Two-dimensional electron gases in SrTiO3-based complex oxide heterostructures with electron mobilities exceeding 100,000 cm²V⁻¹s⁻¹

Chen, Yunzhong; Pryds, Nini

Publication date:
2013

Citation (APA):
Chen, Y., & Pryds, N. (2013). Two-dimensional electron gases in SrTiO₃-based complex oxide heterostructures with electron mobilities exceeding 100,000 cm²V⁻¹s⁻¹. Abstract from EMN West meeting, Energy materials Nanotechnology, Houston, TX, United States.
Two-dimensional electron gases in SrTiO$_3$-based complex oxide heterostructures with electron mobilities exceeding 100,000 cm2V$^{-1}$s$^{-1}$

Yunzhong Chen*, Nini Pryds

Department of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, 4000 Roskilde, Denmark
Email:yunc@dtu.dk, web site: http://www.ecs.dtu.dk/English.aspx

The high-mobility two-dimensional electron gas (2DEG) confined at the interface of two insulating complex oxides provides new opportunities to explore nanoelectronic devices. So far, such oxide 2DEG is nearly exclusively created within the frame of interface polarity, such as the case of the intensively explored LaAlO$_3$/SrTiO$_3$ (LAO/STO) heterointerface. Alternatively, when building heterostructures on STO, the basis material for oxide electronics, the conductance can also originate from tunable redox reactions at the interface, i.e., the oxygen-vacancies dominated conductivity in reduced STO substrates [1]. In this presentation, the mechanism of the interface conductance in STO-based oxide heterostructures will be discussed. Moreover, our recent findings of new 2DEGs in STO-based oxide heterostructures will be also presented. Relying on redox reactions, an oxide 2DEG with electron mobilities exceeding 100,000 cm2V$^{-1}$s$^{-1}$ at 2 K, 100 times higher than those of LAO/STO heterointerface, is obtained [2]. The conduction dimension and its spatial confinement will be also discussed.

Presentation Method (Invited/Regular Oral/Poster): Invited