South African Extreme Wind Atlas (WASA)

Kruger, A.; Larsén, Xiaoli Guo

Publication date: 2013

Citation (APA):
South African Extreme Wind Atlas (WASA)

A Kruger – South African Weather Service
X Larsén – DTU Wind Energy
WASA Project Team

- **SANEDI** *(South African National Energy Development Institute)*
 - executing agency – contracting the implementing partners
 - coordination and dissemination
- **UCT CSAG** *(Climate System Analysis Group, University of Cape Town)*
 - mesoscale modelling
- **CSIR** *(Built Environment, Council for Scientific and Industrial Research)*
 - measurements and microscale modelling
- **SAWS** *(South African Weather Service)*
 - extreme wind assessment
- **DTU Wind Energy** *(Dept of Wind Energy, Technical University of Denmark)*
 - partner in all activities

the original DTU partner (Risø DTU) is part of DTU Wind Energy established Jan 2012
WP5 – Extreme Winds
Why do we need extreme wind statistics?

• Wind constitutes most critical environmental loading affecting structural design of built environment in South Africa;

• Information on extreme winds essential in the design of wind farms – situated in areas with relatively strong winds;

• Therefore development of relevant extreme wind information essential in planning of large-scale exploitation of wind power in South Africa.
Origins of strong winds

• Interior: thunderstorm dominated;

• Coast, adjacent interior – extratropical cyclone (cold front) dominated;

• Larger part of South Africa – mixed strong wind climate…

Zoning of Extreme Wind Causes / Mechanisms

<table>
<thead>
<tr>
<th>Primary Causes</th>
<th>Secondary Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origins of strong winds</td>
<td>Mechanisms</td>
</tr>
</tbody>
</table>

- (a) Thunderstorms
- (b) Extratropical Cyclones
- (c) Origins of wind: Thunderstorms
- (d) Origins of wind: Extratropical Cyclones
- (e) Strong winds: Thunderstorms
- (f) Strong winds: Extratropical Cyclones

Windaba Sep 2013
Effect of Mixed Strong Wind Climate

• In interior cause of strong winds can be synoptic and/or mesoscale (thunderstorms);
• Effect on optimal estimation of design wind speeds (especially gusts);
• Ratios between 1:50 yr wind values at different time periods varies across South Africa - complicates conversion between time periods;
• Measured data to form basis of development of extreme wind statistics.
Time resolutions of extreme wind statistics

- Statistics of extreme winds can be provided for different time resolutions, e.g. 10 min, 2-3 sec (gusts) etc.
- Standard factors enable conversion between time periods;
- Fixed factors impossible in mixed climate environment;

- Necessary to provide statistics for different time resolutions.
Optimal development of design wind speed statistics

A. Statistical extraction of extreme wind observations from reanalysis and model data:

- High spatial resolution possible;
- New methods continuously researched:

Low time-resolution data (e.g. 6-hourly wind speed)

High time-resolution statistics (e.g. 1:50 yr 10 min wind speed)
• Temporal variability is missed out by smoothing effect of numerical modelling;
• Only applicable to regions with exclusively synoptic strong wind mechanisms, e.g. SW Cape.
2. Analysis of measured data

- Types of instrument, measuring environment and record lengths to be considered.

```
<table>
<thead>
<tr>
<th>Background Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevailing macroclimatic conditions</td>
</tr>
<tr>
<td>Investigate Available Wind Data</td>
</tr>
<tr>
<td>Audit</td>
</tr>
<tr>
<td>Description of the Strong Wind Climate</td>
</tr>
<tr>
<td>Causes of the strong winds</td>
</tr>
<tr>
<td>Analyze Wind Data</td>
</tr>
<tr>
<td>GEV method</td>
</tr>
<tr>
<td>Investigate Exposure of Weather Stations</td>
</tr>
<tr>
<td>Assess exposure of weather stations</td>
</tr>
<tr>
<td>Develop Extreme Wind Climatology</td>
</tr>
<tr>
<td>Selection of 1.5 year quantiles</td>
</tr>
</tbody>
</table>
```
• Compatible with mixed strong wind climates using appropriate statistical techniques;
• Low resolution – planned wind farms in remote areas not sufficiently covered by long-term measurements.

1:50 yr 10-min wind speed for WASA project area
1:50 year gust estimations from observed data.

1:50 year gust map with adjustments for uncertainty.

- Refinement of final maps to be done through integration of results from measured and model data.
Application of extreme wind statistics for wind farm planning

- IEC (International Electrotechnical Commission) 61400 - class of international standards for wind turbines;

- Ensure that wind turbines are appropriately engineered against damage from hazards within planned lifetime;

- Wind Turbine Classes:
 - Determine which turbine is suitable for wind conditions of particular site;
 - During construction and design phase assumptions made about local wind climate that wind turbines will be exposed to;
 - \(V_{\text{ref}} \) – 1:50 yr 10 min average speed at hub height,
 - A, B & C: Reference turbulence intensities.

<table>
<thead>
<tr>
<th>Turbine Class</th>
<th>IEC I High Wind</th>
<th>IEC II Med Wind</th>
<th>IEC III Low Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{ref}})</td>
<td>50 m/s</td>
<td>42,5 m/s</td>
<td>37,5 m/s</td>
</tr>
<tr>
<td>A</td>
<td>0,16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0,14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0,12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IEC standard and WAsP Engineering

WAsP Engineering: Software to compute extreme winds and parameters for IEC standard (e.g. V_{ref}, I_{ref}) at a particular site, with local environment & topography and Region Extreme Wind Climate (REWC) as input.

REWC obtained from:
- Observations
- Global reanalysis data (e.g. NCEP/NCAR, ERA-40, CFSR)
- Mesoscale model simulations
 - Climate simulation
 - Storm episode method
 - Extreme wind class method

(the above statistics to be integrated in the WASP work package on extreme winds)
Acknowledgements

The Wind Atlas for South Africa (WASA) project is an initiative of the South African Government - Department of Energy (DoE) and the project is co-funded by

- UNDP-GEF through South African Wind Energy Programme (SAWEP)
- Royal Danish Embassy

WASA Project Steering Committee:

DoE (chair), DEA, DST, UNDP, Danish Embassy, SANEDI
Further information

SANEDI
Dr Thembakazi Mali
Senior Manager: Clean Energy Solutions
e-mail: thembakazim@sanedi.org.za

Department of Energy
Noma Qase
Director Renewable Energy
e-mail: noma.qase@energy.gov.za

Technical enquiries
Andre Otto
SANEDI (consultant)
e-mail: andreotto@afrihost.co.za
WASA Phase I Final Wind Seminar

April 2014