Premier engineering design research conference in the world. We also hope that you find time to enjoy Copenhagen, catch up with old friends and make some new ones.

PREFACE BY THE DESIGN SOCIETY PRESIDENT

The International Conference on Engineering Design (ICED) is the flagship conference of the Design Society, a Society created in 2001, on the foundations laid by Workshop Design-Konstruktion (WDK), to promote the development of the understanding of all aspects of design. The ICED conferences were inaugurated in 1981 in Rome, and with one extra conference have been held every two years since then, in fifteen countries of the world. Thirteen conferences were held under the auspices of WDK, and this is the fifth organised by the Design Society. It is also the first time that ICED has returned to a city in which the conference has been held before – Copenhagen was the second host city in 1983, and this revisit is most appropriate in view of the leading role that the city and its technical university have played in design research and practice over many years.

The 2011 Conference continues the format established in 2009, with a programme made up of plenary sessions, podium presentations, discussion sessions with focused debate and workshops led by the Design Society’s Special Interest Groups. We hope that this varied programme, combined with extensive opportunities for networking, will provide an exciting possibility for researchers and practitioners to learn about the latest developments in engineering design.

Organising an international conference takes an enormous amount of work, and I would like to express the thanks of the Society to the great team that has worked over many months to ensure the success of the Conference. Especially I would like to thank Tim McAloone, Tom Howard and colleagues at the Technical University of Denmark for their great work in the Organising Committee, and Steve Culley, Ben Hicks and the Programme Committee for bringing together such an excellent programme. Of course, their work would be in vain without the fantastic contributions of the authors, reviewers, theme chairs and session chairs, and the thanks of the Society are due to all of them.

Steve J Culley
Programme Chair

Ben J Hicks
Assistant Programme Chair

Chris A McMahon
Design Society President
WE BELIEVE IN DESIGN!

Throughout the summer of 2011 three momentous design events take place on Danish grounds. In addition to the ICED11 conference held in August, Copenhagen will also host the INDEX: Award - the largest monetary design award in the world, in early September. The Copenhagen Design Week will also be held at the same time and will gather together a range of different design disciplines. These events provide a unique opportunity for Danish companies to gain insight and knowledge on the use and applicability of design as an increasingly important aspect of a company’s competitive performance on the global market.

Today, Danish companies find themselves in fierce global competition. In a dynamic global market, it is easy for consumers and companies to acquire the goods and services which match their specific needs from multiple suppliers and producers. More and more companies around the world are able to produce the same product or service often at lower costs than is possible in Europe. In this market, maintaining a technological advantage is often not enough to make Danish companies’ products and services stand out. Danish products and services have to be attractive to global consumers - the extra quality, functionality, form and feel that justify the extra expense are essential. The key is design.

Denmark has an important and valuable design tradition, where design and innovation are no strangers to Danish companies. It is clear that they are familiar with the benefits of design as more than 90 percent of Danish companies either work with design or apply external design services. What differentiates the companies is how strategically design is used and how well design is integrated into the development process.

Research shows that companies who are using design as a central and integrated part of their innovation and business processes have a higher value increment and are more frequently developing innovative products, processes and businesses than companies who are only using design in the more traditional way, such as for styling or finish.

In spite of the potential benefits and our design tradition, one third of Danish companies are still only using design in the traditional way and have not yet embarked on the path of integrating design into their innovation and business processes.

At the same time – we have been challenged. The so-called “Danish Design” is a widespread and well known brand around the world, especially when it comes to high-end products. However, ambitious companies and designers around the world are gaining ground and it takes continuous effort to maintain the Danish brand and position. Companies and industries around the globe have ignited their innovation and design endeavours in the quest for competitive advantage, and the Danish brand runs the risk of becoming outdated.

Danish companies have to be smart in their approach to design. It must be integrated as a strategic, innovative and applicable key feature. The ICED11 conference offers unique opportunities for Danish companies to gain insight to the forefront of the design and design engineering field, which is a crucial step towards making Denmark a frontrunner in excellent design use and application – for now as well as in the future.
THEMES AND THEME CHAIRS

DESIGN PROCESSES
Theme chair: John Clarkson
Assistant chair: David Wynn

Engineering processes are the ‘glue’ that hold the activities within product development and design together. The papers in this theme describe this glue from a variety of theoretical and practical perspectives. There are discussions on: the development, utility and validity of theories of design. There are studies on learning, early stage design, decision making processes, collaborative design and value engineering. There are thoughtful reflections from disciplines as diverse as mechatronics, aerospace, textiles, sanitation and naval architecture. There are descriptions of a wide variety of approaches and tools, targeted at: measuring and improving process performance; managing change in products, services and processes; and modelling complex product and process systems. There are also papers that usefully cover more than one of these topics. In summary we are presented with a rich mix of ideas, focused around a common desire to improve our understanding, description and management of design processes, and in tune with the latest trends and interests of design researchers and practitioners alike.

DESIGN THEORY AND RESEARCH METHODOLOGY
Theme chair: Yoram Reich

A design theory is a concise body of knowledge that explains phenomena related to design, including the act of designing and the nature of designs. In engineering, a design theory must contribute to improving design, and not just improve our understanding of design. Unfortunately, theorizing about design is complicated since real design is context dependent, complex, and not repeatable. We could only observe and study one instance of each (real) design project. This makes testing and validating theories hard, and consequently, the methods we exercise to develop and test theories – referred to as research methodology – must be carefully selected to help us achieve the goal of design theories. Given the importance of design theories, the theme – design theory and research methodology – is a foundation for design research and practice. ICED11 features contributions on design theories including some new proposals, and contribution on research methodology for appraising design research and for studying designers. The contributions are presented in podium and panel sessions that will stir discussions and lead to progress. In addition, ICED11 features a meeting of the design theory SIG of the Design Society that will familiarise those interested in the topic with the SIG activities and progress.

DESIGN ORGANISATION AND MANAGEMENT
Theme chair: Marco Cantemessa

Previous ICED conferences have always covered the relationship between design and management. However, with ICED11, the connection between the two appears to become significantly closer and quite multifaceted. In particular the ICED11 papers adopt what we might call a ‘bottom up’ perspective – whose objective is to improve the way design processes are executed. Thus the ICED Conference will showcase research papers on the management of design processes, especially within complex settings, with team members that are dispersed from geographical, organisational and disciplinary points of view. Under this perspective, researchers will present methods and metrics for improving the management of the NPD process, including a number of papers that focus on risk management. However, ICED11 will also include a number of papers that deal with business models, simulation of innovation, deployment of corporate strategy in the NPD process, and the appropriate handling of user input in order to increase the value of product and service offerings. In contrast to the earlier papers the latter ones view the relationship between design and management in a quite innovative way, from which can probably be termed a “top down” perspective, in which the design process becomes an enabler for high-level decisions that firms take at a strategic level.

THEMES AND THEME CHAIRS

PRODUCT AND SYSTEMS DESIGN
Theme chair: Udo Lindemann

The theme “product and systems design” addresses subtopics like modeling and structuring of products and systems, new ways of generating and optimising systems, integration of further domains (e.g. services), different kinds of applications and complex systems in general. Dealing with variants to meet market demands on one side and economic aspects on the other side is a well-known struggle. To help with this struggle new ideas and methods about product families, platform design and modularisation are presented. How to create a mechatronic system, evaluate its behaviour and optimise the system are key questions from a technical point of view and all of them are dealing with interdisciplinary issues. Methods and modelling are discussed in the range of a holistic approach. Interestingly although still a young field of research, a number of papers are devoted to Product Service Systems. A number of technical applications demonstrate the broad range of use of methods and models and interestingly include, for example, electrical connectors or linear guides, also there are a lot of papers are about medical devices and related applications. Automated synthesis is covered by a number of papers which have the aim of helping to generate optimal systems. Finally, there are complex systems such as products and processes that have to be modelled, analysed and managed in an adequate way.

DESIGN METHODS AND TOOLS
Theme chair: Andy Dong

A “weak signal” is a written sign of a coming change, and is a strategic research method applied by firms, non-profit think tanks, and academics to provide foresight. Thus, rather than looking back at existing design methods and tools summarising what we have developed, perhaps we should look for a “weak signal” to forecast trends we might want to pay attention to. If we were to look at macro trends and link them to issues that are covered by the body of papers in the theme Design Methods and Tools, what could we identify as a “weak signal” of a new design methods and tools to come? One weak signal is about networks, which appears explicitly in the paper by Jupp, but is also indirectly referred to in papers which employ a Design Structure Matrix (DSM), such as the paper by Schmidt III et al., since any matrix can be re-represented as a network and vice-versa, and, more generally, all papers dealing with large-scale complexity such as the paper by Kissel et al., wherein complex networks is a relatively new field that aims to understand real-world networks such as the Internet or social networks on Facebook. Brain networks, social networks, transportation networks, innovation networks, financial networks - all of these artificial and natural systems are being modelled and analysed as a network. We will probably see more design methods and tools based on network analysis in the future, especially to deal with problems such as product architecture and modularity, change propagation and decision-making.

DESIGN FOR X, DESIGN TO X
Theme chair: Johan Malmquist
Assistant chairs: Lars Almefelt and Andreas Dagman

Design For X/Design to X is a broad theme as X can stand for many properties and characteristics of a design - function, performance, cost, quality, manufacturability and many others. As might be expected in 2011, “X” in many of the papers stands for Sustainability. The volume’s papers address sustainability on several levels - the society, the company, the team the individual designer. Environmental sustainability is the focus of many of these papers, but you will also find a major group of papers in the volume that consider social sustainability issues, design for human or social factors. New strategic approaches, methods and tools for sustainable design are also introduced. Another major sub-theme in the volume could be described as design for manufacturing in a broad sense. In the volume you will find new methods and tools for manufacturability and quality, for modular design of products and such product interplay with production systems, and machine tool design. The potential of mathematical optimisation tools is discussed. Further, the volume offers a multitude of case studies and applications, evidencing the potential of DFX methods and tools to improve automotive, construction, healthcare, machine and shipbuilding design.
THEMES AND THEME CHAIRS

DESIGN FOR INFORMATION AND KNOWLEDGE
Theme chair: Wei Chen
Assistant chair: Harrison Kim

Design information and knowledge provides the underpinning support to engineering design processes. The papers in this theme describe this underpinning support from a variety of aspects such as knowledge sharing, search and knowledge discovery, rationale, knowledge transfer and reuse, context and user information, cross-domain knowledge and structuring modules. A wide range of papers cover the practical uses of design information and knowledge systems to address manufacturing, product life cycle, and other industrial issues. Several research themes emerge from these studies. The first is the increasing need for information synthesis to integrate essential information in the early stages of design, such as requirement identification. The second is the need for cross-domain design knowledge representation in large design enterprises as design is fundamentally a complex, group activity with information from many different sources. The third is the potential of applying knowledge discovery and machine learning techniques for identifying and predicting new product design trend. The fourth is the need for developing common taxonomy and ontology for connecting the human-centred design process to the information system on computer. The fifth is the growing interest in methods that facilitate a better understanding of customers and clients’ needs early in a design process. In summary the design information and knowledge theme is an emerging area with an excellent prospect for growth in design research.

HUMAN BEHAVIOUR IN DESIGN
Theme chair: Petra Badke-Schaub

The track Human Behaviour in Design encompasses presentations which focus on the activity of designing in various contexts but also integrate the activity of design research. As with previous ICED conferences a large number of papers focus on designers and the two core issues of collaboration and cognition. The topics of inspiration, creativity and evaluation techniques are also covered and deal with the factors influencing creativity and innovation as well as techniques which are supposed to enhance creativity. Emotion in design is becoming important and here emotion is related to the question of how to steer emotion-related issues in the design process, with focus on the user as well as on the designer. User input and how it is handled is critical in design; thus the topic of user input also receives some considerable attention, with a particular focus on how to integrate user experience into the design process. The other critical entities in design, after the user, are the teams that undertake the work and various aspects of teams such as cultural issues are covered extensively. To set the research agenda it is frequently useful to consider objects and contexts and these are dealt with in this theme through consideration of general views on the product development process and research methods which encompass different methods contributing to the design research process but also dealing with design methodology.

DESIGN EDUCATION
Theme chair: Bill Ion

Design Education continues to be an important theme within the ICED conference series, particularly as it lays the foundations for the future health and vitality of the industrial and academic design community. The nature of design education cannot be static and needs to incorporate new and enhanced education methods and curricula that reflect current and evolving design practices. For example, in recent years we have seen a significant increase in emphasis on global design practices, which has led to greater emphasis being placed on distributed team working and the management and coordination of activities, knowledge and information within a global context. This is reflected in the design education content of ICED11 where we have a full session devoted to Global Design and other papers addressing the attributes required of a global designer. Likewise, learning approaches are evolving, often facilitated by the increasing power of ICT networks, leading to an increasing emphasis on the use of open learning approaches based on shared use of design educational resources. These aspects are addressed in the papers included within the Design Education theme of ICED11 along with the more traditional, but equally important, topics of how to enhance conceptualisation, assessment, the ‘shape’ of the designer and the teaching of an increasing range of DFx.

MONDAY 15 AUG. 2011

OPENING CEREMONY
Time: 09:00-09:45 / Location: Main Hall
Chair: Per Boelskifte, Head of the Engineering Design and Product Development Section

After a musical welcome in the Main Hall, the conference will be opened with speeches from Lars Pallesen, DTU Rector; Per Langaa Jensen, the Head of the Dept. of Management Engineering and Tim McAloone, the ICED11 Conference Chair. This will provide delegates with information about the context in which the ICED11 conference is held. There will also be presented some vital information regarding the week’s programme, activities and logistics.

Immediately following the opening ceremony, the Design Society’s President, Chris McMahon, will deliver a keynote speech, where he will address the diversity of design research and the opportunities that lie in embracing this diversity.

WELCOME DRINKS
Time: 17:45-19:30 / Location: Conference venue garden area (subject to weather)

We invite you to toast good health and to sample a Danish hotdog! Some traditional Danish games will be laid out on the Lawn, which we invite you to try your hand at!

ALUMNI MEETING OF SUMMER SCHOOL ON ENGINEERING DESIGN RESEARCH (SSEDR)
Time: 20:00 / Location: To be confirmed

The SSSDR alumni has quite a following now and has established a tradition of arranging social get-togethers during many of the Design Society’s conferences. This year’s meeting will take place in Copenhagen city centre; the exact place is to be confirmed.

Further details: Kilian Gericke - Kilian.Gericke@uni.lu

TUESDAY 16 AUG. 2011

CITY HALL RECEPTION
Time: 18:30-20:00 / Location: Copenhagen City Hall
Dress: Informal

All conference participants have received an invitation: those who have accepted this invitation will find tickets in their conference pack. Please note that this reception will start punctually at 18:30.

The reception is hosted by the Mayor and the City Council of Copenhagen and will take place at the City Hall. The reception provides a unique possibility to experience the architecture of the City Hall, which is built in the Nordic National Romantic style. City Hall Pancakes, wine and soft drinks will be served.

Further details: Kilian Gericke - Kilian.Gericke@uni.lu
SOCIAL EVENTS

WEDNESDAY 17 AUG. 2011

GALA DINNER
Time: 18:30-23:00 / Location: Nyhavn and Langelinie Pavillonen
Dress: Informal – a light coat may be useful

The evening starts with a boat trip along the canals – embarking at Nyhavn/Havnegade.

Located on the waterfront with unrivalled views of The Little Mermaid, the restaurant contains some of the finest examples of 1950s Danish design, including Poul Henningsen’s world-famous cone lamps, of which the restaurant is the proud owner of the first eight ever produced. With its superb cuisine, the evening is bound to be a great experience!

See p141 for further details.

THURSDAY 18 AUG. 2011

CLOSING RECEPTION
Time: 17:00-18:30 / Location: Conference venue garden area (subject to weather)

A chance to say goodbye and tie up loose ends over a few final drinks and snacks, while meeting the hosts of the ICED13 conference.

FRIDAY 19 AUG. 2011

TECHNICAL VISITS
We have arranged two exciting technical visits, combining tours of a selection of Danish product development companies with some local culture and sightseeing. Both delegates and partners/families are welcome. Separate payment must be made for the technical visits, at the conference registration desk.

We have limited places, so first-come-first-served!

For further information about our Technical Visits: See p174.
Design Research: Embracing the Diversity

Abstract

Design is a topic that has been studied from many disciplinary perspectives, each bringing particular methodological traditions to bear and yielding many different insights into the subject. However, it has been difficult to achieve a coherent view on research in the domain. This presentation will explore the nature of this diversity and propose ways in which the research community may work together to develop a consolidated understanding of the research space. After first exploring the different communities that contribute to design research, and reflecting on the range of topics that have been studied, a number of ways will be presented in which research in the domain might be characterised, building especially on experiences with ICED conferences in recent years. In particular, design research will be differentiated according to the time scales being studied, the number of participants, the complexity and degree of originality of the design context, the research approach and the degree of abstraction employed. Suggestions will then be made for how the research community may collaborate in the future to identify where there are commonalities and differences in results and approaches.

Biography

Chris is Professor of Engineering Design in the Department of Mechanical Engineering at the University of Bath, which he joined in 2002 from the University of Bristol. In his early career as an engineer he worked in the railway industry and with a consulting engineering company specialising in IC engines. He teaches and researches in engineering design and computer-aided design. He is interested in many aspects of design and computing, in particular how computer aids can assist design in the organisation and management of the information used in design.

Chris is Director of the University of Bath’s Innovative Design and Manufacturing Research Centre, and was Principal Investigator of the EPSRC Grand Challenge project in through-life information and knowledge management for product-service systems. Chris’s other research interests are predominantly concerned with the application of computer to all aspects of engineering design.

Chris is active in design education, and has been involved in the organisation of the Engineering and Product Design Education (EPDE) conferences over a number of years. Chris is also Fellow of the Institution of Mechanical Engineers, and Co-chair of IFIP WG5.1, responsible for organisation of the Product Lifecycle Management (PLM) series of conferences.

Weekly Schedule

MONDAY

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
</table>
| 07:30 - 09:00 | Check-In
Main Desk in Reception |
| 09:00 - 09:45 | Opening Ceremony
Main Hall |
| 09:45 - 10:15 | Design Society Keynote: Embracing the Diversity
Chris McMahon, University of Bath
Main Hall |
| 10:15 - 10:45 | Break |
| 10:45 - 11:50 | Discussion Sessions
P Knowledge Sharing
P Design Innovation in Product and Systems Design
P Design and Business Models
P Digital Modelling and Behavioural Simulation
P Cross-Domain Knowledge
P User-Centered Design
P Human Behaviour in Design |
| 12:00 - 12:30 | Sustainability Keynote: Fossil Dot Com
Charles Nielsen, DONG Energy
Main Hall |
| 12:30 - 13:00 | Lunch |
| 13:00 - 14:15 | Podium Sessions
P Design for X, Design to X
P Organising Collaborative Design Processes I
P Organising Collaborative Design Processes II
P Change Management |
| 14:15 - 15:45 | Workshop Sessions
P Organising Collaborative Design Processes I
P Organising Collaborative Design Processes II
P Change Management |
| 15:45 - 16:15 | Break |
| 16:15 - 17:45 | Podium Sessions
P Organising Collaborative Design Processes I
P Organising Collaborative Design Processes II
P Change Management |
| 17:45 - 19:30 | Welcome Drinks |

Keynote Speakers

Design Society Keynote

- **Chris McMahon**, Professor of Engineering Design, University of Bath

Sustainability Keynote

- **Charles Nielsen**, DONG Energy

Futurology Keynote

- **Peter Cochrane**, Cochrane Associates

Chris McMahon

BSc, CEng, FI MechE

Professor of Engineering Design

Design Society President
THE DIGITAL DIVIDE: INVESTIGATING THE PERSONAL INFORMATION MANAGEMENT PRACTICES OF ENGINEERS

McAlpine, Hamish Charles; Hicks, Ben; Tiryakioğlu, Can
University of Bath, United Kingdom

Whilst there exists a significant amount of work exploring the Personal Information Management (PIM) practices of various general groups of people (such as ‘knowledge workers’), or specific PIM tools (such as email, or task management tools) there has been considerably less research focussed on the wider PIM practice of engineers. Furthermore, the revolution in working practices witnessed over the last decade means that previous studies may fail to give an accurate picture of today’s practice.

This research therefore presents a detailed investigation into the PIM practice of 27 engineers working in a range of organisations and across various stages of the product lifecycle is presented. Through semi-structured interviews and a detailed mapping exercise of the engineers’ PIM tools and sources, their ‘information world’ is characterised. The research also sheds light on the relationships between informal PIM tools and more formal document types generated as part of the design process. Users’ satisfaction with their current PIM practice is also revealed, together with the seven most commonly cited issues.

INTERFACE QUALIFICATION BETWEEN THE RESEARCH CENTRAL TEAM AND DESIGN OFFICES IN ORDER TO EVALUATE THE KNOWLEDGE SHARING

Fraslin, Marie; Blanco, Eric
INPG, France

This article presents a case study which was led in an international company dealing with hydraulic power plant machine design. It exposes a diagnosis of the interface set up between the Research central team (R) and Development local team (D). The diagnosis shows how the information and knowledge are shared among R&D communities. It shows that the explicit knowledge formalized by the Research central team, is known and applied by the local development team, thanks to two types of networking: (1) The networking with experts in charge of communicating and explaining technical instructions applied on project, (2) and the networking between local colleagues. These practices reveal local logic that are not aligned with the company globalisation objectives. Hence we propose an experimentation to complement the current interface.

PERCEPTIONS OF AND CHALLENGES WITH KNOWLEDGE SHARING - ENTERPRISE COLLABORATION IN A VIRTUAL AERONAUTICAL ENTERPRISE

Johansson, Pär; Johansson, Christian
Luleå University of Technology, Sweden

The purpose of this paper is to investigate how knowledge is managed and shared within product development in an enterprise collaboration context in the aerospace manufacturing industry. This paper is based on a qualitative survey that was sent to seven companies in the European aerospace manufacturing industry, focusing on how they perceive knowledge sharing, and on common problems and challenges with knowledge sharing. Lack of trust and fear of losing competitive advantage is identified as a problem area. Further, information and communication technology is seen as an important enabler. In this area it is found that it is important to develop strategies for knowledge sharing in collaboration with business developers, engineering, and IT architects from various organizations in the extended enterprise.

CASE STUDIES TO EXPLORE INDEXING ISSUES IN PRODUCT DESIGN TRACEABILITY FRAMEWORK

Pavkovic, Nenad (1); Bujacetic, Nedad (1); Franic, Leonard (2); Marjanovic, Dorian (1)
1: University of Zagreb, Croatia; 2: Koncar MES, Zagreb, Croatia

Little is currently understood about the requirements for engineering information traceability in product development environment, and there are few methods by which effective traceability can be ensured. First part of paper presents two case studies: an analysis of current traceability practice in automotive industry supplier, and an experiment in implementation of taxonomy based software tool for knowledge indexing in medium sized company. Based on findings from case studies, the further research seeks the answers how the ontology based approach to defining the context and associated set of indices could lead towards generation of navigable semantic network that will be able to fulfill complex traceability requirements in customizable environment. Proposed approach suggests the definition of the context for tracing by “extracting” the subsets of ontology. Elements of ontology subset are associated with information objects (design documentation) belonging to design episode which is to be traced. Tracing procedure is focused (but not exclusively) on events that are the part of the process of information object management in PLM system.

IDENTIFICATION, TRANSLATION AND REALISATION OF REQUIREMENTS FOR A KNOWLEDGE MANAGEMENT SYSTEM IN AN ENGINEERING DESIGN CONSULTANCY

Thomson, Avril Isabel
University of Strathclyde, United Kingdom

This paper provides an overview of the development of a Knowledge Management system for an engineering design consultancy. It sets out a methodology from the initial importance of identifying requirements based on the particular organizational context through to training and roll out. This paper explores the issues associated with the early stages of knowledge management interventions, exploring the methodology utilized from the study of existing practice through to software development. Techniques employed as part of this methodology include the study of existing practice, user requirements mapping, and business and software specification development. The translation of these requirements and specifications into system features are illustrated by focusing on three key themes identified during the project: a reluctance to contact other regional offices, the time burden of finding existing design knowledge and capturing new design knowledge, and robust validation procedures. It is anticipated the techniques utilized and insights gained will be directly applicable to other organizations, particularly those in the engineering design sector, seeking to implement a knowledge management system.

KNOWLEDGE SHARING APPROACHES IN METHOD DEVELOPMENT

Thor, Peter; Wennergren, Johan; Ericson, Åsa
Luleå University of Technology, Sweden

Product-Service Systems (PSS) or lifecycle offerings is a challenge for knowledge sharing within manufacturing industry due to an integration of intangible (tacit) and tangible (explicit) domains. One consequence is that the engineers have to make sense of abstract customer information in early development. For this, they need computer support. Method developers are employees that are responsible for in-house development of such support. There are similarities in their contemporary work practices and some aspects of the development of lifecycle offerings. The intent in this paper is to draw from the method developers’ experiences in managing acquisition of user information for the purpose to contribute to knowledge sharing in early development. We have found that the problem setting approach applied by the method developers could help the identification, analysis and application of user needs, thus also could be applied to identify metrics/characteristics for intangibles.
IMPLEMENTING DESIGN CRITIQUE FOR TEACHING SUSTAINABLE CONCEPT GENERATION
Bernstein, William Zev; Ramanujan, Devarajan; Cox, Monica F; Zhao, Fu; Sutherland, John W; Ramani, Karthik
Purdue University, United States of America
Product design is one of the most important activities that can influence sustainability. Therefore, it is critical to educate students about these methodologies as they are the next generation of engineers. This paper details a study conducted among engineering graduate students for teaching sustainability through design critique. The students were part of a graduate curriculum course and were required to conceptualise designs of novel products. Upon completion of their designs, questionnaires which assessed their familiarity with sustainable design and its relation to product design were handed out. A team of design experts reviewed the final design concepts along with these questionnaires and offered a detailed design critique focused on redesign with regards to sustainability. The students then revised their design based on this feedback. A post-evaluation questionnaire and the modified design concepts were then collected to assess the success of the design critiques. Although student projects are limited in scope, and simplify real world problems, the learning through this project will enable them to design products that consider environmental sustainability.

FLUENCY AND FLEXIBILITY OF CONCEPTS ARISING FROM PERSONALISED IDEDATION TECHNIQUES
Field, Bruce William
Monash University, Australia
When presented with a novel problem, a novice designer faces the daunting task of formulating suitable concepts to develop into a solution. Some novices, with a creative flair, can easily conceive several potential solutions. Various design methods have been published to help engineers generate ideas. Studies show that designers who generate more possible solutions to a problem are more likely to identify one of high quality. At Monash University, 244 undergraduate engineering design students were individually presented with a real design problem in which a split pin fastener was deemed unreliable, and were asked to propose plausible options. Only 44 students chose to apply a systematic ideation technique. Those who used Morphology generated a slightly below-average number of options, of limited variety. Other students who applied a Classification technique generated a greater number of options, with more variety. In a parallel investigation, it was confirmed that those students with better spatial skills tended to generate options with more variety and perform better in the design course in which they were enrolled, whether or not they used systematic design methods.

A ‘THEATRIC’ APPROACH TO THE TEACHING OF DESIGN
Matthews, Jason; Medland, Anthony
University of Bath, United Kingdom
Design teaching is complicated due to its context specific nature. The teaching of it as an academic subject focuses on the core technologies of embodiment, detailing and manufacture. In order to put these into context issues that establish the background and also the success of the design should really need to be considered. ‘These are expressed here in theatrical terms as providing the prologue and epilogue around the main‘play’. The prologue establishes the background and sets the design into the specific nature of the problem being handled through an understanding of the broader issues of the originality of the problem. The frequency with which it has been addressed as well as the current exploitation and commercial application. The epilogue is often ignored during teaching as the solution is expected to follow the core processes and lead directly to a solution. In real design there is often the case that the chosen solution may not meet all of the requirements or the original brief may have failed to cover items that subsequently turned out to be important. The inclusion of these additional aspects of design allows the context and core issues of design to be better understood.

DEVELOPING A DRAWING CULTURE: NEW DIRECTIONS IN ENGINEERING EDUCATION
da Vere, Ian; Kapoor, Ajay; Malles, Gavin
Swansea University of Technology, Australia
Sketching is integral to the design process, as it allows a reflection in action, enables ambiguity and abstraction, encourages the unexpected, externalises mental imagery, and provokes creativity though analogical reasoning and reinterpretation. The articulation of the concept facilitates a discussion not only with peers and clients, but more importantly with oneself in a reflective practice. In the context of engineering practice, sketching serves multiple social and cognitive functions throughout all stages of the product design and development process. Fundamentally sketching is the ‘first language’ of all designers and it is apparent that the design process can be limited by one’s capacity to use drawing for cognitive exploration. It is therefore essential that development of drawing skills is integrated throughout engineering education. This paper discusses curriculum initiatives aimed at developing a drawing culture amongst product design engineering students. ‘SketchFest’ is a sketching and ideation program that augments existing drawing skills, introduces new techniques and promotes student awareness of the value of sketching in product design and development.

EXPLOITING HAND SKETCHING IN EDUCATING ‘MECHANICALLY ORIENTED’ ENGINEERING STUDENTS
Farrugia, Philip; Borg, Jonathan; Camilleri, Kenneth
University of Malta, Malta
In our years of experience in training mechanical engineering students we found a strong tendency that due to the overall knowledge transfer they receive, these future engineers tend to be oriented in mainly thinking and presenting details of their design solution. Whilst clearly design solutions need to be eventually described in detail for their successful realization, our experience also shows that many times, good detailed design solutions do not make up for poor solution concepts generated. In this paper, we therefore present the overall pedagogic approach adopted at the University of Malta in exploiting sketching both for expressing working principle solutions and also for early form design. In addition, this paper will outline how a prescribed sketching language was developed to enable co-located designers to quickly express and exchange 3D Computer-Aided Design (CAD) models of their solution sketches, all this helping in making ‘global design’ truly feasible even at the early design stages.

ASSESSING QUALITY OF IDEAS IN CONCEPTUAL MECHANICAL DESIGN
Lewis, William P (1); Field, Bruce W (2); Wair, John G (1)
1: The University of Melbourne, Australia; 2: Monash University, Australia
A recurring theme in engineering design is the need to upgrade the performance of existing systems and products as potential defects overlooked in the original design come to light during operation and maintenance. This paper is concerned with the evaluation of skills exercised by designers when trying to solve “improvement” problems with attention focussed on their creative effort during the conceptual design phase. An investigation has been carried out in which an “improvement” problem selected from industrial practice was presented individually to thirty senior mechanical engineering students. Systematic analysis of their responses required the development of new research tools, firstly for assessing the quality of the design concepts proposed, and secondly for modelling the processes of ideation and argument used by each designer. Results are presented in terms of metrics for fluency of ideation, quality of concept, and branching preference, a new characteristic of designer performance found in this investigation. Further research is being undertaken to confirm the utility of the new research tools and the validity of the results obtained from their use.

A PROCESS OF CONCEPTUAL ENGINEERING DESIGN FOR NEW PATENTABLE PRODUCTS
Lloveras, Joaquim
Technical University of Catalonia, Spain
The conceptual design phase is a few-structured phase, and it is especially true for to create a new product that can be patented. In this paper is proposed a procedure to do a conceptual design phase of a new product. A well-structured top-down search of solutions with creativity techniques in successive levels of solutions, with Ecodesign strategies and of writing patent, helps to have new concrete ideas of solution and to prepare the design to the phase of detailed design. This initial procedure it is basically followed in a new free elective course of UPC called: Creativity, Ecodesign and Patents. This course is especially thought for product design initial phases. Writing a patent of product in this initial conceptual phase of design, helps to clarify and refine easily some solutions and to think alternatives of solution. This redaction prepares the final patent redaction when the detailed design ends.
COMPUTATIONAL REPRESENTATIONS FOR MULTI STATE DESIGN TASKS AND ENUMERATION OF MECHANICAL DEVICE BEHAVIOUR

Todeti, Somasekharra Rao; Chakrabarti, Amresh
Indian Institute of Science, Bangalore, India

The role of a computer emerged from modeling and analyzing concepts (ideas) to generate concepts. Research into methods for supporting conceptual design using automated synthesis had attracted much attention in the past decades. To find out how designers synthesize solution concepts for multi-state mechanical devices, ten experimental studies were conducted. Observations from these empirical studies would be used as the basis to develop knowledge involved in the multi-state design synthesis process. In this paper, we propose a computational representation for expressing the multi-state design task and for enumerating multi-state behaviors of kinematic pairs and mechanisms. This computational representation would be used to formulate computational methods for the synthesis process to develop a system for supporting design synthesis of multiple state mechanical devices by generating a comprehensive variety of solution alternatives.

ABSTRACT PROTOTYPING IN SOFTWARE ENGINEERING: A REVIEW OF APPROACHES

Du Bois, Els (1); Horvath, Imre (2)
1: Arts University of Applied Sciences, Belgium; 2: Delft University of Technology, The Netherlands

Abstract prototyping (AP) is a pre-implementation testing approach in software engineering, based on low-fidelity prototypes. It supports demonstration and evolution of software concepts at an early stage. It allows designers to optimize the operation of the software and allows end users to understand how to work with the system. In this paper we survey various approaches, i.e. both the way of developing the content of AP and the manner of using them in software engineering. We developed a reasoning model intuitively and defined research questions to structure our review and this paper. Our objective was to get insights in the existing definitions, information contents, construction processes and application opportunities for AP. We have found that AP is simultaneously a challenging scientific and a complex practical issue, which usually raises a large number of sub-issues and questions. In addition we observed that there are multiple interpretations of AP which are disturbing a clear picture. Based on the findings we observed that it is possible to generalize the key constituents of AP and to integrate them into a simplified and application-independent AP methodology.

USE OF CONSTRAINTS IN THE EARLY STAGES OF DESIGN

Mullineux, Glen
University of Bath, United Kingdom

At the very early stages of original design work, the aspects of concept, scheming and analysis tend to merge. It is only as the designer's understanding of the design task increases that these aspects become more substantial and start to separate into distinct activities. The challenge in providing support in the early stages is that the design, and hence its geometry, is necessarily ill-defined. This paper looks at the use of constraint-based techniques as a design aid. Constraints are more clearly identified as they bound what is possible. They allow an initial model of the design to be created from the little that is known. This can be expanded as the design progresses, and, being constraint-based, previously created parts of the model can be refined in the light of subsequent design progress. These ideas are illustrated with an application based on the design of an "erection" system for cartons used for packaging. At the start of the design process, the geometry is necessarily ill-defined. This paper looks at the use of constraint-based techniques as a design aid. Constraints are more clearly identified as they bound what is possible. They allow an initial model of the design to be created from the little that is known. This can be expanded as the design progresses, and, being constraint-based, previously created parts of the model can be refined in the light of subsequent design progress. These ideas are illustrated with an application based on the design of an "erection" system for cartons used for packaging. At the start of the design process, the geometry is necessarily ill-defined. However, constraints can be used to simplify the design and allow the designer to focus on the essential aspects of the design.

INTERDISCIPLINARY SYSTEMS MODELING USING THE CONTACT & CHANNEL-MODEL FOR SYSML

Albers, Albert; Christian, Zingel
Karlsruhe Institute of Technology (KIT), Germany

Technical products are nowadays complex systems. Many specialized engineers develop highly mechatronic systems. Unfortunately, this still happens under insufficient conditions. Not only capable tools are missing for imaging comprehensive system understanding and knowledge, yet an adequate overall language for product engineers is still not in use. This paper presents an approach to perform modeling of technical systems in SysML using the Contact & Channel approach (C&C-A). The intention is to combine the strengths of SysML in visual modeling of complex systems with the capabilities of C&C-A in analysis and synthesis of technical systems' form and function. The aimed result is to provide an easily manageable software based language for interdisciplinary systems modeling. This work introduces the first realization step, an integrated software-based modeling of system structures. For this purpose, SysML and C&C-A are initially introduced. Afterwards, the C&C-A metamodel for SysML is elucidated. An application example is used to demonstrate the intuitive employment of this modeling approach. Concluding, an outlook towards future research tasks is given.

MODELS AND SOFTWARE FOR CORRUGATED BOARD AND BOX DESIGN

Sohrabpour, Vahid; Hellström, Daniel
Lund University, Sweden

To design and develop boxes which protect, and at the same time utilize fiber material efficiently, models and software for predicting corrugated board and box properties are needed. The purpose of this research is to provide propositions toward improving the use and development of models and software for corrugated board and box design. By using an abductive approach, 18 models and four software for predicting corrugated board and box properties were identified, compared, and categorized depending on the needs of different supply chain actors. Eight of the models use paper properties for predicting board properties while ten models predict corrugated box properties. In order to decrease the gap between theory and practice new insights, in the form of propositions toward improving the use and development of models and software for corrugated box design, are suggested. A holistic perspective for modeling corrugated board and box is proposed and enables practitioners and researchers to identify causes to variation in predictions by considering control and noise factors.

A METRIC TO REPRESENT THE EVOLUTION OF CAD/ANALYSIS MODELS IN COLLABORATIVE DESIGN.

Drémont, Nicolas (1); Graignic, Pascal (1); Troussier, Nadège (1); Whitfield, Robert Ian (2); Duffy, Alex (2)
1: UTC, France; 2: University of Strathclyde, UK

Design process is dynamic and uses an important number of models during its progress. CAD (Computer Aided Design) models and CAE (Computer Aided Engineering) are used during design and an important number of interactions must be mastered between the different models of the designed system to be robust and in accordance with initially defined specifications. An important number of works exist on the link between digital mockup and analysis models. However design/analysis integration must take into consideration the models multiplicity (digital mockup and simulation) due to model evolution in time, but also to system engineering. To manage the modifications on the system, and the V cycle, the dependence links between the different models must be known and the nature of the modification must be characterized to estimate the impact of the modification among dependent models. We propose to describe the nature of a modification and by consequence to help to know the necessity to spread in other models and the way to qualify modified information. For this, a metric is proposed allowing to qualify/evaluate data/information, based on the maturity and validity of information and models.
EXPLORING COLLABORATION IN A NETWORKED INNOVATION PROJECT IN INDUSTRY

Bergema, Katinka (1); Kleinsmann, Maaike (1); Valkenburg, Rianne (2); Bont, de, Coes (1)
1: Delft University of Technology, Netherlands; The; 2: The Hague University of Applied Sciences

The growing complexity of the increasing need to design product service systems forced companies to collaborate in innovation networks. Networked innovation requires different stakeholders to design together. Stakeholders do not only come from different disciplines, but they also come from different organizations and companies. The collaboration in these networked innovation projects therefore reaches another level. This introduces new issues to the literature on collaboration in mono- and multidisciplinary teams. This paper is about an explorative study in which we investigated in what way networked innovation differs from ‘normal’ innovation projects within a single company. We found similar and additional factors that influenced collaboration. However, the effect and manifestation of the factors differed from a multidisciplinary team within one company. The findings will form a proper base to guide our future research.

ON THE STABILITY OF COORDINATION PATTERNS IN MULTIDISCIPLINARY DESIGN PROJECTS

Castro, Joao (1); Steinitz, Martin (2); Searing, Warren (1)
1: MIT, 2: Stanford

Participants in product design and development projects need to interact to coordinate the impacts and dependencies of their work on the product. Based on data from NASA rocket design projects we analyze and compare a series of product development projects within the same organization where objectives and team composition differ. We focus on the connections that are made between team members and the nature of the project and relate the two. Findings reveal that similar design problems exhibit similar dependency structures and allow for organizational learning opportunities.

A HOLISTIC PROCEDURE FOR PROCESS INTEGRATION IN DESIGN COOPERATION

Beyer, Christiane (1); Grote, Karl-Henrich (2); Kubisch, Christian (3); Tegel, Oliver (3)
1: California State University, Long Beach, United States of America; 2: Otto-von-Guericke University, Magdeburg, Germany; 3: Dr. Ing. h.c. F. Porsche AG, Germany

In preparatory stages of an upcoming cross-company cooperation an integration project has the task to establish best connections that are made between team members and the nature of the project and relate the two. Findings reveal that similar design problems exhibit similar dependency structures and allow for organizational learning opportunities.

A META MODEL OF THE INNOVATION PROCESS TO SUPPORT THE DECISION MAKING PROCESS USING STRUCTURAL COMPLEXITY MANAGEMENT

Kortles, Sebastian; Lindemann, Udo
Technische Universität München, Germany

The innovation process is characterized by numerous interactions of numerous domains. Cyclic interdependencies intensify the pressure in terms of quality and schedule, causing shortened testing phases, frequent releases of new models, and thus hardly calculable risks. Structural Complexity Management is established in order to avoid wrong decisions, instable processes and error-prone solutions. Therefore, Structural Complexity Management evaluates system’s characteristics by analyzing system’s underlying structures across multiple domains, condensing each single analysis into one big matrix that represents multiple domains at a time.

Identifying suitable perspectives, generating suitable models and using suitable analyze criteria are the challenges in this field.

In order to support the manufacturing of innovative products and thus the evaluation and interpretation of the system’s underlying structure this paper proposes a meta model. The created model describes what kinds of entries arise during the innovations process and how they interact with each other. The meta model is needed to ensure a systematically basis for Structural Complexity Management.

BALANCING INTERNAL AND EXTERNAL PRODUCT VARIETY IN PRODUCT DEVELOPMENT

Graessler, Iris
Robert Bosch GmbH, Germany

Applicability of “Mass Customization” to mechatronic systems is proven by various product examples in automobile industry. For example, chassis performance is adjusted to the driver’s specific wishes or to present driving circumstances, such as road condition. As a basic principle, hardware forms functional framework while software defines specific functional contents and characteristics.

Balancing internal with external product variety emerges as critical success factor in this context. From external point of view, as much variety shall be provided as end customers are willing to pay for. From internal point of view, each product variant induces consequential costs and thus lowers profitability. In this contribution, a methodology of designing a construction kit for customer specific solutions based on classic German design theories is proposed. A modular product architecture forms the logical concept of the construction kit for customer specific solutions. Deduced products are individualized by selection and connection of standardized, discretely and continuously varying components. Thus economic variation required by customers becomes feasible also on a high technical level.

ON THE APPLICABILITY OF STRUCTURAL CRITERIA IN COMPLEXITY MANAGEMENT

Biedermann, Wieland; Lindemann, Udo
Technische Universität München, Germany

Companies face challenges due to increasing complexity through shorter product life cycles, manifold costumer requirements, more solution options and discipline-spanning collaboration. During the development of complex systems efficient tools for analysis and for assessment of solutions are necessary. A common approach is structural analysis, which can be applied in early development phases. System structures are analyzed with structural criteria such as cycles and clusters. Manifold criteria have been introduced in graph theory and applied in complexity management. In industrial applications suitable criteria have to be chosen. In research the significance of the criteria has to be shown. Based on an extensive literature review we show applications of structural criteria in complexity management. We derive requirements onto structural criteria from the applications. We show methods to prove the applicability of the criteria. Researchers get tools for proving and assessing the significance of structural analyses. More effective analyses can be developed. The quality of technical solutions increases and manifold solutions can be developed.
This paper presents a system dynamics simulation model used to predict the market share penetration of hybrid (HEV) vehicles. New design methods and tools often promise large benefits for specific engineering tasks or whole engineering processes to make increasingly complex and sophisticated products possible. However, estimations for the pay-off of new methods or tools are based on gut feelings or rare expert knowledge. In this paper we present our approach for well-founded quantitative estimations for the economic impact of new methods or tools. We show the beginning of our methodology with an early experiment and the impact analysis for a case study of a design flow for electronic circuits.

TOWARDS ASSESSING THE VALUE OF AEROSPACE COMPONENTS: A CONCEPTUAL SCENARIO
Bertoni, Marco; Bertoni, Alessandro; Johansson, Christian
Luleå University of Technology, Sweden

The development of complex products, characterized by long lifecycles and deep supply chains, requires enhanced capabilities to assess, in an early design stage, the value of a solution not merely from a requirement fulfillment perspective. The paper proposes a conceptual scenario, described in terms of activities, inputs, outputs, actors and mechanisms, which details how aircraft components can be developed and assessed with a focus on their value contribution at system level. The scenario proposes a set of methodological and technological tools needed to enable value assessment in preliminary design, and has been created and preliminary validated together with major European aerospace manufacturers. The importance of being able to communicate the lifecycle value contribution of design solutions during the development work emerged clearly from the study. In this spirit, an approach to visualize such contribution directly in a 3D CAD model (across a set of value criteria, dimensions and drivers) has been proposed and it is currently under development.

SYSTEM DYNAMICS MODELING OF NEW VEHICLE ARCHITECTURE ADOPTION
Gorbea, Carlos Enrique; Lindemann, Udo; de Weck, Oliver
Technische Universität München, Germany

This paper presents a system dynamics simulation model used to predict the market share penetration of hybrid (HEV) and battery electric vehicles (BEV) over time. The utility of the model for early design decision making stems from its ability to link key influencing factors such as: fuel price fluctuations, government incentives, customer network effects, vehicle cost of ownership/operation and initial retail price differences between alternative vehicle architectures to the internal combustion engine (ICE) reference architecture in a transparent mathematical formulation. The simulation model is set to the 2009 conditions of the light duty vehicle market in the United States and run for a period of ten years from 2009-2020. After 200 iterations with varying fuel prices, the simulation results predict that by 2020 market advances of hybrid cars will go from 4.5% to roughly 14% and electric cars from 0% to roughly 5% market share of new vehicles sold. The estimated figures presented are in line with previously published market analyst estimates. Additionally, the model has the added advantage of experimenting on how influencing factors affect the simulation results.
Abstract

Since the start of the industrial revolution in 1800, with breakthrough innovations in iron production, textile industry and the steam engine, society has sustained incredible growth and transformation. During the 200 years, worldwide individual productivity has grown more than 32 times, and the transformation has moved 50% of us to live in cities, whereas a mere 3% dwelled in cities in 1800. However, this 200 year long fossil fuelled bubble is coming to an end, which affects societies around the world and the way we design products and services for these societies beyond imagination. With rich technological examples from his background as director of the innovation centre at DONG Energy, Charles Nielsen will discuss the impact of upcoming changes to the backbone of industry: the energy supply.

DONG Energy has an ambitious strategy of changing the energy supply from 15% to 85% renewable energy before 2040. Embodiment of the corporate strategy into designs including urban design, bio refineries, offshore wind, sun and electric vehicles will serve as a platform for describing design challenges of the future - A future where society at large becomes the most important stakeholder demanding sustenance.

Management gurus have taught us for the last 20 years that in the end we all are delivering products and services to end users. This may still hold true; however, we now need to learn that we all are nothing but subsidiary companies of the nature.

Biography

Charles Nielsen is head of Group R & D and director of the innovation centre in DONG Energy, Denmark’s largest energy utilities company. Through these functions, he is responsible for corporate development in a long-term perspective. Specific areas of focus include new business development and transition of the company; from a fossil-based energy paradigm into one predominantly based on renewable energy sources.

Charles’ strong interest in integrating renewable energy into the energy system is pursued through active involvement in regulatory, corporate and academic spheres, as technology is only one out of several degrees of freedom available to the designers of a renewable energy system. Concrete means for this integration include bio-refinery technologies, integration of renewable energy, new customer demands and applications as well as partnerships with universities and knowledge institutions.

Through Charles impressive 20 year long track record within the energy industry, he has played a central role in developing and implementing many break-through innovations. A recent example is the development of a technology to produce bio-ethanol from straw, the so-called 2nd generation bio ethanol. Close collaboration with national and international universities, as well a leading component manufacturers, plays a significant role in the development work. On an everyday basis they provide invaluable intellectual and practical inspiration for the development of sustainable new business concepts – Something considered nice to have 5 years ago, but now a cornerstone in any sound energy companies strategy.
A FRAMEWORK FOR COMPARING DESIGN MODELLING APPROACHES ACROSS DISCIPLINES

Eisenbart, Boris; Gericke, Kilian; Blessing, Lucienne

Université du Luxembourg, Luxembourg

Design models are important means for the representation of information in product development processes. Designers use design models to visualise and communicate their ideas to other members of a design team, the project manager or a costumer. Communication through design models between experts from different domains is often hindered by different terminology and different ways of modelling information. Potential consequences are design flaws, which may lead to time-consuming iterations, project failure and - if undetected - to problems during production or use.

In order to enhance the communication through design models across domains, and to address the mentioned problems, a basic understanding of similarities as well as differences between modelling approaches needs to be established. For that purpose, this paper discusses different design states which represent a distinct level of available information in the development process. They are derived through comparing different design models proposed in literature and provide the basic for a detailed comparison of modelling approaches across domains. Further, first insights into different ways of modelling are discussed.

COMPARING DESIGNING ACROSS DIFFERENT DOMAINS: AN EXPLORATORY CASE STUDY

Kan, Jeff Wai Tak (1); Gero, John S (2)

1: Taylor’s University, Malaysia; 2: Krasnow Institute for Advanced Study, Fairfax, VA, USA

This paper presents the results of comparing designing across different domains. It is claimed that designing involves ontological issues and processes that can be observed and appear across all domains in contrast to the belief that designing is unique to its domain. A case study of designing in three different domains, architectural design, software design, and mechanical design, was conducted. A concise qualitative analysis of the session is presented before reporting results from quantitative measurement of the design issues and processes in the three design sessions. We found differences in terms of design issues and processes in the three design sessions. The results from this case study support the claim that an ontologically based approach allows for comparisons of designing across multiple domains.

UNDERSTANDING THE WORLDS OF DESIGN AND ENGINEERING – AN APPRAISAL OF MODELS

Gudøen, Martin; Bøka, Casper; Wela, Torgøe

Norwegian University of Science and Technology, Norway

Using product innovation models as reference, this study presents barriers preventing integration between the worlds of product design and engineering. Models illustrating workflow within both communities are compared, with the intention of revealing parallels and incompatibilities. Findings from research in design, cognitive theory, and innovation theory are then applied, seeking to explain why barriers exist. The study indicates a tendency in the design community towards seeing product development in a wider perspective, while engineers appear more concerned with technical detail. Furthermore, designers and engineers tend to have their own opinions about what design really is, what documentation forms are needed, how to tackle a problem, and why innovation models are needed. Seeking to develop mutual understanding, which is necessary for balancing ‘soft’ qualitative attributes and ‘hard’ performance requirements, we present an ontologically based approach that seeks to provide a methodological basis for comparisons of designing across multiple domains.
A METHODOLOGICAL APPROACH FOR DEVELOPING MODULAR PRODUCT FAMILIES

Krause, Dieter; Ellmus, Sandra
Hamburg University of Technology, Germany

To offer individualized products at globally marketable prices, Institute PKT’s integrated approach for developing modular product families aims to generate maximum external product variety using the lowest possible internal process and component variety. Methodical units of design for variety and life phases modularization support the creation of modular product structures on the level of conceptual design. During embodiment design modular attributes are enhanced through module and interface design according to corporate needs integrating further requirements on product properties. The methodical approach is explained in example of a product family of herbicide spraying systems.

BROWNFIELD PROCESS FOR DEVELOPING OF PRODUCT FAMILIES

Lehtonen, Timo (1); Pakkanen, Jarkko (1); Lanz, Minna (1); Järvenpää, Jukka (2); Tuokko, Reijo (1)
1: Tampere University of Technology, Finland; 2: Finn-Power Oy, Finland

This paper represents a development process of product families in a case where already available designs are emphasized. This can be called as a brownfield process. Tools, which support the individual steps of brownfield development projects, do exist. In this paper it is described how these tools, methods and procedures can be used to cover a whole development process of a product family. The development of a product family was divided into five steps: setting of goals, developing of a generic element model, analyzing the customer requirements, analyzing the minimum variation, and component variety. Methodical units of design for variety and life phases modularization support the creation of modular product structures on the level of conceptual design. During embodiment design modular attributes are enhanced through module and interface design according to corporate needs integrating further requirements on product properties. The methodical approach is explained in example of a product family of herbicide spraying systems.

PRODUCT PLATFORM AUTOMATION FOR OPTIMAL CONFIGURATION OF INDUSTRIAL ROBOT FAMILIES

Tarkian, Mehdi (1); Ölvander, Johan (1); Feng, Xiaolong (2); Pettersson, Marcus (2)
1: Linköping University, Sweden; 2: ABB, Sweden

Product platform design is a well recognized methodology to effectively increase range and variety of products and simultaneously decrease internal variety of components by introducing modularization. The tradeoff between product performance and product family communality has to be carefully balanced in order to meet market requirements and for the company to simultaneously remain competitive. This paper will present a framework based on high fidelity analyses tools to concurrently optimize an industrial robot family as well as the common platform. The product family design problem is formally stated as a multi-objective optimization problem, which is solved using a multi-objective Genetic Algorithm.

PROACTIVE MODELING OF MARKET, PRODUCT AND PRODUCTION ARCHITECTURES

Mortensen, Niels Henrik; Hansen, Christian Lindschou; Hvam, Lars; Andreasen, Mogens Myrup
Technical University of Denmark, Denmark

This paper presents an operational model that allows description of market, products and production architectures. The main feature of this model is the ability to describe both structural and functional aspects of architectures. The structural aspect is an answer to the question: What constitutes the architecture, e.g. standard designs, design units and interfaces? The functional aspect is an answer to the question: What is the behaviour or the architecture, what is it able to do, i.e. which products at which performance levels can be derived from the architecture? Among the most important benefits of this model is the explicit ability to describe what the architecture is prepared for, and what it is not prepared for - concerning development of future derivative products. The model has been applied in a large scale global product development project. Among the most important benefits is contribution to:

- Improved preparedness for future launches, e.g. user interface and improved energy efficiency
- Achievement of attractive cost- and technical performance level on all products in the product family
- On time launch of the first generation of the product family

STRATEGIC PLANNING FOR MODULAR PRODUCT FAMILIES

Jonas, Henry; Krause, Dieter
Hamburg University of Technology, Germany

Highly customised products mostly lead to increasing complexity for the producing company. Two commonly known design approaches to reduce the internal complexity of a product family are design for variety and modularisation. However, for many application cases it is desirable to consider an optimisation of the variety already in the product planning phase affecting a wide range of products. The approach presented in this paper uses a representation both of the structure of products and economic key figures. Using this method, different strategic scenarios of the product program can be planned and assessed to each other. The derivation of strategies for the future and their evaluation uses both economic key figures and the technical conceptualisation of platform components.
Digital Modelling and Behavioural Simulation

Theme: Design Methods and Tools
Chair: Chen, Wei

SIMULATION BASED GENERATION OF AN INITIAL DESIGN TAKING INTO ACCOUNT GEOMETRIC DEVIATIONS AND DEFORMATIONS

Walter, Michael; Breitsprecher, Thilo; Gruber, Georg; Wurtzack, Sandro
University of Erlangen-Nuremberg, Germany

The success of a product's development is essentially affected by its functionality. So the product developer has to ensure the functionality as early as possible. Since this cannot be achieved with the first design several iterations are needed to modify the design. The product's functionality depends largely on the interaction of its components and their geometries. So geometric deviations of these components need to be taken into account. These deviations can result e.g. from manufacturing discrepancies or being operation depending like deformations. This paper presents an approach which enables the product developer to determine an initial design proposal that fulfils its function. So no time- and money-consuming iterations are needed. Therefore the approach uses methods and tools like tolerance allocation, topology optimization and parameter optimization at an early stage. The tolerance allocation is needed to define the functional requirement of the non-ideal components. The optimization tools are used to create the initial design proposal fulfilling the functional requirement. A case study of a non-ideal scissor-type lift table illustrates the approach.

GEOMETRIC MANIPULATION METHOD FOR EVALUATION OF AESTHETIC QUALITY IN EARLY DESIGN PHASES

Stofl, Tobias; Stockinger, Andreas; Wurtzack, Sandro
University of Erlangen-Nuremberg, Germany

Whenever products are manufactured there are deviations from the ideal geometry defined in the CAD-system. In this report a prototype is presented which allows a user to set up non-ideal visualizations of slightly deformed parts easily and quickly. The method can be used in the early stages of product development to ensure that aesthetic quality is taken into account before a real product has been manufactured. Very important key criteria for the appearance of several products, e.g. automotive car bodies or consumer products are gap and flush measurements. Therefore the developed method allows an intuitive and fast way to generate visualizations which can be used in design reviews. By using efficient data structures for the calculation of the deformation it is possible to change the shape of objects interactively during the design review itself. A case study has been performed to show that it’s possible to generate simulations which are close to the output of manufacturing simulations.

EVALUATION OF SOLUTION VARIANTS IN CONCEPTUAL DESIGN BY MEANS OF ADEQUATE SENSITIVITY INDICES

Eifler, Tobias; Johannes, Mathias; Roland, Engelhardt; Marion, Wiebel; Hermann, Kloiberanz; Herbert, Birkofer; Bohn, Andrea
Technische Universität Darmstadt, Germany

Every engineering product is exposed to a multitude of uncertain influencing factors during the different stages of its life cycle. While much effort is invested to deal with this uncertainty during production and use, it often is not adequately taken into account in product development. Moreover, especially in the early design stages well-known methods of probabilistic uncertainty analysis often cannot be applied adequately. They necessitate an elaborated conception or even a mathematical description of the underlying relationships. In this contribution an approach to assess the influence of different design parameters in a network of physical effects is proposed, based on available methods for sensitivity analysis. The different indices are examined with regard to their applicability during Conceptual Design. Quantitative, but usually highly complex methods are thereby complemented by qualitative ones. In this way, the approach allows to deal with the changing as well as usually low level of information and supports the evaluation of concepts on an abstract level of description.

COMBINING NARRATIVE AND NUMERICAL SIMULATION: A SUPPLY CHAIN CASE

Hansen, Mette Sann; Laadby, Klaus Rohde; Rasmussen, Laaas Buugaard; Jacobsen, Peter
Technical University of Denmark, Denmark

Strategic simulation is the combination of narrative and numerical simulation and can be used as a tool to support strategic decision making by providing different scenarios in combination with computer modelling. The core of the combined simulation approach (CSA) is to make it possible for decision makers to systematically test several different outputs of possible solutions in order to prepare for future consequences. The CSA can be a way to evaluate risks and address possible unforeseen problems in a more methodical way than either guessing or forecasting. This paper contributes to the decision making in operations and production management by providing new insights into modelling and simulation based on the combined narrative and numerical simulation approach as a tool for strategy making. The research question asks, “How can the CSA be applied in a practical context to support strategy making?” The paper uses a case study where interviews and observations were carried out in a Danish corporation. The CSA is a new way to address decision making and has both practical value and further expands the use of strategic simulation as a management tool.

EVALUATION OF DATA QUALITY IN THE CONTEXT OF CONTINUOUS PRODUCT VALIDATION THROUGHOUT THE DEVELOPMENT PROCESS

Reitmeier, Jochen; Paetzold, Kristin
Universität der Bundeswehr München, Germany

Focus of current research activities is to develop a holistic and capable method for the continuous validation of product properties throughout the development process by the means of simulations to significantly reduce development cycles and to increase product quality. Simulation methodology is an appropriate device to gain knowledge about real systems through models. However, it will be absolutely necessary to indicate which input data the simulation results are based on in order to prevent systematical errors and avoid implying a precision that does not exist. Data quality must be pre-defined depending on the current process step if simulations are to be executed efficiently. Therefore, the objective must be to be able to describe the available data basis and to give methodical support to assist engineers at the decision-making process as far as necessary. Consequently more goal-oriented iteration loops can be carried out resp. the further working process can be suitably designed in terms of concurrent engineering.

SUPPORTING INCLUSIVE PRODUCT DESIGN WITH VIRTUAL USER MODELS AT THE EARLY STAGES OF PRODUCT DEVELOPMENT

Kiris, Pierre Tamer (1); Thoben, Klaus-Dieter (1); Klein, Patrick (1); Modzelewski, Markus (2)
1: BIK - Institut für integrierte Produktentwicklung, Germany; 2: TZI - Technologie-Zentrum Informatik und Informationstechnik, Germany

The aim of inclusive product design is to successfully integrate human factors in the product development process with the intention of making products accessible for the largest possible group of users. In order to meet the challenge of inclusive product design, the involvement of human users in all phases of the development process has so far been an efficient approach. Yet, such ergonomics evaluation experiments that employ a versatility of user groups are not only complex, but can be very time and cost-intensive. Therefore, virtual user models (vUM) have been proposed for supporting certain phases of the product development process. In this paper a model-based design approach is proposed, which supports inclusive design of consumer products at the early stages of product development. Accordingly the objective of this paper is to explore how virtual user models can be used for inclusive product design and to conceptualize user interfaces of consumer products in such a way that even the needs of users with physical impairments are fully considered, without the necessity of incorporating users in the traditional way.

Okkon MONDAY

DESIGN PHASES

SSENSITIVITY INDICES

CSA - COMBINED SIMULATION APPROACH

VUM - VIRTUAL USER MODELS

ICED11
LEARNING FROM THE LIFECYCLE: THE CAPABILITIES AND LIMITATIONS OF CURRENT PRODUCT LIFECYCLE PRACTICE AND SYSTEMS
Gopiilu, James Anthony; McAlpine, Hamish Charles; Hicks, Ben James
University of Bath, United Kingdom

Design teams within the high value low volume (HV Lv) industry are facing ever-increasing challenges in developing new products. This has been largely due to the paradigm shift towards product-service systems (PSS), the growing importance of demonstrating corporate social responsibility (CSR) and stricter environmental legislation. With the variant nature of the design process within HV Lv industry and the longevity of the product life cycles, it is recognized that learning from previous products is essential for new product innovation and development. The ability to do this depends upon the company’s product lifecycle practice and systems, and its inherent capability/limitations. To explore these, the company’s data and information flow alongside the systems involved, onto a generalised product lifecycle generated from an extensive literature review. The map is then used to analyse current data lifecycle practice and considers its capability to provide design teams in the HV Lv industry with sufficient data and information with regards to the lifecycle phases of existing products to inform variant product design.

KNOWLEDGE CONFIGURATION MANAGEMENT FOR PRODUCT DESIGN AND NUMERICAL SIMULATION
Badin, Julien (1); Chamoret, Dominique (1); Gomes, Samuel (1); Monticello, Davey (2)
1: Mechatronics, methods, models and WIs Laboratory-M3M, University of Technology UTBM, 90010 Belfort, France; 2: ERPI Laboratory, 8 rue Bastien Lapage, National Polytechnic Institute of Lorraine, 54010 Nancy, France

We focus on industrial design and simulation processes especially in automotive and aerospace areas. Designers use engineering models which such as CAD (Computed Aided Design) and CAE (Computed Aided Engineering) models to optimize and streamline the engineering process. Each expert model is driven by parameters, expert rules, mathematical relations which are shared by several users and in several different domains (mechanical, thermal, acoustic, fluid, etc) and exploited at the same time in a concurrent engineering context. It is the basis of an imperfect collaboration process due to the fact that existing tools do not manage encapsulated knowledge well and are unable to ensure that parameters and rules are consistent (same value of parameters for example) throughout different heterogeneous expert models.

In this context, we propose an approach to manage knowledge using configurations synchronized with expert models which enable designers to use parameters consistently in a collaborative context. Our approach is called “KModel” (Knowledge Configuration Model): it allows capitalization, traceability, re-use and consistency of explicit knowledge used in configuration.

MANIFESTATION OF UNCERTAINTY - A CLASSIFICATION
Kreye, Melanie E (1); Goh, Yue Mey (2); Newnes, Linda B (1)
1: University of Bath, United Kingdom; 2: Loughborough University, United Kingdom

The aim of the research presented in this paper is to propose a classification of the manifestation of uncertainty to offer a basis for a shared understanding and characterization of the concept of uncertainty within the area of design research. During the past decade many papers about uncertainty have been published. These papers focus on different aspects and points of view and offer insights on different aspects of uncertainty. The research presented in this paper describes the manifestation of uncertainty and proposes a classification. The classification consists of context uncertainty arising from the situation circumstances, data uncertainty stemming from input information or data into a further process, model uncertainty resulting from the simplifications in models, and rules uncertainty stemming from the fact that existing tools do not manage encapsulated knowledge well and are unable to ensure that parameters and rules are consistent (same value of parameters for example) throughout different heterogeneous expert models.

Collaboration

REVIEW OF COLLABORATIVE ENGINEERING ENVIRONMENTS: SOFTWARE, HARDWARE, PEOPLEWARE
Osborn, Jonathan (1); Summers, Joshua (2); Mocke, Gregory (2)
1: South Carolina Research Authority; 2: Clemson University

This paper compares collaborative engineering environments that are reported in the literature with respect to three specific aspects: software, hardware, and peopleware configurations. A taxonomy is developed to fully describe each of the different environments. It is shown that no environment incorporates all different aspects. Using this taxonomy, an interesting set of features from these environments may be used to develop future environments for customized purposes.

SUPPORTING ANNOTATION-BASED ARGUMENTATION LINKING DISCURSIVE AND GRAPHICAL ASPECTS OF DESIGN FOR ASYNCHRONOUS COMMUNICATION
Boujot, Jean-François
Grenoble Institute of Technology, France

In this paper we will focus on distant collaborative design activities. In design graphic representations has always play an important role. If one look back in the history of engineering, graphic representations has always been strongly present: Drawings, sketches, mock-ups, and more recently digital representations (CAD, virtual reality, etc.) are commonly shared in design teams. For many years we have been studying the role of mediating objects in design teams, facilitating common understanding, knowledge elicitation and sharing. More recently we have focused on the argumentative side of design. Indeed, the discursive aspect of design is almost as important as the graphic one. In relation to these observations we discuss the concept of intermediary object, boundary object and transactive memory as a good theoretical framework. Today new technologies enable to rethink the mediating structures in distant collaborative work. Particularly we have studied the role of annotations for linking discursive and graphical aspects of design. This led us to develop an annotation plate-form we will present and propose to the discussion.

SOCIAL MEDIA ENABLED DESIGN COMMUNICATION STRUCTURE IN A BUYER-SUPPLIER RELATIONSHIP
Høltta, Venla-Kaisa; Eisto, Taneli
Aalto University, Finland

Improving design communication in product development networks can lead to a better design process. This paper presents a new design communication structure in the buyer-supplier relationship better serves the needs of networked product development compared to traditional communication structures in buyer-supplier relationships. Social media tools were used to create the new communication structure. Data was collected in the foundry industry. A simulation game was played to test the use of social media tools in buyer-supplier relationships. The results show signs of social media tools enabling improved situational awareness, improving transparency, widening of the response base, which was used for community sourcing within the product development network, and new social spaces create collaboration possibilities that were not possible before. These benefits help improve, for example, the design by including more points-of-view than before and by preventing challenges in production by increasing the awareness of the upcoming design.

COLLABORATIVE TRUST NETWORKS IN ENGINEERING DESIGN ADAPTATION
Atkinson, Simon Reay (1); Caldwell, Nicholas H.M. (1); Maier, Anja M. (2); Clarkson, P. John (1)
1: Cambridge University Engineering Department, United Kingdom; 2: Department of Management Engineering, Technical University of Denmark

Within organisations, decision makers have to rely on collaboration with other actors from different disciplines working within highly dynamic and distributed associated networks of varying size and scales. This paper develops control and influence networks within Design Structure Matrices (DSM), applying the Change Prediction Method (CPM) tool. It posits the idea of the ‘Networks-in-Being’ with varying individual and collective characteristics. [Social] networks are connected to facilitate information exchange between actors. At the same time, networks failure to provide trusted-information can hinder effective communication and collaboration. Different combinations of trust may therefore improve or impair the likelihood of information flow, transfer and subsequent action (cause and effect). This paper investigates how analyzing different types of network-structures-in-being can support collaboration and decision-making by using the change prediction method as a way ofscoping information propagation between actors in a network.
COLLABORATIVE GLITCHES IN DESIGN CHAIN: CASE STUDY OF AN UNSUCCESSFUL PRODUCT DEVELOPMENT WITH A SUPPLIER

Personnier, Hélène (1); Le Dain, Marie-Anne (1); Calvi, Richard (2)
1: Grenoble-INP, G-SCOP Laboratory, France; 2: WGE, Savoie University, Institute of Management, France
The focus of firms on their core competencies associated with the increasing complexity of products due to an integration of various technologies has led to an extension of their New Product Development (NPD) activity across organisational boundaries. The concept of design chain, defined the network of participants included in this extended activity of product development. This paper focuses on the collaborative design with suppliers within the design chain.

It seeks to appraise the benefits of such collaboration on the product development performance. The approach proposed is based on the _“glitch”_, concept which enables us to tackle this issue from the opposite direction i.e. by identifying what happens when the collaboration with suppliers in design is absent. A case study analysis of an unsuccessful collaborative development with a supplier enables us to identify ten _.“glitches”,_ that would prevent from reaping the benefits of supplier involvement. Informed by findings from this exploratory case, a categorisation of the collaborative _“glitches”,_ is proposed in order to analyse their impact on product development performance and to define preventive actions to avoid them.

PACKAGING DESIGN IN ORGANIC FOOD SUPPLY CHAINS – A CASE STUDY IN SWEDEN

Olsson, Annika (1); Lindh, Helena (1); Bartošů, Gverová (2)
1: Lund University, Lund, Sweden; 2: École Centrale Paris, Châtenay-Malabry, France
Packaging design is vital in the consumer product industry. Therefore, recent consumer preferences for locally produced food is met by product and package producers, in the package design process. The purpose of this study is to understand how package design is managed in food supply chains with a special focus on organic and locally produced food in Sweden. It will also identify and elaborate on challenges met by small and medium sized food producers in the package design process. The results show deficiencies in organic food packaging design and the main issues can be divided into three main areas; package design and material selection, supply chain imbalance and knowledge aspects. The deficiencies are obvious for small local producers, but the study also indicates challenges for national brand enterprises in focusing on eco-design and sustainable packaging solutions, since tradition and supplier decisions seem to dominate.

INTEGRATION OF SUPPLIERS INTO THE PRODUCT DEVELOPMENT PROCESS USING THE EXAMPLE OF THE COMMERCIAL VEHICLE INDUSTRY

Stephan, Nicole Katharina; Schindler, Christian
University of Kaiserslautern, Germany
During the last years the duties and responsibilities of engineering units in the vehicle industry changed drastically. Time pressure, cost pressure and the complexity of products are constantly increasing. Furthermore, companies are working to a greater extent on an international basis. These reasons lead OEMs and suppliers to increase their cooperation and to undertake extensive efforts to optimize the processes in their supply chain. The research project aims at developing a workflow model which helps improving and accelerating the cooperation between clients and contractors in the product planning phase.

CHALLENGES IN NETWORKED INNOVATION

Maurer, Christiane; Valkenburg, Rianne
The Hague University of Applied Sciences, Netherlands, The
The paper discusses an exploratory study within a longitudinal research project on open innovation, and specifically, the collaboration of two or more companies, named networked innovation. Nine companies were interviewed to gain information on their motivation to use networked innovation and the challenges they meet in doing so. They used two network types: elite circle and consortium. Challenges showed on different levels, concerning organization, project and actors. On organizational level, dominant factors determined whether a network could be started at all, mainly concerning companies within highly regulated sectors. On project level, the difficulties of networked innovation became obvious in the form of highly dynamic processes to which traditional methods do not apply any more. On actor level problems already known from intra-organizational teamwork showed up, augmented by the confrontation with different company cultures. The results are currently used as a base for further research by a multidisciplinary team investigating networked innovation at the three mentioned levels. A main goal of the project as a whole is to develop tools and methods for networked innovation.
This paper discusses the Product-Service Systems (PSS) representation method which configures product and service elements. PSS is composed of a number of product elements and service elements, and they are conceptually connected to each other to satisfy customer needs. Therefore, it is of much significance to appropriately represent product and service elements and their relations in PSS. In this paper, a new PSS representation scheme to effectively configure the product and service elements is proposed. In the proposed PSS representation scheme, the service elements can be modelled with stakeholders – service provider/receiver, activities and associated product elements. The product elements are involved in the service element and serve as media for realizing PSS. To realize the specific function, several service elements can be connected with flows that were identified in PSS functional modelling. Those flows can also be used to connect associated product elements. Finally, case study is conducted to investigate the applicability of the proposed PSS representation method to the real PSS design project.

ORTHOGONAL VIEWS ON PRODUCT/SERVICE-SYSTEM DESIGN IN AN ENTIRE INDUSTRY BRANCH

McAloone, Tim C.; Neugaard, Kreistein Neugabauer, Line Maria; Nielsen, Telt Anton; Bey, Niki

Technical University of Denmark, Denmark

Product/Service-Systems (PSS) is an emerging research area, with terms such as ’functional sales’, ’servicizing’ and ’service engineering’ all contributing to the foundation and our current understanding of PSS as a phenomenon. The field is still in its formative stages and definitions, understandings and approaches to PSS are still fluid.

Much of the literature in the field of PSS has, until now, focused largely on the actual transition from product to PSS and has typically resided in the field of engineering design. Symptomatic of the current literature is the concept of service as the addition of non-physical activities and relationships between supplier and customer. There is evidence in the literature, that multi-stakeholder approaches, customer activity understanding, actor-network charting and value chain collaboration are important factors to include in PSS strategies. However, actual case examples of these factors are sparse and limited to conceptual examples.

This paper describes five orthogonal views on PSS design, fostering integrated product/service thinking across organisational boundaries, via a systematic approach to user-oriented product and service development.

PRODUCT WITH SERVICE, TECHNOLOGY WITH BUSINESS MODEL: EXPANDING ENGINEERING DESIGN

Sakao, Tomohiko (1); McAloone, Tim C. (2)

1: Linköping University, Sweden; 2: Technical University of Denmark

Looking back over the last decade, the importance of an expanded understanding of engineering design has been shared within the engineering design community. Presented concepts and methods to support such expansion include Functional Product Development, Service Engineering, and Product/Service-Systems (PSS) design. This paper first explains PSS design as a type of expansion of the engineering design of a physical product. Secondly, it gives a review of PSS research and a projection of future research issues, also ranging out into untraditional fields of research.

Finally, it presents a new promising concept beyond PSS design, via an integrated development of technology and business model. This can be of particular interest for further research, especially due to its high freedom for designers.

PROPERTY RIGHTS THEORY AS A KEY ASPECT IN PRODUCT SERVICE ENGINEERING

Dill, Anna Katharina; Birkerhofer, Herbert; Bohn, Andrea

Technische Universität Darmstadt, Germany

Product service systems (PSS) are a field of research which is supported by research in a large number of other areas. Product development and engineering design is the basis for most research projects but the economic theory has a major influence too. The theory of property rights has its origin in the new institutional economy. Different types of rights concerning a property are described systematically and can be distributed separately. Although the distribution of property rights in general is a key aspect for the PSS design, it has not yet been introduced into PSS considerations in a broad and systematic way.

This paper aims to close the gap and give a structured overview of the property rights theory and its potentials for PSS design. According to the procedure of the German VDI 2221 it is demonstrated how property rights considerations can support different phases of a development process. Furthermore, it is demonstrated how property rights theory can support different goals in developing PSS and the author presents suggestions for a more differentiated look at the property rights distribution to improve the correlation with the requirements of PSS considerations.
Design and Business Models

Theme: Design Organisation and Management
Chairs: Ejglinger, Steven; Lee, Burton H.

KNOWLEDGE MANAGEMENT CHALLENGES IN NEW BUSINESS DEVELOPMENT - TRANSITION OF THE ENERGY SYSTEM
Jensen, Ole; Kjeldal (1); Ahmed-Kristensen, Saemena (1); Jensen, Nevena (2)
1: Technical University of Denmark, Denmark; 2: Aalborg University, Denmark

The empirical study this paper is based upon, aimed to identify and describe knowledge management challenges, throughout the new business development process. This paper reports findings from the study, as well as the framework used for analysing the KM challenges, which can be applied to other case studies for comparison. The study involved six companies, gathering the perspectives of 76 people from an energy utilities company forms the empirical background of the study. Six categories of knowledge management challenges were identified and, within each, central issues were extracted and changes throughout the new business development process investigated. Significant differences were found between these two stages of the process were identified, including: shift from personal to codified knowledge transfer and need for supporting integration of knowledge from diverse domains in the early phases. Furthermore, two new roles of the early phase, besides innovating projects, were found. This study contributes to the development of a common methodology for knowledge management in industry and to research with a deeper understanding of the new business development process.

BUSINESS MODEL DESIGN METHODOLOGY FOR INNOVATIVE PRODUCT-SERVICE SYSTEMS: A STRATEGIC AND STRUCTURED APPROACH
Lee, Ji Hwan (1); Shin, Dong Ik (1); Hong, You S. (1); Kim, Young se (2)
1: Seoul National University, Korea, South (Republic of); 2: Sungkyunkwan University, Korea, South (Republic of)

The business model is receiving considerable attention these days as companies achieve great success, or suffer damaging failure, by changing their way of doing business. The present study aims to provide a structured methodology for business model design. At the core of the methodology lies a design template with which a current business model can be analyzed or reinvented in a systematic manner. The template consists of a set of predefined building blocks that describes a business model’s strategic patterns and/or constituent elements, which building blocks were collected and verified through an investigation into more than one hundred real-world business model cases. In addition to the design template, a framework for new business model design also is provided. With the help of the representation schemes and procedures therein defined, one can design a business model in a more structured way. The framework is illustrated by means of a case study of an apparel company that set out to commercialize its newly designed product-service system concept.

THE CENTRAL ROLE OF EXPLORATION IN DESIGNING BUSINESS CONCEPTS AND STRATEGY
Kirjavainen, Senni; Björklund, Tua Annika
Aalto University Design Factory, Finland

Design thinking is described as the combination of thinking and acting that leads to new solution possibilities for design problems. Though traditionally linked to the design of objects and services, it can be applied to organizational processes as well. This paper examines design thinking in developing a new business, focusing on the business concept and strategic role of exploration in the start-up phase of the company. How and what elements of design thinking are manifested in the process of designing a business concept and forming a strategy? What is the importance of these elements in this process? The results reveal the experimental and iterative nature of developing the business concept and strategy. In addition, these organizational processes were strongly influenced by the product offering, stakeholders, and environment that the company operated in. While the results highlighted the importance of emergence, they also illustrated a need for structure and planning, thus reminding of the need of balancing between the two. Overall, the results suggest that many of the fundamental elements of design thinking are found in the development process of a company.

BUSINESS PLANS INFORMED BY DESIGN
Petersen, Søren Ingomar (1); Heebøll, John (2)
1: ingomarkingsmur - consulting, United States of America; 2: Technical University of Denmark, Denmark

Today the value created by applying design at a business model and innovation level as opposed to a design and process level is marginal. Interviews with product developers from academia and industry suggest this is due to a lack of design perspective when formulating and evaluating business plans. To remedy this, we propose including Design Quality Criteria driven by the innovation content of business plans. While auditing entrepreneurial business plans and design briefs content gaps were revealed between them. Strategy and context differences as well as a negative correlation between investors’ business plan valuation and the plans process content were found. This suggests that investors prefer plans with strategies and context descriptions to plans with high or unknown execution risk. We also found significant differences in structure and innovation content for the following polar opposite innovation types. These were the design of products based on sustainable and disruptive technologies. In conclusion, we recommend a procedure to align and translate business plan content into inspirational design briefs for enhancing design concept synthesis perspective.

DESIGNING A PROCESS FOR A MONOPOLY TO TRANSFORM TO A FREE MARKET COMPETITOR - THE SWEDISH PHARMACY SYSTEM
Ekman, Anneli (2); Carlsson, Stefan (3); Ekman, Sten (1)
1: Mälardalen University, Sweden; 2: University of Linköping, Sweden; 3: Solving Efeso AB, Sweden

The purpose of this paper is to examine how a political driven transition of a large company, Apoteket AB in Sweden with 12,000 employees – the pharmacy state monopoly – can be managed to a free market competitive player. The deregulation process, with a great variety of stakeholders involved, has since 2006 been followed, documented and analyzed. In the domain of pharmacy products and services – essential for health and well-being – a design and innovation process must be handled with care for balancing pharmaceutical and business strategies. The research contribution and expected learning outcome of this paper is to give insights; first on processes and methods for organizational designs and transformation; second to get experience from designing and implementing a management strategy to lead the deregulation to success; and third to get knowledge on how traditional professional roles can be changed and developed by designing a process with clear goals, conscious learning and a communicative strategy.

INFLUENCE OF THE TIME PERSPECTIVE ON NEW PRODUCT DEVELOPMENT SUCCESS INDICATORS
Moataari Kazerouni, Afrooz (1); Achiche, Sofiane (1); Hisarciklilar, Onur (2); Thomson, Vincent (2)
1: Technical University of Denmark, Denmark; 2: McGill University

Understanding the underlying reasons for new product development (NPD) success is central for effective NPD management. However, difficulties related to estimating to what extent the objectives are being fulfilled and assessing the trade-offs between different project goals makes the NPD process challenging and risky. It is hence crucial for companies to be able to effectively measure their success. Furthermore, these success indicators might be dynamic as they change depending on where a product is in its lifecycle.

In this paper, we investigate the success criteria during different phases of the product lifecycle, in order to determine the appropriate sets of metrics to be used for assessing NPD success during each lifecycle phase. A case study was carried out by investigating 28 companies from Canadian and Danish industries. The data collection was carried out through the use of surveys and interviews with relevant product development managers. The outcomes showed that managers do perceive the success of NPD differently depending on the time perspective. A summary of metrics for measuring success during each product lifecycle phase is given.
Generic Model of the Early Phases of an Innovation Process Regarding Different Degrees of Product Novelty

Oranwski, Robert; Kroflmann, Jan; Mörtl, Markus; Lindemann, Udo
Technical University Munich, Germany

Innovation processes are developed for various reasons, e.g. formalization, communication or controlling of development activities. There is a big variety of innovation processes and especially for its early phases to be found in literature directly correlating with the amount of different reasons for creating a new model. With the increasing number of models, the main benefit of formalization is obsolete: a comparative description how product design is carried out in a company. This paper deals with the early phases, the product planning and conceptual design of the innovation process. The literature lacks an overview of a generic model of the early phases. In order to deal with different degrees of product novelty, there need to be a flexible model in which a product planner is able to adjust his or her project of a new product flexibly depending on the determined degree of product revision. Therefore, the authors propose a merged model from a state of the art literature review with detailed income and outcome needed for each phase of the early planning process. It provides the opportunity to opt for three different degrees of product novelty.

Structured Concept Development with Parameter Analysis

Kroll, Ehud
Technion-Israel Institute of Technology, Israel

The popular systematic design process model prescribes functional decomposition and morphology as the main method for accomplishing the conceptual design phase. This approach exhibits some weaknesses, which are discussed and exemplified with an example from a design textbook. It is shown that the method of functional decomposition and morphology requires the difficult task of creating a structure function, generates product concepts in a breadth-first manner that may also lack quantification, and most of all, does not offer a step-by-step mechanism for developing the concept, as opposed to just generating it. An alternative methodology, called parameter analysis, is proposed. It presents a more natural and efficient way of not only generating initial concepts, but also developing the concepts in a structured manner all the way to a viable conceptual design. The same example is used to show how parameter analysis focuses the designer’s efforts on the most critical aspects of the evolving design and combines repeated cycles of conceptual level reasoning, configuration development with quantitative thinking, and critical but constructive evaluation.

The Continuous “Fuzzy Front End” as a Part of the Innovation Process

Stevanović, Milan (1,2); Marjanović, Dorian (2)
1: Market, tet, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia; 2: Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia

This work treats the method of creating and the importance of developing new product concepts as a basis for the future products development. Changes occurred in recent years have influenced shortening product’s life cycle. Very intensive development of technology and market has significantly affected the process of new product development. Opportunities and ideas have become the main factors for the success of the new products. The basic criteria imposed in this process are to avoid mistakes by selecting weak concepts that will engage significant resources and will not meet the expected market needs and expectations. Idea generation and evaluation should not be considered only in a Fuzzy Front End of innovation process, but in today’s condition it is necessary to be considered as a separate, continuous process with the task of analysing the opportunities and ideas and creating a satisfactory number of concepts for the future products with good market potential. Some of the information presented is gathered during the research and participation in the process of creating new products.

The Influence of a Company’s Strategy on Creativity and Project Results in an NPD – Case Study

Vukasinnović, Nikola; Fain, Noa; Duhovnik, Jožo
University of Ljubljana, Faculty of Mechanical Engineering, Slovenia

There has yet been a lot of discussion on how important creativity is for the process of new product development. In the globalized competitive world of constant inflow of new consumer goods, it is extremely important to establish a successful information network of knowledge sources (e.g. academia) and product producers (e.g. companies). The core of this network should become new product developers which are provided with real-time flow of accurate and proper information. The developers could be company or academia placed, or either dispersed to some other locations. Since the developers strongly rely on the provided information, it is essential to establish the appropriate level of trust and support between all involved partners.

In the year 2010 we had an opportunity to host at this course two companies concurrently, with two different development approaches. One company had a liberal view on a product development process and gave to the developers at the beginning only basic product constraints, while the other one set the product constraints much firmer. According to those constraints the teams took different approaches towards the new product development.
A HAPTIC BASED HYBRID MOCK-UP FOR MECHANICAL PRODUCTS SUPPORTING HUMAN-CENTERED DESIGN
Krüger, Daniel; Stockinger, Andreas; Wartzaek, Sandro
University of Erlangen-Nuremberg, Germany
The overall goal of the design process is to create products of good usability. A human-centered design process is char-
acterized by a continuous involvement of the prospective user of the product. This also comprises user-based concept
asessments and design optimizations. For this purpose in many cases it is necessary that the user is given the possibil-
ity to test the product emotionally. Thus the flexibility of digital mock-ups well established in digital engineering can't be used. Instead, physical prototypes are often indispensable. In this paper a "Hybrid Mock-Up" approach is pre-
sented that allows a physical interaction with virtual prototypes. The behavior of the product is simulated digitally whereas elements of the human-machine interface are emulated using a generic haptic device. The benefit of the ap-
proach is that for the user a realistic product perception is achieved without having to dispense with the advantages
digital engineering offers: saving of costs and time due to a reduction of physical prototypes. The approach is illustrated in a case study of a crane driven car jack.

CAN EXISTING USABILITY TECHNIQUES PREVENT TOMORROW’S USABILITY PROBLEMS?
Harkema, Christelle; Luyk - de Visser, Ilse; Dorst, Kees; Brombacher, Aarnout
Eindhoven University of Technology, Netherlands
Product usability is necessary to ensure efficient and effective products which satisfy users. But despite all available us-
ability techniques many users still experience usability problems when using electronic products. In this paper we pre-
sent two studies that explore the mismatch between types of uncertainty addressed by existing usability techniques and the types of uncertainty in the product development process that eventually can result in usability problems. For this research an uncertainty scale was developed, which is used in two studies. In the first study the uncertainty scale is used to relate usability techniques to the different types of uncertainty they address and in the second study to relate usability problems to different types of uncertainty. The overall conclusion of this paper is that it offers greater insight into how usability techniques (do not) address uncertainty in the product development process.

IDENTIFYING A DYNAMIC INTERACTION MODEL: A VIEW FROM THE DESIGNER-USER INTERACTIONS
Park, Jaeyoung; Boland, Richard
Case Western Reserve University, United States of America
Design innovation research has discovered a variety of features, forms, and functions; however, the importance of the design process has not been studied adequately. Designers and users have been regarded as two primary stakehold-
ers; yet, the interaction of designers and users has been neglected or separately highlighted in the literature on design
process studies. Therefore, this study explores designer-user interaction in the process of design innovation. In order to address this, three interaction models are proposed (model of designers’ interaction, model of users’ interaction, and model of mutual interaction between designers and users). After these three presented interaction models, a designer-
user interaction model can be synthesized as an outcome of this study. This model generates interactive paths between designers and users during a design project. In addition, the designer-user interaction model characterizes a design concept—design maturity in the process of design innovation.

USABILITY COMPLIANT SUPPORTIVE TECHNOLOGIES IN SIMULATION-DRIVEN ENGINEERING
Zapt, Jochen; Ailler-Lauckant, Bettina; Rieg, Frank
University of Bayreuth, Germany
One major characteristic of engineering procedure is the consideration of product development processes by efficient application of computer-aided tools (CAV-tools). But given that the development of those CAV-tools is mostly carried out by non-engineers, the systematic engineering practices are considered in a subdivided way. The current paper deals with a methodological approach to link theoretical simulation basics with practical program use special focusing on design-proximal simulation by finite element analysis (FEA). Examining the support functions (help documents, ...) of existing programs, their potentials are revealed. With the help of an implementation concept is demonstrated how modifications of the user interface, using tailored workflow schemes as well as modular handbooks can lead to major improvements in user support.

By a complete conceptual redesign of the supportive technologies, the user-program-interaction can be customized for engineering needs. The situation specific adaption of respective proceedings is dependent on the simulation type as well as the users’ state of knowledge, which is to be shown in the second part of the essay.

TAXONOMY OF COGNITIVE FUNCTIONS
Metzler, Torsten; Shea, Kristina
Technische Universität München, Germany
This paper presents a taxonomy of cognitive functions that supports formal functional modeling of cognitive tech-
nical systems (CTSs) and cognitive products. To date, there is little support for functional modeling of such systems and products even though their interdisciplinary complexity exceeds that of electro-mechanical products and makes modeling support in conceptual design even more important. The taxonomy of cognitive functions is based on litera-
ture research and consists of a set of cognitive capabilities on three hierarchical levels as well as a defined set of flows. Relationships among cognitive capabilities have been identified using WordNet, a lexical database of English. The ap-
plication of the taxonomy is demonstrated through the example of a coffee robot waiter, which has been designed and prototyped in the research groups of the authors. Through defining a common taxonomy of cognitive functions and flows, a common practice for functional modeling of cognitive products is defined thus supporting re-use of functional models. This creates the foundation for creating model-based design repositories for CTSs and cognitive products to support their future development.

A NEW FRAMEWORK OF STUDYING THE COGNITIVE MODEL OF CREATIVE DESIGN
Sun, Ganyun; Yao, Shengji
University of New Brunswick, Canada
This paper presents a new framework of studying the cognitive model of creative design. In this paper, first the general cognitive process of creativity is reviewed, and then current studies of the cognitive models in engineering design are introduced. Assuming design creativity is related with designer performance and design workflow, a new framework is introduced to study factors affecting design creativity and designer’s behavior in the cognitive process and the physi-
cal/physiological process. Experimental studies are proposed to validate the proposed framework and investigate the relation of design creativity with design performance and design creativity in the future work. This framework is ex-
pected to efficiently accommodate designer’s role in the cognitive process and the physical / physiological process. The expected results of this framework will provide suggestions for promoting design creativity and develop an efficient design method to integrate designer’s cognitive activities in the design process.

DESIGNING: INSIGHTS FROM WEAVING THEORIES OF COGNITION AND DESIGN THEORIES
Subrahmanian, Ezuram (1); Becht, Yoram (2); Smulders, Fido (3); Meijer, Sebastiaan (3)
1: Center for Study of Science and Technology Bangalore, India; 2. Tel Aviv University, Israel; 3. Technical University of Delft, The Netherlands
This paper addresses the issue of "What is designing?" from an unconventional perspective and aims to advance our understanding of what design really is. Designing has been studied from different perspectives but the underlying theoretical basis of studying the act has often been dispersed and not clear. To address these shortcomings the paper proposes a new topological structure that consists of two 3-dimensional spaces: Product-space and Social-space. The P-space is constructed by the complexity of the artifact, the number of disciplines involved and the availability of knowledge. The S-space consists of the number of disciplinary languages, number of different perspectives and the amount of openness and closures of the social system that encompasses the design activity. The two-space concept is con-
ected by means of theories on cognition, like: individual and distributed cognition, socio-linguistics, situated cogni-
tion, etc. Two examples serve to illustrate the proposed model and show that the act of designing involves the evolu-
tion of the artifact, social system, language and information embedded in the social and societal context.

INITIAL CONDITIONS: THE STRUCTURE AND COMPOSITION OF EFFECTIVE DESIGN TEAMS
Kress, Gregory; Schar, Mark
Stanford University, United States of America
Nearly all design work is collaborative work. The phenomenon of the multidisciplinary design team is increasingly common in both industry and project-based education. Existing research has shown that team diversity has mixed and often negative effects, especially when measured by demographic factors. However, relatively little research has been done on the cognitive style of team members, or “team cognitive diversity." Our research team is conducting a study examining several measures of cognitive style as they impact project performance for 15 collaborative student design teams. Though our full analysis is ongoing, a few noteworthy trends have emerged. We believe that these trends, separate though they are from our central argument of cognitive diversity, have strong impli-
cations in understanding design teams and, ultimately, building teams for design success. In particular, trends relating to leadership, gender ratio and the peculiar influence of a cognitive factor called “Extraverted Feeling” will be discussed. We expand upon these findings and how they might be applied in multidisciplinary teamwork in design engineering education and practice.
EXPLORING THE SYNTHESIS OF INFORMATION IN DESIGN PROCESSES – OPENING THE BLACK-BOX

Gumieny, Rajac; Lindberg, Tilman; Meinel, Christoph
Hasso Plattner Institute, Potsdam, Germany

Information synthesis is an important part of design processes as it ensures to integrate, organize, filter, and evaluate essential information and constraints for the design solution. However, there are various methods, conditions and characteristics of synthesis and it is surprising that little research has focused on this subject yet. In this paper, we outline different approaches to information synthesis and report on our findings from interviews with designers in educational and corporate environments. From these findings we derive a framework in which we suggest to describe the characteristics of information synthesis via the chosen design paradigm as well as ten particular research perspectives. We regard this framework as a basis to understand information synthesis in greater detail and to show possible fields of future research. Additionally, it allows deriving insights how inexperienced designers as well as people from other domains who are involved in the design process can be supported.

THE EVOLUTION OF INFORMATION WHILE BUILDING CROSS-DOMAIN MODELS OF A DESIGN: A VIDEO EXPERIMENT

Ahmad, Naveed; Wynn, David C; Clarkson, P. John
University of Cambridge, United Kingdom

Domain specific development environments such as MCAD/ECAD systems can partially exchange data based on standard data formats. Due to the complex interdependencies between mechatronical components and the diversity of the related product data, it is not possible to tackle the challenges of cross-domain engineering by means of direct information exchange only. An overarching information backbone, which can be understood by engineers and processed by computers is necessary. This paper presents a function oriented, ontology based approach to provide such a backbone. A special functional structure models the functional interdependencies between mechatronical components. Two exemplary usages of the functional structure as information backbone are introduced: representation of interdependencies and reuse. A functional modeling ontology supports the creation, usage and maintenance of the functional structure. The ontology enables the definition of customizable taxonomies for functional modelling dialects and allows for semi-automatic reuse of product functions and mechatronical components.

THE CHALLENGE OF HANDLING MATERIAL INFORMATION FROM DIFFERENT SOURCES

Janus, Andreas (1); Tartle; Dieter (1); Krehmer, Hartmut (2); Wartzack, Sandra (2)
1: BMW AG, Germany; 2: Chair of Engineering Design, University of Erlangen-Nuremberg

This paper analyzes the challenge of handling material information from different sources and different phases in the development process of the automotive industry. The needs for various kinds of material information are analyzed by different subjects (legislative regulations, construction design, strategically requirements). The information sources are examined in order to understand the differences and the reasons for the difficulties that occur when integrating the material information into the systems and sources. As a result the main problem will be identified, which is the different semantics or naming of the materials.

Two possible solutions to overcome the difficulties and to make the available information accessible are evaluated and compared. These approaches are a data warehouse and an intelligent search engine. On the basis of the evaluation the search engine approach will be identified as the preferred one. While a more sufficient solution to solve the problem of the many sources is presented, this article also provides a solution to overcome the problem of the different semantics.

ACCEPTING AMBIGUITY OF ENGINEERING FUNCTIONAL DESCRIPTIONS

Vermaas, Pieter
Delft University of Technology, Netherlands, The Netherlands

In this paper I consider four approaches to the ambiguity of engineering functional descriptions, and explore arguments for accepting this ambiguity. The first and second approach aim at resolving the ambiguity by finding or imposing a single precise meaning for function. These approaches lead to consensus on the content of functional descriptions and to their unconditional interoperability. Yet, these approaches counter the current engineering practice to use different meanings of function side-by-side. The third and fourth approach stay close to this engineering practice and accept the co-existing meanings of functions; in the third a single overarching meaning is still posited, and in the fourth function is taken as a Wittgensteinian family resemblance concept. It is described how having the co-existing meanings allows engineers to use different design methods. It is argued that the meaning of function then depends on the task for which functional descriptions are used. And it is proposed that functional descriptions have the methodological role in common to relate goal descriptions of devices with structural descriptions in a general and interdisciplinary way.

A METHOD FOR SELECTING BASE FUNCTIONS FOR FUNCTION BLENDING IN ORDER TO DESIGN FUNCTIONS

Sakaguchi, Syo; Tsuyama, Akira; Yamamoto, Eiko; Taura, Toshiharu
Kobe University, Japan

This study aims to develop a method for supporting the designs of new functions by extending the conventional design processes in conceptual design. By focusing on concept blending that can create new concepts, we have developed a method of function blending in the design process. However, the selection of the functions (base functions) to be blended still remained an unsolved problem. In this paper, we propose a method for selecting base functions to design new functions. Design is often considered to be a problem-solving process. Our method for selecting the base functions has been developed by analysing the nature of the problem-solving process. In particular, we have addressed the antonymic relations between the verbs in the base functions, which play important roles.

DESIGN OF FUNCTIONS BY FUNCTION BLENDING

Park, Yu; Ohashi, Shota; Yamamoto, Eiko; Taura, Toshiharu
Kobe University, Japan

This study aims to develop a method for supporting the design of a new function. Currently, in product development and design, the question “What should we create?” is the main issue to be addressed, whereas, previously, the main issue was “How should we realize the given function?” In this study, we approach the current issue by designing a new function. We propose the method of “function blending” to support the design of a new function structure. This method is systematized from a linguistic viewpoint so that a new function structure can be derived using linguistic hierarchal relations. We develop the formulation of function blending in a function dividing process, and a method for developing a thesaurus for function blending. Finally, we confirm the feasibility of the proposed method.

TOWARDS A SCIENTIFIC MODEL OF FUNCTION-BEHAVIOR TRANSFORMATION

Chen, Yang; Zhang, Zhihao; Liu, Zelin; Xie, Youbai
Shanghai Jiao Tong University, China, People’s Republic of China

The function-behavior transformation, though widely acknowledged as a significant process of engineering design, is still regarded as a subjective and experienced-based process. This paper is therefore devoted to proposing a logical and scientific model for this transformation process for building a science of designing. It clarifies the concepts of function, behavior and structure in designing, with some significant features of them identified. Especially, the subject-object relationship in philosophy is employed to clarify the above related concepts. Existing understandings about these concepts are also analyzed for comparison. A new concept, physical action, is elaborated and introduced into designing science. A scientific function-behavior transformation model, called the Function-physical Action Behavior (abbreviated as FAB) model, is then proposed, where the concept of physical action is successfully used to bridge the gap between function and behavior. An illustrative example is provided to demonstrate the proposed FAB model.
ECODESIGN IMPLEMENTATION: ECO-OPTIMISED LEGO POWER FUNCTIONS

Chairs: Niki Bey (DTU) and Tim McAloone (DTU) in collaboration with LEGO System A/S

The Ecodesign SIG has teamed up this year with LEGO System A/S, where the object of our workshop will be LEGO’s Power Functions product. As always, the aim of the workshop will be to discuss our various tools and theoretical models on one common case product.

LEGO’s motivation

LEGO has been working for some years with continued environmental improvement of their products, through the integration of environmental thinking into the product development process. They are aware of many of the tools and techniques available, and are on a constant search for best practice. The choice of case product for this workshop reflects LEGO’s challenge in designing environmentally optimised electrical/electronic products, including all of the other aspects (materials choice and design for disassembly/recycling, etc.) that go with any product design process. For the Power Functions product particularly interesting focus areas include disassembly/recyclability; reduction of materials; simplification of components; exciting alternative eco-materials and energy efficiency in operations. The outside measurements of the components are fixed to fit with the LEGO system and cannot be challenged.

The research community’s motivation

As engineering design and product development researchers we are actively creating theories, models and methods for product improvement. Many of us are also engaged in the specific area of ecodesign. For the rest of the ICED conference we will discuss research results and intentions, and we will debate about best practice, rigorous methodologies. This workshop is an opportunity for us to break out and try out our methods in collaboration with a real-life company, on a real-life product!

Taking a common product from the LEGO group, we can reach a very rich dialogue about our own ecodesign methods and models, whilst at the same time creating a set of concepts together with the company. We will round up the workshop with a discussion of ecodesign implementation in industry.

Workshop programme

0830 - Welcome introduction and game-rules
0845 - Short presentation by LEGO
 - Eco-design focus areas and activities
 - Hopes and wishes for today’s workshop
0900 - 5-8 short presentations of ecodesign concepts (from active delegates)
 - Implementation of own methods
 - Ideation based on own theories
 - Comparisons of two LCA tools
0950 - Group formation and ecodesign activities start (including coffee-to-go)
1030 - Group work continues (delegates choose a group, according to the intro presentations)
 - Discussion of proposed concepts
 - Ideation
 - Discussion of utilised methodologies
 - Creation of an idea eco-concept for LEGO
1115 - Report back and discussion
 - of concepts produced and eco-proposals derived
 - of methods used for this exercise
 - of an implementation strategy for LEGO
1150 - Close
MECHATRONICS SIG WORKSHOP

ENGINEERING DESIGN IN MECHATRONICS
Chair: Stefan Moehringer (Simon Moehringer Anlagenbau)

About the workshop
Mechatronics - the synergetic integration of different engineering domains such as mechanics, electronics and information technology can create new products and stimulate innovative solutions. In spite of the attractiveness of Mechatronics, mechatronic-specific design aspects are rarely considered in research.

Based on the findings of SIG workshop 2010 in Dubrovnic this workshop intends to bring forward the idea of a research framework for design in mechatronics (Möhinger/Stetter, 2010).

Agenda
The focus of interest is mainly:
- How to support multidisciplinarity in mechatronic-specific design,
- How to implement new product development processes for a cross-domain approach,
- How to increase visibility of design results and design changes during this process,
- How to handle complexity in mechatronic design,
- How to position design approaches between evolutionary and revolutionary design.

At the occasion of SIG workshop 2010 a survey among the participants has been made in order to classify the type of research which is done within the design community. The results of this survey will be presented by the chair.

Selected presentations (4 or 5) from experts in the field of mechatronics will give initial information on the mentioned topics. Following these presentations an intensive discussion is expected.

Based on the survey the next strategic question for the SIG will be: how can design proceeding in mechatronic design be described in a more detailed way? Stetter, Möhringer and Pulm suggest two main design proceedings: evolutionary and revolutionary design. Examples from with different industrial context (automotive and plant engineering) are given. A discussion regarding these design types will be moderated.

The workshop wants to bring together people who work in the field of mechatronic-specific design science and provide them with a forum to present and discuss their ideas.

RISK MANAGEMENT SIG WORKSHOP

KICK-OFF MEETING OF THE SIG ON “RISK MANAGEMENT” PROCESSES AND METHODS IN DESIGN
Chairs: Josef Oehmen (MIT) and Warren Seering (MIT)

About the Risk Management SIG and the Workshop
The objective of the newly founded Risk SIG is to take a fresh look at product design through the lens of risk management.

Both product development activities as well as risk management activities aim at reducing uncertainty. In a nutshell, our idea is that both disciplines can benefit from an exchange of ideas and concepts. Also, risk management play an important role as a sub-process in product design. With the release of the ISO 31000 risk management norm, the relationship of product design and risk management can be re-examined, both in terms of defining advanced risk management processes for design, as well as integrating risk management as an intrinsic part into design.

We propose to take a fresh look at design processes through the lens of risk management. We believe that risk management has passed a critical maturity level. We make the case that the Design Society not only participates in, but also defines the cutting edge of research by building a community to explore and define a research agenda on Product Design Risk Management (PDRM).

Our current goals for a three year period, subject to discussion at the workshop, are:
- Map out current research activities in the field and define future research agenda
- Build a networking platform for researchers interested in risk management in design
- Publish a special issue on risk management in design
- Publish an edited book summarizing the current state of knowledge in design risk management

Agenda
- Welcome and introduction
- Introduction of participants and their research interests
- In parallel: Collection of research interests on pin board
- Discussion and networking in groups (per research field) to explore opportunities for collaboration (e.g. joint publications)
- Discussion of SIG goals and finalization of 3 year plan
- Draft outline of call for papers for special issue on design risk management (based on research fields)
- Discussion of possible journals
- Discussion of possible co-editors and of involvement of SIG in review process
- Planning of future interaction and meeting
Innovation and Creativity Support
Theme: Design Methods and Tools
Chair: Lenau, Torben

IMMERSIVE PRODUCT IMPROVEMENT IPI – FIRST EMPIRICAL RESULTS OF A NEW METHOD
Kirschner, Rafael (1); Kain, Andreas (1); Lang, Alexander (2); Lindemann, Udo (1)
1: TU Munich, Germany; 2: Iman solutions GmbH, Germany

Despite the widely accepted and proven benefits of open innovation methods, companies sometimes do not know how to proceed when they feel they have exhausted all innovation possibilities or when they are in need of a specific type of evolution. The present paper proposes an overview of product innovation types and emotional design methods to make competitive products, bringing emotional benefits to the final users. Based on the synthesis of existing methods and tools from the literature and on our experience in design for emotion, we propose to illustrate how to design for emotion in the three main types of product innovation: incremental, disruptive and forecasting. We propose a visual tool, a brochure, dedicated to SMEs, to help understanding the differences between these types of innovation and how design for emotion can contribute to each type of innovation. Each case is supplemented with a toolbox of relevant tools, allowing company’s design team to understand and to start innovation through design for emotion.

APPLICATION OF BASIC DESIGN PRINCIPLES FOR SOLUTION SEARCH IN BIOMIMETICS
Parvan, Manuela Julia; Scholzlmberger, Andreas; Lindemann, Udo
Institute of Product Development TU Munich, Germany

The main purpose of biomimetics lies in solving technical problems by searching solutions in the vast field of biology and transferring these into technical products. This approach leads to a high degree of innovation that is often needed in critical design situations. The process of finding adequate solutions in biomimetics is very difficult to pursue. Problems lie in the difficult communication between engineers and biologists and the mutual understanding of these two disciplines due to differences in terminology and design processes. In this paper a method of improving the solution search process in biomimetics by using basic design principles is presented. From existing design principles in biology and engineering, biomimetic principles are derived. With the aid of specific generated principles engineers and biologists can conduct the search for solutions more simple and effective. The biomimetic principles are embedded in an application process. Hence, the user in case is conducted through the searching process systematically. The application of basic principles helps engineers and biologists to understand each other without the need of being experts in both domains.

COLLABORATIVE IDEA GENERATION USING DESIGN HEURISTICS
Yilmaz, Seda (1); Christian, James L. (2); Daly, Shanna R. (2); Seifert, Colleen M. (2); Gonzalez, Richard (2)
1: Iowa State University, United States of America; 2: University of Michigan, United States of America

Creative strategies play a central role in successful concept generation, however, few studies have documented the application of creative strategies in engineering design. From protocol studies of engineering and industrial designers, heuristics, or cognitive shortcuts, were identified that support novel and diverse concept generation [1]. In this study, professional engineers from a manufacturing company participated in a small group innovation workshop using the developed “Design Heuristics.” The team was videotaped as they worked with the instructional cards we developed based on the heuristics. This paper reports on the investigation of the design team’s idea generation process with five of the cards, analyzing the diversity of their ideas, how Design Heuristics were used, and their role in stimulating both new design solutions and problems. The introduction of a specific design heuristic often guided designers to a different part of the design space, and facilitated them in considering other unexplored heuristics.

BIOINSPIRED CONCEPTUAL DESIGN (BICD): CONCEPTUAL DESIGN OF A GRASSHOPPER-LIKE JUMPING MECHANISM AS A CASE STUDY
Konez Eroglu, Aylin; Erden, Zühal; Erden, Abdulkadir
ATILIM University, Department of Mechatronics Engineering, Turkey

The evolution process of nature creates _highly effective, power efficient_, and _perfectly structured_ biological systems. These excellent systems provide an inexhaustible source for engineers and scientists who desire to inspire ideas, processes, structures, functions, and behaviors from the biological domain and implement them into engineering domain. This approach is called “Bioinspired” and challenging for engineers. However, some problems of the practical approach are observed: One of the problems is “ad hoc” nature of the process. Each bioinspired design product has resulted in a differing design process and a generalization was not possible. Another problem rises due to the terminology difference between engineers and biologists. To overcome these problems, a need for a systematic _bioinspired design_ (BID) process was realized in early 2000s and since then, considerable research on the BID methodology has been progressed. Within the context of BID, this paper introduces a new approach on bioinspired conceptual design (BICD) procedure for hybrid bioinspired robots which can be inspired from multiple biological systems. An illustrative case study is given in the paper.
Clearing the Road for Innovation

Theme: Design Organisation and Management
Chair: Norell Bergendahl, Margareta E.B.

EXPLOIT AND EXPLORE: TWO WAYS OF CATEGORIZING INNOVATION PROJECTS

Ericson, Åsa; Kastensson, Åsa
Luleå University of Technology, Sweden

Innovation is vital to companies, but also difficult to perform since there are many ways to approach the subject. Typically, a balance between all issues related to innovation is suggested in literature. The empirical study presented in this paper elaborates on two strategies for innovation projects, namely to exploit existing solutions and to explore a market to develop breakthrough solutions. This is done for the purpose to discuss management implications, and thereby make those transparent for innovation projects. The result indicates that managerial implications for radical innovation projects are to provide internal legitimacy for the projects intentions, to provide for a clear view of balancing aspects by using concepts that fit into opposite ends on a continuum, and to preserve a rich information base about users.

EXPERIENCES WITH IDEA PROMOTING INITIATIVES - WHY THEY DON'T ALWAYS WORK

Gish, Liv
Technical University of Denmark, Denmark

In new product development a central activity is to provide new ideas. Over the last decades experiences with stimulating employee creativity and establishing idea promoting initiatives have been made in industrial practice. Such initiatives are often labeled idea Management – a research field with a growing interest. In this paper I examine three different idea promoting initiatives carried out in Grundfos, a leading pump manufacturer. In the analysis I address what understandings of idea work are inscribed in the initiatives and what role these initiatives play in the organization with respect to idea work. Furthermore I look into what makes these initiatives work or not work. The analysis builds on an in-depth case study made in Grundfos based on 40 interviews with R&D professionals and managers. The managerial implications of the study are that managers should be aware of what understandings of idea work are inscribed in the idea promoting initiatives as they to some degree have to fit with the understandings embedded in practice in order to work.

TECHNOLOGY DEVELOPMENT PRACTICES IN INDUSTRY

Högman, Ulf; Johannesson, Hans
Chalmers University of Technology, Sweden

This article concerns technology development practices in industry. Its primary focus is on describing the technology development process, its management through normative models, and how technology is integrated and exploited through different platform approaches. The aim of the study has been to explore the external validity of previously reported empirical results which have been compared in between the different cases and reflections have been made relative to what has been reported from earlier studies at Volvo Aero Corporation, and thereby indirectly to what can be found in literature. Apart from giving this answer to our research question, this article contributes with empirical results from five different contextual settings concerning some aspects of technology development.

ENGINEERING ENVIRONMENT FOR PRODUCT INNOVATION

Bittner, Michael (1); Vielhaber, Michael (2)
1: Accenture, Germany; 2: Saarland University, Germany

Product innovations and the competence to innovate are key success factors for any industrial enterprise. When looking inside product development departments, time, cost and quality are generally the predominant goals, which are then targeted by the engineering environment comprised of organizational measures, business processes, methods, and supporting IT systems. Innovation seems to be left the role of an appreciated side-effect. This paper investigates how an engineering environment should be designed in order to foster innovation. What should – against this background – be the interplay between processes, methods and IT? Product Lifecycle Management (PLM) is a concept often promoted for product development to address both time/ cost/quality and innovation. This paper gives advice on how PLM is to be understood and set up to achieve this with best possible results.

HOW DESIGN RESEARCHERS CAN LEAD HIGHER EDUCATION TO A GREATER IMPACT ON SOCIETY

Howard, Thomas James; McMahon, Christopher A; Gless, Matthew David
Technical University of Denmark

This paper argues for the lead role that the engineering design research community can have in aiding SMEs. The paper details findings based on several rounds of calls and meetings with a total of over 600 SMEs, and interviews with members of large design and manufacturing research group. It was found that SMEs mainly requested support with specific product related problems and tasks, rather than improvements to process or practice. It was also found that university faculty members have little time or incentive to provide such support which may not directly progress a research portfolio. However, with the aid of available government funding, researchers could benefit from undertaking such support work to fill gaps between fixed term research contracts; though administering short term irregular contracts proved a major unresolved barrier. It is recommended that engineering design researchers work as projects managers to provide technology and knowledge transfer, drawing further expertise from researchers within their universities. A trail case was completed showing identifying three key barriers to future progress.

STAKEHOLDERS’ ANALYSIS TOOLS TO SUPPORT THE OPEN INNOVATION PROCESS MANAGEMENT – CASE STUDY

de Paula, Istatano Carissio; Yeng, Samanta; Korzenowski, Andrzej; Cortimiglia, Marcello Nogueira
Rio Grande do Sul Federal University, Brazil

Open Innovation (OI) is a strategy to foster R&D productivity that introduces business flexibility via an open approach, either to external ideas or to collaborative work. Considering that the OI concept changes the perception of value creation and raises the number of stakeholders that contribute to a single project, stakeholders’ analysis seems to be adequate to identify the network partners involved in a project for management purposes. The aim in this paper is to propose a set of tools for stakeholders’ analysis, directed to the identification, prioritization and categorization of stakeholders in an OI management environment. The tools were tested, based on a qualitative approach, in a case study in the Brazilian Pharmaceutical industry. The study led to the understanding of the relationship’s importance and correlation of stakeholders in four representative pharmaceutical organizations that adhered to the OI strategy. The set of tools was useful to access the incoherence between the importance attributed to a given stakeholder and the kind of collaboration he shares. It revealed that the intensity of the relationships between them is different from a company to another.
MODELLING AND DESIGN OF CONTACTS IN ELECTRICAL CONNECTORS
Albers, Albert; Martin, Paul; Lorentz, Benoît
Karlsruher Institute of Technology (KIT), Germany
The presented paper focuses on modeling and simulation of electrical connector contacts’ behavior and associated design. New solutions are developed, based on the Contact & Channel Approach validated by simulation and experiment. Primary parameters such as contact resistance, tribological and thermal behavior, contact force, material and connector size strongly influence electrical connector’s properties. Therefore, a great deal of experience or effort is needed to design application specific solutions mastering preceding interrelated parameters. However, many state of the art electrical connectors are, especially for high currents, designed by trial and error processes. In order to increase efficiency and effectiveness of the design process, appropriate models are needed. To generate new design solutions, models of a certain level of abstraction are needed. In addition to this, holistic computer-aided models enable the prediction of connector’s electrical and mechanical performance. Here, design solutions are created based on the Contact & Channel Approach. At the same time a Finite Element Model is built in order to investigate the behavior of designed connector’s prototypes.

ACTUATION PRINCIPLE SELECTION – AN EXAMPLE FOR TRADE-OFF ASSESSMENT BY CPM-APPROACH
Erbis, Torsten (1); Weber, Christian (1); Paetzold, Kristin (2)
1: Universität der Bundeswehr München, Germany; 2: Universität der Bundeswehr München
The generation of motion is a task of many technical systems. Customized drive systems formulate the challenge of the selection of a suitable actuator during the development of drive systems. Common approaches and tools for actuator selection are limited to the selection of known actuators out of a database. However, especially at the cutting edge of technology conflicts of requirements complicate the selection of a suitable actuator or even actuation principle. This paper uses the CPM / PDD approach to describe a concept of visualizing the properties and characteristics of actuator-principles in order to identify potential for influence by the designer. Based on the context precision engineering, measures to meet conflicting objectives and to identify convenient characteristics for adaption as well as limitations of the proposed approach are discussed.

ENHANCING INTERMODAL FREIGHT TRANSPORT BY MEANS OF AN INNOVATIVE LOADING UNIT
Klingender, Max; Jursch, Sebastian
IAK/IZW & JU - RWTH Aachen University, Germany
Aim of the project “TellBox – Intelligent MegaSwapBoxes for advanced intermodal freight transport” has been to develop and prototype a new intermodal loading unit by an international consortium. This new 45 feet long intermodal loading unit is applicable to be transported on road, rail, short sea and inland waterways. It combines the advantages of currently available loading units, e.g. flexibility and safety of containers, loading facilities and internal cargo dimensions of semitrailers and the effective use of loading areas of swap-bodies, in one sustainable loading unit solution. The efficient and successful usage of this new solution has been also verified on a demonstration trial within an European automotive industry transport corridor.

LINEAR FLOW-SPLIT LINEAR GUIDES: INFLATING CHAMBERS TO GENERATE BREAKING FORCE
Lommatsch, Nils; Gramlich, Sebastian; Birkhofer, Herbert; Bohn, Andrea
TU Darmstadt, Germany
The linear flow-splitting technology developed within the Collaborative Research Center (CRC 666) “Integral Sheet Metal Design with Higher Order Bifurcations” offers new options to manufacture innovative products. Especially using the technology to continuously produce linear guides is focused in this research. With linear flow-splitting and linear bend-splitting, chambered steel profiles provide possibilities to integrate functions into linear guides. In this contribution, an approach to develop functions for linear flow-split linear guides is presented. Basing on calculation models and property networks, optimized solutions can be created while design modifications can be derived from the property networks. These property networks are very well suited to present an easy overview over the so called “set screws” with which the fulfillment of the requirements can be influenced. The approach also includes the validation of the calculation models and the functionality with finite element models and experiments. The approach is explained on the example of the function “clamping”.

EVALUATION OF AN AUTOMATED DESIGN AND OPTIMIZATION FRAMEWORK FOR MODULAR ROBOTS USING A PHYSICAL PROTOTYPE
Nezhadali, Vaheed; Kayan, Omer Khaleeq; Razzaq, Hannan; Turkian, Mehdi
Linköping University, Sweden
This paper presents an automated design and evaluation framework, by integrating design tools from various engineering domains for rapid evaluation of design alternatives. The presented framework enables engineers to perform simulation based optimizations. As a proof of concept a seven degree of freedom modular robot is designed and optimized using the automated framework. The designed robot is then manufactured to evaluate the framework using preliminary tests.

AUTOMATED USER BEHAVIOR MONITORING SYSTEM FOR DYNAMIC WORK ENVIRONMENTS
Choi, Yeon; Jang, Minsoo; Kim, Yong Se; Lee, Seongil
Sungkyunkwan University, Korea, South (Republic of)
This study’s aim is to improve existing methodology for users’ evaluation that performs tasks in environment observation. We examine a new user’s monitoring system and analyze for monitoring users’ behavior in more complex and dynamic work environments with more than one user. Making more possibilities using by quantitative ways, we also perform object tracking using RFID and four video cameras. We designed smart floor monitoring system tracking user’s movement through variation of pressure sensors. The system is installed in an observation room in where is simulated a take-out coffee shop for verification the utility of the proposed new monitoring system for this study. After analyzing data of monitoring users’ behavior, we analyze correlation referring to the users from user’s movements and action.
VIRTUALISATION OF PRODUCT DEVELOPMENT/DESIGN – SEEN FROM DESIGN THEORY AND METHODOLOGY

Weber, Christian; Hwang, Stephen

Innsbruck University of Technology, Germany

Over the last decade terms like “Virtual Prototyping”, “Virtual Engineering”, “Virtual Product Development” and “Virtual Reality” have been propagated. These terms mostly come from other disciplines and stakeholders (e.g. from developers of computer tools, computer science in general), their use is still somewhat messy. This paper tries to define a base for these issues from the perspective of Design Theory and Methodology which should be the base discipline for investigating, systemising and improving product development/design processes, but has not yet come to a decisive viewpoint about the implications and use of the terms mentioned.

ENVIRONMENT BASED DESIGN (EBD) VS. X DEVELOPMENT: A DIALOG BETWEEN THEORY AND RETROSPECTION

Zeng, Yong (1); Vareille, Jean (2)

1: Concordia University, Canada; 2: Université de Bretagne Occidentale

This paper presents two independently developed design methodologies: Environment-Based Design (EBD) and X-Development. These two methodologies share exactly the same foundation: design is based on environment. The environment is where the designed product is to work. The environment was there, is there, and will still be there. Any design action changes only the environment. This paper thus conducted a preliminary comparison of these two methodologies. This coincidental convergence of two design methodologies provides one kind of support to the each other. Future work will be focused on the formalization and refinement of X-Development through the mathematical operations included in the EBD.

THE SEMANTIC DEBATE IN DESIGN THEORIES APPLIED TO PRODUCT IDENTITY

Bonnemaire, Gregoire; Lien, Andre

ITA/NTNU - Norwegian University of Science and Technology, Norway

The process of form giving is a complex topic for product designers and is inherently connected to the field of aesthetics. Fundamental questions need answers. Are there absolute aesthetic principles that, if followed, can guarantee a “good form” and a successful product? What importance should user and market response be given? This highlights the debate on the extent to which the designer is entitled to be the only judge of a product’s aesthetics, as well as on how much other stakeholders (such as client companies, product users) have a say in the product’s meaning creation through its form.

In the past century the modernist paradigm and its translation in functionalist principles for product design has prevailed. However, this paradigm has been increasingly challenged in the beginning of this century with the emergence of human-centered design theories. This article attempts to give an overview of how this paradigm shift from positivist to constructivist philosophical worldviews has impacted design theories and form-giving principles. The purpose is to give young designers a basis for reflection on aesthetics and the creation of meaning and identity through form giving.

A SYSTEMATIC APPROACH OF DESIGN THEORIES USING GENERATIVENESS AND ROBUSTNESS

Hutchael, Armand (1); Le Masson, Pascal (1); Reich, Yoram (2); Weil, Benoit (1)

Mines ParisTech, France; 2: Tel Aviv University, Israel

In this paper we build a systematic comparison of several formal design theories: General Design Theory, Axiomatic Design, Coupled Design Process, Infused Design and C-K theory. Each theory offers principles as well as mathematical methodologies. This coincidental convergence of two design methodologies provides one kind of support to the each other. Future work will be focused on the formalization and refinement of X-Development through the mathematical operations included in the EBD.

SCENARIO-BASED DESIGN IN DESIGN PATTERN MINING

Iacob, Claudia

University of Milan, Italy

Design patterns are tools to support social creativity in that they allow communities of designers to make available knowledge related to design experiences, such as problems, solutions and design decisions. Identifying design patterns is a process known as design pattern mining. This paper describes one of the techniques used throughout a series of design workshops held for identifying design patterns in the domain of software applications for synchronous collaboration. The paper describes the way the technique was applied in concrete design cases, and its influence on the results obtained throughout the workshops. Results indicate that the use of scenario-base design supports the exploration of the design space of the application under design. This allows the generation of a larger number of scenario ideas to support the design pattern mining process.

PREDICTING EMERGING PRODUCT DESIGN TREND BY MINING PUBLICLY AVAILABLE CUSTOMER REVIEW DATA

Tucker, Conrad; Kim, Harrison

University of Illinois at Urbana Champaign, United States of America

In this work, the authors present a robust framework to enrich new product design process by dynamically capturing customer preference trends. The framework autonomously captures customer preference trends from publicly available product review data which is abundantly available but grossly underutilized. The method overcomes a major challenge that has plagued the product design community – the lack of large scale, realistic customer data and its meaningful interpretation to guide new product design process. The challenge is from conventional, prevalent use of customer surveys or focus group interviews that are usually costly and time consuming while the size of available data is usually small scale. The framework is composed of three steps – retrieval of customer review texts, mining product feature texts, and predicting future trend of product preference.

A METHODOLOGY FOR DISCOVERING STRUCTURE IN DESIGN DATABASES

Fu, Katherine; Cagan, Jonathan; Kotovsky, Kenneth

Carnegie Mellon University, United States of America

Design by analogy, in which designers draw inspiration from cross-domain design solutions, is a promising methodology for product development. This work attempts to leverage the existing design solutions within a repository, combined with an exploration of inherent structural forms that can be discovered based on the content and similarity of data, in order to gain useful insights into the nature of the design space. In this work, the approach will be applied to uncover structure in the U.S. patent database. Methodology for generating and analyzing these structures is presented here, in addition to insights from some initial results. These insights could generate fodder for stimulating design inspiration and innovation for engineering designers.

SEARCH FOR SIMILAR TECHNICAL SOLUTIONS BY OBJECT ABSTRACTION USING AN ONTOLOGY

Kuhn, Andreas; Lindemann, Udo

Technische Universität München, Germany

The search for existing solutions in mechanical engineering is a key-factor for successful product development. By reusing existing solutions, the amount of work and costs within the product development process can be reduced. However, not only exact matches for a required solution are helpful, but also the suggestion of similar solutions could often meet the requirements and bring benefit. Therefore, the presented research aims at improving the process of retrieving existing solutions similar to a user query. This is achieved by developing an abstraction level in form of a shape classification for the objects handled in a technical solution. An ontology is used for modeling the required concepts and providing the necessary relations to shape classification. Semantic similarity measures are applied for calculating the similarity of technical solutions and the user query according to the information modeled in the ontology. With the help of a developed prototype that uses the ontology as knowledge repository for annotating and searching solution documents, the presented approach is applied and evaluated in the field of automation industry.
UNDERSTANDING STYLING ACTIVITY OF AUTOMOTIVE DESIGNERS: A STUDY OF MANUAL INTERPOLATIVE MORPHING THROUGH FREEHAND SKETCHING

Zainal Abidin, Shahriman Bin (1,3); Warell, Anders (2); Lien, Andre (3)
1: Universiti Teknologi MARA, Malaysia; 2: Lund University, Sweden; 3: Norwegian University of Science and Technology, Norway

Automated morphing techniques have been proposed as a design support tool to generate novel shapes which lie between two or more polar reference images. The purpose of these techniques, employed in automated morphing systems (AMS), is to assist designers and design teams in the task of generating new shapes and finding novel form concepts. In this paper, we investigate the sketching processes of automotive designers in order to understand their processes of manual interpolative morphing employing freehand sketching. Results suggest that there are profound differences between manual and automated morphing. Specifically, these relate to selectivity, consistency, and completion of morphing. While designers choose and transform shape based on subjective and purposeful intent, AMS lack these characteristics. These differences influence the outcome of morphing processes to a fundamental degree. The research describes the characteristics and clarifies the potential contribution of AMS in styling activities, thus assisting the evaluation of AMS in relation to traditional, manual sketching approaches.

A KNOWLEDGE-BASED SUPERPOSING SKETCH TOOL FOR DESIGN CONCEPT GENERATION THROUGH REFLECTION OF VERBAL AND DRAWING EXPRESSION

Nomaguchi, Yutaka; Yoko; Fujita, Kittuo
Osaka University, Japan

Many researchers have focused on the role of sketching activity in design concept generation, and asserted that design is a result of an interaction between thinking design concepts within designers’ mind and externalizing them in verbal and drawing expression. Superposition of drawing is the typical operation in concept generation. Designers gradually shape an image by superposing, while concepts are gradually clarified. This paper proposes a knowledge-based sketch tool which manages a draw layer that is a unit of superposition and associates it with expressed design concepts. The sketch tool incorporates a concept network model, which integrates verbal and drawing expression. The tool automatically organizes alternatives of design concepts as well as alternatives of drawing so as to help a designer easily compare with each other and flexibly change an alternative. Those features facilitate designers to reflect the verbal and drawing expression. Its prototype is implemented by a knowledge-based design support framework named DRIFT which we have been developing. An example of coffee maker design is demonstrated in order to show the facility of the proposed tool.

DESIGN EXPLORATION WITH USELESS RULES AND EYE TRACKING

Jarow, Iestyn (1); Prats, Miquel (2); McKay, Alison (1); Garner, Steve (2)
1: University of Leeds, United Kingdom; 2: The Open University, United Kingdom

Shape reinterpretation is an essential component in many domains of creative practice where processes of generation and exploration take place. But, computational design tools, such as computer-aided design systems, offer poor support for shape reinterpretation, and are not well suited to ideation in early stages of design. A key difficulty in implementing systems that support shape reinterpretation is the issue of interface – how can a user guide a system with respect to their interpretation of a shape? In this paper, a software prototype is presented that uses gaze data and user input to restructure designed shapes so that they afford manipulation according to users’ interpretations. It is suggested this work can significantly impact professional design practice.

A NOVEL HYBRID 2D AND 3D AUGMENTED REALITY BASED METHOD FOR GEOMETRIC PRODUCT DEVELOPMENT

Prieto, Pablo Andrés
Universidad Técnica Federico Santa María, Chile

A method that uses the interaction of two and three dimensional environments to carry out the geometric modeling and refinement steps of the product development process is presented. The 2D environment is an interactive computer screen, where the initial sketching of the product takes place. This environment provides a direct one-to-one interaction and is implemented as a digital pen and paper. Next, a characteristic feature of the 2D environment is transformed to be exported to a 3D environment, where 3D vision and manual interaction over an immersive augmented reality environment is provided to carry out the refinement steps. The 3D environment provides fully 3D visual feedback and geometric manipulation interaction. In this way, the advantages of 2D and 3D environments are used for a smooth transition between the sketching and the modeling tasks at the early stages of the design process.

The goal of this ongoing work is solving some limitations of the 2D nature of sketching, the speed constraints imposed by the transition between a 2D sketch and its digital 3D model representation and the limitations of current CAD systems to easily modify freeform surfaces under form development.
ASSOCIATIVE THINKING AS A DESIGN STRATEGY AND ITS RELATION TO CREATIVITY

Casakin, Hernan
Ariel University Center of Samaria, Israel

Associative thinking can help designers to reflect over a problem situation by focusing on unrelated perspectives. During this process, a mapping of high order relations can be established between a source and a target situation. Associative thinking has much to contribute to design in general, and to design creativity in particular. This research centered on a particular form of associative thinking concerned with metaphorical reasoning. The aim was to analyze empirically the relation between associative thinking and creativity. A particular form of associative thinking based on the use of metaphors in the design studio was considered, and its relationship to the four standard creativity factors proposed by Gofford was explored. Results indicated that originality and elaboration were the most dominant factors characterizing metaphorical thinking during the design process. In contrast, fluency and flexibility were the weakest factors, poorly correlated with most variables of metaphorical thinking. Findings from this study have implications not only for design in general, but also for design education.

CREATIVITY TECHNIQUES FOR A COMPUTER AIDED INVENTING SYSTEM

Russo, Davide; Montecchi, Tiziano
University of Bergamo, Italy

The development of Computer Aided Inventing system, assisting product designer in their creative stage, is a lengthy process because lack of a real systematization of design knowledge for software implementation. The existing development tools for knowledge-based system offer limited support to intelligent design. In this paper, a knowledge-based architecture for igniting creative spark is described. It is aimed to solve those problems where a radical implementation is needed, not based on the improvement of previous inventions, but oriented to a new technological jump. Combining a selection of 3 different creativity approaches, mounted on the FBS ontology, the designer is forced to systematically generate a list of alternative systems achieving the same goal of the given one. All directions are then classified in form of a network tree on 3 levels: functional, behavioural and structural. A specific algorithm is then introduced to transform the network into an Information Extraction tool from patent DBs. Software can be uploaded as support for building patent technological surveys, personal knowledge database, technological transfer and forecasting.

PROBLEMS AND POTENTIALS IN THE CREATION OF NEW OBJECTS

Juhl, Jakob (1); Gybbling, Martin (2)
1: DTU, Denmark; 2: CBS, Denmark

In this paper we will based on two case studies, explore the creation of new objects in two very different contexts, being the art of painting and the fluid-mechanical engineering. From an empirical point of view we will treat creativity through actor-context relations, which enclose perceptions of problems. This kind of context is capturing a duality as both being a stabilizing structure, difficult to escape from, but also serving as the condition upon which to create something. This duality appears to be a critical and necessary condition for the creation of something new. Through different social theories we will argue the importance of problems in change-making processes. We will emphasize on how processes of creative thinking and innovation is done in steps, and how the end result reflects what these steps have brought in terms of problem perception and new knowledge. Inspired by concepts from Bruno Latour’s science studies, we suggest a framework by which to understand how change is performed through systematical steps of materialization of problems, to gain the necessary support and acceptance to carry through innovation.

FACILITATING CREATIVE PROBLEM SOLVING WORKSHOPS: EMPIRICAL OBSERVATIONS AT A SWEDISH AUTOMOTIVE COMPANY

Lund, Katarina (1,2); Tingstrom, Johan (2)
1: KTH Royal Institute of Technology, Sweden; 2: Scania, Sweden

Being creative often includes putting ideas together in new combinations and approaching problems in new ways. It is a process which can be difficult and frustrating since it demands that we challenge our usual ways of thinking. Facilitation is one means by which we can be aided in the process of breaking our thought patterns, and thereby reach further in our creative efforts. This article describes the planning, execution, evaluation, and consequent lessons learned from the facilitation of two creative problem solving workshops. In these workshops four different groups addressed problem solving with a set of innovation tools and the help of a facilitator. Our conclusion is that a product development team, working interdisciplinary on creative problem solving may benefit from facilitation in different ways. We saw that facilitation can, for example help create mission clarity and counteract behaviour that may otherwise inhibit the participants’ ability to come up with and share ideas. We also saw that entering a workshop with misleading preconceptions of workshop atmosphere may lead to insufficient time being spent on exploring potentially creative ideas.
ENGAGING ACTORS IN CO-CREATING HETEROGENEOUS INNOVATIONS
Rosenqvist, Tanja Schultz; Lindegaard, Hanne; Jørgensen, Ulrik
DTU, Denmark
In this paper we share and analyze our experiences staging a co-design process in which we through different interventions engage important stakeholders in designing. Our experiences are taken from a innovation and research project about user-involvement in textile design processes. As the project focused on textiles role in healing hospital environments, the co-design process analyzed is a process of designing textile products for these environments.
During the co-design process we engaged architects, engineers and textiles designers. The focus in this paper is specifically on the challenges related to translating and transporting the results of these different events due to the institutional and professional framing of projects and design processes. We are analyzing these through an actor network approach to the process and use the translation term to describe how the participants somehow became engaged in our projects agenda by going through the different stages of translation.

The paper is finalized with reflections on the difficulties in engaging actors in a co-design process and transporting results into the existing framed context of design and architectural work.

MONITORING A PROPERTY BASED PRODUCT DEVELOPMENT – FROM REQUIREMENTS TO A MATURE PRODUCT
Krechmer, Hartmut; Meerkamm, Harald; Wartzack, Sandro
Universität Erlangen, Germany
Increasing customers’ requirements as well as changing market demands are just two examples for influences that result in an increasing complexity of technical products. To assure the fulfillment of all requirements an effective monitoring of product development is essential. Monitoring is often done by observance of required time and caused costs, and does not take into account product’s functionality, properties or behaviour. This contribution introduces a framework which allows combining different approaches for efficient monitoring of product development by focusing the products’ properties from requirements to a mature product. Therefore, at a first short introduction in property based product development is given and a model for property based development is introduced, before existing methods for evaluating and monitoring product development are depicted. After that an introduction in monitoring product development is given and approaches are integrated into the model of property based product development with regard to their capabilities and focuses. This results in an approach for a monitoring of property based product development from requirements to a mature product.

CAPTURING INTERACTIONS IN DESIGN PREFERENCES: A COLORFUL STUDY
Orsborn, Seth (1); Talecki, Hannah (2)
1: Bucknell University, United States of America; 2: Missouri University of Science and Technology
Many engineering and marketing tools exist to help a designer optimize quantitative attributes of a product, such as height, weight, volume, or cost. However, these methods cannot effectively take into consideration attributes for which there is a significant interaction between the product attributes with respect to the consumer’s preference, such as aesthetics.
This research has begun the work of developing this necessary functional relationship for product attribute interactions and has created a methodology for further research. To accomplish this, this study considered consumer preference for product colors. Colors were represented by their red, green, and blue light components, and preference information for each of these attributes was gathered by presenting individuals with a small sample of colors, applied to backpacks, in a short choice survey.

USER CENTERED DESIGN IN THE WILD
Stompf, Guido (1); Henza, Lilian (2); Jong, Fred de (1); Vliembergen, Eddy van (1); Stappers, Pieter Jan (3); Smulders, Frido (3); Bulj, Jan (3)
1: Oce Technologies BV, Netherlands; 2: p5 consultants; 3: TU Delft; faculty of Industrial Design Engineering
Modern hi-tech product development is becoming increasingly complex, posing difficulties for achieving technically sound products, that also address the user needs. User Centered Design (UCD) methodologies have been developed, but are not easy to fit into modern industrial practice. We describe UCD practice in new product development (NPD) practice at Oce with a distributed R&D developing high tech products. The UCD professionals are embedded in NPD teams. Specifically we describe the social nature of product development in large close coupled teams, whereby the contribution of specialists is orchestrated whilst developing, and are enacted into prototypes. It was found that boundary objects, i.e., prototypes that depict the intended outcome strongly contribute UCD, just as boundary experiences. These concern events that can be experienced and reflected on by all specialists involved. To orchestrate the contributions of specialists, a powerful tool is creating a „product story.“ This is a coherent, plausible and shared narrative explaining what the product will be. Lastly it was found that synchronizing the natural UCD rhythm to the natural NPD rhythm also enhances UCD.

SOLVING GLOBAL PROBLEMS USING COLLABORATIVE DESIGN PROCESSES
Lenau, Torben; Mejborn, Christina Okai
Department of Management Engineering, Technical University of Denmark, Denmark
In this paper we argue that use of collaborative design processes is a powerful means of bringing together different stakeholders and generating ideas in complex design situations. The collaborative design process was used in a workshop with international participants where the goal was to propose new solutions that would help solve the global problems of sanitation. Lack of sanitation is a problem for 42% of the world’s population but is also a taboo topic that only very few people will engage in. In the one-day workshop participants from very different areas came together and brought forward proposed solutions for how to design, brand and make business models for how to solve aspects of the sanitation problem. The workshop showed that it was possible to work freely with such a taboo topic and that in particular the use of visualisation tools, i.e. drawing posters, and building simple physical models strongly enhanced mutual understanding and exchange of ideas. Furthermore, the introduction of biological solution analogies also showed to be fruitful for the generation of new ideas for product design.

ENABLING SET-BASED CONCURRENT ENGINEERING IN TRADITIONAL PRODUCT DEVELOPMENT
Raudberget, Dag S
School of Engineering, Jönköping University, Sweden
Set-Based Concurrent Engineering is described as an effective methodology for product development, but also hard to implement in companies using traditional development processes. This paper suggests a new way to introduce Set-Based Concurrent Engineering by combining its three principles with a modified Morphological chart. A structured process is proposed and incorporated in a computer tool based on templates. The approach is tested by using information from an industrial case study. The result indicates that the principles of Set-based Concurrent Engineering can be implemented in the proposed process and computer tool.
DESIGN FOR DIAGNOSIS

Stetter, Ralf (1); Phleps, Ulrike (2)

1: Hochschule Ravensburg-Weingarten, Germany; 2: Hochschule Regensburg, Germany

Until now a large series of helpful guidelines for the design of products in the more concrete stages of design and product development were generated and published under the notion design for X, such as Design for Manufacture and Assembly (DFMA), Design for Cost (DFC), Design for Sustainability (DFS). Until now no special attention was given to design guidelines aiming at supporting designers to arrive at products that allow and ease diagnosis – no special attention to Design for Diagnosis (DFD) guidelines. Only in the field of the design of highly integrated electronic modules attempts to employ DFD strategies were reported. The scope of the reported strategies is up to now limited to this field. The trend to ubiquitous computing and the first development steps towards cognitive systems as well as a general trend toward higher product safety and reliability lead to a higher importance of diagnosis, usually in order to detect possible faults in the products. In this paper a first attempt is made to formulate general valid guidelines how mechanical and electrical products can be designed in order to allow and to ease effective and efficient diagnosis.

DESIGN FOR DEPENDABILITY - IDENTIFYING POTENTIAL WEAKNESSES IN PRODUCT CONCEPTS

Wendland, Michael; Sadek, Tim

University of Bochum, Germany

The increasing competitiveness and the need to create innovative products force manufacturers to replace conventional technologies in their products by new technologies, thus injecting uncertainty in the design process. In this paper an existing design process of a smart memory alloy-actuator, representing the new technology, is analysed with regard to uncertainty and impacts on dependability. In order to systematically reduce the inherent uncertainty and to enable a dependability-oriented design process, a combination of a heterogeneous modelling approach and an iterative Functional Modelling (IFM) method is presented. The heterogeneous modelling approach enables a successively problem solving and helps the designer to intuitively model a product concept, the IFM method assists to identify non-intended functions and potential failures as well as disturbances at an early stage.

DESIGN FOR RELIABILITY: AN EVENT- AND FUNCTION-BASED FRAMEWORK FOR FAILURE BEHAVIOR ANALYSIS IN THE CONCEPTUAL DESIGN OF COGNITIVE PRODUCTS

Sop Njindam, Thierry; Paetzold, Kristin

Institute of Technical Product Development, University of the Bundeswehr Munich, Germany

Product complexity in modern engineering is rising at an ever increasing rate for several reasons. On the one hand, designers are aimed at extending the functionality of products, thus, integrating them in human living environments and optimizing their interaction with humans. On the other hand, this functionality extension results from the synergetic integration of different disciplines. However, an important prerequisite for the market launch of these products is their ability to meet the previously defined requirements, particularly safety and reliability.

In this perspective, we proposed a framework for the early analysis of the functional behavior of cognitive products. We assume that the failure of a function is linked with a system internal state transition. It is then possible to model the sequencing of different possible states, and by this means different functional failures which lead to critical feared states, thus, taking into account the random nature of the occurring failures. The approach presented is explained using an extended stochastic petri net with switching time to model the failure behavior of a cognitive walker.

SELECTION OF PHYSICAL EFFECTS BASED ON DISTURBANCES AND ROBUSTNESS RATIOS IN THE EARLY PHASES OF ROBUST DESIGN

Mathias, Johannes; Kloberdanz, Hermann; Eifler, Tobias; Engelhardt, Roland; Wiebel, Marion; Birkhofer, Herbert; Bohn, Andrea

Technische Universität Darmstadt, Germany

Within this paper products are called robust, if uncertainties (property variations and disturbances) from production and use have no or little influence on the result during the use. In order to design products robust from the beginning of the design process, their design is to be carried out in a methodically supported Robust Design process (RD). Therefore, one has to be able to examine robustness already during the concept design. In order to support the concept design of the RD-methodically, a catalog is developed here, in which the influencing disturbances are assigned to the single effects.

Furthermore, three robustness ratios are defined. These are R1 (disturbance based robustness ratio), RIII (environment dependent robustness ratio) and RII (sensitivity dependent robustness ratio). It is the goal to use these ratios to enable a selection of physical effects with the help of their robustness based on different amount of information and effort within the early design phases.

An exemplary appliance of the catalog and the ratios is carried out with the help of the design of a wrist watch.
REVIEWERS´ INSIGHTS INTO AN AIRPLANE DESIGN PROJECT FROM THE BUSINESS STRATEGIES TO THE ARCHITECTURAL CONCEPTS

Rianantoa, Adriananarilala; Yamou, Bernard; Redon, Romaric
EADS/ESOF Paris

The objectives of the designers have above all been the achievement of the aircraft mission and the certification rules. Today, the competition between airplane manufacturers leads to bring more added values to the stakeholders. Other types of values have then to be considered as higher level objectives like the ground operations and maintenance costs, the environmental impact, the image, the security and the autonomy. Therefore, the conceptual design must be driven in the perspective of value creation objectives from the first airplane specification sheet to a satisfactory di- mensioned architecture. Consequently, the traceability of value contributions of design concepts to the entire airplane value network becomes a key element. An explicit enriched representation of the value model and the targeted stakehold- ers is then built. A strategic alignment transforms value targets into marketing strategy and low level innova- tion strategies that drive design concepts development. This paper addresses all these issues with a methodological proposal in four steps and based on a value based management of knowledge, design processes and design solutions.

SUPPORTING CYCLE MANAGEMENT BY STRUCTURAL ANALYSIS OF THE ORGANISATIONAL DOMAIN IN MULTI-PROJECT ENVIRONMENT

Elezi, Fatos; Pechuan, Alvaro; Mirson, Alexander; Bidermann, Wiland; Kortlee, Sebastian; Lindemann, Udo
Technische Universität München, Germany

Today many companies involved in Product Development usually run several development projects at a time. This multi-project environment increases the complexity that the management has to deal with, especially in managing the high number of interactions (cycles) that are inherent in Product Development projects. In many cases, the management does not have an overview on how and in what amount different departments are involved in these cycles. This paper introduces a Multi-Domain Matrix (MDM) based methodology for obtaining a snap-shot overview of the level of involvement and interaction between different functional departments. The result of this methodology is an organizational map of development departments (organisational portfolio) that provides information to the manage- ment on how particular functional departments are involved in the development processes as well as the level of inter- action with other departments and suppliers in the multi-project environment. Based on this information, managers can reach decision on how to improve the information flow between these teams, which supports cycle convergence and consequently reduction of cost and time to market.

DESIGN DRIVEN PORTFOLIO MANAGEMENT

Peterson, Soren Ingomar; Steinert, Martin; Beckman, Sara
ingomar - consulting, United States of America

Design-driven and analytic approaches point to the existence of a chasm between business plan generation and the execution. The failure to including vital industrial design criteria in these plans prevents portfolio managers from man- aging risk effectively. At the same time, the gap between design team and portfolio manager hinders the communica- tion of theses criteria to the design team, jeopardizing the execution. Concepts that cross that chasm are well informed by business plans and consist of a comprehensive industrial design management approach with results in a well balanced design discourse. We have established a best practice for design briefing and formulated the “Design Driven Portfolio Management” method. This method comprehensively evaluates, maps and communicates business and industrial design opportunities throughout the organization. The validity of the ap- proach is established by applying the method to firms’ innovations in the design of products based on sustainable and disruptive technologies as test cases. We conclude that design brief content and concept performance correlate with innovation types and can be mapped and managed using our method.

INTEGRAL DESIGNED DATABASE MORPHOLOGY FOR ACTIVE ROOFS

Zeller, Wim
Technical University Eindhoven, Netherlands

A large portion of information created in business activity is unstructured with much useful information buried inside. Within the aerospace industry, an added challenge is that long product lifecycles require such unstructured informa- tion to be accessible over a long period of time. In this paper, the authors have examined promising techniques that can collectively contribute to better organization of unstructured information. Two industrial case studies were conducted to examine current practices of organizing unstructured information in respective engineering de- partments. As a result, key challenges in organizing and dealing with the unstructured information elements within en- gineering setting are identified. Subsequently, a set of requirements of a desired intelligent system is developed. These requirements are then used to guide the design of an example Context Based Search Platform which demonstrates promising potential for dealing with multi-dimensional and complex data sets that all engineers have to deal with.

APPLICATIONS TO ORGANIZE UNSTRUCTURED INFORMATION IN AEROSPACE INDUSTRY

Xie, Yifan (1); Culley, Steve (1); Weber, Frithjof (2)
1: University of Bath, United Kingdom; 2: Airbus

A large portion of information created in business activity is unstructured with much useful information buried inside. Within the aerospace industry, an added challenge is that long product lifecycles require such unstructured informa- tion to be accessible over a long period of time. In this paper, the authors have examined promising techniques that can collectively contribute to better organization of unstructured information. Two industrial case studies were conducted to examine current practices of organizing unstructured information in respective engineering de- partments. As a result, key challenges in organizing and dealing with the unstructured information elements within en- gineering setting are identified. Subsequently, a set of requirements of a desired intelligent system is developed. These requirements are then used to guide the design of an example Context Based Search Platform which demonstrates promising potential for dealing with multi-dimensional and complex data sets that all engineers have to deal with.

CHALLENGES IN SEMANTIC KNOWLEDGE MANAGEMENT FOR AEROSPACE DESIGN ENGINEERING

Sanya, Isaac (1); Shehab, Essam (1); Lowe, Dave (2)
1: Cranfield University, United Kingdom; 2: Rolls-Royce, Derby, United Kingdom

A large portion of information created in business activity is unstructured with much useful information buried inside. Within the aerospace industry, an added challenge is that long product lifecycles require such unstructured informa- tion to be accessible over a long period of time. In this paper, the authors have examined promising techniques that can collectively contribute to better organization of unstructured information. Two industrial case studies were conducted to examine current practices of organizing unstructured information in respective engineering de- partments. As a result, key challenges in organizing and dealing with the unstructured information elements within en- gineering setting are identified. Subsequently, a set of requirements of a desired intelligent system is developed. These requirements are then used to guide the design of an example Context Based Search Platform which demonstrates promising potential for dealing with multi-dimensional and complex data sets that all engineers have to deal with.

MODELING AND MANAGEMENT OF PRODUCT KNOWLEDGE IN AN ENGINEER-TO-ORDER BUSINESS MODEL

Elgh, Fredrik
Linköping University, Sweden

To adopt an engineer-to-order (ETO) business model when competing on a market where competitors’ products are mass-produced is a challenge. However, a competitive edge can be gained if the principles of ETO and mass production successfully can be combined. High level of customer adaptation requires systems for efficient generation of product variants with associated specifications for automated manufacturing. To maintain these systems’ usefulness over time, frequent updating will normally become a necessity. Of equal importance, is the reuse of the system encapsulated generic product family objects when developing a new product family. In this paper a case study is presented with the main objective to provide a system foundation for modeling and management of product knowledge support- ing reuse, expansion and maintenance of system embedded objects. One of the central parts of the framework is the Meta-Knowledge-Containers, labeled Descriptions for the case company. A Description contains both a definition of system embedded objects as well as the rationale behind their design. Traceability is gained by linking of Descriptions, individually and to documents, models and items.
AN APPROACH FOR MORE EFFICIENT VARIANT DESIGN PROCESSES
Schubert, Sebastian; Feldhusen, Jörg; Nagarajah, Arun
BWT Aachen, Germany

Today, as a result of a steadily increasing pressure to reduce costs in the automotive supply industry, the majority of the products are designed by adapting already existing products. In the embodiment design phase, CAD models are taken as the design base and adapted. Changes made over generations of product variants make the models more and more complex and unstructured, causing more effort for adaptation. Further capability to reduce costs is found in the design process. Mandatory analyses, like the FMEA, are redone completely, although the product remains similar. In order to reduce the effort, standardized system elements are introduced into the FMEA being adapted to the new requirements of a new order. Furthermore, functions and parameters being elaborated by executing the FMEA are reused in the embodiment design phase. The approach presented here shows how function structures and parameters derived from the FMEA are used to manipulate a skeleton model in the CAD environment. The skeleton model provides the main constraints for the part design. A method is presented how the embodiment design of those products is simplified using parametric and direct modeling techniques.

MODULARITY WITHIN A MATRIX OF FUNCTION AND FUNCTIONALITY (MFF)
Zadnik, Žiga (1); Čok, Vanja (1); Karakašić, Mirko (2); Kljajin, Milan (2); Duhovnik, Jože (1)
1: Faculty of Mechanical Engineering, University of Ljubljana, Slovenia; 2: Mechanical Engineering Faculty, J. J. Strossmayer University of Osijek, Croatia

The objective of this paper is to present the concept of modularity in the development of a product by means of the descriptive matrix of function and functionality (MFF), based on the generative model and criteria for describing products, functions and functionalities. The purpose of using the modularity of the descriptive MFF is to improve the initial design process where only the most basic information is available, such as functions and functionalities, and to use the general functionality method, which is not quite possible with the morphological matrix. Modularity inside the MFF is based on mutual relation between the function and functionality, representing the data definition. In relation to the morphological matrix it is built and defined on the basis of a mathematical model and pre-set rules [1], not only on the basis of design intuition. This work represents a method of solving modularity with regard to shape and function. This should facilitate generating functional and shape structures of new and variant products. The developed MFF modularity model has been implemented into a prototype web application and confirmed on a concrete product – Active Lounge Chair 1.

DEVELOPMENT OF MODULAR PRODUCTS UNDER CONSIDERATION OF LIGHTWEIGHT DESIGN
Gumpinger, Thomas; Krause, Dietmar
Hamburg University of Technology, Germany

Whether it is the reduction of complexity during development or the individual configuration for the consumer, modular products do offer many benefits throughout their product lifecycle. Hence it is not surprising, that many products are based upon this principle. Along with this modularisation aspect the tendency to lighten, more efficient products gets substantial. Especially the lightweight design of moving masses, for example in the transportation sector, is crucial. But when these two principles come in conjunction the design conflicts between them are hardly to resolve. At last modularised products tend to be heavier than non-modular products. To overcome this conflict is an important step to serve the individual consumer and to comply with environmental responsibility of the society. In this paper the effects of modularisation on lightweight design are outlined. Subsequently a strategy is presented to handle the identified drawbacks of modularisation on lightweight design.

A CLASSIFICATION FRAMEWORK FOR PRODUCT MODULARIZATION METHODS
Danilidis, Charalampos; Eisslin, Vincent; Eben, Katharina; Lindemann, Udo
Technische Universität München, Institute of Product Development, Germany

The modularization of product architectures and the standardization of components and modules across a product family or product portfolio constitute approaches to reduce the internal variety in an enterprise while keeping the range of the external variety. Thus costs and development time can be reduced through scale effects and further transparency within the product portfolio can be enhanced as well. In this context a plethora of methods and approaches to identify modules in product architectures has been introduced. These methods differ in the application area and the procedure and show different benefits and weaknesses. This paper introduces a classification framework for modularization methods and approaches that provides a systematic overview on past and current developments. Therefore an extensive literature survey on modularization was carried out to identify the major methodologies introduced in the last years.

ADVANCED APPLICATIONS OF A COMPUTATIONAL DESIGN SYNTHESIS METHOD
Bolognini, Francesca (1); Shea, Kristina (2); Seshia, Ashwin (1)
1: University of Cambridge, United Kingdom; 2: Technical University of Munich, Germany

From modelling to manufacturing, computers have increasingly become partners in the design process, helping automate many phases once carried out by hand. In the creative phase, computational synthesis methods aim at facilitating designers’ tasks through the automated generation of optimally directed design alternatives. Nevertheless, applications of these techniques are mainly academic and industrial design practice is still far from applying them routinely. This is due to the complex nature of many design tasks and to the difficulty of developing synthesis methods that can be easily adapted to multiple case studies and external automated simulation. This work stems from the analysis of implementation issues and obstacles to their widespread use found in previous research on synthesis methods. The research investigates possible improvements to these methods through the application of a novel technique to complex design tasks. The ability of this technique to scale-up without sacrificing accuracy is demonstrated. The successful results confirm the possibility to use synthesis methods in complex design tasks and spread their commercial and industrial application.

AN APPROACH FOR THE AUTOMATED SYNTHESIS OF TECHNICAL PROCESSES
Stankovic, Tino (1); Shea, Kristina (2); Storga, Mario (1); Marjanovic, Dorian (1)
1: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Croatia; 2: Technical University of Munich, Institute of Product Development

This paper considers the implications of introducing the computational method for technical process synthesis found on the Theory of Technical Systems as an addition to the current Computational Design Synthesis (CDS) methods and tools. A computational method containing formal model of technical process based on labelled multidigraph and formal model of technical process synthesis that is based on labelled multidigraph graph-grammar transformations will be presented. The result of applying transformation to the multigraph is generation of variants showing how technical process could be accomplished.

HIERARCHICAL SYSTEM CONCEPT GENERATION
Rosenstein, David; Reich, Yoram
Tel Aviv University, Israel

The most important stage in a product life cycle is the conceptual design which involves uncertainty but also opportunity. The SOS method of generating product design alternatives [1] is expanded here to introduce more information to help reduce uncertainty and explore design solutions to better suite customer requirements, market conditions, and the use of current technology. Hierarchical SOS uses two levels of building blocks: the 1st level contains major building blocks (the same as in regular SOS) and the 2nd level contains slightly more detailed articulations of the building blocks of the 1st level. The product requirements are cascaded to the 2nd level and are translated to secondary targets. The search of the best product design alternatives is done by a genetic algorithm (GA). As expected, the new information introduced and manipulated at the 2nd level turns out to be critical for creating good conceptual designs.

ELISE 3D - A DATABASE-DRIVEN ENGINEERING AND DESIGN TOOL
Maier, Moritz
IMAR - Institute for Marine Resources GmbH, Germany

Realizing completely new functional design approaches one has to deal with different geometries, materials and construction methods. The acquisition of the needed data for a totally new initial model is complex and therefore design of light structure is typically done by changing or optimizing existing solutions. The database-driven engineering and design tool ELISE uses marine plankton as archetypes. Since about 100,000 different species with different light structure geometries are known, a systematic use of this pool of potentially technically usable structures is consequential. As a result unique design solutions can be found efficiently and integrated to a consisting workflow.
Designing a Spaceship for Everyone: A new technology and market that is out of this world!

Abstract
Virgin Galactic has been established as a commercial spaceline to provide safe and affordable access to space for people, science and payload. In the first instance, it will transport space tourists on a sub-orbital spaceflight experience, during which they will be able to experience weightlessness for several minutes. Achieving this has already involved overcoming several significant design challenges; a two-stage spaceflight system has been designed, with a spacecraft being released from its mothership at altitude and the spacecraft subsequently deploying a novel means of achieving safe re-entry to the Earth's atmosphere. In addition, the prototype design for the spacecraft, which was flown by a lone pilot into sub-orbital space in 2004, has been scaled up to include a passenger cabin large enough for Virgin's commercial flights to carry six passengers. The spacecraft design has also been thoroughly overhauled to provide the spaceflight experience that Virgin's early research identified as essential to delivering the required customer experience and thereby establishing a sustainable business. This presentation will summarise the main cross-discipline challenges that Virgin is working to overcome and the progress made so far on its plans to turn commercial space travel into a reality.

Biography
Jonathan Firth has been involved in the Virgin Galactic initiative from 2004, first as Project Director and then as Projects and Operations Director since the beginning of 2008. In his current role his responsibilities include: the Spaceflight System Development Program being undertaken by Scaled Composites; the activities of The Spaceship Company, which has been established to build further spaceflight vehicles, initially for Virgin Galactic; the relationship with the New Mexico Spaceport Authority, which is overseeing ongoing operational activity to ready Virgin Galactic for its start of commercial operations. Jonathan first joined the Virgin Group in 1998 as Virgin Trains’ Project Director and was responsible for delivery of the Pendolino and Voyager tilting train projects. After that, he spent three years as Director of Projects at Virgin Atlantic Airways, where he was responsible for overseeing the airline’s portfolio of business-led projects. Before joining Virgin, Jonathan enjoyed a diverse career in projects and project management. He has worked in Oil & Gas, Petrochemicals, Mass Transit, Main Line Rail, Aviation and Aerospace, and holds an honours degree in Mechanical Engineering from Imperial College London and an MBA from Henley.

The Future of Innovation - Beware of the Dark Side

Abstract
Innovation is on the agenda. It does not matter whether your organisation is small or large, whether you work in industry academia or government, or whether you work in the third sector: innovation is today’s mantra. It seems to have become the holy grail everyone pursues (with varying degrees of success). We all get excited by the potential and possibilities innovation seems to offer. The presentation will ask whether there might be a dark side of innovation. We certainly need to think about innovation, a lot. But perhaps not quite as we know it, and the way we are used to. The presentation will challenge whether we join the quest for innovation too lemming-like, whether innovation has indeed become an end in itself rather than being a means to an end. It will close with proposing some armoury and companions that might help keep the quest for the innovation grail on the right tracks.

Biography
For the past 20 years Bettina has been a visionary and original thinker at the boundary between business and academia, working in the field of her passion: innovation. While she values academic rigour, her main concern is practical relevance. During her independent career she has always taken great pleasure and pride in combining and balancing a number of different activities such as research, teaching, writing, running networking initiatives and engaging in public speaking. Having worked independently in the field of innovation since 1992, in 2004 she set up the Innovation Leadership Forum (ILF, www.innovationleadershipforum.org). She also enjoys writing; while generally based on research, Bettina focuses on the practitioner audience; in addition to numerous articles she has published three books and one major industry report:

• The Future of Innovation – in which Dr Anna Trifilova and herself have knitted together the thoughts, dreams, hopes, fears and wishes of over 200 leading thinkers in the innovation community (Gower, 2009, 2010); see also www.thefutureofinnovation.org.
• Managing Innovation Design & Creativity – is a text book structured around 12 case studies and 22 chapter that cover a broad range of innovation-relevant topics; also available in simplified Chinese (Wiley, 2008, 2nd ed).
• The Innovation Wave - for general managers, those who want to start on their ‘understanding innovation journey’, and those who appreciate a holistic approach to innovation (Wiley, 2002).
• The 4th Innovation Best Practice & Future Challenges Report - drawing on interviews with leading innovation practitioners and 20 years of experience in the field of innovation; self-published.
WRITING, REVIEWING AND PUBLISHING SCIENTIFIC PAPERS IN DESIGN

Moderator: Jean-Francois Boujut (Organiser of the Grenoble Design Journal Editor Workshop)

Panelists
- Tetsuo Tomiyama (TU Delft, Editor of Advanced Engineering Informatics, Elsevier)
- Yoram Reich (Tel Aviv University, Editor of Research in Engineering Design, Springer)
- Alex Duffy (Strathclyde University, Editor of Journal of Engineering Design, Taylor & Francis)
- Panos Papalambros (University of Michigan, Editor of ASME Journal of Mechanical Design)

Purpose
Pressure on scientific publications has become significant in the academic world. For junior researchers, writing a scientific paper is paramount to anything else and needs to be mastered very quickly during their early carrier stage. Usually what is offered by universities, however, is very generic training courses and not specifically tailored for design researchers.

On the other hand, since nowadays junior researchers write so many papers, the demand for competent peer reviewers is enormous. However, junior researchers don't know how to write good reviews and senior researchers often don't have time to do good reviews. From the viewpoints of both authors and editors, reviews must be effective and efficient, i.e., useful, constructive and concise. In fact, writing a good review itself is the opposite side of the coin, i.e., writing a good paper.

In this workshop, four editors-in-chief of design related scientific journals will tell participants how to write good design research papers, how to write good reviews, and useful information about scientific publications in a workshop format. Besides presentations given by these editors, there will be ample time for questions and answers.

Programme
- Introduction to the workshop, aim, who should attend (Boujut)
- Basic information about each journal
 - Tomiyama (Advanced Engineering Informatics)
 - Reich (Research in Engineering Design)
 - Duffy (Journal of Engineering Design)
 - Papalambros (Journal of Mechanical Design)
- Essential elements for a paper to be accepted by each journal
 - Tomiyama (Advanced Engineering Informatics)
 - Reich (Research in Engineering Design)
 - Duffy (Journal of Engineering Design)
 - Papalambros (Journal of Mechanical Design)
- Essential elements of an excellent review
 - Tomiyama (Advanced Engineering Informatics)
 - Reich (Research in Engineering Design)
 - Duffy (Journal of Engineering Design)
 - Papalambros (Journal of Mechanical Design)
- Summary, discussions, Q&A
CURRENT RESEARCH AND FUTURE DIRECTIONS

Chairs: P. John Clarkson (University of Cambridge), Sandor Vajna (Otto-von-Guericke-Universität Magdeburg)

About the workshop
Engineering processes are the “glue” that hold the activities within product development and design together. Engineering processes structure these activities appropriately, secure their reasonable processing, and ensure the correct and timely use of the appropriate approaches & procedures, methods, data, and tools in order to improve the design process, improve products and services, and properly document product development processes and the products themselves. It is the aim of this group to contribute to a smart and smooth definition, application, and navigation of Engineering Processes within the scope described above. Our membership is a diverse group of academics, researchers and practitioners from different industries.

Programme outline
14:15 Welcome
14:25 Brief summaries of activities since workshops in Dubrovnik and Stanford
 • MMEP Conference, Cambridge, UK (John Clarkson)
 • IPD Workshop, Magdeburg, Germany (Sandor Vajna)
 • MMEP EU Practitioners' Group Workshops (Peter Heisig)
14:45 Presentation of a number of selected papers, followed by a discussion of the work presented. Papers will be selected to provide a coherent platform for debate.
15:45 Break
16:15 Discussion continues
17:00 Discussion on the next steps for the development of the SIG, reflecting on future events, future management of the SIG and further development of the SIG community through targeted collaborative research.
17:45 Close

Additional information
Please check the MMEP website at http://www-edc.eng.cam.ac.uk/mmepl/ for:
 • MMEP research road map “Challenges and Future Fields of Research for Modelling and Management of Engineering Processes” (CUED/C-EDC/TR 148 ISSN 0963-5432)

Please check also the SIG MMEP Conference webside at www.mmep-conference.org for:
 • MMEP2010 Conference Newsletter
 • Posters & Software descriptions: CUED/C-EDC/TR151 ISSN 0963-5432

ADVANCEMENT AND CONVERGENCES

Chairs: Armand Hatchuel (Mines ParisTech) and Yoram Reich (Tel Aviv University)

About the workshop
The goal of the workshop is to present to ICED attendees the activities of the SIG, its goals and achievements since its inception, and particularly in the last year, in order to attract new members and obtain feedback from the audience regarding the SIG goals and agenda. Two presentations deals with this aspect: a state-of-the-art review and recent advances of design theory and a historical analysis of the relation between design theory and creativity. This presentation also aims to further the connection between the theory and creativity SIGs.

In addition, the SIG meeting will feature two areas with research opportunities. The first presentation involves a presentation of design in emerging economies – an issue that might need the attention of design theory and the second is a panel on a critical methodological aspect in the development of design theories – conducting theory driven experiments.

Agenda
14:15 - State of the art and advances in design theory (A. Hatchuel and Y. Reich)
15:15 - Design theory and creativity: a historical approach (P. Le Masson, B. Weil, and Y. Nagai)
15:45 - Break
16:15 - Innovation and design in emerging economies (E. Subrahmanian)
16:45 - Theory driven experiments in Design: panel discussion (J. Edelman, A. Kazakci, M. Agogue)
17:15 - Guest lecture and open discussion on SIG DT future work
DESIGNER BEHAVIOUR AND ACTIVITY: AN INDUSTRIAL OBSERVATION METHOD
Cash, Philip (1); Hicks, Ben (1); Cullay, Steve (1); Salustri, Filippo (2)
1: University of Bath, United Kingdom; 2: Ryerson University, Canada
The relationship between laboratory based study and the actual practice of engineering design is very important. For research activity, laboratory based studies have an important role. The problem is the difficulty of relating laboratory to practice, it is thus important to fully understand this relationship. To address this, an observational method is proposed that focuses on characterizing the activities and behaviors of designers in practice. The method has been developed to provide rich context, whilst avoiding information overload. The proposed method is then critically discussed with respect to the issues particularly affecting empirical design research, such as contextualization, validity and repeatability. Finally, the paper highlights the potential importance and impact of the method for developing the relationship between practice and laboratory based experiments.

MODELING PARADOXES IN NOVICE AND EXPERT DESIGN
Dorst, Kees (1); Hansen, Claus Thorp (2)
1: UTS, Australia & Eindhoven University of Technology, NL; 2: Technical University of Denmark
In their ICED09 paper ‘Problem formulation as a discursive activity’, the authors have used an extensive educational case study to explore a framework for describing design as a discursive activity, centered around the paradoxical nature of the problem situation. The ‘working definition’ for paradox that was used as the basis of that paper will now be reconsidered, extended and detailed in the light of studies on expert designers. In particular, paradoxes will now be situated as an opposition between frames or within frames. Expert designers can be seen to build up a rich picture of the frames at play in a design situation, and extract themes that can lead to reformulation of the problem as well as the creation of innovative solutions. This behaviour is compared to the ways of working of novice designers (students) in the original case study.

LINKOGRAPHER: AN ANALYSIS TOOL TO STUDY DESIGN PROTOCOLS BASED ON FBS CODING SCHEME
Pourmahamadi, Mortesza (1); Gero, John S (2)
1: The University of Sydney, Australia; 2: Ryerson Institute for Advanced Study, Fairlawn, VA, USA
This paper presents LINKOgrapher, a software tool that carries out analyses on coded design protocols. LINKOgrapher is implemented building on an ontologically-based coding scheme utilising the Function-Behaviour-Structure (FBS) ontology. It aims at enabling cross-comparisons of different protocol studies through utilising a re-usable coding scheme and standardizing the analysis methods. Current measurements include tabular statistics, dynamic modeling of design issues and design processes, Markov models, first passage models and entropy models. The calculations and visualization of the results on screen is near real-time, saving time and effort needed to analyse long design protocols. The results are exportable as graphic models as well as textual outputs. The measurement procedures and features of LINKOgrapher are discussed along with exemplary results.

TOWARD AN ADAPTATION-INNOVATION STRATEGY FOR ENGINEERING DESIGN
Samuel, Philip (1); Jablokow, Kathryn W. (2)
1: BMGI, United States of America; 2: Penn State Great Valley
A cognition based strategy for linking the variables that affect product design and development are illustrated with the help of a new Cognition-Based Design (CBD) framework. This paper briefly introduces the Cognition-Based Design (CBD) framework and demonstrates how the adaption-innovation style of individuals can be used as a strategy to be applied to design opportunity, design process, designer’s problem solving functions, design environment and the resulting product. The outcomes of product design activities can be greatly influenced and managed by the application of adaption-innovation strategy to each key variable. Some exploratory data from simulated application of adaption-innovation theory on design engineers within industry are discussed. Recommendations for making use of the new strategy to design activities are provided, as well as suggestions for future research.

THE IMPACT OF EXAMPLES ON CREATIVE DESIGN: EXPLAINING FIXATION AND STIMULATION EFFECTS
Agogué, Marine; Kazakçi, Akin; Weil, Benoit; Cassotti, Mathieu
Mines ParisTech, France
Converging evidences have indicated that the ability to generate creative ideas could be limited by recently activated knowledge such as examples of solutions. However, neuroimaging studies have recently demonstrated that exposure to examples did not systematically lead to fixation and could on the contrary have a stimulation effect on creativity. Our hypothesis is that there are two types of examples that C-K theory helps to characterize: (1) restrictive examples that do not change the definition or the attributes of the object, and (2) expansive examples that modify its identity by adding unexpected attributes. In two studies, we explored the impact of restrictive and expansive examples on a creative task. We then hypothesized that the introduction of an example during the task would provoke participants to propose solutions of a higher originality when the provided example was expansive. In contrast, when the provided example was restrictive, we hypothesized that the originality of the solutions would be reduced. Results confirmed that solutions proposed by the group exposed to restrictive example are less original than those given by groups exposed to expansive examples.
This paper presents a recursive division algorithm to decompose an under constraint parametric design problem. The Jauregui-Becker, Juan Manuel; Schotborgh, Wouter Oliver design. The results demonstrate that diverse solutions satisfying the mechanical properties can be derived, and thus that influence the diversity of form with the goal of devising the emergent design system that uses these extracted design system capable of generating various three-dimensional forms is proposed. Although this system appropriately given in this paper.

IT SUPPORT FOR THE CREATION AND VALIDATION OF REQUIREMENTS SPECIFICATIONS – WITH A CASE STUDY FOR ENERGY EFFICIENCY Raitchei, Thomas; Rünger, Gudula; Steger, Daniel; Xu, Haibin Complete, clear, and valid requirements specifications are the foundation for a successful product development. For technical products, these specifications have to take into account several factors, including customer needs, the market, governmental regulations, international standards, and manufacturer-specific policies. Lately, the environmental impact of products has become an additional important factor. Various domain experts are necessary to cope properly with all these factors and, therefore, IT support for creating and validating requirements specifications is highly recommended. This article proposes a workflow that supports the creation and validation of requirements specifications as well as the collaboration between domain experts. The workflow utilizes existing approaches of requirements management in the engineering domain and can be used for an appropriate IT support for the validation of completeness, integrity, and consistency of requirements specifications. A reference architecture for an IT solution implementing the workflow and the corresponding IT support is proposed. In a case study, the workflow is applied to the requirement _increase energy efficiency._

APPLICATION TO A CAR BODY FRAME BASED ON PARAMETER GUIDELINES FOR DERIVING DIVERSE SOLUTIONS USING EMERGENT DESIGN SYSTEM Sato, Koichiro; Matsuka, Yoshiyuki Keio University, Japan In the early design process, diverse design ideas are generated from a global solution search under unclear design conditions. Because it is difficult to apply conventional engineering design in the early design process, the emergent design system capable of generating various three-dimensional forms is proposed. Although this system appropriately sets the parameters in every application case, the system cannot determine whether the values of the obtained parameters are the best because the parameters are selected by trial and error. The research herein extracted the parameters that influence the diversity of form with the goal of devising the emergent design system that uses these extracted parameters to generate forms. Then these guidelines in this emergent design system were applied to a car body frame design. The results demonstrate that diverse solutions satisfying the mechanical properties can be derived, and thus confirm the usefulness of the guidelines.

A DECOMPOSITION ALGORITHM FOR PARAMETRIC DESIGN Jauregui-Becker, Juan Manuel; Schotborgh, Wouter Oliver University of Twente, Netherlands The University of Twente, Netherlands, The This paper presents a recursive division algorithm to decompose an under constraint parametric design problem. The algorithm defines the separation of the problem at the hand of two complexity measures that are calculated for each parameter in the problem, namely, the effort E and the influence Inf. The result from applying this algorithm is a sequence indicating the order in which parameters can instantiated by, for example, a random value generator, or be calculated by using an equation. The characteristic of this algorithm is that it considers the structure of the equations in the problem to derive a solving strategy instead of considering its mathematic details. The advantage of doing so, from a design point of view, is that the algorithm is not limited to handling any specific types of equations (like for example pure algebraic or differential). In opposition, the algorithm is capable of handling different combinations of types of knowledge for determining a solving procedure.
DESIGN OF AN UPPER LIMB INDEPENDENCE SUPPORT DEVICE USING A PNEUMATIC CYLINDER

Saga, Norihiko; Kirihara, Koichi
Kansai Gakuin University, Japan

This paper describes a device to support a patient’s upper limb motion. For safety, light weight, and flexibility, it uses a pneumatic cylinder, for which the optimum arrangement is presented. The independence support device has two modes corresponding to livelihood support and rehabilitation contents. A compliance control system and a position control system are designed for those modes. We evaluate the effectiveness of the independence support mode through some experimentation.

ON THE DESIGN OF DEVICES FOR PEOPLE WITH TETRAPLEGIA

Gooch, Shayne (1); Medland, Anthony John (2);
1: University of Canterbury, New Zealand; 2: University of Bath, UK; 3: University of Otago, New Zealand; 4: Burwood Spinal Unit, New Zealand
People with complete tetraplegia are required to work at or near their physical limits in performing daily activities. Hence, subtle improvements to the design of assistive devices can have life changing consequences. This paper establishes a new procedure for characterizing the strength of people with tetraplegia. The data obtained along with the specifications of assistive devices are implemented in the Bath Constraint Modeller and then predictions made of a subjects ability to use the assistive device. This paper shows how improvements in wheelchair propulsion ability can be made within the constraints of normal wheelchair adjustment. From the characteristic strength maps produced in this study, it is predicted that more marked improvements can be obtained by changing the position of the applied propulsion force. The study proposes a new design concept involving an offset push rim which is expected to improve wheelchair propulsion ability for people with tetraplegia. More generally, the results of this study pose new opportunities for improvements to assistive devices for people while seated.

THE INVESTIGATION AND COMPUTER MODELLING OF HUMANS WITH DISABILITIES

Medland, Anthony John (1); Gooch, Shayne (2)
1: University of Bath, United Kingdom; 2: University of Canterbury, New Zealand
Aids for the invalid or infirmed are often created simply by modifying those used by the able-bodied, with little care taken as to their individual needs and limitations. This study is aimed at determining their actual requirements through both modelling their anthropomorphic conditions, and measuring their physical capabilities. The subjects are evaluated in an experimental rig where, for example, the appropriate force data is collected. The physical limitations of the skeleton are also recorded and entered into a manikin model incorporated within a constraint environment. Together the manikin models are used to evaluate the disability aid under consideration.

This approach has been employed in the study of wheelchairs for people with spinal injuries. Here the positions at which the maximum pushing capability of the subject can be determined and the chair modified, or redesigned, to allow this to be achieved. A similar approach can be applied to other invalid aids and medical equipment.

A procedure is now being developed that can be applied to the collection of this data which can handle a range of problems for the creation of more effective aids for the elderly and infirm.
ACQUISITION
Röder, Benjamin; Birckhorst, Herbert; Bohn, Andrea
Technische Universität Darmstadt, Germany
This paper introduces an approach for the acquisition of requirements centered on the idea of organizing requirements in requirement clusters. The acquisition of requirements is one of the first steps in the development process and is a key process for all following steps. The quality and quantity of the requirements acquired determine costs, necessary time spans, and the necessity of revising the process as well as the whole development process. Due to the fact that the acquisition of requirements happens under vastly different circumstances in every project, the level of process standardization is very low. This low level of standardization results in a variety of problems: unnoticed implicit requirements, misunderstandings caused by non-standardized use of terms and incomplete or incorrect requirements. Clustering of requirements is a known concept, but up to now is used only after the process of acquisition to structure the requirements for further use. The use of requirement clusters in this paper aims at increasing the standardization and the quality by using requirement clusters in the process of requirement acquisition.

A VALUE-CENTRIC QFD FOR ESTABLISHING REQUIREMENTS SPECIFICATION
Zhang, Ximei (1); Auriol, Guillaume (1); Monceaule, Anne (2); Baron, Claude (1)
1: ASIA, University of Technology, France; 2: Intelligent and semantic systems, EADS Innovation Works;
Quality function deployment (QFD) is commonly recognized as a tool or methodology for developing customer-focused products. There is, however, no explicit clarification about customer values in QFD. In this paper a value-centric QFD is introduced. A value-based and qualitative thinking of value is proposed for understanding customer needs and establishing requirements specification. The techniques of fundamental objectives hierarchy and means-ends objectives networks are utilized to structure reasonably the initially identified customer statements, which are possible of different levels and granularities, and to uncover the implicit customer needs. Then quantitative analysis on value, e.g. value model and weight importance, is made possible by incorporating multi attributes preference theory. It is believed that some underlying methodological problems in QFD can be interpreted and resolved in the value-centric framework. The business benefit of the value-centric QFD is that customer needs can be understood in terms of value and the design of alternatives is driven by their contribution to customer values.

EVALUATING METHODS FOR PRODUCT VISION WITH CUSTOMERS’ INVOLVEMENT TO SUPPORT AGILE PROJECT MANAGEMENT
Benazzi, João Luiz Guilherme; Ferreira Junior, Lucélindo Dias; Amaral, Daniel Capaldo
University of Sao Paulo, Brazil
The literature from Project Management and Product Development areas relates the vision to the project development success. The project management relates the product vision to the project’s success. Therefore, the need for vision in addition indicates the need to involve customers during this process. Would there be, therefore, methods to help achieve the two objectives during the planning of the project? The paper evaluated methods using an adaptation of the Repertory Grid Technique. The evaluation used constructs from literature of Product Development and Agile Project Management to assess the need for vision in the planning of the project. The results indicated that the re-build do not achieve both objectives simultaneously, but on the other hand, have complementary profiles. This indicates that, theoretically, there is the possibility of associations in order to support the agile project management. Finally, the analysis of results also shows some suggestions of associations and possible adaptations of methods that need further study.

 USAGE CONTEXT-BASED CHOICE MODELING FOR HYBRID ELECTRIC VEHICLES
He, Lin; Chen, Wei
Northeastern University, United States of America
Usage Context-Based Design (UCBD) has become an area of growing interest in engineering design research, due to the increasingly important role usage context plays in customers’ choices. In this paper, a usage context-based choice modeling framework (UCBCM) is presented to bridge the gap between engineering product design and customers’ choice of new products using hybrid electric vehicles (HEV) as an example. Uniquely, the product performances are explicitly modeled as a function of product design variables, customer profile, and usage context to reflect the heterogeneity in customer preference and usage context. Furthermore, the multinomial logic choice model is integrated with the ordered logit model to study the impact of vehicle design on consumer’s choice. The case study of HEV illustrates the usefulness of the UCBCM framework and demonstrates the importance of modeling usage context using both revealed preference data and consumer rating data.

ON THE EFFECTIVE USE OF DESIGN-BY-ANALOGY: THE INFLUENCES OF ANALOGICAL DISTANCE AND COMMONNESS OF ANALOGOUS DESIGNS ON IDEATION PERFORMANCE
Cagan, Jonathan (1); Chan, Joel (2); Fu, Katherine (1); Schunn, Christian (2); Wood, Kristin (3); Kotosky, Kenneth (1)
1: Carnegie Mellon University, United States of America; 2: University of Pittsburgh, United States of America; 3: University of Texas at Austin, United States of America
Design by-analogy is a powerful method for innovation, particularly during conceptual ideation, but also carries the risk of negative design outcomes (e.g., design fixation, risk aversion), depending on key properties of analogies used. This paper examines how variations in analogical distance, commonness, and representation modality influence the effects of analogies on conceptual ideation. Participants in this study generated ideas for an engineering design problem with or without analogous example designs drawn from the U.S. Patent database. Examples were crossed by analogical distance (near-field vs. far-field), commonness (more vs. less common), and modality (text, image, video). A control group generated ideas without examples. Effects were examined on a mixture of ideation process and product-variables. The results show positive effects of far-field and less-common examples for novelty and quality of ideas; also, the combination of far-field and less-common examples increased novelty in ideas. These findings suggest guidelines for the effective use of design-by-analogy, particularly a focus on far-field, less-common examples during conceptual ideation.

CHOOSING INNOVATION: HOW REASONING AFFECTS DECISION ERRORS
Mounarath, Ronny; Levaldi, Dan; Dong, Andy
The University of Sydney, Australia
Human judgments are inherently fallible in their decision-making due to the constraints of bounded rationality. To make up for this inadequacy, we make judgments using a combination of deductive and inductive reasoning, which allows us to justify our decisions because we have implemented a process of proof. In this study, we conduct an experiment that simulates an uncertain environment characterized by incomplete information with members of a committee deciding whether or not to invest in innovation-oriented new product projects. We examine a third form of logic, abductive reasoning, and investigate the direction of its effect on the probability of project acceptance. We find that under abductive reasoning, individuals are more open to accepting projects and investment is not innovative, but rather to show that this decision is subject to the framing effects of logical forms of reasoning. The findings provide new psychological evidence on decision-making when choosing innovation, and raises questions on how juries choose innovative projects.

A PROTOCOL FOR CONNECTIVE COMPLEXITY TRACKING IN THE ENGINEERING DESIGN PROCESS
Mathieson, James; Miller, Michael; Summers, Joshua
Clemson University, United States of America
The evaluation of design processes is often conducted after the process has been completed or as a case study on a single process. These two approaches each cannot be used to improve an ongoing process and require a great deal of time to generate statistically significant samples. Presently here is a protocol for tracking the interaction of design process elements as a mixed temporal hypergraph network which may evolve in real time. The protocol uses email and limited human reporting data to develop the time-stamped connections of the network. At any time, this network or a filtered subset of it may be subjected to an analysis of graph and network properties. The response of these properties may then be correlated to either events or performance metrics. Here, this approach is applied to emails generated in the course of an undergraduate mechanical engineering senior design project. This application demonstrates an ability to identify deadlines, member roles, and work schedules from graph and network properties.

APPLIED TESTS OF ENGINEERING DESIGN SKILLS: VISUAL THINKING CHARACTERIZATION, TEST
Shah, Jamil (1); Woodward, Jay (2); Smith, SM (2)
1: Arizona State University; Tempe, United States of America; 2: Texas A&M University, College Station, Texas, USA
A number of cognitive skills relevant to conceptual design have been previously identified. We have already reported on the contents, rationale and validation of divergent thinking test. This paper focuses similarly on the efforts related to the visual thinking and spatial reasoning in engineering context. It is designed to evaluate six measures: visual comprehension including perceptual speed, visual memory, visual synthesis mental image manipulation/ transformation, spatial reasoning and graphical expression/elaboration. We discuss the theoretical basis of a comprehensive test for engineers, test composition, trial runs and computation of reliability measures. The alpha version was given to a small set of subjects to determine clarity of the questions and gauge difficulty level. The beta version was used for norming and test validation from over 300 samples, engineering students and a smaller number of practicing engineers. The test is shown to be reliable (Cronbach alpha less than 0.50 and only 2 eigenvalues greater than 1).
A FRAMEWORK FOR INTEGRATED PROCESS MODELING AND PLANNING OF MECHATRONIC PRODUCTS

Hohenberger, David; Lindemann, Udo
TU München, Germany

Mechatronic products are characterized by a high level of interdisciplinary and complexity in the technical system and its belonging development processes. In consequence this leads to novel requirements for process planning and the usual methods and tools. The main objective of an integrated approach is to deal with the high complexity and a variety of interdependencies. Therefore a framework for integrated mechatronic process modeling and planning is presented. The focus is an effective integration of the involved disciplines mechanics, electronics and computer science into the overall development process. This leads to an improved synchronization of the single development processes and a common focus on the mechatronic system. The mechatronic development is seen as a system of interconnected cross domain processes and relations. It provides different and discipline independent views on the system in order to improve system thinking. A Multiple-Domain-Matrix (MDM) approach is used to represent and analyze interdependencies within the product and the process. It allows for detailed analysis and deduction of implicit interconnections which can be regarded in the planning of the development process.

A COMPARISON OF EVOLUTIONARY AND REVOLUTIONARY APPROACHES IN MECHATRONIC DESIGN

Stettler, Ralf (1); Mühlingher, Stefan (2); Pulm, Udo (3)
1: Hochschule Ravensburg-Weingarten, Germany; 2: Simon Mühlingher Anlagenbau GmbH, Germany; 3: BMW AG, Germany

Since ICED 2007 the special interest group SIG “mechatronics” is discussing research of mechatronic design. At the Design 2010 the findings were summarized to a research framework in order to support and give structure to further activities. During the numerous discussions the insight appeared that one of the most important characteristics is the starting point and the general procedure style of the strategies, methods and tools for mechatronic design, for instance the necessary amount of chaos. From an extreme point of view, one could identify two antagonistic concepts. A purely revolutionary approach will start from nothing but necessities of users or society and will follow a rigid procedure in order to design something totally novel. On the contrary, a purely evolutionary approach will start with an existing product and will proceed in numerous cycles in order to design something better. Obviously, no black-and-white distinction of the existing approaches is possible or sensible. The ultimate goal of the ongoing research is the formulation of guidelines how a combination of both general directions could lead to more effective and robust mechatronic development processes.

A MECHATRONIC CASE STUDY HIGHLIGHTING THE NEED FOR RE-THINKING THE DESIGN APPROACH

Terry-Smith, Jonas Marckberg; Mortensen, Niels Henrik
Technical University of Denmark, Denmark

Developing mechatronic products is a great challenge for many companies due to the multi-disciplinary nature of the development process. In this article the main objective is an investigation of seven aspects related to the synthesis process and will proceed in numerous cycles in order to design something better. Obviously, no black-and-white distinction of the existing approaches is possible or sensible. The ultimate goal of the ongoing research is the formulation of guidelines how a combination of both general directions could lead to more effective and robust mechatronic development processes.

INTEGRATION OF DFMA THROUGHOUT AN ACADEMIC PRODUCT DESIGN AND DEVELOPMENT PROCESS SUPPORTED BY A PLM STRATEGY

Ruiz Arenas, Santiago; Osorio Gómez, Gilberto
EAPT University, Colombia

In order to obtain an integral implementation of Design for Manufacture and Assembly-DFMA in a “Product Lifecycle Management - PLM” strategy, it is proposed a Product Design and Development Process-PPDP where the activities and tools of DFMA Methodologies are integrated through its different stages in a single and distributed way. This implies that DFMA will not be applied during the last stages of the process as a unique activity like it is done during the Product Design Methodologies, but it will be integrated more efficiently working from the first stages of the process. A first attempt oriented to the implementation of a holistic PLM strategy in a standardized academic PDPP adopted by the B.Eng. in Product Design engineering is proposed. This is an initial proposal to integrate DFMA into the PLM strategy, seeing that previous experiences have demonstrated that, at academic level, in projects where the application of all taught courses should be evident in the final designed product, students forget to apply considerations related to manufacturing and assembly issues.

INTEGRATED SYSTEMS DESIGN EDUCATION

Conway, Alastair; Wren, Graham; Ion, William
University of Ljubljana, Slovenia; 2: Domel d.d., Zelezniki, Slovenia

There is a positive correlation between the number of generated alternative product concepts and their quality. Many different approaches/methods/tools have been developed to facilitate synthesis of alternative product concepts based on variations of physical laws, material, geometry and geometrical position. One of such tools is SoPHY (Synthesis of Physical laws), which is based on chaining of physical laws and complementary basic schemata. An experiment was designed, which is the first in a series of experiments which are planned to assess various aspects of the SoPHY computer tool. The assumption tested in the experiment was that basic schemata generated by the computer tool (automatic phase) offered appropriate guidance for generating alternative embodiments due to more focused approach (manual phase). The presentation of the experiment and its results are the focus of the paper.

DO BASIC SCHEMATA FACILITATE EMBODIMENT DESIGN?

Zlatnik, Roman (1); Fale, Nova (1); Rihmanic, Janja (1,2)
1: University of Ljubljana, Slovenia; 2: Daniel d.d., Zelezniki, Slovenia

A COHERENT AND DISCRIMINATING SKILLS STANDARD FOR INNOVATIVE DESIGN

Choulouli, Denis; Wels, Pierre-Alain
UTBM (Belfort-Montbéliard Technology University), France

We introduced a skills and capabilities standard into two teaching modules at XX university. Four skills were defined from knowledge of the design activity, from which 32 capabilities were derived. The modules deal mainly with functional analysis and TRIZ tools for technical problems solving, but the relative proportion of TRIZ differs, as well as students’ backgrounds in design. Students were asked to evaluate each of their own capabilities. This set of capabilities was easy to understand by students. The scattering seems contained, and comparisons between the series of data show differences between capabilities, skills, populations of students, and modules contents. The results show that a learning session can make students more aware of their (average) initial level and also reveal overestimated as well as non recognised initial capabilities. Moreover, all the differences we observed can be explained by the modules or students features such as students’ backgrounds or amount of teaching relating to a given skill. This skills and capabilities standard therefore appears coherent and discriminating, and its use in academic and industrial context can be programmed.
CONSIDERATION OF GOAL INTERRELATIONS IN LIFECYCLE-ORIENTED PRODUCT PLANNING

Hepperle, Clemens; Förg, Armin; Mörtl, Markus; Lindemann, Udo
Technische Universität München, Germany

Within the innovation process the phase of product planning plays an important role in order to deduce consistent product disposals to be developed and produced by the company. Demands and corresponding product goals as well as trends concerning future solutions have to be anticipated and systematically analysed and opposed in order to place products accepted by customers and at the same time deliverable by the company. Therefore, early identification of goal interrelations and goal conflicts which arise by applying certain product concepts is essential. This paper therefore provides a graph- and matrix-based approach by considering product functions to link product goals among each other via possible solutions and respective characterising parameters. The approach focuses further on an integrated lifecycle perspective in order to consider company, market and environmental demands and potentials from the phases of developing and producing until the phases of using and disposing products.

ANALYSIS OF CREATED REPRESENTATIONS OF THE DESIGN OBJECT DURING THE PROBLEM SOLVING PROCESS

Albers, Albert; Wiedner, Aaron
Karlsruher Institute of Technology (KIT), Germany

During the process of developing new solutions, the designer creates different representations of the design object, which have a high variation in their level of abstraction. These representations have great impact on reaching the project targets. Therefore, it is important to understand how the designers create these representations for the problem solving, in order to derive general ways of proceeding. This paper describes the assessment, classification and analysis of designer’s proceedings during the process of problem-solving, based on two examples from the industry. The evaluation contains the created representations, as well as the proceedings for the problem solving. The results show, what level of detail and what scope is to be preferred by the designer, for representing the design object during the different stages of the problem solving. Furthermore, it is shown, in what order problems are solved during the design process.

DESIGN PROCESS AUTOMATION – A STRUCTURED PRODUCT DESCRIPTION BY PROPERTIES AND GUIDELINES OF OPTIMIZATION ALGORITHMS

Gramlich, Sebastian; Birkhofer, Herbert; Bohn, Andrea
Technische Universität Darmstadt, Germany

Automation of the product development process or of sub-processes is one possibility to support designers by their daily work. A concept for a formalized and structured description of profile-structures (assemblies of bifurcated sheet metal profiles) by properties is needed as basis for designing and optimizing them automatically. The high object complexity requires dividing profile-structures into defined design elements. The inputs of an algorithm-based design process are the properties of design objects and guidelines of embodiment design as well as restrictions of manufacturing have to be transformed and included in an automated design process. The algorithms are the key elements of the chosen approach. A developed algorithm to design welded connections between linear flow split profiles proves that the independent properties of this design element can be determined automatically and the design can be optimized.

USING SIMULATION TO SUPPORT PROCESS INTEGRATION AND AUTOMATION OF THE EARLY STAGES OF AEROSPACE DESIGN

Karley, Warren Peter (1); Armstrong, Gareth (2); Pepe, Carla (2); Moss, Michael A (2); Clarkson, P John (1)
1: University of Cambridge, United Kingdom; 2: Rolls-Royce plc, United Kingdom

Computer-aided engineering (CAE) software tools for design representation, analysis and optimization play a central role in aerospace engineering. Increasingly these tools are being integrated to automate data transfer, thereby reducing design cycle times and increasing the power of design search and optimization techniques. The majority of work concerning process integration and design automation has focused on the technical issues involved in improving the capability and interoperability of design tools and the means of incorporating them into automated workflows. Of lesser concern has been assessing the performance of these workflows prior to implementation. This paper reports on research at Rolls-Royce that used process mapping and discrete event simulation to help design and predict the performance of an automated design system that is being developed for the early stages of civil aero engine design. The findings of this research are that process simulation can add value to mapping the design process by quantifying the expected outcomes of different implementation scenarios and, thereby, indicating opportunities for further process improvements.

INTEGRATED PROCESS AND PRODUCT MODEL FOR THE EVALUATION OF PRODUCT PROPERTIES

Westphal, Christoph; Wartza, Sandro
Friedrich-Alexander Universität Erlangen Nürnberg, Germany

Providing the right product information at the right time is an important factor for an efficient product development process and especially for the evaluation of product properties. But due to the mass of different documents and types of data representing product information and the highly dynamic and iterative processes a rigidly or statically linkage between all product and process information is almost impossible. Therefore a dynamic and generic linkage between product and process information is necessary to efficiently support the data logistic within the product development process and to safeguard the steady evaluation of product properties. This approach links product and process information as models within a semantic web. By the additional consideration of the employed tools and methods a quantifiable representation of the information flow within companies can be accomplished. The analysis of this information flow should support the project manager in planning which properties can be evaluated during the product development process with which tools or methods. Moreover a prediction of the quality of this evaluation and of the dependent product information is possible.

ITEM LIFE CYCLES IN PRODUCT DATA MANAGEMENT: A CASE STUDY ON HOW TO IMPLEMENT A DESIGN DATA VALIDATION PROCESS

Nicquevert, Bertrand (1,2,3); Boujut, Jean-François (3)
1: CERN, Switzerland; 2: Medisuzen, Austria; 3: G-SCOP, France

At the start of a new design project, product data management (PDM) system is one of the first to be implemented. Soon the design has to be shared, released or approved, either for prototyping or manufacturing, and the PDM system has to fulfill the not always explicit requirements of the users. This paper describes what has to be implemented at the early stage of a new design project in order to get an actual use of PDM. It is based on a real case study in 2010 for a new project in a new organisational structure, with new tools and new processes applying to new team members. The process of implementing and using a PDM system is described, covering not only the classical title blocks for 2D drawings, but the release of 3D models and the relationship with the item approval. The proposed item-centric approach helps the designers, engineers and managers to make a proper distinction between the life cycle of the item and the life cycles of the CAD-entities that describe it, to assign the adequate status to these entities, depending on their maturity level, and to build up a common shared representation.
Emotion
Theme: Human Behaviour in Design
Chair: Badke-Schaub, Petra

CHALLENGES AND LIMITATIONS OF APPLYING AN EMOTION-DRIVEN DESIGN APPROACH ON ELDERLY USERS
Andersen, Casper L.; Gudmundsson, Hjalte P.; Achiche, Sofiane; Boelskifte, Per
Technical University of Denmark, Denmark
Population ageing is without parallel in human history and the twenty-first century will witness even more rapid ageing than did the century just past. Understanding the user needs of the elderly and how to design better products for this segment of the population is crucial, as it can offer a competitive advantage for companies. In this paper, challenges of applying an emotion-driven design approach applied on elderly people, in order to identify their user needs towards walking frames, are discussed. The discussion will be based on the experiences and results obtained from the case study. To measure the emotional responses of the elderly, a questionnaire was designed and adapted from P.M.A. Desmet’s product emotion measurement instrument: PrEmo. During the case study it was observed that there were several challenges when carrying out the user survey, and that those challenges particularly related to the participants’ age and cognitive abilities. The challenges encountered are discussed and guidelines on what should be taken into account to facilitate an emotion-driven design approach for elderly people are proposed.

EMOTION-DRIVEN ELICITATION OF ELDERLY PEOPLE USER NEEDS ILLUSTRATED BY A WALKING FRAME CASE STUDY
Gudmundsson, Hjalte P.; Andersen, Casper L.; Achiche, Sofiane; Boelskifte, Per
Technical University of Denmark, Denmark
In this paper an emotion-driven design approach is used to elicit the needs of elderly users illustrated by a walking frame case study. First, images of existing walking frames were collected from websites and clustered into categories, followed by a collection and an assessment of the emotional responses of elderly people presented with the representative walking frames from each category, using a questionnaire adapted from the Product measurement instrument (PrEmo). The results of this assessment were categorized using three levels of product emotions (visceral, behavioural and reflective) and then transformed into user needs that can be later used by designers to create new designs. From these user needs it was found that the elderly had concerns with emotional content as well as more traditional needs based upon ergonomics and functions.

INGREDIENTS OF THE DESIGN PROCESS: GOING THROUGH EMOTIONAL PASSAGE
Shin, Cliff
University of Illinois at Urbana Champaign, United States of America
Conventional design processes have been successful the past decades. As our society becomes faster and more complicated, so customers’ needs are becoming more complex. Discovering insights about those customers has been challenging because consumers want products that are more than just pretty objects. This paper will present a design research method, “Emotional Passage” as a way to access customers’ real emotions and thoughts. The Emotional passage process for design consists of pain diagnosing, metaphor elicitation, proper questioning, and face studying. The paper will explore each component and discuss the reasons behind each component. The paper will illustrate how important emotions are in the design. Also, this paper will present how to implement each component to the different stages in real projects or the classrooms.

A SOUND-BASED PROTOCOL TO STUDY THE EMOTIONS ELICITED BY PRODUCT APPEARANCE
LU, Weihua; PETIOT, Jef
Ecole Centrale Nantes, France
Emotions influence how a customer interacts with the product. To be able to instill emotional value in product design, the understanding of user emotion and the measure of emotions are interesting challenges. Several measuring methods use visual stimuli as assessment scale. Until recently, hearing was an ill-explored part for emotion measurement. This paper describes a new protocol based on sounds for eliciting user emotion. The method uses a set of sounds and association tests, made by a panel of participants. The same objects, cars pictures, were evaluated by two user tests based on both this new protocol and a classical protocol, the Semantic Differential. We describe in the paper the main stages of the new method, and we compare the results with the Semantic Differential Method using Principal Component Analysis and Generalized Procrustes Analysis. The new protocol seems to be a useful means to collect the intuitive emotion of users.

EMOTIONAL ORIENTATION AND CONTEXT ANALYSIS FOR DESIGN CREATIVITY EXERCISE TEST
Shin, Jongho; Kim, Yong Se
Creative Design Institute, Sungkyunkwan University
An exercise program addressing cognitive elements of creativity was devised so that personalized needs in specific elements could be addressed. The exercise program provides users with an opportunity to enhance the creativity in a personalized adaptive manner with regard to five cognitive elements: fluency, flexibility, originality, elaboration and problem sensitivity. Dynamically changing affective states are considered related to contexts in the program and an affective modeling was presented in this regard. The effectiveness of the exercise program was evaluated by using conceptual design tasks, in the form of pre-test and post-test. It was reported, 70% of students achieved enhance in design creativity. Further mining on the log data indicate the enhanced design creativity is reversely associated with negative affective states. In addition, a framework of processing natural language was introduced for estimating emotional orientation from text. It was observed that emotional orientations tend to be context-dependent and the positive emotional orientation appears when users achieve enhance in design creativity. The framework promises its application to affective modeling.

CULTURAL “VALUE CREATION” IN THE DESIGN OF CELLULAR PHONES
Liem, Andre; Aryana, Bijan
Norwegian University of Science and Technology, Norway
The extension of Cagan and Vogel’s “Value Creation Model” with culture as an additional component may enhance the search for superior value and competitive advantage. However, to manage different judgments and positioning of different evaluators, contextual research on users is needed in order to find more valid classifications. It is important to understand how users consider each of these dimensions when they want to define an identity for a product. As a case, cellular phones were used for discussing cultural factors as well as relationships among values, lifestyles and consumer behaviour. With respect to individual features and components, no specific design recommendation can be made at this point of time. Attribute based methods were not enough for understanding users’ real behaviour and tendencies towards a product. A product is more than just a combination of its components or attributes. However, a more elaborate mapping of hardware and software components onto Hofstede’s cultural dimensions can lead to interesting findings based on the identification of cultural specific components, especially when comparing between Asian and Western likings and requirements.
Capturing Value

Theme: Design Methods and Tools
Chair: Roosnburg, Norbert

WANTS CHAIN ANALYSIS: HUMAN-CENTERED METHOD FOR ANALYZING AND DESIGNING SOCIAL SYSTEMS
Maeno, Takashi; Makino, Yurie; Shirasaka, Seiko; Makinn, Yasutoshi; Kim, Sun
Keio University, Japan

In the present paper, WCA (Wants Chain Analysis) is proposed by extending CVCA (Customer Value Chain Analysis). CVCA is a method for visualizing relationship among stakeholders for analyzing existing social systems and designing new social systems. WCA is a method for visualizing wants and needs of stakeholders in CVCA. In WCA it is shown that people’s wants or needs are finally realized through the looped and linear chain of relationship among stakeholders. With various examples, effectiveness of WCA is shown by describing that characteristics of business/social system structure can be clearly visualized using WCA. It is described that WCA is useful when it is used for analyzing existing systems as well as creating new systems. It is also shown that “think of others” should be more and more important for humans’ satisfaction and happiness in the near future. WCA can be a tool for clarifying what is for others.

THE USE OF STORYBOARD TO CAPTURE EXPERIENCES
Wikström, Anders; Andersson Schaeffer, Jennie; Åberg, Åsa; Eriksson, Yvonne
Midnorsn University, Sweden

Today, product realization is becoming more squeezed in time and the need to capture experience from previous projects is an important factor for being successful in developing new products and services. This paper aims to investigate the use of storyboard to highlight earlier experiences from a narrative theory perspective and in relation to contemporary cognitive theories regarding how external representations facilitate collaborative work. This paper will discuss and come up with suggestions as to why storyboard can be a supportive method through the use of narrative theories. One of the objectives of the actual research project is to assist industry in developing strategies and methods to capture “lessons learned” in previous projects and use earlier experiences to avoid repeating mistakes. This will then release working capacity to be used for creativity and innovations instead. The conclusion of the paper presents storyboard as a supportive method for capturing earlier experience from a product realization project. It also argues that it is valid to borrow the concept focalizer from narrative theory.

DESIGNING TO MAXIMIZE VALUE FOR MULTIPLE STAKEHOLDERS: A CHALLENGE TO MED-TECH INNOVATION
Aquino Shluzas, Lauren M.; Steinert, Martin; Leifer, Larry J.
Stanford University, United States of America

An inductive, multi-case analysis was conducted to examine how design practices involving physicians and medical device developers influence outcomes in early stage medical device companies. This research was motivated by an interest in understanding the role of users in the device development process, specifically in terms of how user interaction influences the acceptance or rejection of new products. An analytic framework for case-based research was first developed, followed by eight retrospective case studies on entrepreneurial firms. Based on a mixed-methods analysis, the study showed that product adoption relied on maximizing benefits for product stakeholders, while minimizing required changes in physician behavior. The data further illustrated that total benefit to product stakeholders was influenced by the greatest degree by benefits afforded to hospitals and physicians, assuming patient benefit was greater than or equal to the standard of care. This study highlights the importance of identifying the often-conflicting needs of medical device stakeholders, and then optimizing devices to satisfy the needs of those with the greatest influence over product use and adoption.

CUSTOMER VALUE IS NOT A NUMBER – INVESTIGATING THE VALUE CONCEPT IN LEAN PRODUCT DEVELOPMENT
Gudem, Martin (1); Steinert, Martin (2); Welo, Torgeir (1); Leifer, Larry (2)
1. Norwegian University of Science and Technology, Norway; 2: Stanford University, USA

Lean Product Development (LPD) is an operational philosophy aimed at maximizing customer value while minimizing non-value-added activities, known as waste. Originating from manufacturing, the value-concept in Lean is still strongly tied to product features despite evidence that perceived value concerns more than just the physical product. This paper presents different views on customer value, as provided by the employees at a Norwegian boat manufacturer, customers, and the competition. Our research suggests that a less-than-perfect match between customer needs and product offerings may prove beneficial. Furthermore, how customers perceive product value depends on previous experience. It is also suggested that deep understanding of customer-defined value does not imply an ability to satisfy that value. A purchasing decision often relies on emotional and utilitarian value, and product developers must target both. Yet, the value-concepts used in LPD tend to revolve around utilitarian value alone. An extension of LPD towards Lean Innovation (LI) is suggested.
EXPLORING POTENTIALS FOR CONSERVATIONAL REASONING USING TOPOLOGIC RULES OF FUNCTION STRUCTURE GRAPHS
Sen, Chiradeep; Summers, Joshua; Mocko, Gregory Michael
Clemson University, United States of America
This paper explores the possibility of supporting automated function-based reasoning in the conceptual design phase, specifically reasoning needed to perform concept validation. Eleven atomic tasks of topologic reasoning, divided in two categories, connectedness and derivation, are identified that could be used to check graph-based functions against conservation laws using only the count and types of flows attached to the functions. This reasoning is illustrated by simulating the sequential actions of a designer developing a new mechanical device. Next, recently proposed formal definitions of function verbs are used to explore the possibility of supporting additional quantitative reasoning toward conservative concept validation. Finally, these findings are used to identify information elements that must be captured in a formal representation of mechanical functions in order to support this reasoning.

ON THE FUNCTIONS OF PRODUCTS
Aurisicchio, Marco (1); Eng, Nathan (1); Ortila Nicolas, Juan Carlos (1); Childs, Peter R.N. (1); Brackwell, Rob (2)
1: Imperial College London, United Kingdom; 2: Cambridge University
Understanding the performance and manner of functioning of existing products is at the base of new product development activities. In engineering design the term function is generally used to refer to the technical actions performed by a product. However, products accomplish a wider range of goals. This research has explored the opportunity to describe and model, through the concept of function, product actions across four dimensions including technical, aesthetic, social and economic. The research has demonstrated that non-technical functions can be represented through active verbs and nouns and modelled using a method known as the Function Analysis Diagram (FAD). The research argues that when technical, aesthetic, social and economic perspectives on product development are considered as different types of function, stakeholders have a common language to communicate which can benefit design collaboration.

PROPOSAL ABOUT THE USE OF DATA BASE IN ENGINEERING DESIGN
Rosa, Francesco; Rovida, Edoardo; Viganò, Roberto
Politecnico di Milano, Italy
Design can be defined as the human activity aimed to conceive and develop the "best" construct solution, capable to perform a given function. In this paper we will present the conception of a data base capable to archive constructive solutions related to a given function: such a data-base can become the starting point of the design process and a useful tool for the designer. The structure of this data-base has been conceived starting from the schema of the design process in order to store a functional model derived from several functional representations available in the technical literature.

SEVEN YEARS OF PRODUCT DEVELOPMENT IN INDUSTRY – EXPERIENCES AND REQUIREMENTS FOR SUPPORTING ENGINEERING DESIGN WITH ‘THINKING TOOLS’
Matthesen, Sven
Karlsruhe Institute of Technology (KIT), Germany
At the centre of the present contribution is the part of the engineering design process in which the embodiment design is carried out. The basis for this part of the engineering design projects and engineering design teams the attempt is made to describe the creative engineering design process and thus make it more vivid.

The function is in the centre of company’s interest because cost-effective fulfillment of function is the main selling criterion of any product.

It is shown how function arises in the interaction of several components of a product and in their interaction with the product’s environment. Engineering design is the pre-thinking of and documenting of an “embodiment” which is established to enable the function of the product. This process will then be described. On that base possibilities and requirements for academic research for promoting these activities are shown.

After that, industrial experiences will be described which were gained in working closely with the Contact&Channel Model. It will be shown that “thinking tools” can help to support the processes necessary for creating a new product.

IMPACT OF MODULARISED PRODUCTION ON PRODUCT DESIGN IN AUTOMOTIVE INDUSTRY
Wallis, Waldemar Paul (1); Bae, Thomas (1); Ortscharoov, Jivka (2)
1: Daimler AG, Germany; 2: Karlsruhe Institute of Technology, Germany
During the last decades, the product life cycle in the automotive industry decreased from 10 to 6 years or even less. At the same time the demand for individualized and configurable cars has increased. This has led to new challenges in product development and production planning. One key factor in order to gain important time and cost potentials in the different project phases is a standardised production.

This contribution deals with the influences of standardised and modularised production on the product design and presents the most important requirements and restrictions which have to be taken into account already in an early phase of the development process. Furthermore, a new approach is introduced which supports the designer in consideration of this requirements and influences the product design from a production point of view. Afterwards the introduced methodology is demonstrated with the help of a body-in-white welding cell. Finally this contribution ends with a summary and a short outlook towards future activities.

A NEW APPROACH TO MODULARITY IN PRODUCT DEVELOPMENT – UTILISING ASSEMBLY SEQUENCE KNOWLEDGE
Robert, Aurélie (1); Yan, Xia Tian (2); Roth, Sébastien (3); Deschinkel, Karine (4); Gomes, Samuel (3)
1: INSA Lyon/IMAG/UTBM; 2: DCTEM/University of Strathclyde, Scotland; 3: INSA Lyon/IMAG/UTBM; 4: ULC Laboratoire IUT Belfort-Montbéliard, France
This article describes an approach dedicated to routine design of “highly productive” modular product ranges incorporating principles of functional analysis, Design For Assembly (DFA), and Design For Manufacturing & Assembly (DFMA). The research is an example of multi-physics applied to parametric CAD models. The paper focuses on techniques of assembly sequence generation based on models identified, and module parameters identification and rule generation. This methodology entitled Functional And Robust Design (FARD) aims to take into account the modularity of product ranges while considering DFA constraints. It takes into consideration of the functions of the assembly and its assembly constraints in the early stages of the design process simultaneously. An experimental case study on a pneumatic scraper is presented to illustrate the effectiveness of the methodology. This paper focuses on the functional design and the DFA part of the proposed methodology.

PRODUCTION AND PROCESS EVALUATION IN THE CONTEXT OF MODULARIZATION FOR ASSEMBLY
Haffmann, Niklaus; Eislinoer, Stefan; Krause, Dieter
Hamburg University of Technology, Germany
The determination of modular product structures requires a continuous evaluation of the measures taken. Modularization is an appropriate method for product structuring. It provides the opportunity of taking into account the requirements from different product life phases, such as the development, production or after-sales phase. The assembly, as an essential part of the production for the company, demands easy mountable products. Short lead times and flexible processes are the main requirements among others. The methodical procedures presented in this paper proposes the integrative representation of the product structure and its resulting assembly sequence in a single diagram. The developed tool provides the opportunity to perform measuring measures to the product and coincidently show the impact on the assembly process. For the evaluation the use of key figures is proposed. The relevant input for the calculation of these key figures is similarly extracted from the diagram. Conclusively, the procedure is applied to an example of aircraft interior development.

APPROACH TO VISUALIZE THE SUPPLY CHAIN COMPLEXITY INDUCED BY PRODUCT VARIETY
Brosch, Max; Beckmann, Gregor; Krause, Dieter
Hamburg University of Technology, Germany
Due to the high level of individualization and globalization, companies increase their product variety, which leads to an increased internal complexity at the level of the products, business processes and the SC. The Institute of Product Development and Mechanical Engineering Design (PKT) has developed the Integrated KIT approach for developing modular product families, to reduce the internal variety with methods, that are aiming to handle, to reduce and to avoid complexity. To extend this approach to the level of the supply chain, the method Design for Supply Chain Requirements is under development. The important first step is to ascertain and to visualize the supply chain complexity induced by product variety. An approach to realize this first step is presented in this paper.
A THEORY OF DECOMPOSITION IN SYSTEM ARCHITECTING

Komot, Hitoshi (1); Tomiyama, Tetsuo (2)
1: National Institute of Advanced Industrial Science and Technology (AIST), Japan; 2: Delft University of Technology

The divide-and-conquer principle is a technique to deal with large-scale problems by dividing them into smaller and manageable problems. In engineering design, the principle is often used not just as a complexity management method but also as an embodiment method, although its formalization is unclear if not non-existing. This paper attempts to formalize the principle in the context of design of complex multi-disciplinary systems such as mechatronics systems. It proposes a theory of decomposition in conceptual design (system architecture), which extends the decomposition theory in traditional engineering design based on functional decomposition. The theory is applicable to system decomposition processes, in which building blocks necessary for decomposition are not available or must be newly designed during the process. The theory uses parameter relations governed by physical phenomena realizing functions. A case study of system architecting of a printer is illustrated as a demonstration of the theory.

DO FUNCTIONS EXIST?

Fantoni, Gaubieri; Agredo, Riccardo; Gabelloni, Donata; Bonacorsi, Andrea
University of Pisa, Italy

The paper proposes a model where functions are not considered as primitive objects in themselves but rather as a complex network of relationships between different, more fundamental elements. Exploring the connections between goals, behaviors, operations, etc. at various levels has several advantages. It allows integrating in a unique framework different approaches to design, from the FBS model to Functional Basis one and provides tools for a more powerful analysis. The new picture can also help modeling affordances, missuses, redundant functions, failures and so on. The representation of the relationships between functions, user’s goals and expectations, behaviors and physical features in the model of a common glass shows how the model can help designing better products, and at the same time illustrates the various critical issues in the model itself and suggests possible directions of investigation.

ON THE LINK BETWEEN FEATURES AND FUNCTIONS

Gabelloni, Donata; Agredo, Riccardo; Fantoni, Gaubieri
University of Pisa, Italy

A critical issue in design theory is the relationship between the abstract functions and purposes of a product and its physical structures and features. In the traditional approach systematized by Pahl and Beitz, the main focus is on the functions, seen as actions on flows. While such paradigm proved very useful and has been tested in many practical cases, it shows severe limits when dealing with not purely mechanical artefacts, since it overlooks the role of physical features, the designer’s intentions and the user’s perceptions and actions. However those models are often studied only theoretically and present practical cases in short examples, just to illustrate the theory. Such practical applications would also help to resolve ambiguities, clarify the understanding of problematic issues, and even suggest new directions of analysis. The present paper is an attempt to build a bridge between the two approaches.

COURSES OF PRODUCT DEVELOPMENT IDENTIFICATION – EFFECTS AND VISIONS

Ognjanovíc, Milosev
University of Belgrade, Serbia, Republic of

It is a paradox that wide and intensive activities in the field of product development and design in the course of more than 30 years has produced such controversy about the lack of new products. The article joins efforts to discover the reasons for this situation and to establish methodology for prediction courses of product development based on TRIZ methodology. The first part of the article contains an analysis of product development and design efforts in the past time in connection with social and economic circumstances, discoveries and important inventions. The trends of actual product development and design methodology are also analyzed. The second part of this work attempts to identify main postulates, potentials and forces which cause product development expansion. In the past a few of those factors and their results have been identified. For the future, new power sources based on atomic fusion and the nanotechnologies are identified as the main “motors” for locomotion of evolutionary or revolutionary product development.
Design Society General Meeting

WEDNESDAY

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 - 10:00</td>
<td>Design Society General Meeting</td>
</tr>
<tr>
<td>10:00 - 10:30</td>
<td>Break</td>
</tr>
<tr>
<td>10:30 - 11:50</td>
<td>Lunch</td>
</tr>
</tbody>
</table>

Design Communication

Chairs: Maaike Kleinsmann (TU-Delft), Anja Maier (DTU) & Petra Badke-Schaub (TU-Delft)

About the workshop

Background - Information exchange is one of the most relevant activities in almost each working environment and it is an ever increasing issue in design. Often however, research on design communication seems to focus on two or three parameters only which are then ‘proven’ to be of importance for the design team(s) as the result is shown as ‘successful’ or ‘unsuccessful’. How do the chosen parameters relate to others not chosen? Of course, the amount of parameters which may influence the process and quality of communication is gigantic and associations between them are manifold and often hard to comprehend. How can we arrive at a sound overview of relevant parameters and interconnections which influence successful design communication? Workshop discussions can probably make a start towards answering such a question.

Aim

The aim of this workshop is to explore parameters that characterise the field of Design Communication now and in the future, and discuss the impact of our research on society.

Programme outline

The workshop emphasises three main topics within the broad field of design communication. For each topic, a plenum discussion is followed by two invited presentations (ca. 5 minutes) with different and potentially opposing perspectives and propositions. The dialectic format of the workshop shall encourage to actively engage in discussion. The chair person will ensure a summary of the discussed parameters at the end of the discussion of the specific topic. It would be very valuable if we arrive at the end of the workshop with a meaningful composition of relevant parameters that characterise Design Communication and their influences on the design process.

- **Introduction:** Design Communication as essential field within Human Behaviour in Design
- **Topic 1:** Processing design information at interfaces in networks
 - Plenum discussion on human interfaces in design and the need for potentially different ways of communication
 - Presentation and discussion of two invited papers
 - Summary
- **Topic 2:** Representations/models/objects as design communication
 - Plenum discussion on representations and their influence on design communication
 - Presentation and discussion of two invited papers
 - Summary
- **Topic 3:** Methods and tools supporting communication and the design process
 - Plenum discussion on how to support the designer with methods and tools in order to improve design communication
 - Presentation and discussion of two invited papers
 - Summary
- **Overall summary and conclusion:** Generated knowledge on what characterises Design Communication, the research field’s impact on society, and future aims of the HBiD SIG
EMOTIONAL ENGINEERING SIG WORKSHOP

EMOTIONS AND EXPECTATIONS

Chairs: Shuichi Fukuda (Stanford University)

Agenda
To cope with the diversification and needs for personalization, the importance of emotion in creating values in the products and in the processes are quickly increasing. This SIG will share the status quo of the participating countries and will discuss the future directions of how emotion can be introduced in the whole product life cycle from design, manufacture and use. We hope to clarify how design should be changed to meet this goal.

The workshop will consist of discussions around the operations of SIG, including:
- Web seminar
- Local meetings
- International meetings

Focus
The importance of emotion in creating values in the products and in the processes are quickly increasing. We hope to clarify how design should be changed to meet this goal.

Speakers
- Prof. Udo Lindemann, Technical University of Munich, "User Expectation versus Product Service Systems"
- Assistant Prof. Hideyoshi Yanagisawa, University of Tokyo, “Deviation of Sensory Experience from its Prior Expectation (Potential of Expectation Effect in Emotional Quality”
- Consulting Professor Shuichi Fukuda, Stanford University, “Emotion and Expectation Management in Engineering”

THE COMPUTATIONAL DESIGN SYNTHESIS CHALLENGE

Chairs: Iestyn Jowers (TU München) and Kristina Shea (TU München)

About the workshop
This workshop will show, tell and discuss the current state-of-art, limitations and key challenges in computational design synthesis (CDS). One particular challenge identified at a workshop in 2010 is that the field needs benchmark, or challenge, problems to be able to compare research methods and implementations, identify beneficial uses for CDS as well as high-potential application domains.

The workshop will present a culmination of research efforts on newly developed challenge problems established at the CDS Summer School at TU München in August 2011. Due to the wide variety of representations and application domains in CDS, these include a topology optimisation problem, a spatial synthesis problem and a functional synthesis problem. Researchers from around the world are attending this summer school prior to ICED and will be applying their own research methods and implementations to produce the best results. In the workshop at ICED, the results for the benchmark problems will be presented to foster discussion on the problems themselves and the latest methods.

The organisers will coordinate a focused discussion around the following research questions:
- Is it possible to develop a set of universal benchmark problems for CDS?
- How and where is knowledge encoded in different CDS methods?
- How can we develop "best-practice" guidelines for modeling synthesis problems and required knowledge?
- How can we evaluate and compare results for benchmark problems? Can we produce "human-competitive" results?
- How can CDS methods be integrated in design practice and with current design toolsets?

Workshop format
The Workshop will start with an introduction from the chair, which will include a summary of the outcome of the CDS summer school, and an overview of the research questions that will be explored during the workshop. This will be followed by short presentations from invited participants. The workshop will then split into smaller groups, each of which will explore a specific research question in detail. Results from these discussions will be reported back to the workshop and summarised.

All ICED participants are welcome to join!
DEVELOPING AN ECOLoGY OF MIND IN DESIGN
Dewberry, Emma Louise
Open University, United Kingdom
The relationship between design and sustainability (DfS) is forever evolving; from the early focus on cleaner production processes and resource efficiencies to more recent endeavours to promote environmentally benign behaviours or to counter the increasing impacts of climate change. The uncomfortable truth though is that the majority of design activity serves market forces at a global scale and at an ever-increasing rate. Despite predictions of resource scarcity – peak oil, peak minerals, peak water – the increase in the linear transit of material through the Global economy rises year on year. Design straddles this production consumption cycle: it conceives of the processes and technologies that shape our artificial world; and it fashions the forms of that artificial world that drive a consumption ideology. Neither position is sustainable. Informed by Sterling’s rigorous exploration of different sustainable education paradigms, this paper reconstructs a design literacy that has the capacity to realize effective transitions for the long-term wellbeing of environment, biodiversity and humankind.

ECODESIGN IN INDUSTRIAL DESIGN CONSULTANCIES – COMPARING AUSTRALIA, CHINA, GERMANY AND THE USA
Behrisch, Johannes Christoph (1); Ramirez, Mariano (2); Giurco, Damien (1)
1: University of Technology, Sydney, Australia; 2: University of New South Wales
This paper presents the results of an empirical study, investigating the uptake of ecodesign by industrial design consultancies (ID consultancies) in Australia, China, Germany and the USA. There still appears to be no widespread uptake of ecodesign into product development praxis by industrial designers, with most ecodesign activity focusing on the engineering phase. Especially seldom are the necessary radical interventions to significantly improve the environmental performance of products. The literature review revealed that ID consultancies might be in a position to improve this situation. This paper presents the findings of a website content analysis, investigating the extent of ecodesign uptake by ID consultancies in Australia, China, Germany and the USA. The paper verifies that ID consultancies have a high potential to improve ecodesign uptake by using their influence especially on early phases of the product development process and by addressing also non engineering related issues for ecodesign. This potential does not appear to be fully embraced yet.

GETTING TO SUSTAIN (ABLE SYSTEMS) VIA USING SURVIVABLE AND IMPOSE-ABLE ONES
Greens, Richard Tabor
Keking University, Japan
A question posted to MIT alumni on Linkedin attracted responses by 371 engineers about what their engineering education lacked. Part of that data presented a crowd-sourced new theory of sustainable systems, presented in this paper – showing design for surviving, and design for imposing being later used as opportunities for design for sustainability. Survivable systems,impossible systems are defined, and ways to empower engineers to equal or surpass the power of MBA managers later in their careers, suggested by the 371 respondents are presented.

INTEGRATION OF REMANUFACTURING ISSUES INTO THE DESIGN PROCESS
Hatcher, Gillian D; Ijomah, Winifred L; Windmill, James F C
University of Strathclyde, United Kingdom
Remanufacturing is the process of returning a used product to like-new condition with a warranty to match. The efficiency and effectiveness of this process greatly depends upon product design; there are certain product properties that may have a positive or negative effect on steps of the remanufacturing process. The concept of design for remanufacture or DfRem is a design task dedicated to improving the remanufacturability of a product. However, it would appear that very few products are currently designed for remanufacture and the reasons behind this have yet to be fully explored. This paper provides an overview of the problem and a discussion of some of the preliminary findings of a study aimed at improving designers’ ability to carry out DfRem. The findings provide an early indication of some of the factors affecting the integration of DfRem into the design process.

REFLECTIONS ON DESIGN FOR SUSTAINABILITY - A VIEW FROM A DISTINCT POINT AND THE ROLE OF INTERIOR DESIGNER
Kazamia, Kika Isannou (1); Gwilliam, Julie (2)
1: University of Nicosia, Cyprus; 2: University of Cardiff
This paper explores the term “Interior Design” and in particular the relationship of the interior design profession with its direct and indirect impacts on the environment. Through a brief analysis, we explore this close relationship, establishing opportunities designers have to promote environmental sustainability. This work goes on to elucidate the role of the interior designer in the delivery of sustainability, providing examples from literature. Further, the process of design, within a context of sustainability is examined, from the design purpose, source of inspiration and subject through to the selection of materials, method of construction and finally, the realization of the idea. Finally, the paper expands the relationship of the interior design profession to the wider scope of social and economic sustainability and suggests a strategy which leads to the involvement of community to promote the uptake of sustainability. In summary, this paper presents an example of an innovative approach to interior design practice, working towards the promotion of holistic sustainable practice.

MANAGEMENT OF ENERGY RELATED KNOWLEDGE IN INTEGRATED PRODUCT DEVELOPMENT – CONCEPT AND SELECTED INSTRUMENTS
Götz, Uwe (1); Leidich, Erhard (2); Bierer, Annette (1); Koehler, Susann (1)
1: Chemnitz University of Technology, Germany; 2: Chemnitz University of Technology, Germany
Beside functionality, cost, quality, and so on, design engineers are facing a new challenge – the development of energy efficient products. Since especially in the early phases only few solid knowledge about the impacts of design alter-natives on energy related figures like consumption, savings, or efficiency is available, the need for a systematic management of energy related knowledge is evident. For this purpose and on the basis of an integrated product development framework, the paper emphasizes the variety of energy related knowledge in product development, presents a concept for an energy related knowledge management and exemplifies its systematic identification, use, and development with help of development concurrent energy calculations and a target energy management approach.
IMPROVING ENGINEERING EDUCATION IN INDIA USING INFORMATION AND COMMUNICATION TECHNOLOGY: A NEW FRAMEWORK

Mehta, Prerak Prakashchandra
Industrial Design Centre, Indian Institute of Technology Bombay, India

Given the current scenario of engineering education in India, there is a dire need of improvement in the way engineering education is structured and the guidelines it follows. With Information and Communication Technology (ICT) having become accessible and widespread, it is bound to play a vital role in enhancing the state of engineering education.

The existing structure and framework of engineering education and its surrounding ecosystem have been studied in great depth. The paper proposes a new framework for engineering education using ICT. A generic level component breakdown of the education will be followed, followed by detailed description of each component, again on a generic level. Each detail of education is followed by ways of executing them based on different branches of engineering.

The entire engineering education scene needs to move towards a self-learning environment which is totally lacking in today’s faculty dependent model. The new framework components along with the guidelines will pave the way for a self-learning environment model for education. It will be a foundling stone for ICT based initiatives in engineering education in India.

LEARNING LEVELS IN TECHNICAL DRAWING EDUCATION: PROPOSAL FOR AN ASSESSMENT GRID BASED ON THE EUROPEAN QUALIFICATIONS FRAMEWORK (EQF)

Metraglia, Riccardo; Baroni, Gabriele; Villa, Valerio
Università degli Studi di Brescia, Italy - Faculty of Engineering

For several years the European Commission for Education and Training has been trying to build a translation device to make comparable national qualifications, aiming to promote workers and learners’ mobility within EU and to facilitate their lifelong learning. A basis to achieve this goal is to use common assessment grids to certify skills and abilities. The abilities in Technical Drawing seen as a working tool and as a language of communication, despite the existence of a certification, the ECDL-CAD, for the ability to use the computer to draw, are not assessed.

This paper highlights the sequences of the lack of certification of skills in Technical Drawing, with particular reference to the authors’ experiences in corporate and academic fields. Then, the paper introduces a proposal for an assessment grid for the evaluation of Technical Drawing learning levels, based on the European Qualifications Framework (EQF), with separate learning outcomes for knowledge, skills and competences. Finally, it’s shown an example of Europass Certificate Supplement, with reference to the proposed grid, to make comparable national qualifications, aiming to promote workers and learners’ mobility within EU and to facilitate their lifelong learning.

STRENGTHENING ASIAN ADVANCED DESIGN AND MANUFACTURE EDUCATION THROUGH A FRAMEWORK APPROACH

Rehman, Fayyaz (1); Tan, Kiu-Tian (2); Li, Youhua (2); Tan, Xincai (2); Miller, Eric (1); Woodfine, Nick (1)
1: Southampton Solent University, Southampton, UK, United Kingdom; 2: Strathclyde University, Glasgow, UK, United Kingdom

The rapid industrial growth of some Asian countries demands to bridge the gap between Europe and Asia for mutual sharing and exchange of knowledge and cooperation in Advanced Design and Manufacture. A European Commission funded project provided a new platform for not only strengthening Asian education in design and manufacture but also helped in creating strong ties between European and Asian academic institutions for exchange and sharing of knowledge through joint course material development, delivery of MSc course in advanced design and manufacture and joint supervision of PhD training of Asian students.

This paper introduces the project, key activities implemented during its duration, achievements and the impact it had regarding the introduction of world-class engineering design and manufacture education in Asia through the upgradation of knowledge and skills of postgraduate Asian students.

The project’s implementation also built strong partnerships between European academic institutions and Asian industrial sector as well as laying foundations for the development of numerous research and education based projects between Asian and European academic and industrial sectors.

MEASURING MALAYSIAN UNDERGRADUATE SKILLS IN READING AND INTERPRETING ENGINEERING DRAWING

Burvill, Colin Reginald (1); Field, Bruce William (2); Abdullah, Zulkeflee (1)
1: The University of Melbourne, Australia; 2: Monash University, Australia

Following a survey of representatives from Malaysian manufacturing industry that identified concerns over engineering graduates’ abilities to properly interpret professional manufacturing drawings, a systematic study of relevant undergraduate abilities was initiated. A composite assembly/dimensioned drawing was selected to form the basis of a test that could be presented to students in engineering courses at the Universiti Teknikal Malaysia Melaka. 232 engineering undergraduates at all four levels were tested. The distribution of overall scores from the test fell within the planned range, with some students performing considerably better than others, indicating that the test would be suitable for use as a pre- and post-test for follow-up investigations of methods for increasing graduate skills. However, student responses for some of the questions were noticeably poor, against initial expectations. A deeper analysis of those questions revealed that respondents required not only an ability to interpret the information presented on the drawing, but an understanding of the engineering technology contained in the drawn artifact.
ANALYZING THE DYNAMIC BEHAVIOR OF MECHATRONIC SYSTEMS WITHIN THE CONCEPTUAL DESIGN

Bauer, Frank; Anacker, Harald; Gaukstern, Tobias; Gausemeier, Jürgen; Just, Viktor
Hans Nixdorf Institut, Germany

The increasing penetration of mechanical engineering by information technology enables considerable benefits. This is expressed by the term mechatronics, which means the close interaction of mechanics, electric/electronics, control and software engineering to improve the behavior of a technical system. The development of such systems is complex. Consequently a domain-spanning specification is required, which describes the system in total and builds the basis for all further communication and cooperation between the experts from the involved domains in the conceptualization. In order to validate the system, different tests are accomplished during the concretization phase. In this contribution we present how dynamics analysis may be integrated already in the conceptual design phase. For this purpose a simulation tool is used for the validation of the dynamic behavior of the system already on the basis of the principle solution. The refinements effected during the simulation are transferred back into the principle solution. This improves the provided information for the following domain-specific concretization.

PRODUCT DEVELOPMENT SUPPORT FOR COMPLEX MECHATRONIC SYSTEM ENGINEERING—CASE FUSION REACTOR MAINTENANCE

Leino, Simo-Pekka Sakari (1); Mäkinen, Harri (1); Ollu, Olli (2); Järvenpää, Jorma (1)
1: VTT Technical Research Centre of Finland, Finland, 2: Eurostep Oy, Finland

Development of a multidisciplinary mechatronic system, like a remote operated maintenance system of ITER fusion reactor, requires system engineering approach. System engineering is leadership approach for designing totally new concepts and technology. On the other hand, system engineering needs support for managing all related processes and information. Product lifecycle management (PLM) can be seen as IT-aided enabler of such processes and information management desires. Devotior Test Platform 2 (DTP2) is a full scale mock-up and test facility for developing, testing and demonstrating remote operated maintenance equipment as well as planning and training future maintenance operations. Characteristic for DTP2 is that its development and operational lifecycle will be several decades long. History of the system has to be traceable and all data must be available during the whole lifecycle. This work in progress paper aims to introduce the first results of the ongoing project, which defines and implements PLM support for DTP2 system engineering. The preliminary results include requirements specification for the PLM platforms, and a concept for mechatronic product model and data model.

DESIGNING MECHATRONIC SYSTEMS: A MODEL-INTEGRATION APPROACH

Qamar, Ahsan (1); Wikander, Jan (1); During, Carl (2)
1: ATH Royal Institute of Technology, Sweden; 2: Micronic Laser Systems, Sweden

Development of mechatronic products demands different types of design models in order to support both domain-independent specifications and domain-specific principles. This research aims to find out how system-level modeling can support mechatronic design, and how the integration of system-level modeling and domain specific modeling can be supported during different design phases. An integrated modeling and design infrastructure is proposed to support abstraction between mechatronic design models, hence supporting co-evolution of design models. The paper concludes that a mechatronic design problem can be better supported through such an integrated design approach. However, usability of this approach needs to be further supported by more case studies in the future. An active hospital bed wheel module design example is presented to show firstly the relationship between conceptual design and system-level modeling, and secondly the need for integration of system level and domain specific design models.

INTERDISCIPLINARY SYSTEM MODEL FOR AGENT-SUPPORTED MECHATRONIC DESIGN

Stetter, Ralf (1); Seemüller, Holger (1); Chami, Mohammad (1); Voos, Holger (2)
1: Hochschule Ravensburg-Weingarten, Germany; 2: Université du Luxembourg, Luxembourg

Today mechatronic design usually suffers from a lack of domain-spanning IT-support. Commonly, each discipline is using its specific IT-tools and data formats and the abundance of logical connections between the disciplines is only present in the designer’s minds or in unstructured documents such as MS Word or MS PowerPoint files. Many approaches to unify the tools and data during the last two decades were made but have not made their way into the product development departments in industrial practice. One approach to document and use the connections between the disciplines is the creation of agent-based systems. Such systems use independent software entities representing either components of the product to be developed or certain process segments which interact in a system called agent system. Due to their flexibility and the ability to achieve solutions which satisfy multiple objectives such systems are a promising approach to address the challenges of mechatronic design. However, the application of such systems requires the documentation of the interdisciplinary connections in an interdisciplinary system model. In this paper SynML is proposed for this specific task and is applied to a product.
EXPANDING THE SOCIAL DIMENSION: TOWARDS A KNOWLEDGE BASE FOR PRODUCT-SERVICE INNOVATION

Ericson, Åsa (1); Larsson, Andreas (2); Larsson, Tobias (1)

1: Luleå University of Technology, Sweden; 2: Lund University, Sweden

This paper discusses the need to involve stakeholders in the process of designing new products. The authors argue that involving stakeholders can help to increase the chances of success for new product innovations. They also argue that involving stakeholders can help to create a better understanding of the needs of the target audience. The paper provides practical guidelines for how to involve stakeholders in the design process.

RETHINKING VALUE: A VALUE-CENTRIC MODEL OF PRODUCT, SERVICE AND BUSINESS DEVELOPMENT

Randmaa, Meri (1); Mougaard, Krestine (2); Howard, Thomas James (2); McAlomie, Tim C. (2)

1: Tallinn University of Technology, Estonia; 2: Technical University of Denmark

Globalization and information technologies have made the economic landscape more transparent and customers smarter, more demanding and networked. Companies can see these changes as a threat to their business or as an opportunity to differentiate in the market and be a Prime Mover, by re-thinking customer value within the value system. This article shows how the term ‘value’ is understood in different contexts and fields of economy, to see if these definitions can be merged, in order to understand the concept of value in broader way. The authors argue through literature review and example cases that seeing value from multi-disciplinary viewpoint opens up some unused opportunities for the companies to overcome barriers within a value system, design integrated products and services, work more effectively, co-create value with customers, make use of word-of-mouth promotion and achieve long-term relationships with customers. A new concept for re-thinking the ‘value system’ is proposed and its main potentials to improve firms’ performance are described.

OVERCOMING THE KEEP THE MARKET OUT PREMISE (KMOP) IN PRODUCT DEVELOPMENT

Ling, Alexander (1); Kirschner, Rafael (2); Kain, Andreas (2); Lindemann, Udo (2)

1: IMAN Solutions GmbH, Germany; 2: Technical University Munich (TUM)

Even though market research methods including Open Innovation tools and techniques have improved, most companies have not managed to decrease their flop rate of newly developed products in recent years. As customers we all recognize B2C products, which might mainly have that problem, but flop rates which do not decrease also count for the companies to overcome barriers within a value system, design integrated products and services, work more effectively, co-create value with customers, make use of word-of-mouth promotion and achieve long-term relationships with customers. A new concept for re-thinking the ‘value system’ is proposed and its main potentials to improve firms’ performance are described.

SIGNIFICANCE OF REQUIREMENTS FOR THE IMPLEMENTATION OF NEW TECHNOLOGIES USING SHAPE MEMORY TECHNOLOGY

Lygin, Konstantin; Langbein, Sven; Sadaki, Tim

Ruhr-Universität Bochum, Germany

In this paper the assumption of a conflict between existing requirements and the application of new technologies will be illustrated by using examples based on shape memory technology. For this purpose, two product concepts are analyzed. Starting with the planning phase and the definition of system requirements, the described design processes also include conceptual, embodiment and detail design phases. Special attention is paid to the specification of requirements and their effect on the respective product concept. The aim of this paper is to identify influences on the product concept caused by the conflict between existing requirements and the application of new technologies. Certain requirements, e.g. historically based requirements, prevent the application of those new technologies in many cases. Therefore, the application of new technologies in combination with established requirements is investigated and then re-evaluated after the adaption of critical requirements.

OVERCOMING THE KEEP THE MARKET OUT PREMISE (KMOP) IN PRODUCT DEVELOPMENT

Lang, Alexander (1); Kirschner, Rafael (2); Kain, Andreas (2); Lindemann, Udo (2)

1: IMAN Solutions GmbH, Germany; 2: Technical University Munich (TUM)

Even though market research methods including Open Innovation tools and techniques have improved, most companies have not managed to decrease their flop rate of newly developed products in recent years. As customers we all recognize B2C products, which might mainly have that problem, but flop rates which do not decrease also count for the companies to overcome barriers within a value system, design integrated products and services, work more effectively, co-create value with customers, make use of word-of-mouth promotion and achieve long-term relationships with customers. A new concept for re-thinking the ‘value system’ is proposed and its main potentials to improve firms’ performance are described.

A MORPHOLOGICAL APPROACH TO BUSINESS MODEL CREATION USING CASE-BASED REASONING

Lee, Ji Hyun; Hong, You S.

Seoul National University, Korea, South (Republic of)

This study aims to provide a structured methodology for a business model creation. Based on a morphological analysis of business model, we propose the morphological chart named as business model creation template with which one can generate a variety of business model alternatives. The template consists of a set of predefined building blocks which describes the strategic patterns and/or constituent elements of a business model. Those building blocks have been identified and verified through comprehensive analysis of real-world business models and relevant literature. Furthermore, we develop case-based reasoning system for supporting a new business model creation. The system aims to provide the business model planner of intuitive cases in creating a new business model. Based on a case base that contains about a hundred of real business models, the system receives an input query from a business model planner, and retrieves similar cases to the query based on case matching mechanism. In the case study, we actually generate the new business model alternatives for apparel company that want to commercialize their newly designed product.

USE OF DESIGN METHODOLOGY TO ACCELERATE THE DEVELOPMENT AND MARKET INTRODUCTION OF NEW LIGHTWEIGHT STEEL PROFILES

Nehuis, Frank; Ziebart, Jan Robert; Stechert, Carsten; Vieter, Thomas

TU Dortmund, Germany

In the transportation sector—as in most other branches—demand time-to-market becomes shorter whereas at the same time demanded diversity becomes wider and lightweight requirements become tougher. For this reason the project “Development of a highly integrated modular profile family for the automotive and transportation sector from high and ultrahigh-strength steels with stress-matched sheet thickness gradients” (“HIMET”) was established. The project aims to accelerate the development and market introduction of new lightweight rolled steel profiles. As means to achieve this aim a special design catalogue with HIPM components, design tools and design rules pertaining to lightweight constructions and the integration of functions was developed and combined to create a continuous design methodology. This design methodology is distinguished mainly by its applicability in early design phases.
ENSURING THE INTEGRATION OF PERFORMANCE AND QUALITY STANDARDS IN DESIGN PROCESS MANAGEMENT: CODESTEER METHODOLOGY

Poulet, Aurelien; Rosa, Bertrand; Gaillard, Emmanuel
Université de Strasbourg / Insa de Strasbourg, France

This paper proposes that standard Key Performance Indicators (KPIs) for project management are appropriate for measuring and monitoring Engineering Design Processes. A case study was performed to study which KPIs can be used and how they need to be changed to fit specific ED projects. The study was performed at a global power generation equipment manufacturer during a period of 15 months in three locations. The most important objective of the project was to develop a KPI reporting concept covering the design process in order to implement an interactive Management KPI Dashboard. The case study supports the view that standard project management KPIs can be used with some customizations specific to the nature and size of the company, the projects and the project teams.

BAYESIAN PROJECT MONITORING

Matthews, Peter C; Phillip, Alex D M
Durham University, United Kingdom

This paper studies how subtle signals that can be observed from the execution order of a project with several tasks can be used to diagnose potential problems that will hinder the project. Specifically, by representing the workflow of the project as a Markov chain and observing how long the project takes to arrive at its first gateway, it is possible to infer the nature of any potential problems with the project. This diagnosis is achieved through using Bayesian methods, and provides a ranked list of potential problems, along with the probability for each problem. Two examples are used to illustrate how this approach works.

RULES FOR IMPLEMENTING DYNAMIC CHANGES IN DSM-BASED PLANS

Karniel, Arieh; Reich, Yoram
Tel Aviv University, Israel

Planning a New Product Development (NPD) process has an evolving nature. It is repeatedly updated during the development due to changes in requirements, technology, product concept, or testing results that drive product design modification and require changes in the plan. The Design Structure Matrix (DSM) is utilized to generate a process plan that is based on the product knowledge. The translation of the DSM-based plan to a process scheme requires implementation rules. Such translation is not unique and there are implementation choices we define as business rules. This paper presents the implementation rules used for dynamic changes in the plan. The application of these rules conforms to a correctness criteria based on the soundness criteria used in Petri nets.

THE RETRIEVAL OF STRUCTURED DESIGN KNOWLEDGE

Wang, Hongwei; Johnson, Aymer L.; Bracewell, Rob M.
Engineering Design Centre, Engineering Department, University of Cambridge, United Kingdom

Design rationale is an effective way of capturing knowledge. It is generally captured by identifying elements and their dependencies, i.e. in a structured way. Current retrieval methods focus mainly on either the classification of rationale or on keyword-based searches of records. Most of the current keyword-based retrieval methods discard the implicit structures of these records, resulting either in poor precision of retrieval or in isolated pieces of information that are difficult to understand. This ongoing research aims to go beyond keyword-based retrieval by developing methods and tools to facilitate the provision of useful design knowledge in new design projects. Specifically, methods for utilizing various structured information are developed and implemented on a prototype keyword-based retrieval system developed in our earlier work. The implementation and evaluation of these methods shows that the structured information can be utilized in a number of ways, such as filtering the results and providing more complete information. This allows the retrieval system to present results that are easy to understand, and which closely match designers' queries.

EXPLOITING NEIGHBORHOOD AND MULTI-DIMENSION GRANULAR INFORMATION FOR SUPPORTING DESIGN RATIONALE RETRIEVAL

Liu, Ying
National University of Singapore, Singapore

Based on our previously proposed ISAL model (issue, solution and artifact layer) for design rationale (DR) representation, in this paper we report our efforts in researching a ISAL based DR retrieval framework to better support DR retrieval by taking advantage of neighborhood and multi-dimension granular information presented in DRs. In our proposal, DR is firstly extracted and indexed using ISAL and a document profile model respectively. Next, an initial DR graph is formed by linking up different DRs based on their document citations and document similarities. A DR network is therefore established by integrating similarities from issues, solutions and artifact aspects using neighborhood information in the DR graph. In order to prioritize DRs retrieved, a graph-based ranking approach is further engaged. To validate the approach proposed, we have reported our preliminary experiments on issues like DR indexing based on different approaches, similarity measurement in DR network, and lastly, a brief example of using neighborhood information to suggest potential DR related concepts in retrieval query processing.

IMPROVING DESIGN RATIONALE CAPTURE DURING EMBODIMENT DESIGN

van Schaik, Jeroen Robbert; Scanlan, Jim; Keane, Andy; Takeda, Kenji; Gorissen, Dirk
University of Southampton, United Kingdom

Design rationale can help solve difficult problems, aid design reviews and make design reuse easier. It is observed that the capture and reuse of rationale tends to decrease during the detail design phase. The inability to connect rationale to geometry is identified as a probable cause. A solution is proposed to increase the ease of design rationale capture during detail design by creating links between design rationale nodes and the corresponding parameters in the CAD design. Further implementation and testing of these concepts is discussed.

ADAPTING AEROSPACE DESIGN RATIONALE MAPPING TO CIVIL ENGINEERING: A PRELIMINARY STUDY

Eng, Nathan Lee (1); Marfisi, Emanuele; Aurisicchio, Marco (1)
Imperial College London, United Kingdom

A preliminary study of aerospace design rationale capture methods in civil engineering was performed to improve support for information management and systems thinking. Deploying software-based methods in complex socio-technical environments presents many challenges. Digital tools are often force-fit into work in ways that disrupt communication and understanding. This study seeks to mitigate potential disruptions through careful study of opportunities for innovative, localized variations in civil engineering. Data was collected through adaptation of existing documents into map-based formats, examination of information repositories and informal interviews with engineers exposed to the mapping methods on a live project. Results echo previous work comparing these industries: highlight current limitations of “paperless” visions and pointing to adapted mapping methods that better fit the civil engineering context. Future work will develop those methods in collaboration with more engineers over longer studies to demonstrate further impact on the everyday work and the kinds of holistic thinking required for global competitiveness and sustainable design of the built environment.
FACING THE OPEN INNOVATION DILEMMA – STRUCTURING INPUT AT THE COMPANY’S BORDER
Kain, Andreas Stefan (1); Kirschnich, Rafael Johannes (1); Lang, Alexander (2); Lindemann, Udo (1)
1. Technische Universität München, Germany; 2. MAN Solutions GmbH
Open innovation makes the company’s border permeable for knowledge exchange with outside world. Various ways exist on which ideas can flow into the company’s product development process as well as flow out into the market. Each direction faces its own challenges. However, bringing input to the company poses the problem to prepare the input in the expected way and to identify the proper receiver within the company. Here we show that a framework supports preclustering and evolvement of input before transferring it into the company. From a conducted case study we learnt that the contributed ideas mainly concerned the embodiment level, but also principle and function level. Our results demonstrate how the framework can be instantiated for a specific tool. The framework is not method specific and thus can be applied to various open innovation approaches aiming into the company.

STUDY ON THE INTRODUCTION OF DESIGN MANAGEMENT IN THE PRODUCT DEVELOPMENT PROCESS OF BRAZILIAN CLOTHING COMPANIES
Bernardes, Mauricio Moreira e Silva; Kauling, Graziela Brunhari
FEDERAL UNIVERSITY OF RIO GRANDE DO SUL, Brazil
Design is generally associated with the aesthetic and functional factor of products. However, since the 90s, this concept has changed and the meaning of this term has become more comprehensive. Presently, this word is associated to strategic factors within organizations. The goal of this research is to study the introduction of design management in the product development process of Brazilian clothing companies. The theoretical framework of this research shows that the curriculum frameworks of the design schools in Brazil do not yet sufficiently emphasize management in the courses of this area, making it impossible for designers to develop managerial abilities. Above all, the present study aims at analyzing how the clothing companies in Araraquara, in the state of Santa Catarina – Brazil, introduce design in their processes. The analysis was carried out via a comparison with the Design Management Model presented by authors Bruce; Cooper and Vazquez as a guiding element of this research. The sample encompasses five companies that are developers of fashion products, the qualitative data analysis of which resulted in suggestions for improvement to each company studied.

A FRAMEWORK FOR DEVELOPING VIABLE DESIGN METHODOLOGIES FOR INDUSTRY
Lehtonen, Timo (1); Jauhi, Teri (1); Oja, Hannu (2); Siitvaranta, Seppo (3); Puikkinen, Antti (1); Riihiahuhta, Aase (1)
1. Tampere University of Technology, Finland; 2. Finavantigo Corporation; 3. Wärtsilä Corporation
In this paper we propose the most serious shortcomings that restrain the use of academic design methodologies in industry. The focus is on the level of clarity on the design goals, formulated as: “How much do we know about the design goal in the beginning?” We use a framework to illustrate the differences of the methodologies. When we compare the design processes and include also the industrial experiences we can see that a lot of knowledge and experience is needed to be able defining clear design goals and list requirements.

EMBEDDING DESIGN THROUGH THE INTEGRATION OF OTSM-TRIZ SITUATION ANALYSIS WITH TOPOLOGICAL HYBRIDIZATION OF PARTIAL SOLUTIONS
Rotini, Federico (1); Cascini, Gaetano (2); Cardillo, Alessandro (2); Frillici, Francesco Saverio (1)
1. Università degli Studi di Firenze, Italy; 2. Politecnico di Milano
Many design approaches have been developed to support the tasks involved in the Conceptual and Embodiment design phases, but their nature has led to very different paradigms. The translation of the system concept into its structure still represents a critical task, since the models adopted for conceptual design are not directly compatible with those involved in the embodiment stage. Enhancing the interoperability of these models is therefore a key issue to improve the efficiency of the Product Cycle. According to this objective, the authors present an investigation aimed at testing the integration between OTSM-TRIZ approach to concept development and DADiMON, an original technique for multi-objective optimizations developed by the authors. The functionality of the proposed model has been tested through its application to a case study concerning the redesign of a dot printer component. The results demonstrate the potential of the integrated paradigm in guiding the designer from the identification of the right problem to solve, to the embodiment of the solution. Such experience has led to the proposition of a set of rules for developing a new framework for innovative embodiment tasks.
IDEA SCREENING IN ENGINEERING DESIGN USING EMPLOYEE-DRIVEN WISDOM OF THE CROWDS

Onarheim, Balder; Christensen, Bo
Copenhagen Business School, Denmark

The paper investigates the question of screening ideas in the ‘fuzzy front end’ of engineering design, examining the validity of employee voting schemes and related biases. After an employee-driven innovation project at (Company Name removed for review), 99 ideas were to be screened for further development. Based on the concept of wisdom of the crowds, all ideas were individually rated by a broad selection of employees, and their choices of ideas and idea categories compared to those of a small team of senior marketers. The study also tested for two biases: visual complexity and endowment effect/ownership of ideas. The study shows that the crowd wisdom of employees significantly correlates with the preferences of the marketing team: overall, in top 12 selected ideas and in choice of idea categories. This match increases when including only the ratings of the most experienced employees. The experienced employees also proved to be less affected by visual complexity in the ideas presented. The endowment effect was potent in that every employee proved to be more likely to select their own ideas over others, but this effect disappeared when aggregating across the crowd of employees.

PRODUCT PROFILE TO REDUCE CONSUMER DISSATISFACTION IN TERMS OF SOFT USABILITY PROBLEM AND DEMOGRAPHICAL FACTORS: AN EXPLORATORY STUDY

Kim, Chajoong; Christiaans, Henri
Delft University of Technology, Netherlands, The Netherlands

As consumer electronic products have increased in complexity and users of those products are still from a broad variety of the population, new complaints related to product usability are identified. Consumer dissatisfaction is increasingly caused by soft usability problems they experience, problems that have nothing to do with technical failure. This phenomenon bothers companies of electronic products because it will probably lead to a decrease of brand loyalty. Therefore, the paper explores the relationship between soft usability problems, demographical factors and product attributes through a survey of 102 users from the Netherlands and South Korea. The results reveal that product profiles in terms of product complexity and product intimacy are related with specific soft usability problems and some demographical factors. This finding implies that a product profile can be a useful source of understanding problems experienced with them. Moreover, it can help preventing usability problems leading to an increase of consumer satisfaction and brand loyalty.

THE IMPORTANCE OF EMPATHY IN IT PROJECTS: A CASE STUDY ON THE DEVELOPMENT OF THE GERMAN ELECTRONIC IDENTITY CARD

Köppen, Eva; Rauth, Ingo; Schnjakin, Maxim; Meinel, Christoph
Hasso Plattner Institute, Germany

Although there is a great interest in user driven innovation, IT industry still shows a strong focus on technology driven innovation development. Understanding the perspective and social context of the user is also not part of a regular technical education. As a result, IT development has the tendency to concentrate on technical issues while missing the users actual needs. In our case study on the implementation of the electronic identity card (e-ID) in Germany, we explain how this overlook of the user causes serious project failures and product errors. We argue that the lack of user-centeredness is a direct result of the underestimated value of empathy and empathic knowledge within IT projects. Beyond that we regard empathy as the most important capability, which is being developed by design thinking. Design thinking is a user-centered and problem-solving approach. In this work we hypothesize, that the more active attention is paid to empathy throughout the project, the less likely are unfavourable products, increasing costs and avoidable time delays.

THE SCENARIO OF USER EXPERIENCE

Ortiz Nicolas, Juan Carlos; Aurisicchio, Marco
Imperial College London, United Kingdom

A steady stream of research in user experience (UX) has been produced in recent years, however, the published works in the form of theories, models and frameworks have not been reviewed and analysed to synthesise the gained knowledge. To address this issue, this article presents an overview of many of the existing frameworks and models that can be found in the different disciplines that comprise the fields of experience and design. The most relevant actors of these models have been extracted and synthesized into a scenario in which user experience develops. Four actors have been identified that have a strong impact on user experience: the user, interaction, artefact and context. Each actor is reviewed in detail, along with an explanation of its most relevant aspects.
SOFTWARE SUPPORTED KNOWLEDGE TRANSFER FOR PRODUCT DEVELOPMENT
Kreibber, Sönke; Kleberdenz, Hermann; Birkhofer, Herbert; Bohn, Andrea
Institute for Process Development and Machine Elements, Technische Universität Darmstadt, Germany

The prime goal of the project is to display product development knowledge appropriately and user-specific. To achieve this objective the following considers the knowledge transfer process starting at a teacher or an expert to a learner or student. From the comparison of the detailed consideration of the knowledge transfer process to the extent available on the market-standard software follow usage scenarios and research fields.

CAPTURING THE CONCEPTUAL DESIGN PROCESS WITH CONCEPT-CONFIGURATION-EVALUATION TRIPLETs
Kroll, Ehud; Shilmanter, Alexander
Technion-Israel Institute of Technology, Israel

Design knowledge is a key asset that companies find difficult to capture and access. Since most design is redesign, being able to use prior knowledge effectively is crucial. A record of the design process and the decisions that were made is necessary in order to understand, recreate and modify a design. Not less important is capturing the rationale behind rejected ideas. Various design methods can be used for the conceptual design phase, but most fail to explicitly capture the history and rationale of the process, including the reasons for discarded efforts. This paper demonstrates the need for capturing the design rationale with a textbook example that uses functional decomposition and morphology as the conceptual design method. It then introduces a simple and effective scheme that uses a sequence of triplets of the form concept-configuration-evaluation to describe the desired information. This scheme is based on a conceptual design methodology called parameter analysis, but we show that the proposed means of rationale capture is generally applicable.

A NEW METAMODEL TO REPRESENT TOPOLOGIC KNOWLEDGE IN ARTIFACTUAL DESIGN
Jauregui-Becker, Juan M.; Gebauer, Klaus Jan W.; van Houten, Fred J.A.M.
University of Twente, Netherlands, The Netherlands

This paper presents the Topology Abstraction Representation Diagram (TARD) as a new metamodel to represent knowledge about components and their relations for the purpose of Computational Design Synthesis (CDS) of artificial routine design. TARD consists of three building blocks: elements, c-relations and h-relations. Elements represent components of an artifact by grouping parameters. C-relations represent the connectedness of the elements in the topology. H-relations model how a group of c-relations describes the composition of one level of abstraction and its relation with the lower level of abstraction. One important characteristics of TARD is that topology knowledge is modeled in both a declarative fashion as well as in a procedural fashion. This enables the representation of existing artifacts as well as it models knowledge about how to configure new design artifacts. TARD decouples levels of abstractions by using explicit hierarchical relations (h-relations) and decouples the connectedness among elements by using explicit connection relations (c-relations). By doing so, each level of abstraction can be generated one independent from another.

A SCALABLE APPROACH FOR THE INTEGRATION OF LARGE KNOWLEDGE REPOSITORIES IN THE BIOLOGICALLY-INSPIRED DESIGN PROCESS
Vandevenne, Dennis (1); Verhaegen, Paul-Armand (1); Dewulf, Simon (2); Duflo, Joost R. (1)

Many applications of Biologically-Inspired Design (BID) are well-known and research is increasingly focusing on methodologies towards systematic BID. However, currently no ideation tool exists that is able to leverage the large textual biological resources in a scalable way to propose a selection of biological strategies that are interesting for a specific design problem under focus. This paper first identifies the main bottleneck preventing the realization of such a scalable BID ideation tool by analyzing the state-of-the-art in systematic BID. It is observed that most work focuses on developing detailed models of both biological and engineering systems, which enable support during knowledge transfer between the two domains. However, the automated instantiation of these models for a large collection of biological strategies requires an open question and domain experts are necessary to complete this time-consuming and expensive task. Therefore, a new approach is proposed that uses a conceptual representation of the biological domain to identify candidate biological strategies as input for the transfer phase.

PROVIDING DESIGN SOLUTION REPOSITORIES IN THE FIELD OF MECHANISM THEORY
Redding, Michael; Brix, Torsten; Döring, Ulf
Anna University of Technology, Germany

Solutions for most present-day problems in the field of motion systems can be derived from existing designs. Unfortunately, large portions of this knowledge are difficult to access, since it is scattered over the world's libraries, museums, companies, universities, and other institutions. Also, it is stored in various forms, like textual descriptions, images, or diagrams.

In recent years there have been efforts to digitalize sources of design solutions and make them available on the Internet. However, most of these repositories represent information in a way that does not meet the requirements of engineers concerning the retrieval of specific solutions. The presented paper discusses methods and tools necessary to extract solutions from sources and to describe them with metadata based on terms and concepts of motion science.

MEANS FOR INTERNAL KNOWLEDGE REUSE IN PRE-DEVELOPMENT – THE TECHNOLOGY PLATFORM APPROACH
Corin Stig, Daniel; Bergsjö, Dag
Chalmers University of Technology, Sweden

This paper deals with challenges regarding the design and implementation of a technology platform framework. The framework is intended to be used as a basis for pre-development also called technology development and when designing and configuring new products. Since technology platforms enable more reuse on a higher abstraction level compared to traditional product platforms, several challenges arise. This paper will elaborate on organizational needs and tools for facilitating the internal knowledge reuse. In this context web based tools and checklists will be introduced. There is also a discussion regarding wiki tools and implementation of it support tools. The research has been done in close collaboration between Chalmers University and a Swedish supplier in the aero engine industry.

A PARAMETRIC DESIGN FRAMEWORK TO SUPPORT STRUCTURAL AND FUNCTIONAL MODELING OF COMPLEX CONSUMER ELECTRONICS PRODUCTS
Seki, Kenichi (1); Nishimura, Hidekazu (1); Zhu, Shaoping (1); Balmelli, Laurent (2)
1: Aalto University, Japan; 2: IBM Software Group

Today’s market demand for smaller and more powerful consumer electronic devices poses a major challenge to the engine industry.

The research has been done in close collaboration between Chalmers University and a Swedish supplier in the aero engine industry.

A PARAMETRIC DESIGN FRAMEWORK TO SUPPORT STRUCTURAL AND FUNCTIONAL MODELING OF COMPLEX CONSUMER ELECTRONICS PRODUCTS
Seki, Kenichi (1); Nishimura, Hidekazu (1); Zhu, Shaoping (1); Balmelli, Laurent (2)
1: Aalto University, Japan; 2: IBM Software Group

Today’s market demand for smaller and more powerful consumer electronic devices poses a major challenge to the engine industry.

The research has been done in close collaboration between Chalmers University and a Swedish supplier in the aero engine industry.

A PARAMETRIC DESIGN FRAMEWORK TO SUPPORT STRUCTURAL AND FUNCTIONAL MODELING OF COMPLEX CONSUMER ELECTRONICS PRODUCTS
Seki, Kenichi (1); Nishimura, Hidekazu (1); Zhu, Shaoping (1); Balmelli, Laurent (2)
1: Aalto University, Japan; 2: IBM Software Group

Today’s market demand for smaller and more powerful consumer electronic devices poses a major challenge to the engine industry.

The research has been done in close collaboration between Chalmers University and a Swedish supplier in the aero engine industry.

A PARAMETRIC DESIGN FRAMEWORK TO SUPPORT STRUCTURAL AND FUNCTIONAL MODELING OF COMPLEX CONSUMER ELECTRONICS PRODUCTS
Seki, Kenichi (1); Nishimura, Hidekazu (1); Zhu, Shaoping (1); Balmelli, Laurent (2)
1: Aalto University, Japan; 2: IBM Software Group

Today’s market demand for smaller and more powerful consumer electronic devices poses a major challenge to the engine industry.

The research has been done in close collaboration between Chalmers University and a Swedish supplier in the aero engine industry.
A NOTE ON THE DEBATE ON SCIENTIFIC PROCESS VS. DESIGN PROCESS

Motte, Damien; Bjarnemo, Robert
Lund University, Sweden

It has often been mentioned that the scientific process is quite opposite to the design process, mainly consisting in the analysis of existing phenomena in order to develop a theory; the design process being a synthesis act that creates something new into the world. In the light of the developments that led to this conception and with reference to the current view on the scientific process, it is argued that the scientific process has more similarities with the design process than differences. As parallels can be drawn between both processes, some implications for further research onto the fundamentals of the design activity are discussed.

DEVELOPMENT OF AN EVALUATION FRAMEWORK FOR IMPLEMENTATION OF PARAMETRIC ASSOCIATIVE METHODS IN AN INDUSTRIAL CONTEXT

Saheli, Vahid; McMahon, Christopher A
University of Bath

This paper presents a study of the evaluation phase of a project that developed a new method to support parametric and associative computer-aided design, PARAMASS, in an automotive design context as an example of the systematic evaluation of new methods in design research. The evaluation employed qualitative and quantitative techniques to obtain the reaction of practising designers to the new method and to identify the time benefits of the application of the method in the design of automotive engines. The paper first presents a general overview of quantitative and qualitative methods, and describes systematic evaluation approaches in other domains especially software application. It then presents the evaluation of the PARAMASS approach using qualitative evaluation based on the Goal-Question-Metric approach, questionnaires and interviews of designers, and the qualitative evaluation based on the Use Case approach. Considerations in the planning and implementation of the evaluation procedures are presented.

DIMENSIONS OF OBJECTIVES IN INTERDISCIPLINARY PRODUCT DEVELOPMENT PROJECTS

Albers, Albert; Lohmeyer, Quentin; Ebel, Björn
Karlsruher Institute of Technology (KIT), Germany

Interdisciplinary product development is a complex and uncertainty-affected system and objectives are central elements to consequence the handling of these objectives, characterized by a high connectivity and dynamic demands for a multi-dimensional view on objectives. This paper examines the nature of objectives and generates a conceptualization of four generalized dimensions of objectives: degree of maturity, degree of rigidity, leverage and impact. Based on these dimensions the approach of objective dimension matrices (ODM) is deduced. ODM considers product development as a socio technical system and therefore enables a systematic handling of objectives in order to understand their role in interdisciplinary product development projects. The capability of ODM is demonstrated by its application within the development of a humanoid robot.

FAILURE MODE AND EFFECTS ANALYSIS IN COMBINATION WITH THE PROBLEM SOLVING A3

Lodgaard, Jørn (1); Pellekjær, Øystein (2); Ringen, Geir (2); Klokkehaug, Jon Andreas (3)
1: SNAP！ Rausk Manufacturing AS, Norway; 2: Norwegian University of Science and Technology, Norway; 3: Norwegian University of Science and Technology, Norway

Failure Modes and Effects Analysis (FMEA) is a methodology that may contribute to identify and reduce risks during the product design phase. Although this is a widely used methodology within several fields, it has nevertheless many limitations and challenges. Traditional FMEA process was applied during the design phase of the company investigated in this study. The FMEA methodology is discussed and evaluated and an evolved method to improve problem solving and root cause detection is proposed. The results show that the formal fulfillment of the method is not sufficient by itself to achieve efficiently quality and reliability improvement on the product design. Consequently, to succeed in the FMEA methodology it is proposed to combine it with the A3 problem solving methodology for a deeper analysis of the root causes for the prioritized issues during the risk reduction process.

LINKAGE OF METHODS WITHIN THE UMEA METHODOLOGY - AN APPROACH TO ANALYSE UNCERTAINTIES IN THE PRODUCT DEVELOPMENT PROCESS

Engelhardt, Roland; Alexander, Eifie; Tobiac, Mathias; Johannes; Klöberdanz, Hermann; Birkhofer, Herbert; Bohn, Andrea
Technische Universität Darmstadt, Germany

In its entire life cycle every product is exposed to different uncertainties. In technical systems, these uncertainties are generally understood as deviations from product and process properties. In the development processes uncertainties particularly occur when modelling and forecasting technical, economic product and process properties. The Uncertainty Mode and Effect Analysis (UMEA) methodology forms a strategic procedure to analyse uncertainties and their consequences.

The Objective of this paper is to show the use of methods within the UMEA Methodology during the phases of the product development process. In doing so uncertainties are recorded and described systematically at all virtual and real life cycle processes. In order to implement the UMEA, methods were allocated to different phases of the product development process. As shown in the following, particularly in their combination and interlinking these methods allow the detection and evaluation of uncertainties.

The integrated UMEA methodology is based on a comprehensive model of uncertainty, which allows the consideration of uncertainties in all life cycle phases to describe and to evaluate the impact of uncertainties systematically.

IFMEA – INTEGRATION FAILURE MODE AND EFFECTS ANALYSIS

Punz, Stefan; Fallmeier, Martin; Hehenberger, Peter; Zaman, Klaus
Johannes Kepler University, Austria

During the product development process a lot of challenges have to be mastered. Beside ever shorter innovation cycles and time-to-market, products with increasing complexity such as mechatronic products lead to greater development risks. Mechatronic products are characterized by high functional as well as physical (e.g. spatial) integration. This integration of several modules (sub-systems) from different engineering disciplines entails a high risk of product failures. It is therefore crucial to systematically identify these risks already in early design stages. To this end, it is important to realize that systems (sub-systems, system-elements, modules) are carriers of different physical effects. These effects not only realize the function of the system, but may sometimes have undesirable side effects which may lead to problems for other modules and, hence, have to be considered carefully. In this paper, the IFMEA (Integration Failure Mode and Effects Analysis) method is introduced, which is based on the widespread FMEA (Failure Mode and Effects Analysis) method, but has its focus on identifying problems due to the integration of several modules within mechatronic systems.

DESCRIPTION, PRESCRIPTION AND “BAD” DESIGN

Winkelman, Paul
University of British Columbia, Canada

Design methodologies can serve the purposes of description, prescription, or the creation of norms. A given method- ology can display features of all three. In such cases, does the presence of all three compromise the validity of the methodology? The mixing of the descriptive with the prescriptive is common in both science and engineering. Science often requires a theory (prescriptions) to enable us to make sense of what we are seeing (description). Within engineer- ing, mathematics draws the descriptive and the prescriptive together; at first glance, mathematics appears merely de- scriptive, but the unwavering trust placed in its constructs give it prescriptive powers. Thus, one would expect models of the engineering design process to be ambiguous without diminishing the methodology. The normative prescribes its unique challenges for engineering research, for the normative suggests that we need to espouse certain values and this detracts from the logic of design.
DESIGNING SUSTAINABLE SOCIETY SCENARIOS USING FORECASTING

Mizuno, Yuji; Kishita, Yusuke; Wada, Haruna; Hiroasaki, Mak; Fukushige, Shinichi; Umeda, Yasushi
Graduate School of Engineering, Dieele University, Japan

Environmental problems such as resource depletion or climate change are the most serious problems for society and industry. In order to deal with such problems, scenario writing is a useful methodology for envisioning ideal future, such as sustainable society. Although describing these scenarios requires a lot of time and a large amount of works, there are many computational support for it. In order to resolve these problem, the paper proposes a design methodology of scenarios based on forecasting approach, which explores future from current situation. In order to realize computational scenario design support, we formalize the design process as four steps: setting problems, constructing causal networks, describing storylines, and describing scenario texts. And we develop Scenario Design Support System for sustainable society scenario design process on a computer. For testing the proposed methodology, we designed "Electric Vehicle Diffused Society Scenario" as a case study. In the case study, proposed process and design support methodology are useful for designing a forecasting scenario.

WHICH GUIDELINE IS MOST RELEVANT? INTRODUCTION OF A PRAGMATIC DESIGN FOR ENERGY EFFICIENCY TOOL

Rath, Karola; Birkhofer, Herbert; Bohn, Andrea
TU Darmstadt, Fachgebiet fur Maschinenbauprodukte und Produktentwicklung, Germany

Energy efficiency is a topic of high importance in companies nowadays. As a knowledge deficit exists concerning the design of energy efficient products there is a significant need for comprehensive tools and methods supporting the designer to integrate energy aspects into the design process. Existing methods, particularly guideline-based tools are only little user-friendly as they do not support a systematic and selective access to guidelines that are most relevant to solve a specific problems. This paper introduces a new guideline-based tool that provides a hierarchical structure and clustered guidelines and therefore aides targeted access to guidelines most relevant in a certain development context. This tool is intended to allow product designers to reduce the energy consumption of products during material processing, manufacturing, use, recycling and disposal. It is moreover integrated into a design approach for energy efficient products and accordingly serves as a pragmatic tool.

SUSTAINABILITY INNOVATION IN EARLY PHASES

Panarotto, Massimo; Tordel, Peter
Lulea University of Technology, Sweden

Sustainability is a complex but extremely important issue. To achieve a new industrial revolution that focuses on sustainability, we need innovation. Just improving our technologies and our habits will not save our planet from its current drastic situation. In recent decades many Eco-tools have been developed; this paper evaluates the most important and used today, how they help to consider sustainability in the product development process and identify important and missing characteristics, arguing that many Eco-tools were experienced by the companies as too complex and time-consuming and often not aid the innovation process. These characteristics guided the development of a new framework for sustainability innovation based on a multidisciplinary workshop approach. It focuses on analyzing customers from a sustainable viewpoint, understanding their actual needs, using ideation tools to generate ideas in areas not usually considered in current Eco-tools, e.g. changing customer behavior or the business model. The method was developed, tested and evaluated in an iterative approach over a six-month period.

SUCCESS CRITERIA FOR IMPLEMENTING SUSTAINABILITY INFORMATION IN PRODUCT DEVELOPMENT

Aschehoug, Sijle Helene; Boks, Casper
Norwegian University of Science and Technology, NTNU, Norway

The main contribution of this article is the result from a group creativity session with product designers in the automotive industry supply chain with the purpose of developing success criteria for the implementation of sustainability information use guidelines. The guidelines highlight relevant information from each stakeholder, and may be used to support the inclusion of sustainability information in product development in firms in addition to using traditional product and process data. A number of 79 unique ideas were identified by the participants, 60 of these being both feasible and relevant for implementation purposes. These 60 ideas were then grouped into nine separate categories. The ideas generated from the participants range from traditional implementation issues such as management commitment, customer or regulatory demands and sufficient competence within sustainability issues, to more novel ideas including the development of a task force for sustainable development within the industrial cluster that the case firms are part of. Moreover, increased collaboration with academia was highlighted as important for the successful implementation of sustainability information use guidelines.
Innovation and Entrepreneurship in the Automotive Business

Hasse Johansson
Chairman of the Board
Vinnova (Swedish Agency for Innovation Systems)

Abstract
The global automotive business is one of the most competitive environments you can imagine. As an independent inventor or as a small development company, it is very challenging to be successful in implementing new ideas and components. In this mature and somewhat conservative technical environment, you really need to have a strong and revolutionary proposal. The big global manufacturers of vehicles have tried almost everything when it comes to new technology. When approaching you think you need to have your idea well protected by patents and also reliable data to prove and convince that your invention has appropriate benefits.

The timing of the dialog with a potential user or business partner is important when it comes to which issues that have highest priorities or are most frequently discussed in the organization of said user or business partner. If there exist a special issue that your idea address you will have a much better access to the decision making process and get enough interest for a potential business deal.

After 20 years as a supplier of engineering services to the automotive industry and 10 years as head of Global R&D at Scania CV AB, I have experienced pros and cons both from a supplier perspective as well as from a vehicle manufacturer perspective.

Biography
- Master of Science (Electrical Engineering)
- Former Executive Vice President & Head of Research and Development at SCANIA
- Chairman of the Board in Vinnova, the Swedish Governmental Agency for Innovation Systems

Graduating from Chalmers University of Technology with a Master of Science and Electrical Engineering, Hasse Johansson joined Svenska Philips AB as a Service Engineer in 1974. A year later he became Engineering Manager at SEM AB. In 1982 Hasse Johansson founded Mecel AB which became a part of Delphi Delco Electronics Systems 1990 in which he held the position as Managing Director until joining Scania in 2001. He was also Director of Advanced Engineering Europe from the year 1995, Business Director of Mobile Multimedia Europe from the year 1999 and Engineering Director of Delphi Delco Electronics Systems Europe from the year 2000. At Scania he was appointed Executive Vice President and Head of Research and Development in 2001.

In 2010 Hasse Johansson retired from his position at Scania and is now Chairman of the Board in Vinnova, the Swedish Governmental Agency for Innovation Systems, Lindholmen Science Park AB, Alealio Batteries AB and Dynamate Industrial Services AB. He is also Member of the Board in Electrolux AB, Calix Group AB and Skyllbergs Bruk AB.

MECHATRONICS KEYNOTE
Arduino & RepRap: Creating Wealth by Giving it Away

David Cuartielles
MSc PhD
Founder and leader of the prototyping laboratory
Malmö University

Abstract
Because it is sometimes possible to convert one into the other, money and wealth are often confused. But they are distinct: money is pieces of paper or numbers in a computer; wealth is corn to make bread, or a motor car. Both money and wealth grow as time advances: growth in money is inflation, growth in wealth is longevity and prosperity. Is it possible to grow wealth independently of money?

This talk will be from Adrian Bowyer - creator of RepRap, the open-source replicating 3D printer - and from David Cuartielles - creator of Arduino, the open-source microcontroller. Both projects have founded significant and growing industries - and hence significant and growing wealth - by giving away all the data required to build RepRaps and Arduinos completely free. They have also short-circuited most conventional industrial infrastructure by placing the ability to create wealth directly in the hands of private individuals.

The presenters contend that this is the way of the future: companies, and - more importantly - those private individuals will be giving away their primary products and making a living on the sideline activities that such donations attract.

Software has been heading in that direction for decades. Now hardware is following.

Biography
Adrian Bowyer
BSc(Eng) PhD CEng CMath ACGI
MSc FIMA FRSA
Senior Lecturer
Founder of RepRap
RepRap / University of Bath

In the early 1970s Adrian Bowyer read for a first degree in mechanical engineering at Imperial College, London, and then researched a PhD in tribology there. In 1977 he moved to Bath University's Maths Department to do research in stochastic computational geometry. He then founded the Bath University Microprocessor Unit in 1981 and ran that for four years. After that he took up a lectureship in manufacturing at Bath's Engineering Faculty, where he is now a senior lecturer.

His current area of research is self-replicating machines - he is the inventor and developer of the RepRap replicating rapid prototyper.

He also works on geometric computing (he is one of the authors of the Bowyer-Watson algorithm for Voronoi diagrams), the application of computers to manufacturing, the biochemistry of smart materials, and biomimetics.

David is a candidate in Interaction Design for the School of Arts and Communication at Malmo University, Sweden. He is the founder and leader of the prototyping laboratory there since 2001.

In 2005 co-created the Arduino prototyping platform and since then runs the web-unit of the project dedicated to give support to the user and developer community. In 2006 curated the Electrolobby space of the Ars Electronica Festival, which was dedicated to the DIY movement with a series of workshops in quick prototyping. In 2009 created the 1scale1 open source prototyping company specialized in the creation of HiFi prototypes of wearable computers.

Also since 2010 is part of the Medea research group collaborating with the city of Mamo in creating the first FabLab facility in the region to open in 2011.
DESIGNING PATENT PORTFOLIO FOR DISRUPTIVE INNOVATION – A NEW METHODOLOGY BASED ON C-K THEORY
Fells, Yacine (1,2); Le Masson, Pascal (1); Weil, Benoît (1); Cogez, Patrick (2); Hatchuel, Armand (1)
1: CEG - center for management science, Mines ParisTech, France; 2: Technology N&I, STMicroelectronics, Crolles, France

In this paper we explore a key element of knowledge intensive innovation, the issue of patent generation. Whereas patent is often considered as a 'by-product' (output) of design activity, we focus on the situation of disruptive innovation, where recent studies in management of innovation have shown that patent is particularly crucial. Only few methods are based on patent modelling, they rely mostly on problem solving design reasoning. Nevertheless, these are not adapted to disruptive innovation where both creativity and problem solving are mandatory. Looking at this situation as an issue of portfolio design provides a useful heuristic for management insights of a "design for patentability" approach. Our contribution is defined in two parts, first a patent model and second, a process of patent generation. We propose to model patent information as an (Action, Knowledge, Effect) triplet. In disruptive situations, all three elements (A, K, E) are unknown. Based on this modelling, we show through an illustrative case how a team in charge of disruptive innovation exploration proposed several (A, K, E) triplets. This work suggests a method "C-K Invent" derived from C-K design theory.

CK, AN ENGINEERING DESIGN THEORY? CONTRIBUTIONS, LIMITS AND PROPOSALS
Coaetanea, Eric (1); Choulier, Denis (2); Forest, Joelle (3)
1: Aalto University, Finland; 2: UTBM, France; 3: INSA Lyon, France

The C-K theory developed by Hatchuel, Weil and Le Masson has raised interest and controversies in the academic and practitioners’ communities. This paper is participating to this debate. After presenting the scope, focus, and the contributions claimed by its creators; the authors analyse the interest of considering also other concepts and models usually integrated in traditional design knowledge and practices. Indeed, it can be noticed that important concepts such as the concepts of function and structure for example seems to remain outside the perimeter of C-K even if some of them are integrated in the research programs of the authors. This is not a central limitation if the real scope of the theory will be minimized, compared with the initial ambition of the C-K's creators. It is nevertheless a fruitful contribution which explicitly creates a distinction between knowledge, concepts and notes the importance of expanding partition. The present contribution proposes to enrich the initial scope of C-K by integrating theoretical contributions made by other authors and by considering concepts widely used and accepted in engineering design.

A METHOD FOR DESIGN REASONING USING LOGIC: FROM SEMANTIC TABLEAUX TO DESIGN TABLEAUX
Hendriks, Lex (2); Kazaki, Akin Osman (1)
1: CEG, Mines ParisTech, France; 2: ILLC, University of Amsterdam

Inspired by C-K theory, the current work presents a framework demonstrating how C-K type design reasoning can be applied within logic. Building on our previous work, we extend and generalize the well-known method of Semantic Tableaux, invented by Beth for logical theorem proving, to Design Tableaux – a general, formal procedure allowing to implement expansive reasoning within the formalism of logic. Our contribution is twofold. First, we give a formal, verifiable procedure that explicit and apply the ill-defined operators of C-K theory. Second, we contribute to the notion that design science can be useful to other fields and theories (in this case, logic) by proposing a mode of creative reasoning within a logical framework stemming directly from a theory of design.

MEASURING HISTORY: DOES HISTORICAL CAR PERFORMANCE FOLLOW THE TRIZ PERFORMANCE 5 CURVE?
Dowlen, Chris
London South Bank University, United Kingdom

After an outline of the four curves proposed for measuring historical product behavior by the TRIZ system and a brief summary of previous work to determine the development of car history, the paper investigates the assessment and measurement of performance throughout the history of the car. This is done by taking a historical investigation of performance criteria such as engine power, maximum speed and acceleration. A factor analysis is also carried out on performance parameters and the first two factors are presented as a two-dimensional performance map that could be used as a design tool. The paper then questions whether this is what is really meant by car performance and discusses the difficulties of measuring this. Car developments in the late 1930s are taken as an example to illustrate some of the nuances that need to be captured. The work has indicated that the TRIZ process is a somewhat simplistic curve that doesn’t take into account the historical data in this case.

INVESTIGATING ELEMENTARY DESIGN METHODS – USING AND EXTENDING THE GENOME-APPROACH
Zier, Sebastian; Kloberdanz, Hermann; Birkhofer; Herbert; Bohn, Andrea
TU Darmstadt, Germany

Nowadays most of the design methods introduced in literature are not new but rather modifications or further developments of existing methods. Therefore the system of methods and method descriptions has an evolutionary grown character. Hence the aim of investigating elementary methods is to develop a systematic approach for the deduction, description and improvement of design methods. This paper shows a systematic approach for investigating elementary design methods. Thus, in this paper the so-called Genome Approach is used to model and analyze a certain number of methods from different areas. The application of this approach is revealed in examples. Both, strengths and limitations of this approach become visible. To benefit from the strengths of this approach, first some extensions are discussed, to deal with the limitations, for the moment. Furthermore, long term possibilities to improve this approach are described.

THEORETICAL FRAMEWORK FOR COMPREHENSIVE ABSTRACT PROTOTYPING METHODOLOGY
Horvath, Imre
Delft University of Technology, Netherlands, The

Though abstract prototyping offers quality improvement and costs reduction in all branches of product development, it has gained popularity only in the software sector of the creative industry. This paper proposes a theoretical platform and an activity workflow for abstract prototyping of artifact-service combinations. First, the concept of abstract prototypes and the evolution of abstract prototyping are discussed. Then, an underpinning theory and a content-independent workflow are presented. It is proposed that the information constructs instantiated in abstract prototypes should demonstrate the real life operation and interaction/use processes, including the description of the conceptualized artifact-service combination, the human actors, and the surrounding environment. The stakeholders’ needs should be taken into consideration not only in conceptualization of artifact-service combinations, but also at constructing the contents and demonstration of the abstract prototype. Narration and enactment are identified as two intertwined parts of demonstration. The follow up research focuses on testing the proposed methodology and its validation through complex industrial cases.
A FREQUENCY ANALYSIS APPROACH TO ENSURE THE ROBUSTNESS OF INTERACTIONS-BASED CLUSTERING OF PROJECT RISKS

Marle, Franck; Vidal, Ludovic-Alexandre

Ecole Centrale Paris, France

Projects are dealing with bigger stakes and facing an ever-growing complexity. Project risks have then increased in number and criticality. Lists of identified project risks thus need to be decomposed, for smaller clusters are more manageable. Project interdependent risks are indeed often managed as if they were independent. An interactions-based clustering method which permitted to group risks, so that the interaction rate is maximal inside clusters and minimal outside, was presented with its associated tools and algorithms at ICED’09 conference with a case study in the entertainment industry. This article goes further into these approaches in order to obtain more robust results in order to facilitate the coordination of complex projects by reducing interfaces when dealing with risks. After some pages which introduce the problem and these approaches, we present an approach based on a frequency analysis, based on the variation of parameters of the quadratic integer clustering problem. A case study in the construction industry is finally presented (framework design and construction project in a city). It permits to conclude on practical recommendations, conclusions and perspectives.

RECOMMENDATIONS FOR RISK IDENTIFICATION METHOD SELECTION ACCORDING TO PRODUCT DESIGN AND PROJECT MANAGEMENT MATURITY, PRODUCT INNOVATION DEGREE AND PROJECT TEAM

Grubisic, Viviane & Vasconcellos Ferreira (1); Ogliari, André (1); Gidel, Thierry (2)

1: Universidade Federal de Santa Catarina, Brasil; 2: Université de Technologie de Compagnie, France

No other type of project is in greater need of risk management than new product development projects. This is due, largely, to the innovative profile of such projects and, consequently, of the risks involved. In this context, the importance of risk management has been increasing considerably. Risk management methods rely on risk identification. Several methods for risk identification are available in the literature and each one has its own characteristics in terms of complexity, application time, and requirements for specialist and information. Therefore, it is difficult to know how to choose a risk identification method, and which criteria to employ in making the choice. Thus, in this paper, a model for the selection of a risk identification approach, considering the product design process and project management maturity, product innovation and project team, is proposed. To conclude, a discussion on what this study means to practitioners and academicians is presented.
THE MANAGEMENT OF MANUFACTURING PROCESSES USING COMPLEMENTARY INFORMATION STRUCTURES

Huet, Greg; Fortin, Clément; McSorley, Grant; Toche, Boris
École Polytechnique Montréal, Canada

This paper addresses information exchange between design and manufacturing from both perspectives. On the basis of case study research, the findings illustrate that there are differences between the information required by manufacturing and the information required by design. While the production system designer relies largely on feed-forward information concerning product-centric issues, design engineers request feedback information in form of both product-centric and project-centric information. The paper further elaborates on how information should be exchanged in order to minimize the risk of misinterpretation of transferred information.

ACQUISITION OF DESIGN-RELEVANT KNOWLEDGE WITHIN THE DEVELOPMENT OF SHEET-BULK METAL FORMING

Röhner, Sebastian; Breitsprecher, Thilo; Wartzack, Sandro
University of Erlangen-Nuremberg, Germany

The increasing requirements on technical products represent a growing challenge for the manufacturing engineering. This challenge will be met by the development of a new manufacturing technology called sheet-bulk metal forming. For the early consideration of the full potential of sheet-bulk metal forming in a design process, a design engineer has to know the process limitations as soon as possible. Hence, the objective has to be to acquire design-relevant knowledge already in the early phases of process development and to maintain this knowledge simultaneously to the further development of the process. These are the declared aims of the self-learning engineering assistance system.
Decision Making Processes

COPING WITH DEVIATION AND DECISION-MAKING

Eriksson, Joakim; Brannemo, Anette
Mälardalen University, Eskilstuna, Sweden

Structured models, such as gated models, are used in order to manage complexity in multi-project environments. The aim in following these prescriptive models creates strong interdependencies of activities in the projects. The project system becomes sensitive to unexpected events that can influence the system negatively. When managing a project in a highly-interrelated project environment, it is not possible to anticipate every possible external influence on the project. Deviations from the planned goals are inevitable but team members get credited for the skilled way in which they manage to cope with these unexpected events.

The research in this paper investigates how deviations in practice are made in decisions regarding these deviations. A widely-accepted approach has been used for studying practice on a micro-level in a project and to capture contextual circumstances.

Results show how these practices correspond to four different consequences in practice and reveal the decision strategies used to manage the deviation. The characteristic of the decision-making process is described using the Garbage-Can model in order to highlight distinctive features of managing deviations.

DECISION-MAKING IN DISRUPTIVE INNOVATION PROJECTS: A VALUE APPROACH

Petelin, François; Bertoluci, Gwenaël; Boscquet, Jean-Claude
Ecole Centrale Paris, France

Disruptive technological innovation projects are very challenging for small firms, especially in industrial sectors with very high reliability expectations. Will the innovation create enough value to make up for the evolutions a firm needs to implement in order to successfully develop an innovation and the technological and market uncertainties? In this article we present an approach that aims to facilitate decision-making in disruptive technological innovation projects.

It advocates using potential value creation for the stakeholder of the innovation and risks threatening this value creation as criteria during the decision-making process.

INFLUENCE OF DESIGN EVALUATIONS ON DECISION-MAKING AND FEEDBACK DURING CONCEPT DEVELOPMENT

Marini, Vincius Kaster; Ahmed-Kristensen, Saeema; Restrepo, John
Technical University of Denmark, Denmark

This paper aims to understand the following issues: how design flaws are diagnosed; how they influence feedback; and, how these matters could be improved in early design stages. A longitudinal, descriptive case study was carried out, following design alternatives generated over two and a half years, with the following results: evaluation methods are less than often carried out during conceptual design; failure modes motivating design decisions were repeated over time; and, feedback on robustness and reliability issues is generic when not absent. Recommendations were given to capture designers’ preference and insight while they are designing to address robustness and reliability in early stages, and to use this knowledge in order to support these attributes by proposing countermeasures.

DESIGN SUPPORT TOOLS FOR PRODUCT-SERVICE SYSTEMS

Kim, Yong Se; Lee, Sang Won; Lee, Jee-Hyong; Han, Dae Man; Lee, Hye Kyung
Creative Design Institute, Sungkyunkwan University, Korea, South (Republic of)

This paper discusses design support tools for product-service systems (PSS). During PSS design process comprising six phases such as requirement identification and value targeting, stakeholder activity design, PSS function modelling, function-activity mapping and PSS concept generation, PSS concept detailing and PSS concept prototyping, various design methods are used and many associated design information should be properly handled. Therefore, in this paper, the design support tools such as PSS DesignScape, life-cycle step modeling, stakeholder modelling, requirement modelling, PSS scenario generation, activity modelling, PSS function modelling, modified service blueprint and PSS representation are described. Sample case study is also conducted to demonstrate the effectiveness of developed design support tools for PSS.

Managing Design Changes and Alternatives

REDUNDANCY ELIMINATIONS AND PLAUSIBLE ASSUMPTIONS OF DESIGN PARAMETERS FOR EVALUATING DESIGN ALTERNATIVES

Dentosoras, Argyris; Zapaniotis, Alexandros
University of Patras, Greece

Evaluation of design alternatives is an important task for engineering design and its results affect strongly the outcome of decision-making processes and the quality of the artifact being designed. In the present paper, a method is proposed based on representation of alternatives through associative weighted digraphs of design parameters and use of performance variables defined according to evaluation criteria. The method relies on designer-guided eliminations of redundancies of common design parameters among different alternatives and plausible assumptions about value domains of design parameters that take part in the evaluation process. Eliminations of redundancies of common design parameters lead to unified digraphs for all alternatives and the introduction of Plausible Assumptions Matrix systematizes the process of assigning feasible value domains for all types of all design parameters. Linear approximate calculation formulas pertaining to the unified digraphs are also introduced for evaluating alternatives based on comparable values of performance variables. A case study for two alternatives for a stiffness element exemplifies the proposed approach.

MULTILAYER NETWORK MODEL FOR ANALYSIS AND MANAGEMENT OF CHANGE PROPAGATION

Pasqual, Michael C.; de Weck, Olivier L.
Massachusetts Institute of Technology, United States of America

This paper introduces a multilayer network model integrating three layers of product development that contribute to change propagation: namely, the product, change (process), and social layers. A baseline repository of tools and metrics is developed for the analysis and management of change propagation using the model. The repository includes a few novel tools and metrics, most notably the Engineer Change Propagation Index (Engineer-CPI) and Propagation Directness (PD), as well as others already existing in the literature. A case study of a large technical program is employed to demonstrate the model’s practical utility. The case study discovers a corresponding metric correlation where an engineer’s work and factors such as his/her organizational role and the context of his/her assignments. The study also confirms the counterintuitive possibility of indirect propagation between nonadjacent product components. Lastly, the study finds that propagation was generally infrequent and always stopped after five, and rarely more than four, generations of descendants.

CHANGE IN REQUIREMENTS DURING THE DESIGN PROCESS

Sudin, Mohd Nizam; Ahmed-Kristensen, Saeema
Technical University of Denmark, Denmark

Specification is an integral part of the product development process. Frequently, more than a single version of a specification is produced due to changes in requirements. These changes are often necessary to ensure the scope of the design problem is as clear as possible. However, the negative effects of such changes include an increase in lead-time and cost. Thus, support to mitigate change in requirements is essential. A thorough understanding of the nature of changes in requirements is essential before a method or tool to mitigate these changes can be developed. Therefore, a case study approach was employed to understand change in requirements - particularly concerning the initiation and management of these changes. Semi-structured interviews were adopted as the data collection method. The interviews were transcribed and the data analyzed using a pre-defined coding scheme. The results of the study shows that change in requirement was a normal part in the design process because internal stakeholders initiate changes through analysis and evaluation activities. In addition it was found that design engineers frequently update specification documents at the end of the design process.

BENCHMARKING STUDY OF AUTOMOTIVE SEAT TRACK SENSITIVITY TO MANUFACTURING VARIATION

Mazur, Maciej (1); Leary, Martin (1); Huang, Sunan (1); Aleksandar, Subic (1); Baxter, Tony (2)
1: RMIT University, Australia; 2: Future Automotive Industries Pty Ltd, Australia

A benchmarking study is presented on the performance of automotive seat track profiles according to their sensitivity to manufacturing variation. Statistical tolerances in rail geometry and consequently the rolling effort of the track assembly. Rolling effort must be precisely controlled to achieve customer performance targets. Two benchmarking parameters are relevant to rolling effort: variation in bearing clearance and variation in bearing contact force. These were assessed using self-occlusion analysis and an elastic based model. Significant variation in performance was identified for the selected track profiles, which include commercially available designs and proposed concepts. The benchmarking approach demonstrated in this work provides a way of rapidly assessing the relative robustness of automotive seat designs subject to manufacturing variation. The outcome assists automotive manufacturers to apply a systematic approach to automotive seat design based on a robust design evaluation of alternative embodiments.
Managing Complex Systems
Theme: Product and Systems Design
Chair: Kreimeyer, Matthias

APPROACH FOR THE CREATION OF MECATRONIC SYSTEM MODELS
Fuller, Martin (1); Heinberger, Peter (1); Punz, Stefan (1); Rosen, Roland (2); Zeman, Klaus (1)
1: Johannes Kepler University, Austria; 2: Siemens AG Corporate Technology

One of the major challenges in developing mechatronic products is the increasing complexity of the products themselves. The defining feature of mechatronic products is the interplay between various engineering disciplines such as mechanics, electronics, and software. There is a critical lack of methods and tools supporting the interdisciplinary aspects of the development process of mechatronic products, especially in the conceptual design phase. These deficiencies make it difficult to overview the interdependencies of the involved engineering disciplines. Mechatronic System Models (MSM) can improve this unsatisfactory situation and allow for a holistic view on complex mechatronic systems. MSM should at least be able to manage existing data and to illustrate the most important relations. Additionally, they should provide the possibility to execute several simulations of load cases, thus allowing specific “global” system properties to be evaluated. Typically these simulations at the system-level differ from those at the discipline-level.

EQUIVALENCE DESIGN PROBLEMS IN COMPLEX SYSTEMS REALIZATION
Panchal, Jitesh
Washington State University, United States of America

We present a class of problems within engineering design where the design of complex systems is not directly controlled by designers but emerges from the self-interested decisions of stakeholders. These problems are referred to as equivalence design problems. While such problems have been common in economics and social sciences, they have not yet been addressed in engineering design research. This is because the focus in engineering design is on technical performance with the assumption that designers directly control the design space. However, with the increasingly interconnected nature of the technical, social, economic and environmental aspects, the complexity of design problems becomes a more important challenge. Instead of solving a specific equivalence design problem, the goal of this paper is to highlight the importance and uniqueness of this class of problems and to present a general formulation within the context of engineering design. Specifically, we present a general formulation by using concepts from non-cooperative game theory, mathematical tools solving for problems of various problems relevant to engineering design that can be modeled as equivalence design problems.

IMPROVING DATA QUALITY IN DSM MODELLING: A STRUCTURAL COMPARISON APPROACH
Schmitz, Steffen (2); Wynn, David (1); Biedermann, Wieland (2); Lindemann, Udo (2); Clarkson, John (1)
1: University of Cambridge; 2: University of Wuppertal

The Dependency Structure Matrix (DSM) has proved to be a useful tool for system structure elicitation and analysis. However, as with any modelling approach, the insights gained from analysis are limited by the quality and correctness of input information. This paper explores how the quality of data in a DSM can be enhanced by elicitation methods which exploit the information acquired from different perspectives and levels of abstraction. The approach is based on comparison of dependencies according to their structural importance. It is illustrated through two case studies: creation of a DSM showing the spatial connections between elements in a product and a DSM capturing relations of structural analysis criteria. We propose a procedure for the development of structural analysis scenarios and show its application in one case study. Researchers get a tool for the systematic creation of structural analysis scenarios. Industrial applicators get efficient tools for structural complexity management.

DOES TEAM STRUCTURE HAVE A SIGNIFICANT IMPACT ON TEAM PERFORMANCE?
Singh, Vishal (1); Dong, Andy (2); Gero, John S (3)
1: Deakin University, Australia; 2: The University of Sydney, Australia; 3: Krakow Institute for Advanced Study, Virginia, USA

This paper discusses the effects of team structure on the performance of design teams. Three types of team structures are differentiated on the basis of the functional and social groups that result from task dependencies and interaction opportunities. The reported findings are based upon results from simulation-based studies using a computational model. Differences across the team structures are investigated through a series of simulations in which the team members and the workload distribution of the team members, and the team performance and formation of team mental models are the dependent variables. Team performance is measured in terms of the ability of the team members to coordinate the set tasks the team needs to perform. Findings suggest that, in general, flat teams facilitate formation of team mental models, while functional teams are best for efficient task coordination.

CULTURE AND CONCEPT DESIGN: A STUDY OF INTERNATIONAL TEAMS
Wedehouze, Andrew (1); Maclachlan, Ross (1); Grierson, Hilary J (1); Strong, David (2)
1: University of Strathclyde, United Kingdom; 2: Queen’s University, Canada

This paper explores the relationship between culture and performance in concept design. Economic globalisation has meant that the management of global teams has become of strategic importance in product development. Cultural diversity is a key factor in such teams, and this work seeks to better understand the effect this can have on key aspects of the concept design process: concept generation and concept selection. To this end, a group of 32 students from Australia, France, Germany, and the UK were divided into culturally diverse teams and asked to perform a short design exercise. A version of the Gallery Method allowed two kinds of activity to be monitored – the individual development of concepts and the collective filtering and selection of them. The effect of culture on these processes was the focus of the work. Using Hofstede’s cultural dimensions, the output from the sessions were reviewed according to national boundaries. The results indicate that individualism and masculinity had the most discernible effect on concept generation and concept selection respectively.

CREATIVE TEAMWORK IN QUICK PROJECTS DEVELOPMENT QPD, 24 HOURS OF INNOVATION
Jiménez-Narvaez, Luz-Maria (1); Choulier, Denis (2); Legadere, Jeremy (3); Gordoni, Michel (4)
1: École de Technologie Supérieure ETS Montréal, Canada; 2: Université de Technologie de Belfort-Montbéliard, France; 3: École Supérieure des Technologies Industrielles Avancées ESTIA France; 4: École Supérieure de Technologie Montréal, Canada

In this paper, we are interested in the analysis of the creative activity of charrettes in innovation in product design. The charrettes are “an intensive, concentrated and deadline oriented group confrontation and discussion technique” (1). We consider that our research could clarify four discussion topics regarding creative teamwork in charrettes: a) the context of 24h charrettes duration: a team building and the idea development into the 24h, b) an analysis of the issues presented in the innovative projects and the response of the team, c) the use of time in work sessions and d) the role of the leader in the team’s creative performance. These answers are important for the planning of teamwork in the QPD activities of technological projects. This empirical study was carried out within the context of the Fourth Edition of the 24 Hours (24H) of Innovation international competition, organized by the École Supérieure des Technologies Industrielles Avancées (ESTIA, France), with the participation of almost 250 university students coming from 25 different universities and in partnership with more than 30 industrial enterprises and with École de Technologie Supérieure (ETS, Canada) as a partner.
DESIGN SOCIETY GENERAL MEETING

INTRODUCTION
The Design Society holds its General Meetings every two years during the ICED conferences. At these Meetings the activities of the Society are presented, discussed and, if required, voted upon. Elections to the Society’s Board of Management and Advisory Board also take place at (or by the time of) the General Meeting. This year the Meeting is especially important as it is the first for the Society under its new legal status of a “Company Limited by Guarantee” – an arrangement used in British law for non-profit organisations that require legal status and limited liability for their members. The Agenda will include provision for reports on the membership and financial status of the Society, on the activities that have taken place since the last meeting in Stanford and on plans for future development. The meeting is also the opportunity for the Society to bestow honours on those members of the community that have contributed most strongly to the promotion of design research and the Society’s aims.

The Agenda and arrangements for elections will have been sent to all members by email before the Conference and will also be available for perusal during the Conference at the Design Society stand. All members of the Society are very strongly encouraged to attend the Meeting, but a member who is unable to attend the Meeting may, by informing the President in writing, constitute another member participating in the Meeting as proxy. Please leave any notice of proxy at the Design Society stand or contact the President by email at president@designsociety.org

LOGISTICS
Due to the time constraints the conference organisers have arranged for shuttle buses to take the Design Society Members attending the General Meeting directly to the starting point for the gala dinner. Please note that there will not be enough time to return to your hotel before the meeting so please arrive at the conference venue on Wednesday morning with this in mind.

Following the general meeting please board the shuttle buses waiting outside of the main entrance without delay.

GALA DINNER

INTRODUCTION
The evening commences with a boat trip along the canals and harbour of Copenhagen (embarking at 18:30, Nyhavn/Havnegade - see map, below and p179).

Located on the waterfront and with unrivalled views of The Little Mermaid, the restaurant, Langelinie Pavillonen, contains some of the finest examples of 1950s Danish design, including Poul Henningsen's world-famous cone lamps, of which the restaurant is the proud owner of the first eight ever produced. With its superb cuisine, the evening is bound to be a great experience!

Langelinie Pavillonen was designed in 1954 by architects Eva and Nils Koppel, who also designed DTU’s Lyngby campus!

PRACTICAL INFORMATION
- Despite the fine title, Gala Dinner, dress code is casual – you should feel comfortable and relaxed.
- The boat trip takes approximately 30 minutes. If you would prefer to meet us directly at Langelinie Pavillonen, then we recommend that you arrive at the address below, by 19:30, in time for the welcome drink.
- The evening will consist of a served starter, followed by a buffet. Your dietary requirements have been recorded when you registered for the conference. Any further requirements should be communicated to the ICED11 Registration Desk on Monday or Tuesday (15-16 August).
- There will be light entertainment during the dinner and a band after dessert – bring your dancing shoes if you like!
- The Gala Dinner will close at 23:00, after which the city is open for adventure ... or maybe a well deserved sleep!

LOGISTICS
Non DS-members: Wednesday’s parallel conference sessions close at 15:45. This gives you ample time to take a regular route bus (the yellow buses – see a list of bus routes on p179) back to the city, freshen up and meet in Nyhavn at 18:30.

DS-members: As the DS General Meeting will be held at DTU from 16:00 - 17:15, we have arranged for the shuttle buses to collect you from DTU, immediately after the DSGM and take you directly to Nyhavn for the boat trip. Those of you with accompanying partners/family should arrange to meet them at Nyhavn, around 18:15.

Langelinie Pavillonen
Langelinie 10
2100 Copenhagen
T: +45 3312 1214
Creativity in Design

Chairs: Toshiharu Taura (Kobe University) and Yukari Nagai (JAIST)

Workshop Theme

Creativity is an important and interesting topic of study in design. This workshop aims to create a forum to discuss the nature and potential of design creativity from theoretical and methodological viewpoints. In particular, the workshop focuses on the theme of “Bases for Design Creativity Research.” This workshop is the beginning of a series of three discussions that will be held at ICED11, DESIGN 2012 in Croatia, and ICDC 2012 in Glasgow. Its theme is intended to establish a historical, theoretical, educational, and practical foundation for design creativity research.

Workshop Programme

The workshop consists of two sessions:

- **First Session:** Panel Discussion: Bases for Design Creativity Research
 - **Moderator:** Dr. Alex Duffy
 - **Panelists:** Dr. Armand Hatchuel, Dr. Rivka Oxman, Dr. Yukari Nagai

- **Second Session:** Group Discussion
 - A group discussion on some subtopics of the main theme and an open discussion will be held for all the attendees.
 - **Commentator:** Dr. John Gero

Position Papers

Attendees are encouraged to submit position papers (due August 1, 2011, 2 page limit, A4 size, no specified format) on the workshop theme to the SIG Secretariat (design@jaist.ac.jp). The position papers will be handed out at the workshop in a stapled format and will be used as a reference during the group discussion.

Detailed Information

Detailed information will be provided at the SIG webpage (http://www.jaist.ac.jp/ks/labs/nagai/DesignCreativityW/).
STRUCTURAL COMPLEXITY SIG WORKSHOP

CREATION OF A BENCHMARK POOL

Chairs: Udo Lindemann (TU München) and Maik Maurer (TU München)

Situation & problem
The importance of structural complexity in engineering design can be seen by applications like product modularization or change management. Most research work concentrates on analysis and optimization of system structures. For example, many clustering algorithms exist for product modularization. Today, acquisition of system structures is not a research focus. However, quality of information acquisition affects possibilities of analysis and optimization.

Approaches on analysis and optimization of system structures mostly apply published or self created test structures. Published structures are often unsuitable for the specific context. And application of e.g. a cluster algorithm on self created structures impedes comparison with other algorithms. Whereas standard tests exist e.g. for genetic algorithms, applications in the field of structural complexity cannot be benchmarked so far.

Objective (2 year period)
The SIG develops benchmarks for testing and comparing approaches in the field of structural complexity. Benchmarks are classified by the application context (software, product etc) or optimization objectives (minimum process time etc).

The benchmark pool requires adaptations over time. The SIG sets up a process for proposing, approving and implementing these adaptations. Not only benchmark structures, but also analysis/optimization results shall be provided. This allows comparing different approaches.

Objective (ICED11-workshop)
The success of the benchmark pool depends on the researchers’ acceptance. We collect the requirements on content, process and functionality of the benchmark pool. The workshop result will be the specifications for future work.

Agenda for ICED11
- Introduction: Test cases, use cases and examples applied in Structural Complexity Management
- Benchmark pool: As-is conception and partners
- Acquisition of requirements: What do researchers expect from a benchmark pool for applications of Structural Complexity Management?

DESIGN EDUCATION SIG WORKSHOP

CURRENT ISSUES IN DESIGN EDUCATION

Chair: William Ion (University of Strathclyde)

Workshop Objectives
The workshop aims to explore two topical issues within engineering design education, namely, Open Ended Resources (OERs) in design education and the role of Systems Design in design education. Each topic will be introduced by a short presentation on current activity in the field and will then be followed by a discussion around predefined issues. The workshop will conclude with the generation of a set of conclusions and recommendations for use by design educators.

Workshop Agenda
08:30 Introduction to workshop objectives and participants
08:40 Open Educational Resources (OER) in Design Education
This section will commence with a presentation of the concept of open educational resources (OERs) and an overview of their availability in design. It will also present computer-based resources to assist in the search for OERs. Discussion will centre on the needs for OERs in design, the gaps in the coverage of available resources and an assessment of the suitability of the presented search tools.

Presented and facilitated by: Professor Chris McMahon
10:00 Coffee
10:30 Integrated Systems Design (ISD) in Design Education
This topic will begin with a presentation on the principles of ISD and the need to embed systems thinking approaches to design at undergraduate level education. This will be followed by a discussion on the ISD education practices of current undergraduate courses and the need to provide industry with graduates who have experience of systems thinking. Discussions will also centre on the key mechanisms to embed ISD within existing course modules that are often predominantly focused on component or product design.

Presented and facilitated by: Dr Alastair Conway
11:40 Summing up/Conclusion
THE PROCESS OF OPTIMIZING MECHANICAL SOUND QUALITY IN PRODUCT DESIGN

Nielsen, Thomas Holst; Eriksen, Kaare Riise
Aalborg University, Denmark

The research field concerning optimizing product sound quality is a relatively unexplored area, and may become difficult for designers to operate in. In some degree, sound is a highly subjective parameter, which is normally targeted sound specialists. This paper describes the theoretical and practical background of managing a process of optimizing mechanical sound quality in a product design by using simple tools and workshops systematically. The procedure is illustrated by exploring a case study regarding a computer navigation tool (computer mouse or mouse). The process is divided into 4 phases, which clarify the importance of product sound, defining perceptive demands identified by users, and, finally, how to suggest mechanical principles for modification of an existing sound design. The optimized mechanical sound design is followed by tests on users of the product in its use context. The result of this article is a systematic process, which has the possibility of enhancing the knowledge about sound design in products and its cause and effect.
Managing Through-Life Risk

Theme: Design Methods and Tools
Chair: Cagan, Jonathan

EVALUATING THE RISK OF CHANGE PROPAGATION
Oduncuguoğlu, Arman; Thomson, Vince
Department of Mechanical Engineering, McGill University, Canada
The ever changing trends in current markets along with customers’ rising demands for quality require many companies to continuously develop new products. Many companies use iterative design to add new features to old products. The changes from the iterative approach along with the usual changes demanded by customers and made by engineers have created a difficult environment to manage. In this environment, many changes drive other changes in the product. This paper develops a technique to evaluate the risk of change propagation by using functional analysis, domain mapping matrix (DMM), and component design structure matrix (C-DSM) methods. This technique obtains the change propagation risk for a conceptual design solution at a functional level and provides insight for future resource requirements (e.g., development effort, product cost, etc.). The objective of the technique is to increase product knowledge in the early stages of design, to provide insight on the effects of engineering changes, and to support design engineers in decision making.

EARLY RELIABILITY ESTIMATION IN AUTOMOTIVE INDUSTRY
Kopp, Michael (1); Hofmann, Daniel (1); Bertsche, Bernd (1); Hoß, Christian (2); Fritz, Oliver (2)
1: Universität Stuttgart, Germany; 2: Daimler AG, Germany
Increasing functional requirements and system complexity on the one hand and decreasing time for development as well as cost reduction on the other hand are some of the challenging constraints that car manufacturers face today. Additionally, customers expect high quality products. To meet these challenges, a quantitative reliability estimation method, which can be connected with established methods, is necessary even in early development phases. The present paper illustrates a method for early quantitative reliability prediction of mechatronic systems such as in automotive engineering. The core of this method is to support a reliability-oriented system development. The methods allow to show and quantify weak spots for systems’ reliability. Therefore, existing qualitative and quantitative data is used for, e.g., expert information or warranty data. Hence, new and innovative components with no existing data can be handled. After all, criticality analysis and reliability optimization is facilitated. To demonstrate the features of the method, a typical automotive system of a car power window regulator is illustrated.

UNDERSTANDING ADAPTABILITY THROUGH LAYER DEPENDENCIES
Schmidt III, Robert; Deamer, Jason; Austin, Simon
Loughborough University, United Kingdom
This paper looks at change from the perspective of building design (i.e., adaptability), and how a better understanding of product architecture can bring about an easier accommodation of change for an unforeseeable future. The work explores the use of a design structure matrix (DSM) to understand the building’s capacity to accommodate change using building deconstruction methods and component interactions as initial guides to suggest possible product architectures. Research for this study took place along side the design stage of an ongoing BSc school project. The systematic analysis of design drawings and reports was undertaken in three phases: code documents using Brand's layers; identify all variant components to create a work breakdown structure; and classification of all component relationships populating a DSM. Insights that have been gained through the data include the appropriate layer placement of components, the possibilities of new/different layers, and the highlighting of unwanted/hidden dependencies. The DSM terminology has also prompted the development of component typologies in an effort to provide a consistent, logical approach to refining the matrix.

CAN DESIGNERS BE PROACTIVELY SUPPORTED AS FROM PRODUCT SPECIFICATIONS?
Galea, Amanda; Berg, Jonathan; Grech, Alexia; Farrugia, Philip
University of Malta, Malta
During the design process, designers are concerned with two main types of issues - issues related to “what needs to be achieved” or “whats” and issues related to “how these needs will be met” or “hows”. A literature review carried out revealed that means which proactively make designers aware of artefact life-cycle consequences (LCCs) arising from both their “whats” and “hows” and which guide them on how to minimise or avoid any negative consequences, are lacking. This research thus contributes an approach framework to meet this aim. The approach framework developed is further implemented as a prototype computer-based tool and subsequently evaluated. Based on the feedback obtained from the evaluation, future research directions are also proposed.

UNDERSTANDING MANAGERS DECISION MAKING PROCESS FOR TOOLS SELECTION IN THE CORE FRONT END OF INNOVATION
Appio, Francesco Pasile (1); Achiche, Sofiane (2); McAlonie, Tim C. (2); Di Minin, Alberto (1)
1: Scuola Superiore Sant’Anna, Italy; 2: Technical University of Denmark, Denmark
New product development (NPD) describes the process of bringing a new product or service to the market. The Fuzzy Front End (FFE) of Innovation is the term describing the activities happening before the product development phase of NPD. In the FFE of innovation, several tools are used to facilitate and optimise the activities. To select these tools, managers of the product development team have to use several premises to decide upon which tool is more appropriate to which activity. This paper proposes an approach to model the decision making process of the managers. The results underline the dimensions influencing the decision process before a certain tool is chosen, and how those tools impact the performance of cost, time and efficiency. In order to achieve this, five companies participated for the data collection. Interesting trends and differences emerge from the analysis of the data in hand, and several hypotheses are tested. A preliminary version of a theoretical model depicting the decision process of managers during tools selection in the FFE is proposed. The theoretical model is built from the constructed hypotheses.

AN EXAMINATION OF THE APPLICATION OF PLAN-DO-CHECK-ACT CYCLE IN PRODUCT DEVELOPMENT
Ledgard, Erin, Aasland, Knut Einar
Norwegian University of Science and Technology, Norway
Plan-Do-Check-Act (PDCA) cycle is a high level methodology for achieving continuous improvement that has been a basic element of the total quality management movement. It is a practical tool and is widely adopted in the automotive sector as an improvement tool to managing improvement projects especially within manufacturing. The aim of this paper is to evaluate how the continuous improvement processes are conducted compared to the PDCA cycle and to better understand the improvement processes in a PD environment. The results from the case study shows that the PDCA cycle is not always followed precisely according to the formally described quality assurance system in the companies. Nevertheless, the case companies emphasizes that they naturally, as engineers, do improvements every day. The companies have according to our evaluations never given the PDCA method a proper chance to prove its usefulness in PD. Consequently, the companies claim that the method will be most suitable when the problem to be analyzed is sufficiently complex, when there are no time constraints and enough resources to spend on the problem.
Objects and Contexts

Theme: Human Behaviour in Design
Chair: Dong, Andy

UNDERSTANDING THE CONTEXTS OF THE FRONT END OF DESIGN

Harrison, Thomas; Marco, Aurisicchio
Imperial College London, United Kingdom

What do we really know about design experience during the front end of design and which personality traits assist the designer? This paper describes empirical research currently taking place into understanding the knowledge, skills and traits that are utilised by the designer during the early part of new product development (NPD). A literature review of papers that refers to knowledge, skills and traits being used during NPD and creative activities is presented. The knowledge, skills and traits discussed by designers of varying levels of experience during interviews with the main author of the article are then compared to findings from the literature review.

THE RELATIONSHIP BETWEEN A MODEL AND A FULL-SIZE OBJECT OR BUILDING: THE PERCEPTION AND INTERPRETATION OF MODELS

Eriksson, Yvonne; Florin, Ulrika
Mälardalen University, Sweden

There is a naive belief in models as a blueprint for objects and environments that goes back to the epistemology of The Enlightenment. In the manufacturing industry and in society, many decisions concerning new products or urban planning are based on models representing the actual object or area. Substantial experience is required to interpret models, especially when it comes to the effect different scales have on material, colors and volume. This paper will address theoretical aspects of our ability to interpret and understand the relationship between 3D-models on computer screens or constructions of models and the object in full scale.

ENABLING OBJECTS FOR PARTICIPATORY DESIGN OF SOCIO-TECHNICAL SYSTEMS

Broberg, Ola
Technical University of Denmark, Denmark

The aim of this paper is to identify and explore the role of objects in participatory ergonomics design processes. The question in focus is: What characterizes objects in PE processes? First the concept of boundary objects is introduced as a starting point for investigating the role of objects. Second, findings of a search to identify objects in PE processes are reported. Third, objects fulfilling the requirements for boundary objects are placed in one of five categories. Fourth, empirical findings from two PE case studies in which objects played an important role are presented. Finally, based on the article are then compared to findings from the literature review.

A METHOD TO STUDY AFFECTIVE DYNAMICS AND PERFORMANCE IN ENGINEERING DESIGN TEAMS

Jung, Malte Friedrich; Leifer, Larry
Stanford University, United States of America

The practice of designing in teams is a socially mediated activity. Team members interact with one another to generate and develop concepts and physical artifacts over time. Researchers explored many different aspects of design interactions in order to generate new insights and theory about how interaction characteristics and performance relate. Despite many years of research not much has been done to explore the role of emotions in the context of the relationship of interaction dynamics and performance. The authors attribute this lack of research mainly to a lack of appropriate research methods to study emotions. In this paper we show that methods developed to study emotions in mantra interactions can be used to study emotions in design team interactions. We describe the key components of such a method and share insights gained from its application three cases.
The aim of this paper is to introduce a life cycle perspective on the notion of failure of engineered products. Usually failure is seen as an event that can occur during the utilization stage of products. Moreover, most definitions describe failure in terms of manifest termination of expected performance. The purpose of this paper is to present and discuss an initiative in India for new approaches have to be implemented. Design thinking and methods combined with innovation in practice and management – as Design Inspired Innovation – could be such a concept to provide for rural people to empower themselves and improving living conditions. The purpose of this paper is to present and discuss an initiative in India started between Swedish and Indian researchers, students and a network of other organizations. The initiative is based on a combination of appropriate design research methodology, ethnographic design research and innovation science and management. Some experiences from initial empirical studies show that master students gathering data in the field, analyzing and interpreting the data together with researchers can get new insights and rich knowledge of the opportunities of improvements, innovation and entrepreneurship that exists at the ‘bottom of the pyramid’.

The current needs of the industrial market, such as the increasing production capacity, the conservation of the plant property, the reduction of the probability of plant shutdown, strongly lead to the discipline of Maintenance Engineer- ing. As part of the pressure equipment, such as pressure vessels, piping, and tanks, the maintenance processes must be managed with a risk management logic. Through, Fitness For Service (FFS) method, pressure equipment presenting a structural degradation can be maintained in operation, with close monitoring. This study illustrates the application of the design code for FFS according to API RP 579 and BS 7910 in the case of a longitudinal defect (crack-like flaw) on a pipe in pressure conditions. The comparison is carried out using both codes in order to assess the stability of the defect. The calculation shows that the defect is stable, if the pipe is stressed with a steady load equal to the maximum admissible load in operation. The most conservative result has been obtained from BS 7910.
MANAGEMENT OF PRODUCT DEVELOPMENT PROJECTS THROUGH INTEGRATED MODELING OF PRODUCT AND PROCESS INFORMATION

Oizumi, Kazuya (1); Kitajima, Kei (1); Yasie, Naoto (2); Koga, Tsuyoshi (1); Anyama, Kazushiro (1)

1: The University of Tokyo, Japan; 2: DHA

As complexity of products, specifically mechatronics, increased, management of development project becomes difficult. For better management of product development projects, this paper proposes integrated model of product and process information. Most information on a proposed model is described as Multi Domain Matrix (MDM), which is composed of Domain Mapping Matrix (DMM) and Design Structure Matrix (DSM). Further, to conquer a difficulty acquiring information as a model, this paper proposes methodologies for model based assistance for refinement of a model. To continuously refine a model, the methodologies suggest multiple cyclic processes. Then, computational methods to utilize acquired model is discussed. The proposed methods employ technics on DSM and DMM to deliberate possible candidates of development process, incorporating manageability of design process and resource allocation. As a result, it provides planners with arena to discuss tradeoff between development span and difficulty managing process. Finally, an example on solar boat development project shows plausibility of the proposed methods.

CONSIDERATIONS ON DESIGN MANAGEMENT OF FURNITURE MANUFACTURING COMPANIES IN SOUTHERN BRAZIL

Bernardez, Mauricio Moreira e Silva; Galafassi, Ana

FEDERAL UNIVERSITY OF RO GRANDE DO SUL, Brazil

Managing design projects means to plan the new product development management and must involve knowledge on management, as well as of the design activities, to enable companies to become more competitive in the market in which they are active. With a focus on the industrial sector, this study has the goal to analyze the design management in the furniture manufacturing industry in the Taquari Valley, in the South of Brazil, a productive segment that has a relevant prominence in the Brazilian transformation industry. Nevertheless, the companies in this segment lack studies to help them in design management. This study was based on the proposition by Borja de Maza, according to whom, design management is inserted in the three organizational levels: operational, tactical and strategic. The result of this study has shown that, even without a systematization and knowledge of the concepts, the researched manufacturers approach the question of design in their organizational levels.

MANAGING RESOURCE SCARCITY IN SMALL ENTERPRISES’ DESIGN PROCESSES

Löfqvist, Lars Gunnar

University of Gävle, Sweden

Small enterprises have scarce resources, which is the main factor hindering their innovation and design of new products. Despite this resource scarcity, some small enterprises do innovate and design new products. The research question is: how do small enterprises manage resource scarcity in their design processes? A multiple case study of three different small enterprises was used to answer the research question. The enterprises implement several approaches to use existing resources more efficiently or increase existing resources, such as reducing formality and including customers and users in the design processes, intertwining design processes, working concurrently on design and operational processes, adopting lead user inventions, and only starting design processes when a current customer asks for or needs the potential new product. The efficiency of these approaches is found to be explained by common small enterprise characteristics. One conclusion from this study is that resource scarcity can be managed and small enterprises’ specific characteristics can facilitate innovation and design if these are recognized and used as strengths.
HOW PRODUCT REPRESENTATION TYPES ARE PERCEIVED AT THE CLIENT'S END TO FACILITATE COMMUNICATION AND DECISION MAKING

Liem, Andre
Norwegian University of Science and Technology, Norway

The ability to communicate effectively, honestly and convincingly to design clients, according to the required level of understanding, is important to facilitate decision making in the designing process in a cost responsible manner. This article shows that the Design clients’ assessment of representation type according to level of detailing and completeness of communicated information reversibly complements the level of allowance for design changes. “Presentation Drawings” communicate a high level of completeness, which is almost equal to “High Quality Presentations in CAD” and “Quality Design Models”. As expected, interaction with the tactile volume creates a “near completion” assumption among design clients. A dualistic attitude can be observed among clients, when dealing with CAD models. Due to the incompleteness, but also viewing capabilities of initial CAD-models, clients were averagely neutral in their opinions concerning the level of design information provided by it. However, the representation quality of “Detailed Design Models” are being perceived similar to “Presentation Drawings”, because of their high level of detailing, realism and “frozen” mode of presentation.

ASSESSING THE CONDITIONS FOR DISSEMINATION OF END-USER AND PURCHASER KNOWLEDGE IN A MEDTECH CONTEXT

Wadell, Carl; Norell Bengtenthal, Margareta
KTH, Royal Institute of Technology, Sweden

A challenge for many medical technology companies is to satisfy the often differing needs and requirements of the purchaser of new medical technology and the end-user. This implies that medical technology companies have to consider knowledge from both stakeholders when developing new products in order to maintain an innovative edge. In this article we apply social network analysis to investigate, describe and compare the different patterns of social interaction that facilitate dissemination of end-user and purchaser knowledge in a business unit within a large medical technology company. The results indicate significant differences, both in structure and content, between the social interaction that facilitates the dissemination of end-user knowledge and that which facilitates dissemination of purchaser knowledge, respectively. Based on these findings, we argue that many medical technology companies may, by adopting their approach to the way they handle different types of customer knowledge, have untapped potential in increasing both their innovation performance and their competitive advantage. We conclude with suggested directions for future research on this topic.

DESIGNERS’ THINKING AND ACTING IN MEETINGS WITH CLIENTS

Da Silva Vieira, Sonia Lilliana (1,2); Badke-Schaub, Petra (1); Fernandes, Antonio Augusto (2); Fonseca, Teresa (2)
1: TU Delft, Netherlands; 2: UPorto, Portugal

The present research attempts to contribute to the understanding of how designers’ thinking and acting enhance the value of the design process and deliver value to design results. The present study reports findings based on the analysis of video recorded meetings from a case study in a graphic design consultancy. This work is part of an empirical research study that aims to identify designers’ practices of value delivery across design disciplines. Previous findings derived from this research devise priority values for decision-making in design across disciplines. The present study reports findings on how these priority values are generated by designers’ patterns of thinking and acting throughout three team meetings working on the design of an exhibition. Evidence is given to the commonalities and differences between the design team and client team characteristics of thinking and acting in delivering value to design meetings and the creation of a combined model of such behavior. These results are intended for further study of its relevance in other design disciplines apart from the field of graphic design.

N-GRAM ANALYSIS IN THE ENGINEERING DOMAIN

Leary, Martin (1); Pearson, Geoff (1); Mazur, Maciej (1); Burvill, Collin (2); Subic, Aleksandar (1)
1: AMT University, Australia; 2: University of Melbourne, Australia

New technologies have enabled the digitalization and linguistic analysis of a vast number of books published throughout history. This technology has enabled a step-change in the opportunities to understand the interests of the authors and by doing so provide insight into the aspirations of society throughout published human history. Such analysis provides an unprecedented opportunity; however there are numerous analysis pitfalls due to fundamental technology limitations and misunderstanding of the analysis outcomes. This work defines the technologies which have enabled this opportunity and, in doing so, identifies potential risks of erroneous outcomes. A broad scope analysis of the engineering design domain is presented for the first time.

DISCUSSION ROOM 2

THURSDAY 10:30-11:50

Customer/End-User Information

Theme: Design Information and Knowledge

Chair: Dekonink, Elles Ann

N-GRAM ANALYSIS IN THE ENGINEERING DOMAIN

Leary, Martin (1); Pearson, Geoff (1); Mazur, Maciej (1); Burvill, Collin (2); Subic, Aleksandar (1)
1: AMT University, Australia; 2: University of Melbourne, Australia

New technologies have enabled the digitalization and linguistic analysis of a vast number of books published throughout history. This technology has enabled a step-change in the opportunities to understand the interests of the authors and by doing so provide insight into the aspirations of society throughout published human history. Such analysis provides an unprecedented opportunity; however there are numerous analysis pitfalls due to fundamental technology limitations and misunderstanding of the analysis outcomes. This work defines the technologies which have enabled this opportunity and, in doing so, identifies potential risks of erroneous outcomes. A broad scope analysis of the engineering design domain is presented for the first time.

Visualising Ergonomics Data For Design

Dong, Hua (1); Pol, Eujin (2); Chen, Hongyan (2); Macredie, Robert (2)
1: Tongji University, Peoples Republic of China and Brunel University, UK; 2: Brunel University, UK

Existing ergonomics data are not effectively used by designers; this is mainly because the data are not presented in a designer-friendly format. In order to help designers make better use of ergonomics data, we explored the potential of representing existing ergonomics data in a more dynamic and visual way, and making them look more relevant to design. The Cambridge Engineering Selector (CES) was adopted to turn static ergonomics data into manipulative and comparative data sets. Contextual information in a visual format was added, clearly visualizing design scenarios relevant to design were developed; design case studies were compiled and linked to the relevant ergonomics data sets – the process resulted in a new design support tool: the ErgoCES. The tool was consequently brought to both design students and professionals for evaluation. The results suggested that the ErgoCES had helped making ergonomics data more accessible to designers, and many new features (e.g. scenarios and case studies) were highly valued by the designers. Among the participants, 100% of the design students and 76% of the professionals indicated that they would use the tool when it becomes widely available.

IT-BASED CONFIGURATION AND DIMENSIONING OF CUSTOMER SPECIFIC PRODUCTS – TOWARDS A FRAMEWORK FOR IMPLEMENTING KNOWLEDGE BASED DESIGN ASSISTANT SYSTEMS

Gerhard, Detlef; Christoph, Lutz
Vienna University of Technology, Austria

Individual product solutions require practicable concepts and IT support for fast product configuration and design. Knowledge of possible design options and basic conditions is of great significance in the conception of this type of support. The goal is an integrated conception and implementation of knowledge based IT applications for engineering design. Despite existing methodological support from software vendors, numerous questions still arise during requirements formulation, system evaluation, system integration into existing business IT environments, the creation of knowledge bases, the implementation of pilot process tasks, or definition of rollout and operation strategies. Illustrated by a case study, this paper presents the first results of a research project that deals with the systematic examination of the aforementioned issues with the aim to develop a framework for the holistic concept and the practical implementation of knowledge-based assistant systems. The main components of the presented approach are a practical method, an assistant for the acquisition and formalization of configuration and engineering knowledge as well as a system-neutral, federated knowledge base.

Visualisation Of Ergonomics Data For Design

Dong, Hua (1); Pol, Eujin (2); Chen, Hongyan (2); Macredie, Robert (2)
1: Tongji University, Peoples Republic of China and Brunel University, UK; 2: Brunel University, UK

Existing ergonomics data are not effectively used by designers; this is mainly because the data are not presented in a designer-friendly format. In order to help designers make better use of ergonomics data, we explored the potential of representing existing ergonomics data in a more dynamic and visual way, and making them look more relevant to design. The Cambridge Engineering Selector (CES) was adopted to turn static ergonomics data into manipulative and comparative data sets. Contextual information in a visual format was added, clearly visualizing design scenarios relevant to design were developed; design case studies were compiled and linked to the relevant ergonomics data sets – the process resulted in a new design support tool: the ErgoCES. The tool was consequently brought to both design students and professionals for evaluation. The results suggested that the ErgoCES had helped making ergonomics data more accessible to designers, and many new features (e.g. scenarios and case studies) were highly valued by the designers. Among the participants, 100% of the design students and 76% of the professionals indicated that they would use the tool when it becomes widely available.
MODELLING TIME-VARYING VALUE OF AN END-OF-LIFE PRODUCT FOR DESIGN FOR RECOVERY

Keak, MinJung; Kim, Harrison
University of Illinois at Urbana-Champaign, United States of America

Estimating residual value of an end-of-life product is an essential preliminary to design for recovery. This paper presents a quantitative model for estimating time-varying value of an end-of-life product. The model estimates the expected economic value of a product by considering two major depreciation factors, physical deterioration and technological obsolescence. The developed model is illustrated with an example of desktop computer and potential applications to design for recovery are presented. The model can contribute to enhancing the residual value of a product and/or improving the way of retrieving the residual value. It can also assist the recovery system design, such as product take-back planning and recovery strategy planning.
This paper studies the characteristic properties of Engineering Design (ED) processes from a process modeling perspective. In a first step, we extracted nine characteristics of engineering design processes from the literature and in a second step validated the findings using results from our survey among academic and industrial ED process modeling experts. In a third step, we added a further nine characteristics from personal experiences in the Language Engineering Design Domain to capture the pragmatic perspective. We arrive at a comprehensive set of 18 characteristics grouped into six challenges for process modeling in the engineering design domain. The challenges process modelers need to address when using and developing process modeling approaches and tools are: Development, Collaboration, Products & Services, Formality, Pragmatism, and Flexibility. We then compare the importance of elicited and suggested challenges and characteristics within engineering design with software engineering and business process modeling and discuss similarities and differences.

WHAT ARE THE CHARACTERISTICS OF ENGINEERING DESIGN PROCESSES?

Maurer, Maik

Technische Universität München, Germany

Robustness is a major challenge for designing engineering processes. And processes are often modeled with Event-driven Process Chains (EPCs). However, the EPCs do not contain sufficient information for analysis and optimization of process robustness. We hypothesize that the quantity of interfaces, i.e. information exchange between tools or organizational units, is a significant indicator for process robustness. The less interfaces are involved, the more robust is the purposeful interface alignment also improves its robustness. We developed a method for analysis and optimized realignment of process interfaces. We augment EPCs with input-output relations between activities. Then we transfer the process description into a Dependency Structure Matrix and apply a multi-criteria clustering for identifying activity groups which exchange information without interfaces. The interfaces get assessed between the activity groups, i.e. we define stages for information handover between tools and organizational units. We applied the approach on processes of a mid-sized company and could reliably identify starting points for improving product robustness as well as new layouts of activity groups.

COMPARISONS OF DESIGN METHODOLOGIES AND PROCESS MODELS ACROSS DOMAINS: A LITERATURE REVIEW

Gerlach, Kilian; Blessing, Lucienne

University of Luxembourg, Luxembourg

Challenges resulting from an changing environment affect all design processes, irrespective of whether the product designed is a machine, software, a building, services, etc. These challenges require collaboration between domain and current design processes of large systems, such as aircraft, essentially show separate development strands for each discipline. Research into methods to support these concepts is ongoing, but the original design methodologies have not been adapted accordingly. Based on a literature study this paper consolidates findings from different comparisons of design methodologies and process models across domains. A consensus can be found in most of the consulted studies that at least on an abstract level design process models have a generic core of common stages and activities. On a detailed level the picture is different. The extent to which design approaches appear similar across domains depends on the perspective of the analysis. The literature study provides an overview of important shortcomings of existing design methodologies which may serve as starting points for further research and development of design methodologies.

NEUTRAL DESCRIPTION AND EXCHANGE OF DESIGN COMPUTATIONAL WORKFLOWS

Gondhalekar, Aditya C. (1); Guenov, Marin D. (1); Wenzel, Holger (2); Balachandran, Libish K. (1); Nunez, Marco (1)

Dr. Ing. Ingolstadt Software GmbH

Proposed in this paper is a neutral representation of design computational workflows which allows their exchange and sharing between different project partners and across design stages. This is achieved by the de-coupling of configuration and execution logic. Thus, the same underlying workflow can be executed with different fidelity models using different software tools as long as the inputs and outputs of the constituent process are kept the same. To this purpose, the application of the proposed representation is demonstrated via a case study involving the exchange of workflows between different project partners and across design stages. The aim of this paper is to present a research project currently underway which seeks to identify and organize the knowledge required in the development process of React Injection Moulding parts at the early product development stage, specifically the material selection, mould design and the process planning for mould making and moulding operation. The purpose of the research is to verify if an Expert System, a computer program that uses knowledge and inference procedures to model the RM development process, provides the necessary insight into metrics such as development lead time and manufacturing costs to deal with the decision makings required at that stage. As this is a work-in-progress, the paper will focus on the first three tasks carried out: 1) Structure the downstream processes and procedures of developing product design concepts for RM parts; 2) Define the dimensions of knowledge required in the concurrent concept development of RM parts; and 3) Present the theoretical implementation framework, the methodology, the database, and infrastructure and advantages which we believe will help deal with concurrent concept development decision makings at the early design stage of RM parts.

DECISION SUPPORT FOR IMPROVING THE DESIGN OF HYDRAULIC SYSTEMS BY LEADING FEEDBACK INTO PRODUCT DEVELOPMENT

Abramoivoi, Michael (1); Lindner, Andreas (1); Balda, Florian (1); Fathi, Majid (2); Dienst, Susanne (2)

1: Ruh-University Bochum, Germany; 2: University of Siegen, Germany

Hydraulic systems are used in great numbers and serve a variety of purposes. Still, however, the operating efficiency of hydraulic systems is not as high as it could be. New ways of monitoring the product use provide new returns to maintenance. Through industrial product service systems the acquired product use information can be lead back into product development where it can be used to improve the development and quality of follower products. This paper presents a concept for leading feedback into product development and the state of implementation of a feedback assistant for decision support using statistical analyses and Bayesian Networks as a diagnosis and simulation method. The methods used have been validated on a centrifugal pumps as an often used model hydraulic system.

EXPLORING A DECISION MAKING FORUM IN EARLY PRODUCT DEVELOPMENT

Kihlander, Ingrid

KTH Royal Institute of Technology, Sweden

Decision making in early phases of product development is of great importance due to the large impact they have on the subsequent project, whilst in the same being heavily characterized by uncertainty. This paper explores decision making in early phases of product development, and reports empirical findings from a case study conducted in an automotive firm. The case study investigated a project meeting officially responsible for deciding the technical content of the product. For example it was found that defining working assumptions and asking questions were used as means to reduce uncertainty in the decision-making process, where three genres of questions were identified: elucidative, self-enhancing and argumentative. Further, a number of challenges in managing the decision-making process were identified, specifically for such agenda-based meetings as in the case study which was found to rely on instant interactions between the participants. Project management e.g. instantly had to judge to widen or limit the problem discussed, or whether to continue probing a problem or stop the discussion in order to save the total meeting agenda.

WHAT ARE THE CHARACTERISTICS OF ENGINEERING DESIGN PROCESSES?

Maier, Anja M.; Störrle, Harald

Technische Universität Hamburg-Harburg, Germany

Process Modelling

Theme: Design Processes

Chair: Dagman, Andreas

EXPLORING A DECISION MAKING FORUM IN EARLY PRODUCT DEVELOPMENT

Kihlander, Ingrid

KTH Royal Institute of Technology, Sweden

This paper studies the characteristic properties of Engineering Design (ED) processes from a process modeling perspective. In a first step, we extracted nine characteristics of engineering design processes from the literature and in a second step validated the findings using results from our survey among academic and industrial ED process modeling experts. In a third step, we added a further nine characteristics from personal experiences in the Language Engineering Design Domain to capture the pragmatic perspective. We arrive at a comprehensive set of 18 characteristics grouped into six challenges for process modeling in the engineering design domain. The challenges process modelers need to address when using and developing process modeling approaches and tools are: Development, Collaboration, Products & Services, Formality, Pragmatism, and Flexibility. We then compare the importance of elicited and suggested challenges and characteristics within engineering design with software engineering and business process modeling and discuss similarities and differences.

DECISION PROCESSES IN ENGINEERING DESIGN: A NETWORK PERSPECTIVE OF STAKEHOLDER AND TASK INTERACTION

Jupp, Julie Rose

University of Technology Sydney, Australia

In recent years, there has been significant attention given to developing decision support methods and tools for engineering design. While advances in the formal, mathematical modeling and statistical mechanics based models have been impressive, this has not been the case for research attempting to reach beyond normative models to examine the cognitive and social factors that influence decision making. In general advances have been towards a top-down or bottom-up approach to decision-making; ignoring the requirements for both participant and task connectedness and dependencies. This paper describes an integrated modeling framework that uses a multi-network perspective of decision making. The utility and extensibility of this framework are considered in discussion by way of examples from construction engineering design.
Meeting the Energy Challenge: New Standards for Industrial Motor Efficiency

Mads Sckerl
Market Segment Director
Grundfos Management A/S

Abstract
With an annual production of approximately 16 million pumps, production in 12 countries and a commercial representation in 52 countries, Grundfos takes its environmental responsibilities seriously. Grundfos has a life cycle approach to product development, which corresponds to the company’s “Total Cost of Ownership” (TCO) philosophy. This is important for Grundfos, as important pump improvements address the energy performance and service cost in the product’s operation period. These improvements include energy savings and increased overall pump efficiency. TCO can, therefore, be used to reveal the pump’s environmental profile.

Grundfos has lobbied actively to tighten the requirements for electric motors in the European Energy Using Product Directive, leading to energy savings equal to 5% of all electricity in EU. Mads Sckerl will present Grundfos’ motivation for this approach, and the results from the intensive work in this area.

Biography
Through his career, Mads Sckerl has worked in a large span of roles and businesses. These include operational as well as strategic-oriented management roles and smaller high-tech growth companies, as well as large mature companies. Mads has international industry experience from fibre-optics for telecommunications and from the pumps industry.

Central for his career has been business development in a broad context. His first managerial position was within a start-up company in the NKT Group. Later as Managing Director for Ignis Photonyx A/S a smaller international high-tech business.

Hereafter, Mads changed industry by joining Grundfos, the worlds leading pump manufacturer. First, holding the position of Business Development Director with responsibility for the group’s Controls and Motors products. In 2008, Mads became Segment Director for Water Utility. In this position, he defined the main objectives and the strategic direction for the group within the global water supply and waste-water business segment.

Designing Complex Systems for the 21st Century

Wei Chen
Wilson-Cook Professor in Engineering Design
Northwestern University

Abstract
The design of complex “engineered” systems in the 21st century poses a set of common challenges, to name a few, the complexity and computational cost of system analysis, the heterogeneity of information at different levels of abstraction, the various sources of uncertainties, the multidisciplinary organization with conflicting goals, and the difficulty in understanding the socio-technical interfaces. Classical systems engineering approaches which focus on processes for cascading engineering requirements from higher to lower system levels is no longer suited to dealing with the global and socio-technical aspects of the 21st century complex systems. This presentation will first explore the research challenges and opportunities in designing complex “engineered” systems, and then focus on two specific topics in this area, i.e., (1) design of multyscale systems and (2) integrating heterogeneous consumer preference into enterprise-driven product design.

Research in multiscale design presents the significant benefits of using computational design techniques for designing novel materials, new products, and new processes with exceptional system performance across diverse application domains such as material, energy, and medicine. Integrating consumer choice models into product design demonstrates the potential of combining analytical choice modeling with social networks for studying the social influence on new product adoption. It is concluded in this presentation that as systems continue to grow with increased complexity and more stringent requirements, many unanswered questions can be tackled using rigorous design methodologies.

Biography
Dr. Wei Chen is the Wilson-Cook Chair Professor in Engineering Design at Northwestern University. Affiliated with the Segal Design Institute as a Faculty Fellow, she is a Professor in the Department of Mechanical Engineering, with courtesy appointment in the Department of Industrial Engineering and Management. Directing the Integrated DEsign Automation Laboratory (IDEAL- http://ideal.mech.northwestern.edu/), her current research involves issues such as simulation-based design under uncertainty, model validation, stochastic multyscale analysis and design, robust shape and topology optimization, multidisciplinary optimization, consumer choice modeling and enterprise-driven decision-based design. She is the co-founder and Director of the interdisciplinary doctoral cluster in Predictive Science and Engineering Design (PSED) at Northwestern, a program aiming for integrating scientific, physics-based modeling and simulation into design of innovative “engineered” systems.

Dr. Chen received her Ph.D. from the Georgia Institute of Technology in 1995. She is an elected member of the ASME Design Engineering Division Executive Committee and currently serving as the executive chair of the Technical Committees. She is also an elected Advisory Board member of the Design Society, an international design research community. She is an Associate Editor of the ASME Journal of Mechanical Design and serves as the review editor of Structural and Multidisciplinary Optimization.
The result of the observation is a proposal of a comprehensive evaluation form for theses that could be adapted to future directions for the evaluation of theses in universities.

To evaluate a student's work best possible, the assessment of theses written as part of the curriculum has to meet certain standards from both an academic and an industrial perspective to fully embrace the goals of engineering education. As global designers, engineering graduates must be ethical and responsible, fully cognizant of the consequences of their professional activities, their potential for global societal contributions and their responsibilities to all stakeholders and communities. Opportunities exist for well considered curricula to drive new engineering paradigms and determine attitudinal change amongst the next engineering designers.

On the receiving end, students should be trained to commute from generic to specialist and from abstract to concrete modes of working. Comprehensive studio projects should be implemented as platforms, where social and inter-disciplinary learning can develop in line with selected design themes, processes and methods.

The study of design – and more specifically, the quality of the process of design – has been shown to have high impact on the success of engineered products. As design research does not fall into any one discipline, there is a need to consolidate and organize the many design research methods used, develop and leverage on the quality and success of engineered products. As design research does not fall into any one discipline, there is a need to consolidate and organize the many design research methods used, develop and leverage on the quality and success of engineered products. The study of design – and more specifically, the quality of the process of design – has been shown to have high impact on the success of engineered products.

The paper is closed with an outlook to the necessary evaluation of the concept that will help our students and ourselves to achieve valuable and repeatedly validated long-term results of these projects.

This paper discusses how Design Education should be adapted to the future challenges of higher education. Four (4) trends will be presented on how prospective design programs are to be developed. These are (1) Mass-Education and Rationalisation, (2) Links between Education and Research, (3) Globalisation and Internationalisation, (4) Intensification of Collaboration with Industry and Commercialisation of Research. In terms of manpower resources, the following academic configuration is proposed:

- Faculty inclined towards mentorship and scholarship, able to promote inquiry from a theoretical and process perspective.
- Faculty engaged in mentorship and service, capable of expanding their design programs beyond the "Physical home-based classroom".
- Professional designers, who can contribute in skills development and design thinking based on experiences from practice.

On the receiving end, students should be trained to commute from generic to specialist and from abstract to concrete modes of working. Comprehensive studio projects should be implemented as platforms, where social and inter-disciplinary learning can develop in line with selected design themes, processes and methods.

An Ethical Stance: Engineering Curricula Designed for Social Responsibility

de Vere, Ian; Melles, Gavin; Kapoor, Ajay
Swinburne University of Technology, Australia

Engineering must provide the global community with socially responsible, ethical and sustainable design solutions. The potential for engineering designers to contribute positively to the betterment of society, through product service systems that provide opportunities for sustainable development, enhance societal well-being and empower communities to be self-determining, must be realised. This will require the engineering community to take leadership roles in product design and development and to engage with emerging economies to deliver appropriate designs and sustainable technologies.

Social responsibility and sustainability will need to be at the forefront of product design and development and more importantly, integrated throughout engineering education. As global designers, engineering graduates must be ethical and responsible, fully cognizant of the consequences of their professional activities, their potential for global societal contribution and their responsibilities to all stakeholders and communities. Opportunities exist for well considered curricula to drive new engineering paradigms and determine attitudinal change amongst the next engineering designers.

A Proposal for an Assessment Form for Engineering Design Theses

Watty, Robert (1); Kreimeyer, Matthias (2)

To evaluate a student’s work best possible, the assessment of theses written as part of the curriculum has to meet certain standards from both an academic and an industrial perspective to fully embrace the goals of engineering education. Most universities usually use standard forms for the evaluation of theses. For the purpose of this research, available assessment forms within the Berliner Kreis, the German-speaking network of university institutions active in design education and research, were collected, compared and interpreted in order to find common evaluation criteria and to judge the current state of how theses in design education are evaluated.

This paper describes the theoretical background to evaluation of engineering theses, it presents the results of a comprehensive study about current German and international evaluation procedures and criteria, and it concludes on future directions for the evaluation of theses in universities.

The result of the observation is a proposal of a comprehensive evaluation form for theses that could be adapted to special needs of evaluating institutions.

Machining Part Exhibition and Functional Mock-Ups to Enrich Design Education

Beckmann, Gregor; Krause, Dieter
University of Applied Sciences in Erfurt, Germany

Mechanical engineering design education has the objective to provide students with the required knowledge and skills to develop state of the art products. Besides theoretical teaching of fundamentals, practical hands-on experience supports this learning process. This constitution presents a new approach to integrate hands-on elements into design education curriculum under the constraints of large classroom sizes. Therefore, the need of improvements in design education is analysed and the concept of an interactive machine part exhibition is derived from pre-existing approaches. The exhibition is the cornerstone of the concept and contains physical models of fundamental machine parts as well as sophisticated mechanical systems. These are used to create a link between lectures and the real objects. Moreover, functional mock-ups, specially prepared to teach students design, are used to improve an existing first year design and drawing exercise. The paper is closed with an outlook to the necessary evaluation of the concept that will be performed when the currently on-going implementation into everyday teaching is completed.

The Design Exchange: Supporting the Design Community of Practice

Roscioni, Celeste; Agogino, Alice M.; Beckman, Sara L.
University of California at Berkeley, United States of America

The study of design – and more specifically, the quality of the process of design – has been shown to have high impact on the success of engineered products. As design research does not fall into any one disciplinary body of knowledge; there is a need to consolidate and organize the many design research methods used, develop a community of practitioners to evaluate and categorize those methods and educate the next generation of design innovators in appropriate methods. In this paper, we introduce a preliminary design for The Design Exchange, an interactive web portal to meet these needs.
Lean Thinking
Theme: Design Processes
Chair: Vajna, Sandor

LEAN PRODUCT DEVELOPMENT: HYPE OR SUSTAINABLE NEW PARADIGM?
Catic, Amer (1); Vlahabac, Michael (2)
1: Chalmers Technical University, Sweden; 2: Saarland University, Germany

The idea of lean product development (LPD) has gained attention among managerial levels of companies dealing with product development. Allegedly the main gains of LPD are a high rate of successful projects in terms of cost and quality along with shorter lead times as well as fewer overruns in time and budget. This paper investigates the lean product development concept in comparison with established models in the current product development paradigm in order to map out the main differences. It also compares LPD to the way product development is carried out in practice on the example of two large international automotive companies.

The results show that the main differences, among others, can be found first in the way knowledge is honored and managed, and second how and when decisions are made along the process. From the discussion of the results, conclusions are drawn for potential improvements to traditional product development models.

LEAN APPROACH TO INTEGRATE COLLABORATIVE PRODUCT DEVELOPMENT PROCESSES AND DIGITAL ENGINEERING SYSTEMS
Vosgien, Thomas (1); Jankovic, Marija (2); Eynard, Benoït (3); Nguyen Van, Thomas (1); Bouquet, Jean-Claude (2)
1: Safran, SAFRAN Group, France; 2: École Centrale Paris (ECP), France; 3: Université de Technologie de Compiègne (UTC), France

Lean philosophy has proven to have positive results concerning efficiency and reduction of overall process time. Product Development (PD) processes have an important role in the value definition and therefore in the past few years industrialists and researchers have shown a great interest in transferring the lean principles to PD processes; called Lean Product Development (LPD) or Lean engineering. In this paper we propose to address the literature overview of LPD and the difficulties in developing an adequate value system in the implementation process especially with the changes undergone in the development process. Moreover, we propose to expand the definition of the value and related metric system within research study currently ongoing in aircraft industry. Our proposition concerns developing digital tools capabilities while matching them with some design processes. Based on a lean approach, the goal is to demonstrate how this matching can be a value creation driver within the Collaborative Product Development (CPD) of an Integrated Power Plant System, i.e. design and integration of turbojet engine, nacelle, pylon and connected equipments.

DEVELOPMENT OF A FRAMEWORK FOR IMPROVING ENGINEERING PROCESSES
Pepe, Carla (1); Whitney, Daniel (2); Henriques, Elsa (3); Farndon, Rob (1); Moss, Michael (1)
1: Rolls Royce; United Kingdom; 2: MIT - Massachusetts Institute of Technology; 3: IST - Instituto Superior Técnico

The complexity of designing products such as gas turbine components leads to enormous difficulties in understanding where the main design process inefficiencies are. It is extremely difficult to decide which improvements will have the most significant impact for a company or for a specific project. Another common issue found in the Aerospace industry is a consequence of basing a new gas turbine design on a previous concept and is that most of the time people don’t question the overall design process. These issues, alongside companies’ matrix organization, create difficulties in managing and improving the design processes. In order to overcome the mentioned problems, a framework has been developed and used in Rolls-Royce. This framework aims to assess and improve in a systematic way, complex product development processes at component or system level. The framework involves the use of Value Stream Mapping (VSM) analysis to identify waste sources in the design process, the use of Design Structure Matrix (DSM) to manage design iterations and interfaces complexity and process simulation to deal with the stochastic behavior and estimate and assess the benefit of potential developments.

CREATING VALUE THROUGH LEAN PRODUCT DEVELOPMENT – APPLYING LEAN PRINCIPLES
Swan, Anders Håkan (1); Furuhjelm, Jürgen (2); Tingsström, Johan (3)
1: Irab: AB, Sweden; 2: Saab-Aerosystems, SATAB AB; 3: Scania AB

This conceptual article describes how companies can create value through applying Lean principles in product development. It provides input to a generic framework of Lean Product Development as it defines an explanatory model for effective knowledge enhancement and execution of development projects. The model consists of a two by two matrix given by a division of, on one hand, product development in two value streams, the Product Value Stream and the Knowledge Value Stream, and at the other hand in two phases, the Concept phase and Implementation phase. With this as basis it is discussed how four essential Lean principles, Flow, Continuous Improvement, Standardization and Visualization, could be applied.

PRODUCT DEVELOPMENT PROCESSES IN SMALL AND MIDDLE-SIZED ENTERPRISES - IDENTIFICATION AND ELIMINATION OF INEFFICIENCY CAUSED BY PRODUCT VARIETY
Eben, Katharina G. M.; Helten, Katharina; Lindemann, Udo
The University of Cambridge, United Kingdom

Competitiveness of small and middle-sized enterprises (SMEs) represents recognizing customer needs and being able to efficiently react to it. As SMEs face a limitation of their resources, it is crucial to monitor the strategy of product variety management and the interplay of project work and to-day-to-day business. This paper aims to achieve the former by identifying and eliminating inefficiencies in product development processes. Thus, a procedure is introduced to reduce development effort by successfully handling the necessary product variety. Further goals are to avoid sources of inefficiency - to improve the interplay between development process and everyday work - and to gain consciousness about how the processes are lived within the enterprise and how product variety impacts on the day-to-day business.

RE-CONCEPTUALISING VALUE IN ENGINEERING DESIGN PROCESS: THE VALUE CYCLE MAP
Siym, Ghadir; Wynn, David; Clarkson, John
University of Cambridge, United Kingdom

Introducing “Cheaper, Faster, Better” product in today's highly competitive market is a challenging target. Therefore, for organizations to improve their performance, they need to adopt methods, such as process modeling, risk mitigation, and value lean principles. Recently, several industries and researchers focused efforts in transferring value concept to other phases of the Product Life Cycle (PLC), such as Product Development (PD), after its evident success in manufacturing. In PD, value, which is the main objective of lean theory, has been of particular interest as an improvement concept that can enhance process flow logistics and support decision-making. This paper presents an ongoing study of the current understanding of value in PD (VPD) with a focus on value dimension and implementation benefit. The purpose of this study is to consider the current value state of knowledge in proposing a definition of value and a framework for value delivery. The framework- named Value Cycle Map (VCM) - intends to facilitate understanding value and its delivery mechanism in the context of PLC. VCM can be used as a foundation for future research in value modeling and measurement in PD.
Virtual Prototyping
Theme: Design Methods and Tools
Chair: Horvath, Imre

SELECTION OF DESIGN CONCEPTS USING VIRTUAL PROTOTYPING IN THE EARLY DESIGN PHASES
Buda, Andrea; Seppälä, Mikko; Coatana, Eric
Aalto University School of Engineering, Finland

One of the challenges in the early phases of a product development process is the need to make fundamental decisions regarding the selection of design concepts. The use of virtual prototyping right from the early stages provides a means to rapidly develop design variants that can be analyzed in order to support these decisions. This article presents a systematic method for the evaluation of design concepts based on the performance assessment of dynamic virtual prototypes. The implementation alternatives for different functions are summarized in a Zwicky matrix. To manage the testing process and to analyze the results, we use the Taguchi design of experiments method. The results are finally used to select the best design concept out of the Zwicky matrix. The details of the proposed method are presented and applied for the development of a vacuum cleaner robot. In order to describe the dynamic behavior of each concept immersed in its environment, our approach leverages on a 3D physics simulator connected in closed loop with a finite state machine control logic.

USING VIRTUAL REALITY IN DESIGNING THE ASSEMBLY PROCESS OF A CAR
Becker, Ilse (1); Toivonen, Ville (1); Leino, Simo-Pekka (2)

This paper presents a study of a company that is testing virtual reality (VR) tools in designing the assembly process of a new car model. This is the first time in the company’s 40-year history that virtual reality is used in the designing process. The company designed its production processes simultaneously with the product development which was done by a newly founded company located on another continent. A benchmark research was made in the case company to find out which virtual tool features are needed when designing an assembly process. Collaboration usage of the virtual reality tool was tested with the product development (PD) over internet. A review of the existing literature showed that the focus of the research in VR has been mainly in product development or in single subassemblies. Different kinds of systems were found with various features. Regarding the assembly, some system features were essential for virtual prototyping. No literature about similar cases was found where the target was to design the whole assembly process sequence of a brand new vehicle designed by a brand new company collaborating for the first time in a tight schedule.

REALIZING A TRUELY 3D PRODUCT VISUALIZATION ENVIRONMENT – A CASE FOR USING HOLOGraphic DISPLAYS
Opiyo, Eliab Zephania
Delft University of Technology, Netherlands, The

Recent advancements in the areas of visualization have led to realization of a large variety of three-dimensional (3D) visualization technologies. As adopting a new technology can sometimes result in unexpected adverse consequences, a structured approach to visualization technology selection and planned utilization and maintenance is naturally indispensable. Some general-purpose guidelines and methods for selection of technologies are available and could probably be adapted and used, but none of them square precisely with the challenge of selecting visualization technology for product visualization. This paper describes the systematic method we put together and followed, the actions we took, and factors we considered, which lead to categorization of holographic display as a viable truly 3D product visualization technology. Such a systematic approach, factors and actions, when appropriately considered, could help industrial organizations aspiring to invest in new visualization technologies to make measured selection, and could also guide them towards better utilization and maintenance, which would ultimately justify investing in the selected technology.

THE BENEFITS AND PITFALLS OF DIGITAL DESIGN TOOLS
Marion, Tucker J (1); Fixson, Sebastian (2)

Digital design has become pervasive to all aspects of the development process. The potential benefits of digital design include rapid iterations, the development of quick prototypes, and the ability of the team to virtually model entire systems without expensive physical prototypes. Digital design has now migrated to the beginning of the development process during ideation and conceptual design. Through empirical and case-base research we report on the challenges and opportunities of employing digital design early. We find that digital design can lead to back-loading, a condition in which digital design can short-cut valuable conceptual iteration. We also find that the integration of digital design into the development process needs to maintain distinct phases and firms must maintain a balance of creative iteration with process discipline. Finally, we find that there is a direct correlation between firm R&D efficiency and their strategy for IT infrastructure, process discipline, and use of digital design support tools.

AUTONOMOUS VISUALIZATION AGENTS TO ENHANCE THE ANALYSIS OF VIRTUAL PROTOTYPES
Radkowski, Rafael; Gausemeier, Jürgen
Heinz Nixdorf Institute, Germany

A virtual prototype specifies the shape and the behavior of a product under development. However, it is a computer-internal representation of this product and suitable visualization techniques are necessary to understand the structure and behavior of it. Today visualization techniques are selected manually by the developers; that is time consuming and error-prone. In this paper, we introduce the concept of autonomous visualization agents: software agents that select autonomously a proper visualization for a certain task. To realize such agents an agent model to represent the knowledge of the agent, as well as a reasoning mechanism are necessary; both are introduced. Experiments have been carried out to test the correctness and the usability of the models and the reasoning mechanism. The experiments show that the models and the reasoning mechanism facilitate the autonomous selection of visualizations by software agents.

INTERACTIVITY IN EARLY-STAGE DESIGN BY REAL-TIME UPDATE OF STRESS INFORMATION FOR EVOLVING GEOMETRIES
Trevelan, Jon (1); Scales, Derek (2)

1: Durham University, United Kingdom; 2: University of Western Australia, Australia

A methodology is introduced for the analysis of small problems of elasticity in which the stress solutions, displayed in conventional contour form, are updated in real time as the engineer deforms the geometry of the object under analysis. The underlying mathematical technique is the Boundary Element Method, and we show how the method can be adapted for continuous update of stress solutions as the geometry evolves. Two performance enhancement strategies are presented, and an illustrative example shows a typical usage of the software tools produced during this project.
CONTEXT-SPECIFIC EXPERIENCE SAMPLING FOR EXPERIENCE DESIGN RESEARCH

Kim, Yong Se; Hong, Yeon Koo; Kim, Jin Hui; Kim, Young Mi

Creative Design Institute, Sungkyunkwan University, Korea, South (Republic of)

Despite apparent benefits of Experience Sampling (ES) for experience design and research, it has been scarcely used in the field. Among the reasons for that are some methodological issues such as the way in which conventional ES gathers contextual experience information directly from the participants’ description of the context and the lack of theoretical frameworks dealing research to systematically explore and extract meaningful experiences. To address these issues, the researchers have developed an adapted ES model, entitled Context-Specific Experience Sampling which integrates a rigorous data collection and analysis processes. The model explains how to gather context-specific user experience information and then extract key experience attributes from the data pool through. This divergent-to-convergent approach is described ‘experience pooling, sorting, and extracting’ under the theme of experience processing. This paper explains in detail the structure and procedure of the model with examples obtained from a small scale office environment research.

PROPOSAL OF “EXPECTOLOGY” AS DESIGN METHODOLOGY

Murakami, Tamotsu; Nakagawa, Satoshi; Yanagisawa, Hideyoshi
University of Tokyo, Japan

In the present competitive environment, designers should challenge to create attractive products to give consumers not just satisfaction as expected but delight beyond expectation. For that purpose, the authors propose a concept of Expectoology, as a framework to provide designers with a systematic methodology of designing products considering every possibility of consumers’ positive (e.g., expectation, satisfaction, delight) and negative (e.g., anxiety, dissatisfaction, disappointment) emotional response. As a systematic approach to Expectoology, first the authors enumerate and qualitatively classify relevant emotional states by a combination of two exclusive categories, prior-posterior and positive-neutral-negative, for an analysis in MEEC (mutually exclusive and collectively exhaustive) manner. Then the authors enumerate all possible transitions from one emotional state to another in a matrix. This classification matrix provides designers with means of classifying both successful and unsuccessful design case studies and relevant design methods and techniques and compiling design databases (e.g., as web pages) of what they should or should not do for the future projects.

THE PSYCHOLOGICAL EXPERIENCE OF USER OBSERVATION

Goorve, Elisabeth
Northeastern University, United States of America

While scholars have studied what design practices accomplish, few have considered how people feel when enacting these practices and the implication of these feelings on design work. An eighteen-month ethnographic study of a high-tech firm examined the psychological experience of engaging in the practice of user observation. The study finds that user observation supports regular exploration. Regular observation supports curiosity, or the tendency to focus on details, and the change of attention. Result: user observation supports regular exploration. Further, the study reveals that user observation helps employees manage in uncertain conditions.

MONITORING DESIGN THINKING THROUGH IN-SITU INTERVENTIONS

Landa, Micah; Sonnabay, Neeraj; Jung, Malte; Han, Christopher; Banerjee, Benny; Leifer, Larry
Stanford University, United States of America

Abstract - Building on existing knowledge of design and design thinking we apply several other fields of knowledge such as emotion coding, improvisation, ethnography, social psychology, and decision analysis into key metrics we call Design Thinking Metrics (DTM). We applied these metrics to analyze and access videos of software design teams. We then conducted a workshop series with a professional software design team to use DTM as a perceptual tool to test a range of potential design thinking attributes that could be used to improve Design Thinking practice. The result is multi-disciplinary perceptual monitoring of design thinking activity in professional software practice.

GLOBAL OPTIMIZATION OF ENVIRONMENTAL IMPACT BY A CONSTRAINT SATISFACTION APPROACH – APPLICATION TO SHIP-ECODESIGN

Larroute, Vincent; Yvars, Pierre-Alain; Millot, Dominique
Supélec - L3MMA, France

After demonstrating the feasibility of the inversion of a ship emission model with the CSP approach, we will now discuss about the optimization of emissions. In a first time, a single-objective approach with an aggregation function of the emissions will be used, then it will be a multi-objective approach and the Pareto frontier will be computed. The objective of this paper is triple: first, to show that a full ship model, linking a propulsion model and an emission model, can be inverted. Then, to bring to light that a propulsion system can be sized by an approach minimizing the emissions and using an aggregate function. Finally, to demonstrate that, in this case, the computing the Pareto frontier provides the same global optimum as the mono-objective approach.

EXTRACTION AND ANALYSIS METHODOLOGY FOR SUPPORTING COMPLEX SUSTAINABLE DESIGN

Liang, Helen (1); Birch, David (2)
1: University of Bath, United Kingdom; 2: Imperial College, London

The advent of computer-based tools to aid the design process has meant that larger set of design parameters can be taken into consideration. It also means that other factors, such as those associated with environmental issues can be considered, and increasingly there are legislative requirements to do so. This means increasing demands are placed on designers to create innovative, sustainable, high quality solutions to satisfy a large range of stakeholders. Design is an interdisciplinary practice that is inherently complex. Managing such complexities requires the support of specifically created tools and methodologies in order to handle the large number of available design parameters. This is particularly true of the built environment where such parameters include the number and mix of buildings, their energy consumption, the handling of waste, the management of water, and the transport needs. The paper discusses the use of a methodology that seeks to support the decision making process and design optimization for complex sustainable design based upon automatically studying the relations between design parameters so that their interdependencies can be obtained and sensitivities established.

DESIGN FOR ADDITIVE MANUFACTURING TECHNOLOGIES: NEW APPLICATIONS OF 3D-PRINTING FOR RAPID PROTOTYPING AND RAPID TOOLING

Junk, Stefan; Tränkle, Marco
University of Applied Sciences Offenburg, Germany

The application of additive manufacturing technologies is becoming established in an increasing number of product development sectors. This allows a number of additive manufacturing technologies to be used quickly and inexpensively for prototypes and also small series. Furthermore, tools can also be manufactured with additive technologies due to the considerable increase in the range of materials which can be used in recent years. For all these applications it is particularly important to take into account also the special requirements for the design in addition to the quick and inexpensive manufacture of the prototypes and components when applying these new manufacturing technologies. Furthermore, the operating principle of these new flexible design tools and materials is usually built up in layers, also offers numerous new design options which reach far beyond conventional design. The innovations of the design process, in particular, are worked out for the 3D printing technology and their benefits illustrated in this paper. Besides the technical boundary conditions, the economic advantages and disadvantages in comparison to conventional technologies are also described.

THE IMPACT OF SAFETY STANDARDS AND POLICIES ON OPTIMAL AUTOMOBILE DESIGN

Hoffmann, Steven; Papalambros, Ponn Y.
University of Michigan, United States of America

Much of the recent decline in road traffic injuries and fatalities is attributed to regulations imposed by governments and crash test ratings produced by public and private institutions. These crash tests aim to provide a standardized method for crashworthiness comparisons between vehicles, and they do so using prescribed crash scenarios that purportedly represent real-world crashes. Because the results of these tests are made public and influence consumer demand, automakers commonly optimize their vehicles designs specifically to perform well in these crash scenarios. This study explores the impact of three particular specifications of the National Highway Traffic Safety Administration New Car Assessment Program frontal crash test on optimal automobile design, including the test speed, the injury severity, and the ratings system used to present the results. Optimal vehicle designs for the original crash test are compared with those of alternative test scenarios, and the impact of such designs is discussed. Findings show that scenarios representing more frequently occurring-on road crashes appear to produce safer vehicles, and a more precise ratings system is recommended.
INTEGRATED PRODUCT & PRODUCTION MODEL – ISSUES ON COMPLETENESS, CONSISTENCY AND COMPATIBILITY

Gedell, Stellan (1); Claesson, Anders (2); Johansson, Hans (1)

1: Chalmers University of Technology, Sweden; 2: Saab Automobile AB, Sweden

Product development of complex products and their corresponding production systems continue to provide challenges in industry as well as interesting and challenging research questions. Recent research in the area has provided an integrated product and production system modeling framework supporting cross-functional collaboration and communication. An industrial challenge of ensuring complete sets of parts for manufacturing of different product variants is examined. The work includes a framing of the concepts of completeness, consistency, and compatibility. Based on this framing a case study is conducted exploring the possibilities and implications involved in using the modeling framework to include supporting functionality.

A KNOWLEDGE-BASED MASTER MODELING APPROACH TO SYSTEM ANALYSIS AND DESIGN

Sandberg, Marcus (1); Tyapan, Ilya (1); Kokkola, Michael (2); Issaksson, Ola (3)

1: Luleå University of Technology, Sweden; 2: The University of Michigan, USA; 3: Volvo Aero Corporation, Sweden

The jet engine industry relies on product models for early design predictions of attributes such as structural behavior, mass and cost. When the required analysis models are not linked to the governing product model, effective coordination of design changes is a challenge, making design space exploration time-consuming. Master modeling (MM) approaches can help alleviate such analysis overhead, the MM concept has its origins in the computer-aided design (CAD) community, and mandates that manual changes in one model automatically propagate to assemble, computer-aided manufacturing (CAM) and computer-aided engineering (CAE) models within the CAD platform. Knowledge-based master models can also be used to communicate changes in the product definition to models that are external to the CAD platform. This paper presents details of the knowledge-based master modeling approach as applied to mechanical jet engine analysis and design, where different fidelity models and analysis tools are supported in the early design stages.

ECO TRACING - A SYSTEMS ENGINEERING METHOD FOR EFFICIENT TRACELINK MODELING

Stark, Rainer (1,3); Pigge, Åsmund (1)

1: Technische Universität Berlin, Germany; 2: Fraunhofer Institute for Production Systems and Design Technology, Germany

Using expertise and combining functionalities from different domains has led to a significant increase of information that engineers have to deal with. It is hardly possible to identify influenced components in activities like change requests. A model containing tracelinks between the elements of involved partial models as an essential part of PLM based Systems Engineering helps to overcome this deficit. The main obstacle for a broad introduction of traceability is the significant workload involved in creating tracelink models as every element combination has to be examined for dependencies. This calls for an approach to support developers in creating tracelink models more efficiently. ECO Tracing is a promising approach to support developers in creating tracelink models more efficiently. ECO Tracing allows developers to significantly reduce cost and time. In order to do so, the method uses the hierarchical structure of many models and a top-down analyzing approach to exclude element combinations prior user examination. Furthermore ECO Tracing allows choosing the desired level of detail flexibility while modeling. ECO Tracing is a promising approach helping to establish traceability in product development by reducing modeling effort significantly.

SOCIAL SYSTEMS ENGINEERING – AN APPROACH FOR EFFICIENT SYSTEMS DEVELOPMENT

Neumann, Thomas; Suttiwatt, Ingo; Kallenborn, Oliver; Königs, Simon Frederick

Daimler AG, Germany

Our objective is to establish an understanding of product development as a sociotechnical system. This approach should help to explain today's phenomena in product development and represents the basis for the development of new methodical approaches that help to manage. Our vision is to enable real-time analysis of organisational efficiency that should help to explain today's phenomena in product development and represents the basis for the development of new methodical approaches that help to manage. Our vision is to enable real-time analysis of organisational efficiency which incorporates the social organisation of systems as well as to facilitate effective development of technical systems as Social Systems Engineering. A schematic meta-model of sociotechnical systems displays the whole system, subsystems, structures and system functions. The system functions of social system and technical genesis are executed by interaction and communication. Based on this approach, complexity can now be identified in the technical and social subsystem. Furthermore, the meta-model is the base for the development of engineering services and tools. A detailed UML meta-model was derived from the schematic meta-model of sociotechnical systems with the objective to improve effective system modelling and efficient system development.

Reflections in the Context of the History of Design Research

In the past 50 years the number of researchers in the field has expanded enormously – as has the number of publications. During the same period design practice and its products have changed dramatically. Nowadays designers can seldom focus on individual products but must address, for example, large complex product/service-systems (PSS) that require the integration of many different advanced technologies over the whole life cycle of such systems. The processes and tools produced are also now far more complex and distributed, putting designers under ever increasing pressure.

We shall address the question: Are the results of Design Methodology research appropriate and are they delivering the expected results in design practice? In our attempt to answer this question we shall draw on our extensive experience of design research and design teaching, and on the recent book The Future of Design Methodology, edited by Professor Herbert Birkhofer. We shall also refer to a model that links the Results, Practices, Methods, and Sciences of designing.

Some initial conclusions: Design Methodology research often fails to support the tasks currently confronted by practising designers; many valuable research insights are not transferred into practice; the design research field is fragmented and there is a need for consolidation; however, the current design research community is beginning to demonstrate a greater awareness of the needs of designers and to apply greater rigour in its research.

Mogens Myrup Andersen is Professor Emeritus of Product Development. He holds a PhD in Product Development and an MSc in Mechanical Engineering. His research interests are design methodology, Design for X methodology, integrated product development, conceptualisation, and applications of the theory of technical systems. As well as being an eminent academic, he was one of the founders of WDK which initiated internationally renowned series of ICED design conferences. This has now metamorphosed into the Design Society which is the umbrella organisation for international design research activity.

Mogens Myrup Andersen

MSc MechEng, PhD, Dr-Ing EH
Professor Emeritus of Product Development (DTU)
Honorary Fellow of Design Society

Ken Wallace

BSc, PhDing
Professor Emeritus of Engineering Design (Cambridge)
Honorary Fellow of Design Society

Ken Wallace was awarded his BSc in Mechanical Engineering in 1967 after which he worked in the design and development departments of Rolls-Royce’s Aero-Engine Division until 1971.

In 1977 Ken was appointed Lecturer in Engineering Design at the University of Cambridge and spent the next 30 years working on design education and design research, with a special interest in systematic design methods. He is well known for translating and editing Pahl and Beitz’s classic reference text Konstruktionstechnik. The first English edition appeared in 1984 and two further editions were published in 1995 and 2007.

Ken was responsible for establishing the Cambridge Engineering Design Centre (EDC) in 1991 and was its first Director. In 1997 he stepped down as Director in order to set up the University Technology Partnership (UTP), funded by Rolls-Royce and BAE SYSTEMS. A notable success of the UTP was a design method for capturing design rationale. This was embodied as the software tool Dred, which is now used throughout Rolls-Royce. In 2005 Dred won the Rolls-Royce Research and Technology Director’s Award for Creativity.
TECHNICAL VISIT 1

Practical information

Price of 400 DKK includes return coach fare from Copenhagen Central Station, plus entrance tickets for Roskilde Cathedral and the Viking Ship Museum. In order for the excursion to be held, a minimum of 30 delegates will have to sign up. There is room for a maximum of 40 delegates. Payment can be made onsite at the ICED11 Conference only at the registration desk.

For any queries regarding the visit please contact guide Georg K. Christensen (gkch@man.dtu.dk).

In the case of cancellation, delegates will receive a full refund of this payment.

<table>
<thead>
<tr>
<th>09:00</th>
<th>DEPARTURE FROM COPENHAGEN CENTRAL STATION (KBH H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:30</td>
<td>RADIOMETER</td>
</tr>
<tr>
<td></td>
<td>Presentation at Radiometer: “Design and Production” by R&D director Tommy Bysted and leader of Lean activities Mads Fris.</td>
</tr>
<tr>
<td></td>
<td>A guided tour at production facilities. Radiometer is a leading provider of advanced acute care testing solutions with an annual turnover of DKK 2.1 billion and is owned by US-based Danaher Corporation.</td>
</tr>
<tr>
<td>11:30</td>
<td>ROSKILDE CATHEDRAL</td>
</tr>
<tr>
<td></td>
<td>Tour of Roskilde Cathedral, the burial site of Danish Kings since 1400 AD.</td>
</tr>
<tr>
<td></td>
<td>A UNESCO Site</td>
</tr>
<tr>
<td>12:00</td>
<td>LUNCH IN ROSKILDE AT RESTAURANT “VIVALDI” AT TOWN SQUARE</td>
</tr>
<tr>
<td>13:00</td>
<td>VIKING SHIP MUSEUM ROSKILDE</td>
</tr>
<tr>
<td></td>
<td>The Viking Ship Museum in Roskilde is the Danish museum for ships, seafaring and boatbuilding culture in ancient and medieval times.</td>
</tr>
<tr>
<td></td>
<td>The Viking Ship Hall, the oldest part of the museum, was opened in 1969. It was designed as a large showcase to display the five Viking ships found at Skuldelev. The hall also houses special temporary exhibitions and a cinema, where a film about the excavation of the ships is shown.</td>
</tr>
<tr>
<td></td>
<td>Photo: Werner Karsch, © Vikinglevitsmuseet i Roskilde</td>
</tr>
<tr>
<td>15:00</td>
<td>DEPARTURE FOR COPENHAGEN CENTRAL STATION - EXPECTED ARRIVAL, 15:40</td>
</tr>
</tbody>
</table>

TECHNICAL VISIT 2

Practical information

Price of 300 DKK includes bus fare to and from Copenhagen Central Station, lunch at Fritz Hansen and entrance ticket for Frederiksborg Castle. In order for the excursion to be held a minimum of 40 delegates will have to sign up.

For queries regarding the visit please contact guide Hans Peter Lomholt Bruun (hplb@man.dtu.dk).

In the case of cancellation, delegates will receive a full refund of this payment.

<table>
<thead>
<tr>
<th>09:00</th>
<th>DEPARTURE AT - COPENHAGEN CENTRAL STATION (KBH H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>FRITZ HANSEN</td>
</tr>
<tr>
<td></td>
<td>Presentation at Fritz Hansen in Vissingergård and their world renowned designer furniture. The trip includes a guided tour in their automated manufacturing plant.</td>
</tr>
<tr>
<td></td>
<td>Fritz Hansen is in partnership with some of the world’s most recognized architects including Arne Jacobsen, Poul Kjaerholm and Hans J. Wegner.</td>
</tr>
<tr>
<td>12:30</td>
<td>LUNCH AT FRITZ HANSEN</td>
</tr>
<tr>
<td>13:30</td>
<td>FOSS</td>
</tr>
<tr>
<td></td>
<td>Presentation of FOSS in Hillerød and guided tour of production facilities. FOSS is the leading provider of dedicated analytical solutions to a broad range of industries. FOSS will present some of its new products, and give insight into the development process behind.</td>
</tr>
<tr>
<td>15:45</td>
<td>FREDERIKSBORG CASTLE</td>
</tr>
<tr>
<td></td>
<td>Tour round the castle and the gardens. Frederiksborg Castle is the largest Renaissance Castle in Scandinavia. It was built in the first decades of the 17th century by King Christian IV and incorporates the finest Renaissance architecture and craftsmanship.</td>
</tr>
<tr>
<td>17:15</td>
<td>DEPARTURE FOR COPENHAGEN CENTRAL STATION - EXPECTED ARRIVAL, 18:00</td>
</tr>
</tbody>
</table>
BANKS
Normal banking hours are from 10:00 to 16:00 Monday to Friday. On Thursday banking hours are extended to 18:00. Extended banking facilities are available at Copenhagen Central Railway Station, 7 days/week between 07:00 and 21:00. There are ATMs usually located in connection with a bank branch, which accept a variety of international credit cards. The cards accepted are indicated on the dispenser. DTU has no bank, but an ATM.

CLIMATE
The weather in Denmark in August is normally very pleasant, usually sunny. However, on occasion an umbrella may be useful. Daytime average temperature is around 20°C, evening temperature around 10°C. For more information please see www.dmi.dk.

CREDIT CARDS
Major credit and charge cards such as Visa, MasterCard, American Express, and Diners, are widely accepted at most establishments.

CURRENCY / CURRENCY EXCHANGE
The local currency is the Danish kroner. Foreign currencies can be exchanged either in banks or with a moneychanger conveniently located in the city.

ELECTRICITY
Electricity is supplied at 230 volts A/C, 50 Hz cycle. If you are travelling with electrical or electronic devices be sure to bring a two-pin continental adapter with you. On request, most hotels can provide transformers/adapters to guests.

EMERGENCY SERVICES
Police - Ambulance - Fire Brigade * Dial 112

INTERNATIONAL CALLS AND MOBILE COMMUNICATION
The international country code for Denmark is 45. The outgoing code is 00 followed by the relevant country code (e.g. 0044 for the United Kingdom). There are no city codes and all local phone numbers are eight digits. There are several GSM mobile telephone networks, which have roaming agreements with most international mobile phone companies.

LIABILITY AND INSURANCE
Neither the Organisers (ICED) nor the Conference Secretariat DIS will assume any responsibility whatsoever for damage or injury to persons or property during the Conference. Participants are recommended to arrange for their personal travel and health insurance.

LOCAL TRANSPORTATION
The Metro train from Copenhagen Airport offers you a direct train every 4-6 minutes to the city centre of Copenhagen and will take approximately 14 minutes. Please check www.m.dk, www.movia.trafik.dk, www.rejseplanen.dk or, www.copenhagenet.dk/CPH-Transport.htm for further information. The regular (regional) train departs from the airport every 15 minutes for the main central station (København H).
A taxi from Copenhagen Airport to the city centre is approximately DKK 250 (no extra charges for suitcases).

PROGRAMME CHANGES
The Organisers reserve the right to adjust or change the programme as necessary.

SHOPS
The Shops are open from 10:00 to 18:00 Monday through Thursday, 10:00 to 19:00 on Friday and 09:00 to 17:00 on Saturday/Sunday.

SIGHTSEEING
For further information about Copenhagen, please check www.visitcopenhagen.com or visit the Copenhagen Visitor Centre - Vestergade 4A - 1620 København V - Tlf: 7022 2442 - E-mail: touristinfo@woco.dk

TIMEZONE
Denmark is set to Central European Time (CET) which is GMT +2 (summer), GMT +1 (winter).

TIPS
Tips are always included in the prices given in taxis and restaurants.

WATER
Water from the tap is safe to drink in Copenhagen. Bottled and mineral water are also readily available in supermarkets or convenience stores.

WIRELESS INTERNET
On check-in you will be provided with a username and password giving you access to the wireless network at the conference venue.

Alternately you can connect via eduroam, as DTU is an eduroam location. We strongly advise you to check with your university’s IT service, about whether your university supports eduroam, before arriving at DTU – this would make life much easier for you. Read about eduroam on http://www.eduroam.org/

ICED11 FOOD AND DRINKS
We recommend that the ICED11 delegates head to Gråbrødretorv (see position on map p179) after conference hours to take advantage of our associated restaurants and their offers (show your ICED11 name badges to obtain the offers).

Café G.
Contemporary International cuisine
ICED11 offer: 13% off final bill (only if food is ordered).

Ristorante Uno
A rough gem with a wide-ranging menu of Italian cuisine
ICED11 offer: 25% off your final bill. (30% at lunch).

LePavé
Romantic and relaxing, serving French cuisine with ample portions.
ICED11 offer: A complimentary glass of champagne.

Ristorante Sole d’Italia
Italian restaurant with a good selection of wines and beers.
ICED11 offer: 25% off your final bill. (30% at lunch).

Sporvejen
"Probably the best burger in town"
ICED11 offer: 10% off final bill.
TRAVEL LOGISTICS

- **Catch Shuttle Bus**
 - Outside Lyngby Station to ICED11 (at DTU)
 - 7 minute journey
 - Morning (Lyngby st. - DTU)
 - Every 5 mins between:
 - Monday: 07:30 - 08:30
 - Tuesday: 08:00 - 09:00
 - Wednesday: No shuttle
 - Thursday: 07:30 - 08:30
 - Evening (DTU - Lyngby st.)
 - Every 5 mins between:
 - Monday: 19:30 - 20:30
 - Tuesday: 18:45 - 19:45
 - Alternative bus routes: 190, 300S, 353

- **S-Train**
 - “B” line (City Centre - Lyngby st.) every 10 mins, 20 minute journey
 - “F” line (City Centre - Copenhagen Airport) every 10 mins, 30 minute journey

- **Metro**
 - Line (City Centre - Copenhagen Airport)

- **DSB First**
 - (City Centre - Copenhagen Airport)

- **Catch Shuttle Bus**
 - outside Lyngby Station to ICED11 (at DTU)
 - 7 minute journey

- **Metro**
 - line (City Centre - Copenhagen Airport)

- **S-Train**
 - “B” line (City Centre - Lyngby st.) every 10 mins, 20 minute journey

- **DSB First**
 - (City Centre - Copenhagen Airport)