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Preface

The workshop Probabilistic Models for Medical Image Analysis (PMMIA 2009) was
held in conjunction with the the 12th International Conference on Medical Image Com-
puting and Computer Assisted Intervention (MICCAI 2009) on September 20th, 2009
in London, UK. The one day workshop focused on the development, learning and use
of probabilistic models for medical image understanding. Probabilistic frameworks are
often used for the automatic quantification and generalization of information latent in
medical images, which has enabled important work in scientific and disease-oriented re-
search and in surgical guidance. Furthermore, these models frequently are a component
of the methodology for such analysis.

The goal of PMMIA was to foster discussions among researchers that are inter-
ested in innovative and principled probabilistic models. We were especially interested
in developments stimulated by other research communities, such as computer vision,
machine learning and biological imaging. Our call for papers resulted in 44 submis-
sions of up to 12 pages. Each paper received at least two reviews. One of our reviews
was so detailed and constructive that we decided to include it in the proceedings. Based
on these peer reviews, we selected 8 submissions for oral and 19 for poster presentation.
To stimulate discussion, each speaker was given 25 minutes for presentation followed
by 15 minutes of Q&A. The poster session was held for 2 hours during lunch time.

PMMIA 2009 was only possible due to the contributions of several individuals.
First, we would like to thank the relatively high number of researchers that submitted
their work to this workshop. Thanks also to the reviewers for providing so many high
quality reviews in such a short time span. Finally, the MICCAI organizers provided
us with the necessary infrastructure that allowed us to focus our effort on creating an
interesting program for the workshop.

William Wells, Sarang Joshi, Kilian Pohl

September 20th, 2009
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2����� ����� ������ ������ �� ������� �� ��� ���� �� ���������� ��������
�� ���� �������� � �"�" ���������� �� ��� ���������� �� ��� ���� �� ��� ���,
�������� �� ��������� �� ������� $'3)� ��� ���� ���� ��� �4����� �������������
����������� ����� �� �������� �%� � � �����������" #�� 	/5 ������� ��
�%� �� ����� �� ��  ������ �� ����� ������ ���������� $'')� �� �� ���� ���
�������� �� ��� ��������� �������� ������� ��������� ��� �������� ����� �
����� �� $'') �

Σ̂t+1 =
1
n

(
XXT − 2Σ̂t(Σ̂t −B)T Σ̂t

s2

)
, �6�

����� �� ��� ����� �� �������� ��� t→∞� ���� ������� �

Σ̂0 =
1
n

XXT . �7�

8�������� $'9)� �� ��� �� ������ ����� � ��� �� ���� ��  �� �� ������
�� �� �� ��� ��� B �� ��� ����� ������������ �� Σ̂ �� ��� ��������� ��1

Bij = ��� (−Aij) , �+�

Probabilistic Models For Medical Image Analysis 2009

3



����� Aij =
∥∥E[pi]− E[pj ]

∥∥
2
� E[pi] ����	 
�� i�
� ������
 
�� ���� � 
��

���	��� 
������	 ���������
�� ���� � �� ������� ���� �� �� ����� ���� � ���
���	�� ����
�� ��� ���

�� ��
����� ��
Bij = ��� (−Aij) ��� (−Tij) , � !�

����� T �� 
�� ��
��� ��
� ��� 
�� ��	���� ���
���� � 
�� ������ � 
�� �
�
���
�� "���� 
�� ��
����� ��#��� �� ����
��� ��� ��� � !� ������� 
�� �����

������ ��
���� $��������� ��� �%���
���� �% ���
���
�� 
���� ��	��$����� ���
���
�$� � ����� 
 &��' �� ��� ������ 
��
 
��% ��� �$������� ��
������

� ������� 	��
� �����������
�

( ����� ��������
�
�� ����� � � )�����
 ���
����
�� ����� ������ ��������
����� ��
���� ���
�� ����� �
 �� � ���� � ���
��� ���� ��� �
 ����� $����
��
����� ������% � *������� ���� �� ��� ���
�����

+������ ������ �����
��	 � ���
��

x = [pT
1 ,p

T
2 , . . . ,p

T
p ]T �  �

��
� x ∈ R
d� � �����
�� � �������

X = [(x1 − μ)|(x2 − μ)| . . . |(xn − μ)], � ,�

�� � d × n ��
��� � ������ �	��� 
�� �
����
�� ���������% � 
�� ����� ���
���
�

S = XXT . � ��

)��� 
�� �������-� pi − E[pi] ��� ����������
�% ��� ����� ���
����
�� ��
N(0,Σi)� 
��� S �� ���
����
�� �������	 
 
�� )�����
 ���
����
�� ./� +����

�� 01�

p(S|Σ, n) =
|S|(n−d−1)/2

���
(− 1

2 
�
(
Σ−1S

))
2nd/2 |Σ|n/2

Γd

(
n
2

) , � 2�

�����

Σ =

⎡⎢⎢⎢⎣
Σ1 0 . . . 0
0 Σ2

���
� � �

0 Σp

⎤⎥⎥⎥⎦ , � /�

��� Γd �� 
�� ���
�$����
� *���� ����
���

Γd (n) = πd(d−1)/4
d∏

i=1

Γ

(
n− 1

2
(i− 1)

)
. � 3�

4���	 
�� 5�%�� 
������ �� ��� ���
�

p(Σ|Ψ ,m) =
|Ψ |m/2

���
(− 1

2 
�
(
ΨΣ−1

))
2md/2 |Σ|(m+d+1)/2

Γd

(
m
2

) , � 0�
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����� Ψ ��� m ��� �	�� �
 ��������
 �� �� ���
��� ��� ������� ��
���
���
�� ��������
 �
 �� ���
�� �� S−1� ����� �� �������� �
 ���������� ��
Σ� �� ��� �� ��� �
���� �
�

Σ̂ = arg max
Σ

p(S|Σ, n)p(Σ|Ψ ,m) �� �!

= arg max
Σ

c |Ψ |m/2
�	�

(− 1
2 � ((S + Ψ

)
Σ−1

))
|Σ|(n+m+d+1)/2

�� "!

� ��
 ����� �� ��� ���
���� Ψ �
 ���������� �� Σ� �� 
�#$��� � �� ! �

��$�� "� ��%��������� �
�

Σ̂ =
1

n+m+ d+ 1
(S + Ψ ) . ��&!

'� �� ��� ���#$�� Ψ = s2Σ−1 �� �� �
������� �� ����� ��
� �� ��	�(
��)���� ��
$#
 �� 
�
�� �� *$������ �*$����


Σ̂
2

=
1

n+ 2m+ d+ 1

(
SΣ̂ + 2s2I

)
. �+,!

�� 
�#�� ��
 �������#� �


Σ̂t+1 = Σ̂t − δ

(
Σ̂

2

t −
1

n+ 2m+ d+ 1

(
SΣ̂t + 2s2I

))
, �+�!

����� δ �
 � 
$-����#� 
��## ���
�� � ����� ����������� n ��� d ��� ��
���(
���#� 
�## �� �$�"�� �� 
���#�
 ��� �����
���� m �
 �� ��#� $
��(
�������
�������� �� �����
 �� ���
�� �� �� ��
��� ��
��"$��� ��� �� �$� �	���(
����
 ��
 
� � ., ��� ����"��� ��� /, ��� ����#���
�

�� ��## ��
 �������� ���(�0�� ��� �� ����� ��
���"�� �� �1! �
 ������

������ ���#� �� �*$���� ��&! ����� �� 	
����� ������ �2�2�! ������ ��� ��
�*$���� �+,! �� �
������� 	
����� ������ �32�2�! ������

� ��������	
�

3
��� ����(��
�#$��� ��$## "�$�����! ����"��# 
����
 ���� ����������
 ���
#��� � ��#��"#� ��
$#
 ���� ������� �
�������� �����#�� ����$��
 4�.5� 6��(
����� ���$�# �������� �� �$## "�$������
 �
 ��� ���
$����� 7�� 
$���
 ��
�
��������
� ����#�� �(��� 
���� ����#
 �� ����#��� �#
� #��� � ���$��� ��(

$#
� 2� ��
 ��
� �� ���"#�� �� "$�#���� � ����(��
�#$��� ����# �
� ��������
�� ����$�����# ��
 �$���� �� �$����� 
����������

2� �� ��##����� 
�����
 �� ���� �	���#�
 �� ����(��
�#$��� 
���� ����#

�����
�$��� ���� �� ����
� ��������
� $
��� �� ���(�0� �
������ ���
�� ���� �����
 ��
���"�� �"���� ��� ������� � �� ��
$# �"����� $
��� �89
��� ��:����� �
�������
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����� y �� �� ���	
���� 	� �	��� ��
����	��� ����� ���	� 	� ��
����	�����
l < d� �� ��� 	���� �� �	�����	����� ������ ���	���	� ����� x ∈ R

d ����� �
������ 
������ L : R

d → R
l �

y = Lx, ����

�	� 	�� ������
��� �� 
���� L �� � ��
����� 
���� �	������ �������� �	���
������ x ��� y� ����� �� ����
 �� 	�������
����� �� �	���	� �� ������ �	
��� ���� ��!���� "� #$%&� x �� 	������ 
���
�'��� �� �����	���

E(x) = ‖Lx− y‖22 . ��(�

����� x ���	��� 	 �� ����� 
	��� ���� �� �����	��� �����	�
� 	�

E(b) = ‖Qb− y‖22 , ��)�

����� Q = LV tΛt� ��� V t ��� �� ��������	�� �	�����	����� 	 �� t ���������
�����
	��� 	� �� �	�������� 
���� ���
��� ��� 	�� 	� �� 
��	� ���������
�� �� �����	�� ����	��� " ��� �� ��	�� �� E(b) �� 
���
�'�� �� b∗ = Q+y
#$%&� ����� Q+ �� �� *		��+,���	�� �����	+������� #(&� -���� x �� ���
���
��

x̃ = μ + V tΛtb
∗. ��%�

.�����
��� ��� ����� 	� �� ���	������	� 	� ���	
���� ��� ��� ���
������� ��	 �	 ��	���� �������� ������ ��� �������� ������� /�� ��������+
��� ��� ��������	�� 	� �� �	�������� 
���� �	
���� ��	
 �� ������� ��
��	��� �� *0. ��� �� 1������� 
��	���

/�� ���	������	� ���	� 	� ������� ��� �������� ������ ������ � ���� ���+
	���	� ����� ��� � ���	������� �����	� 	� �� ��
� ��	
 � �	��� ��
����	���
�����	� �� �	
���� �	� ��� �� p �	��� 	� �� �	������ ����� �� ��������	��

Efull =
1
n

p∑
i=1

∥∥pi,reconst. − pi,orig.

∥∥
2

��2�

/�� ����	�
����� 	� *3,+,43 ��� *0. 
��	�� ��� �	
����� ����� 
���
���	������	� ���	� 	��� ��� �� �� ������ �	� ��5���� ��
��� 	� ���������
�����
	����

��� �����	
���
�� �� ���
���� 	����	

�	� �������� ������ 	� 	��	�	�	��� �	� �������  ����!���	�� �� ��� � 2 �	���
����������	� 	� � �������� ��� 	 �� ��� �� ���� �	��� �� �� �	��� �	����
	� �� ������� ��� ( �	��� �� �� ����� ��� 	� �� ������� ��� �������� ��
������ 
������ ��!��� �� ����� #$2& �� �� �� �	�� ������� �	� �������
 ����!���	�� "� 	���� 	 ����	�
 
	�� �	��������� ����� ��������� � ����
�	�	�� �� ������� /�����	��� �� �����	���	� 	� �� ���� �	�	�� ��	
 �� ���
�	��� �� � ������ �������'��	� �	� � ���
����	� ���	���
 ��6� #$7&� 8����� ��
������
���� �� ������ �� �� ������� �� ���� �� ���� �	�������� 
��� 	� %�
�	���� ����� �	� �� �� ������ 	��� 2 	� 	� ���� %� �	��� ���� ����� 9����
�� ����� 
	���� ��%�� �� �	�����	����� ����+���	���	� �������� �	������ ���
���	������� ��	
 � �	�+��
����	��� �� ������
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��� �����	
���
�� �� ���
���� 	����	

�� ������ ��� ��	
������ �� ��
 ����
���� ��������� ���� ��
 � ������ �����

�	
�������� �� ������ ������
������� � �
��
 �� 	
����� � �����
 
��������
��
�	 ������ �� ���� 	�
��
��� ���� ��������� �� 
������ ����� �
�� ���
������ �� �� �����
��� ��� ���� ��� ���
	������ ������ ��
 
�����
�����
�� ��� �
����� ������ ��� ��
������ ���� ��� �� ���	���� �� ��� ��� � ! ����
�
�� "#$ ���%���� ������� ���� ���� �� 
���� ���� �� ������� �� ��������	
���� �
�� � ���������� �"����� ������ ��� �������� �� ��� ���� �
� �#� &
�#� 	�&��� ���� �
��� ""� ������� ��� 	�	������ ������� ������� �� ��������
���� ���� ��
��� ���
�� �� '( �
�� ���� �� �� ���� �� ���� �
�� �"
�� )*� ��� ���� ���� ��
� ���� �� �� �
�� "� �� �� ���	���� �� ��� 
�������
�
���� ���� �� �� ��� 
������ �"� �� ��� ���	��� � � �������� 	���������
�������

+�
 ���� ���� �� ���� � ��
������������ ��
�	 ����� �� ��� ������ ������
��
������ ���	�
���� ��������� �
�� � ����� ��������� ���������� ,"*� "$-�
+���
� " ������
���� � ��
������ ���	� ����� �� ������
���� ��
 � �
�		�� ���
� !� �� 	
������ � ����
�������� ������� �� 
������ ���� �
�� ��� ��
�	

���� �� �������� ����	 
�� ������ �� ���� ��	 �������� ��	 ��	 ����� ������	� �



	���� ��� ������ ��������	 �	�
��	� �� � ������������


�	
�������� �� ��� ��
������� �� ���������� ��� ��� 
�����
����� �

�

������ ��� �
����� �� ��� 
�����
����� ./ ���	�� ���� 0��1� �� 
�	
���� �
������ ������� ��
 � ��
������ ������ p = 32 	���� ��
� ����� ���� ��� �������
�� d = 96� /�
�� ��� �&	�
����� �2 	���� ��
� 
������ 
������� �� ���
* ��
� ����� �� ��� 
������ �������� �� l = 24�
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���

���� �� ��� �� 	
��� � � �������� �	�� ��� ����� ������	�� ��� �� �	�	��� ����
�	���� �	��� ��� ������������ ������� �	��� ����� ������	�� ��� ������� �� �	���
��� ������������ ��	�� ��� ��� � �	��� ���	���� �� ��� �	� ������ ��� �������� ���
��������	� ���� �� �	 ����� ��
��� � ���	�	�� ������! ��� �" ��� ��� #"� $��� ���
������� �	�� ��� %&%' ��� (%&%' ��� �� �	�� ���� ������ �	�� s = 1 ��� m = 40 ��
����
����� � ��� �)���	� �*+� ��� ��"�� %������ ��� ,�
�� ��	� ���� s = 2 ��� ���
�	-��� �������	.��	� ����
���� 	� "�#���� /�� � � ������� ������� � ��� ������0
��� ��� 1��� �" �	���
��� ��� ���	�����

��� ���� ��� ��
 ��!
�
�� �
�� �
����������� 
���� ������
� ���� ��"� ���
��� ��!
�
�� ����
 �#
 ��� ��
� 	������ t� ��
 ����
� �� 
��
�	���
 ������
�
�� ��
 �
����������� $�
 	
��
��� 
%�
���
�� �
�������
 ���� ��
 &�'(
')� �
���� �
�
����� �����	
 ��
 �
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�
������ ��� �
� ����
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�	���
 *� 
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�� ��� !����	 ��
��� ��� �� �	����
�� ���� 
���� ������ ���� ��
�� ��� "�����
���� #� ����� $
����� ��
�� ����
��
�� ��	% &� ���
�
�� �������

� ������ �����	
����

'�
�� ������ 
� ���
���
�� ����� �������
��� �� �	�� ����
��� ���	% ���� ����	��
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Abstract. In this paper, we consider a stochastic anisotropic model for
trabecular bone x-ray images. In [1], a fractal analysis based on isotropic
Fractional Brownian Fields was proposed to characterize bone microar-
chitecture. However anisotropy measurement is of special interest for the
diagnosis of osteoporosis [7]. We propose to model trabecular bone radio-
graphs by operator scaling Gaussian random fields which are anisotropic
generalizations of the Fractional Brownian Field. We construct consis-
tent estimators for these models and apply them on trabecular bone
x-ray images. Our first results suggest that these models are relevant for
this modeling.

1 Introduction

Texture analysis is a challenging issue of Image Processing, which is often raised
in medical applications. There are several types of texture approaches. Among
stochastic approaches, fractal analysis has been largely used in medical applica-
tions [1, 7, 8, 10]. The stochastic model beyond fractal analysis is the fractional
Brownian field (FBF) which is a multi-dimensional extension of the famous frac-
tional Brownian motion implicitly introduced in [17] and defined in [19]. This
field is mathematically defined as the unique centered Gaussian field, null at
0 almost surely, with stationary increments, isotropic, and self-similar of order
H ∈ (0, 1). Its variogram is of the form v(x) = CH |x|2H ,∀x ∈ R

2, with | · |
the Euclidean norm. Parameter H, called the Hurst index, is a fundamental pa-
rameter which is an indicator of texture roughness and is directly related to the
fractal dimension of the graph sample paths.

FBF was used for the characterization and classification of mammogram
density [8], the study of lesion detectability in mammogram textures [12], and
the assessment of breast cancer risk [8, 13]. Fractal analysis has also been used
for the radiographic characterization of bone architecture and the evaluation of
osteoporotic fracture risk [1]. However, it is well-established that the anisotropy

� We are grateful to the ANR french agency for the financial support to the project
ANR MATAIM NT09 441552.
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of the bone is an important predictor of fracture risk [7]. Hence fractal analysis
with fractional Brownian fields (FBF), which are isotropic by definition, is not
completely satisfactory for this medical application. In this paper, our aim is
to propose a suitable model which accounts properly for the anisotropy of bone
radiograph textures.

The study of random field anisotropy is a wide field of research in the Prob-
ability Theory. It covers numerous open issues related to the definition and the
analysis of anisotropy, the estimation of anisotropic model parameters, and the
simulation of anisotropic fields [4, 3, 6, 11, 20]. In [6], A. Bonami and A. Estrade
set a generic framework in which it is possible to define numerous types of
anisotropic fields. This framework gathers centered Gaussian fields with station-
ary increments {X(x) ; x ∈ R

d}, null at 0 almost surely, whose variogram v is
characterized by a positive even measurable function f satisfying the relation

∀ x ∈ R
d, v(x) = E

(
X(x)2

)
=
∫

Rd

∣∣eix·ζ − 1
∣∣2 f(ζ)dζ (1)

and the condition
∫

Rd

(
1 ∧ |ζ|2) f(ζ)dζ < ∞. Within this framework, a field is

isotropic whenever the so-called spectral density f of the field is radial, and
anisotropic when f depends on the direction arg(ζ) of ζ.

In [4, 5], we studied 2-dimensional Gaussian fields with spectral density of
the form

∀ ζ ∈ R
2, f(ζ) = |ζ|−2h(arg(ζ))−2, (2)

where h is a measurable π-periodic function with range [H,M ] ⊂ (0, 1) where
H = essinf [−π,π)h and M = esssup [−π,π)h. These fields extend FBF, which
are obtained when the function h is almost everywhere constant and equal to
the Hurst index H. When h is not constant, the function h depends on the
orientation and, consequently, the corresponding field is anisotropic. Another
extension of FBF, called operator scaling Gaussian random fields [3], can be
obtained by taking spectral densities of the form

∀c > 0, ∀ζ ∈ R
2 , f(cEζ) = c−2−tr(E)f(ζ), (3)

for some real 2× 2 matrix E. The spectral density of an FBF with Hurst index
H ∈ (0, 1), given by f(ζ) = |ζ|−2H−2, for ζ ∈ R

2, satisfies (3) for E = I2/H
with I2 the identity matrix. In such a model, the anisotropy is characterized by
the 2× 2 parameters of the matrix E.

In this paper, we focus on a particular class of 2-dimensional operator scaling
field for which E is a diagonal matrix. More precisely, we consider 2 dimensional
Gaussian fields with spectral density of the form

∀ ζ = (ζ1, ζ2) ∈ R
2, f(ζ) =

(
ζ2
1 + ζ2a

2

)−β
, (4)

where β = H1 + (1 + 1/a)/2 and a = H2/H1 for some 0 < H1 ≤ H2 < 1. Then
f satisfies (3) for E = diag(1/H1, 1/H2) and 2 dimensional FBFs are obtained
when H2 = H1, which gives the Hurst index. When H1 �= H2 the corresponding
field is anisotropic.
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There are several ways to analyze the anisotropy of a field. One simple way
consists of characterizing the Hölder regularity of rectrictions of the field along
oriented lines. However, it was shown that the directional regularity (the regular-
ity of these line restrictions) of any 2-parameter Gaussian random field obtained
from (1) is constant, except in at most one direction where it can be larger [11].
In particular, the directional regularity of field model (2) is the same whatever
the direction. Hence, the anisotropy of such a model cannot be characterized
using line restrictions. For such a model, one can rather study the regularity of
windowed Radon transforms [6].

In this paper, we show that fields defined by (4) can have a privileged direc-
tion where line restrictions are more regular than in other directions. We also
propose some techniques for the estimation of parameters H1 and H2. Estima-
tors are constructed using line restrictions and following principles of generalized
quadratic variations. Finally, adapting results shown in [4], we prove the conver-
gence of these estimators.

In collaboration with L. Benhamou and M. Rachidi (INSERM U658, Orleans,
France) [5], we studied trabecular bone x-ray images. After some preliminary
experiments, we came to the conclusion that model (2) was not suitable for the
modeling of these images. Due to trabecular structures of the bone, these images
have a privileged direction which is detectable from the analysis of line regularity.
Such a situation is analogous to the one of sedimentary aquifers whose scaling
properties vary according to directions and which were successfully modeled by
operator scaling fields [2]. In this paper, we present some preliminary experiments
suggesting the adequacy of model (4) to bone radiograph textures.

In Section 2, we recall main properties of operator scaling fields and con-
struct consistent estimators for H1 and H2. In Section 3, we present results
of estimation on trabecular bone x-ray images, which suggest adequacy to this
modeling.

2 Main properties

Let X be a Gaussian field with spectral density (GFSD) on R
2 given by (4)

for 0 < H1 ≤ H2 < 1. Let us denote E the diagonal 2 × 2 matrix E =
diag(1/H1, 1/H2). We note q = tr(E) and remark that

q = 1/H1 + 1/H2 = (1 + 1/a)/H1,

with a = H2/H1 ≥ 1 such that β = H1 (1 + q/2).

2.1 Operator scaling property

Let us define ψ(ζ) =
(
ζ2
1 + ζ2a

2

)H1/2, for ζ ∈ R
2, such that ψ is continuous on

R
2 with positive values on R

d
� {0} and satisfies ψ(0) = 0 and ψ(cEζ) = cψ(ζ)

for all c > 0, where cE is the exponential matrix cE =
∑
n∈N

ln(c)n

n!
En. According
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to Theorem 4. 1 of [3], the random field X is a Harmonizable operator scaling
Gaussian field with respect to E (since E = Et):

∀c > 0,
{
X(cEx);x ∈ R

2
} fdd

=
{
cX(x);x ∈ R

2
}
,

where
fdd
= means equality for finite dimensional distributions. The operator scal-

ing property is an anisotropic generalization of the well-known self-similarity
property.
In particular, for H1 = H2, the random field X is self-similar of order H =
min(H1,H2), which means that

∀c > 0,
{
X(cx);x ∈ R

2
} fdd

=
{
cHX(x);x ∈ R

2
}
,∀c > 0.

Moreover, in this case, the spectral density is a radial function, which implies
that X is isotropic. Being Gaussian, with stationary increments, null at point
zero almost surely, self-similar of order H and isotropic is enough to conclude
that X is the famous FBF of Hurst index H. Then, any restriction along straight
lines

Xθ,x0 = {X(x0 + tθ)−X(x0) ; t ∈ R}, (5)

for a point x0 ∈ R
2 and a unit vector θ = (θ1, θ2), will also be a fractional

Brownian motion (1 dimensional process) of index H.
When H1 �= H2, the stationarity of increments and the operator scaling property
with respect to the diagonal matrix E lead to the fact that for any x0 ∈ R

2,
processes Xθ,x0 are fractional Brownian motion of index H1 when θ2 = 0 and
H2 when θ1 = 0. Note that in any other direction θ with θ1 �= 0 and θ2 �= 0,
processes Xθ,x0 are not self-similar. Therefore self-similarity parameters are too
restrictive to characterize those processes. However, these parameters considered
at small scales, are closely linked to Hölder regularity index as we will see in the
next section.

2.2 Regularity

Using Kolmogorov-Centsov criterion [15], one can prove that H = min(H1,H2)
is the critical Hölder exponent of X. This means that for any α ∈ (0,H), sample
paths of X satisfy a uniform Hölder condition of order α on [−T, T ]d, for any
T > 0: there exists a positive random variable A with P(A < +∞) = 1 such that

∀x, y ∈ [−T, T ]d, |X(x)−X(y)| ≤ A|x− y|α; (6)

while for any α ∈ (H, 1), almost surely the sample paths of X fail to satisfy
any uniform Hölder condition of order α. We refer to Theorem 5.4 of [3] for the
proof of this result. Actually, global Hölder regularity H does not capture the
anisotropy of the field. Therefore one can study regularity properties of the field
along straight lines, considering critical Hölder exponent of processes defined by
(5). This will provide some additional directional regularity information. Note
that when X has stationary increments, the Hölder regularity of the process
Xθ,x0 will not depend on point x0 ∈ R

2 so one only has to study the regularity
of {X(tθ) ; t ∈ R} for all directions θ. Let us recall Definition 6 of [6].
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Definition 1. Let {X(x);x ∈ R
d} with stationary increments and let θ be any

direction of the unit sphere. If the process {X(tθ); t ∈ R} has Hölder critical
exponent γ(θ) we say that X admits γ(θ) as directional regularity in direction θ.

Note that ifX is a GFSD given by f , for any direction θ, the process {X(tθ); t ∈ R}
is still a Gaussian process with spectral density given by the Radon transform
of f , namely,

∀p ∈ R, Tθf(p) =
∫

R

f(pθ + sθ⊥)ds, (7)

where (θ, θ⊥) is an orthonormal basis of R
2. It is well known that the asymptotic

behavior of the spectral density determines the Hölder regularity of the process,
as we recall in the sequel. Let us first introduce some notations. For any H ∈
(0, 1), we note f(ξ) 
+∞ |ξ|−2H−1, if f satisfies: for any ε > 0 there exists
A,B1, B2 > 0 such that for almost all ξ ∈ R,

|ξ| ≥ A ⇒ B2|ξ|−2H−1−ε ≤ f(ξ) ≤ B1|ξ|−2H−1+ε. (8)

Remark that |ξ|−2H−1 is, up to a constant, the spectral density of a fractional
Brownian motion of Hurst index H. In the same vein, for any H ∈ (0, 1), we
note v(y) 
0 |y|2H , if v satisfies: for any ε > 0 there exists δ, C1, C2 > 0 such
that for all y ∈ R,

|y| ≤ δ ⇒ C2|y|2H+ε ≤ v(y) ≤ C1|ξ|2H−ε. (9)

We recall here results proved in [6].

Theorem 1. Let X be a Gaussian process with spectral density f and variogram
v. Let H ∈ (0, 1).
(a) If f(ξ) 
+∞ |ξ|−2H−1 then v(y) 
0 |y|2H .
(b) If v(y) 
0 |y|2H then X admits H as critical Hölder exponent.

In [4] we prove that better estimates on the spectral density enable to give
consistent estimators for H. Therefore we give stronger results for spectral den-
sities Tθf of line processes {X(tθ) ; t ∈ R}.
Theorem 2. Let f be a spectral density given by (4). Let θ = (θ1, θ2) be a unit
vector of R

2.
(a) If θ1 �= 0 and θ2 �= 0, then

Tθf(p) = |p|−2H1−1

(∫
R

(s2a + θ−2
1 )−βds

)
/|θ1|+O|p|→+∞

(
|p|−2H1−1−(1−1/a)

)
.

(b) If θ2 = 0, then Tθf(p) = |p|−2H1−1
(∫

R
(s2a + 1)−βds

)
.

(c) If θ1 = 0, then Tθf(p) = |p|−2H2−1
(∫

R
(s2 + 1)−βds

)
.

Proof. Let θ = (θ1, θ2), then one can choose θ⊥ = (θ2,−θ1) such that

Tθf(p) =
∫

R

(
(pθ1 + sθ2)2 + (pθ2 − sθ1)2a

)−β
ds.
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Let us assume that θ1 �= 0 and let the change of variables u = sθ1 − pθ2, then

Tθf(p) =
1
|θ1|

∫
R

(
(p/θ1 + uθ2/θ1)

2 + u2a
)−β

du. (10)

Since Tθf is an even function one can assume that p > 0 and let the change of
variables u = p1/as such that

Tθf(p) =
1
|θ1|p

1/a−2β

∫
R

((
1/θ1 + p−(1−1/a)sθ2/θ1

)2

+ s2a
)−β

ds.

This concludes for the proof when θ2 = 0 (and |θ1| = 1), since 1/a − 2β =
−1− 2H1. Otherwise, let us consider

|θ1|p−1/a+2βTθf(p)−
∫

R

(
1/θ2

1 + s2a
)−β

ds =
∫

R

Eθf(p, s)ds,

where

Eθf(p, s) =
((

1/θ1 + p−(1−1/a)sθ2/θ1

)2

+ s2a
)−β

− (1/θ2
1 + s2a

)−β
.

Note that

|Eθf(p, s)| ≤ 2βp−(1−1/a)|sθ2/θ1|
∫ 1

0

((
1/θ1 + tp−(1−1/a)sθ2/θ1

)2

+ s2a
)−β−1/2

dt

≤ 2βp−(1−1/a)|sθ2/θ1|
(
1/4θ2

1 + s2a
)−β−1/2

if |s| ≤ p1−1/a/2|θ2|
≤ 2βp−(1−1/a)|θ2/θ1||s|−2a(β+1/2)+1 if |s| > p1−1/a/2|θ2|.

Therefore, choosing p > |2θ2|1/(1−1/a), one has∫
R

|Eθf(p, s)| ds

2 ≤ βp−(1−1/a)|θ2/θ1|
(∫

R

|s| (1/4θ2
1 + s2a

)−β−1/2
ds+

∫
|s|>1

|s|−2a(β+1/2)+1ds

)
= Op→+∞

(
p−(1−1/a)

)
,

since 2a(β + 1/2) > 2aβ > 2. Finally, when θ1 = 0 (and |θ2| = 1), we have

Tθf(p) =
∫

R

(
s2 + p2a

)−β
ds.

Therefore, the change of variables s = pau leads to

Tθf(p) = pa−2aβ

∫
R

(
u2 + 1

)−β
du,

which concludes the proof since 2aβ − a = 2aH1 + 1 = 2H2 + 1.
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Following Definition 1 and combining Theorems 1 and 2 we obtain the following
results as stated in Theorem 5.4 of [3].

Proposition 1 For any direction θ = (θ1, θ2), the random field X admits H1

for directional regularity in direction θ such that θ1 �= 0. When θ1 = 0, the
random field X admits H2 for directional regularity in direction θ.

The next section is devoted to the construction of estimators for H1 and H2.

2.3 Estimation

Generalized quadratic variations, studied in [14, 16], have been extensively used
to estimate the Hurst parameter of a fractional Brownian motion. More generally
they allow the estimation of critical Hölder exponents for Gaussian processes or
fields. In [4] we give theoretical results of consitency and asymptotic normality
for estimators based on generalized quadratic variations under asymptotic de-
velopment of spectral densities assumptions. These results will be used in the
context of this paper. Let us recall principles of these estimations. Let Y be a
Gaussian process with stationary increments and a spectral density f . Let

{Y (k/N) ; 0 ≤ k ≤ N}

be an observed sequence. We consider the stationary sequence formed by second-
order increments of Y with step u ∈ N � {0}

∀ p ∈ Z, ZN,u(Y )(p) = Y ((p+ 2u)/N)− 2Y ((p+ u)/N) + Y (p/N) . (11)

The generalized quadratic variations of Y of order 2 are then given by

VN,u(Y ) =
1

N − 2u+ 1

N−2u∑
p=0

(ZN,u(Y )(p))2 . (12)

Let us quote that

E(VN,u(Y )) = E((ZN,u(Y )(0))2) = E

(
Y

(
2u
N

)
− 2Y

( u
N

)
+ Y (0)

)2

,

According to Proposition 1.1 of [4], when N → +∞,

E(VN,u(Y ))∼cHN−2Hu2H ,

for some cH > 0, whenever the spectral density f satisfies f(ξ)∼c|ξ|−2H−1,
when |ξ| → +∞, with H ∈ (0, 7

4

)
and c > 0. Intuitively, we can thus define an

estimator of H as

ĤN,u,v =
1

2 log(u/v)
log
(
VN,u(Y )
VN,v(Y )

)
. (13)
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In [14] the convergence of this estimator to H with asymptotic normality was
shown under some appropriate assumptions on the variogram of Y . In Proposi-
tion 1.3 of [4], under assumptions on the spectral density, we prove that almost
surely ĤN,u,v−→H, as N → +∞, with

√
N
(
ĤN,u,v −H

)
d−→ N (0, γu,vH ) , with NE

((
ĤN,u,v −H

)2
)
→γu,vH , (14)

for some positive constant γu,vH .

Now let us consider the 2-dimensional random field X and denote by VN,u(θ)
the variations of the line process Y = Xθ,x0 defined by Equations (5) and (12).
Let

ĥN,u,v(θ) =
1

2 log(u/v)
log
(
VN,u(θ)
VN,v(θ)

)
. (15)

Theorem 3. Let θ = (θ1, θ2) be a unit vector.

(a) If θ1 �= 0 and θ2 �= 0, then ĥN,u,v(θ)→H1, almost surely as N → +∞.
Moreover, when a > 2, (14) holds for H = H1.
When a ≤ 2,

E

((
ĥN,u,v(θ)−H1

)2
)

= ON→+∞

(
N−2(1−1/a)

)
.

(b) If θ2 = 0, then ĥN,u,v(θ)→H1, almost surely as N → +∞. Moreover, (14)
holds for H = H1.
(c) If θ1 = 0, then ĥN,u,v(θ)→H2, almost surely as N → +∞. Moreover, (14)
holds for H = H2.

Proof. Let θ = (θ1, θ2) be a unit vector. According to Proposition 1.3 of [4]
results follow if Tθf , the spectral density of the process Xθ,x0 fulfills assumptions
of Propositions 1.1 and 1.2 of [4]. We already know an asymptotic development
for Tθf from Theorem 2 such that Propositions 1.1 applies. The main additionnal
assumption of Propositions 1.2 is concerned with (9) requiring an asymptotic
development for the derivative of Tθf . However, it can be weakened by the
following one: Tθf is differentiable on R � (−r, r), for r large enough and

(Tθf)′(p) = O|p|→+∞

(|p|−2H−2
)
, (16)

with H = H1 if θ1 �= 0 and H = H2 otherwise. It remains to check (16). Let us
assume that θ1 �= 0 and recall that from (10), for all p �= 0,

Tθf(p) =
1
|θ1|

∫
R

(
(p/θ1 + uθ2/θ1)

2 + u2a
)−β

du.

Therefore Tθf(p) is differentiable on R � {0} with

(Tθf)′(p) = − 2β
|θ1|θ1

∫
R

(p/θ1 + uθ2/θ1)
(
(p/θ1 + uθ2/θ1)

2 + u2a
)−β−1

du.
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Let p > 0 and let the change of variables u = p1/as such that

(Tθf)′(p) = −2βp1/a−2β−1

|θ1|θ1

∫
R

(
1
θ1

+
sθ2

θ1p1−1/a

)((
1
θ1

+
sθ2

θ1p1−1/a

)2

+ s2a

)−β−1

ds.

Then, as in the proof of Theorem 2, one can show that

|(Tθf)′(p)| ≤ 2βp1/a−2β−1

θ2
1

(∫
R

3
2|θ1|

(
1/4θ2

1 + s2a
)−β−1

ds+
∫
|s|>1

s−a(2β+1)ds

)
.

This gives (16) with H = H1, since (Tθf)′ is odd, 1/a− 2β − 1 = −2H1 − 2 and
a(2β + 1) > 1.
The remaining cases θ1 = 0 or θ2 = 0 are straightforward using (b) and (c) of
Theorem 2.

3 Application to trabecular bone x-ray images

Results of [1] suggest that fractal analysis of trabecular bone radiographic images
is a good indicator of the alteration of the bone microarchitecture. In association
with bone mineral density, fractal analysis improves the fracture risk evaluation.
However, since this analysis is based on an isotropic model, it does not reveal
bone texture anisotropy which is of special interest for the diagnosis of osteo-
porosis [7, 9].

In this section, we apply our estimation methods to trabecular bone x-ray
images. The database contains radiographs of 211 post menopausal women, 165
being control cases and 46 osteoporotic fracture cases. Radiographs were ac-
quired at INSERM U658 (Orleans, France) using a standardized procedure [18].
They were obtained on the calcaneus (a heel bone) with a direct digital X-ray
prototype (BMATM, D3A Medical Systems, Orleans, France) with focal distance
1.15 m and X-ray parameters 55 kV and 20 mAs. The high-resolution digital de-
tector integrated into the device prototype had a 50 μm pixel size, providing a
spatial resolution of 8 line pairs per millimeter at 10% modulation transfer func-
tion. For each subject, the software device selected a region of interest (ROI) of
constant size 1.6× 1.6cm2 at a same position using three predefined anatomical
landmarks localized by the operator ; see figure 1.

In each image of the ROI, we computed the quadratic variations on lines
oriented in four different directions ((1) horizontal direction (θ = (1, 0)), (2)
vertical direction (θ = (0, 1)), (3) first diagonal direction ( θ = (1, 1)/

√
2), (4)

second diagonal direction ( θ = (−1, 1)/
√

2)) and at scales u ranging from 1 to
20 pixels (see Equations (5) and (12)). Log-log-plots of mean variations vs. scale
are shown on Figure 1. Scale properties observed in direction 2 differ significantly
from those in directions 1, 3 and 4, which are very close. The graph is almost a
line in direction 2 (vertical) whereas it is curvilinear in the other directions.

In direction 2, images could be considered as self-similar from the smallest
scale to the largest one. In other directions, the self-similarity property is not
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valid considering all scales. This property is partially true on two consecutive
scale ranges: a small scale range from 1 (50μm) to 5 pixels (250μm) and a large
scale range above 5 pixels (250μm). The first range covers scales correspond-
ing to the thickness of trabeculae in the calcaneus. The second range includes
scales which are beyond the size of bone structures. In other words, in directions
1, 3, and 4, we can clearly distinguish the scaling properties inside structures
from those between the structures. Besides, differences observed between scaling
properties in direction 2 and in directions 1, 3 and 4 reflect the presence of longi-
tudinal trabeculae, which are predominant structures in the calcaneus oriented
in direction 2.
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Fig. 1. On the left, a calcaneum ROI delimited in the heel with four anatomical land-
marks (top image) and a radiograph of the ROI (bottom image). On the right, plots
of the logarithm of the quadratic variations Vu versus the logarithm of the scale u (in
pixels) in four different directions θ of the plane.

As described in Equation (15), we estimated the anisotropic index in the
four directions on each image by comparing quadratic variations at scales u = 6
and v = 5 (pixels). On average, we obtained values 0.51 ± 0.08, 0.56 ± 0.06,
0.51±0.08, and 0.51±0.09 for directions 1, 2, 3, and 4, respectively. Comparisons
of estimates in pairs of directions on each image are shown on Figure 2. They
reveal that the anisotropic index is approximately the same in directions 1, 3,
and 4 and higher in direction 2. This observation suggests that bone radiographs
would have the same regularity in all directions except one (direction 2). From
a theoretical point of view, such a property is consistent with the property of
Gaussian operator scaling random fields proven in Theorem 2 of this paper.
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Fig. 2. Comparison of the anisotropic index estimation in pairs of directions. H1, H2,
H3 and H4 are the estimation of the anisotropic index in directions (1, 0), (0, 1), (1, 1),
and (−1, 1), respectively. In each figure, dots represent the estimation of the indices
for a subject.

4 Conclusion

In this paper, we studied some particular operator scaling fields which are
anisotropic generalizations of the Fractional Brownian Field. We showed that
they have a privileged direction where line restrictions are more regular than
in other directions. We also constructed some techniques for the estimation of
parameters of these fields, using line restrictions and following principles of gen-
eralized quadratic variations. We proved the convergence of these estimators. We
then modeled trabecular bone radiographs by operator scaling Gaussian random
fields and showed experimentally that images had some properties of the model.
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Abstract. The ability to detect and measure non-calcified plaques (also known

as soft plaques) may improve physicians’ ability to predict cardiac events. This is

a particularly challenging problem in computed tomography angiography (CTA)

imagery because plaques may have similar appearance to nearby blood and mus-

cle tissue. This paper presents an effective technique for automatically detecting

soft plaques in CTA imagery using active contours driven by spatially localized

probabilistic models. The proposed method identifies plaques that exist within

the vessel wall by simultaneously segmenting the vessel from the inside-out and

the outside-in using carefully chosen localized energies that allow the complex

appearances of plaques and vessels to be modeled with simple statistics. This

method is shown to be an effective way to detect the minute variations that distin-

guish plaques from healthy tissue. Experiments demonstrating the effectiveness

of the algorithm are performed on eight datasets, and results are compared with

detections provided by an expert cardiologist.

1 Introduction

Heart disease remains the leading cause of death in western countries. A number of

recent studies have demonstrated that the presence of vascular plaques can be a signif-

icant indicator of risk for cardiac events [1]. The advent of multi-detector computed

tomography (MDCT) and computed tomography angiography (CTA) allows one to

non-invasively image these plaques, which can be categorized as either calcified or

non-calcified based on their composition. Calcified plaques are easily discernible due to

their high density and corresponding bright appearance in computed tomography (CT)

(a) (b) (c) (d)

Fig. 1. Using CTA Imagery shown in (a) and a single-point initialization shown as the dark spot

in (b), the vessel is segmented (c) and used to detect non-calcified plaques (d) in the vessel tree.
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imagery. Consequently, several techniques have been presented to automatically detect

calcified plaques with reasonable accuracy [2, 3]. Alternatively, non-calcified plaques,

also known as soft plaques, have a CT attenuation similar to blood and myocardial tissue

making them difficult to detect, even for trained experts [4, 5]. Detection and segmen-

tation of soft plaques is essential given that non-calcified plaques are much more likely

than calcified plaques to rupture and cause a variety of acute coronary syndromes [6].

This paper presents an effective and straightforward technique for automatically

detecting soft plaques in CTA imagery based on multiple segmentations of the vessel

wall. The segmentations are performed using multiple active contours driven by spa-

tially localized statistical models that allow the complex appearances of plaques and

vessels to be described with simple statistics. First, the vessel tree is extracted using a

single, user-provided initialization point. Next two surfaces are constructed that lie just

inside and just outside the vessel wall. An active contour model driven by a localized

energy designed for plaque detection is then employed to simultaneously segment the

interior and exterior of the vessel wall. Finally, areas where these two segmentations do

not match are identified as potential regions of non-calcified plaque. Figure 1 shows an

example of the imagery used, the initialization, the segmented vessel, and the detected

plaque.

To the best of our knowledge, there is little published literature on automatic soft

plaque detection in CTA imagery. The one recent paper to explicitly addresses this prob-

lem by Renard and Yang [7] also utilizes localized information to segment the interior

and exterior of the vessel wall. The method in [7] requires pre-and post processing of the

volume, describes no way to detect plaques in branching vessels, and uses an adaptive

thresholding scheme for segmentation. By contrast, the present work casts the prob-

lem in a variational active contour framework that operates directly on the raw imagery

thus reducing algorithmic complexity and the number of parameters. Furthermore, the

proposed method naturally handles branching vessels and benefits from the geometric

properties of active contours.

The segmentation and detection algorithms are described in detail in Section 2.

In Section 3, experiments are shown on several vessel trees including the right coro-

nary artery (RCA), left circumflex (LCX), and left anterior descending (LAD). The

results are then compared with detections made by an expert cardiologist to validate the

method. Finally, conclusions and directions for future work are given in Section 4.

2 Detection Algorithm

In this section, the framework used to guide an active contour segmentation with local-

ized statistics is summarized, and two separate energies are shown. The behaviors and

underlying assumptions are described in detail for each of these energies, which are

used for vessel segmentation and plaque detection, respectively. Additionally, the pro-

cess for vessel segmentation, creation of the interior and exterior initialization surfaces,

and soft plaque detection are discussed.
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2.1 Localized Contours

The detection method presented in this paper makes extensive use of localized active

contours as described recently by several authors [8–10]. This technique allows region-

based segmentation energies to be spatially localized such that statistical models of the

foreground and background adapt to image information as it changes over the domain of

the image. This allows for improved modeling accuracy with simplified statistical mod-

els. Furthermore, it is particularly powerful for segmenting vessels, which often exhibit

changing image intensities over their length, and for the identification of non-calcified

plaques, which typically have only slight intensity differences from surrounding struc-

tures.

To define these localized active contours, assume that the domainΩ ⊂ R
n of a given

intensity image I is partitioned into regions by an evolving surface in 3D or contour C
in 2D, where C is embedded in a signed distance function φ : R

n → R such that

C = {x|φ(x) = 0} [11, 12]. The interior region is defined by the Heaviside function,

Hφ, which is 1 when φ < 0, 0 when φ > 0, and has a smooth transition through

0. Similarly, the interface at the zero level set can be denoted by δφ, the derivative of

Hφ, which is 1 when φ = 0 and 0 far from the interface. Localized active contours

also utilize a characteristic function, B(x, y) representing a ball of radius r centered at

x such that B(x, y) = 1 when ‖x − y‖ ≤ r. Given these definitions localized active

contours minimize energy functionals of the form

E(φ) =
∫

Ωx

δφ(x)
∫

Ωy

B(x, y) · F (I, φ, x, y)dy + λδφ(x)|∇φ(x)|dx, (1)

where λ is a scalar weight on the arc-length and F (I, φ, x, y) represents an internal

energy functional that is selected based on the application. The sparse level set repre-

sentation presented by Whitaker in [13] is used for implementation due to its accuracy

and speed.

To segment the vessels, an internal energy based on the one presented by Chan

and Vese in [14] is used while a separate energy, similar to the one proposed by Yezzi et
al. in [15], is used for detection of plaques. Both internal energies make use of localized

interior and exterior means

μin(x) =

∫
Ωy
B(x, y) · Hφ(y) · I(y)dy∫
Ωy
B(x, y) · Hφ(y)dy

(2)

μout(x) =

∫
Ωy
B(x, y) · (1−Hφ(y)) · I(y)dy∫
Ωy
B(x, y) · (1−Hφ(y))dy

, (3)

which measure local regions centered around a point x as shown in Figure 2.

More specifically, for vessel segmentation, the uniform modeling energy, based on

[14] is employed. With this choice of internal energy, Equation (1) is minimized when

local interior and exterior regions are well characterized by μin(x) and μout(x), respec-

tively. Hence, the interior energy for uniform modeling is given by

FUM = Hφ(y)
(
I(y)− μin(x)

)2 + (1−Hφ(y))
(
I(y)− μout(x)

)2
. (4)
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(a) B(x, y) (b) B(x, y) · Hφ(y) (c) B(x, y) · (1−Hφ(y))

Fig. 2. Visualization of the local regions over which statistics are computed. The cylinder repre-

sents the surfaceC. The dark ball in (a) shows the full ball selected by B(x, y) while dark regions

in (b) and (c) show the local interior and exterior regions respectively.

This energy is ideal for vessel segmentation, because it allows the surface to expand into

areas of similar local intensity as long as a larger difference exists between local interi-

ors and exteriors. This allows rapid segmentation of vessels despite changing intensities

along the length of the vessel.

For soft plaque detection, the means separation interior energy is utilized. This

energy is based on an energy presented in [15] and is minimized when the difference

between μin(x) and μout(x) is maximized. Thus, the internal energy can be expressed

as

FMS = −(μout(x)− μin(x)
)2
. (5)

This is ideally suited for detection, because expansion into nearby regions that have

slightly different intensities is discouraged, even if the local means are similar. This

more stringent constraint is quite valuable when attempting to differentiate between

vascular plaques and surrounding tissue.

2.2 Vessel Segmentation

The first step in detecting soft plaques is to segment a given vessel tree by minimiz-

ing Equation (1) with the uniform modeling internal energy from Equation (4). This

energy is particularly powerful for segmenting vessels. By looking locally, it is able to

accommodate variations in intensities that occur over the length of vessels, while also

remaining sensitive to slight intensity differences that separate vessels from adjacent

structures. Hence, the entire vessel can be captured from a single-point initialization

while at the same time preventing leaks into nearby contrast-filled heart chambers. In

the event that the vessel is completely occluded, additional initialization points may

be required to achieve a full segmentation. This localized active contour approach also

responds naturally to branches in the vessel, capturing them automatically without any

special schemes to detect their presence.

During vessel extraction and plaque detection, a restricted domain Ω̃ is used, which

only includes voxels representing the heart and ignores very dark voxels representing

air present in the lungs. This restricted domain is created by excluding from Ω any

points that fall below a threshold of -600 Houndsfield units (HU). This threshold is

significantly below the ranges for blood, plaques, and myocardial tissues in all CTA
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data. Using a single-point initialization within the vessel, the entire vessel structure can

be extracted by updating φ according to.

dφ(x)
dt

= δφ(x)
∫

Ω̃y

B(x, y) · δφ(y) ·
((
I(y)− μin(x)

)2 − (I(y)− μout(x)
)2)

dy

+λdiv

( ∇φ(x)
|∇φ(x)|

)
. (6)

The parameter values λ = 0.1max(|dφ
dt |) and r = 5 mm are used throughout. This

choice for r is reasonable, representing the maximum possible diameter for vessels in

the vessel tree. Figure 3 shows the initializations, and resulting vessel segmentations on

the LAD, LCX and RCA vessel trees.

(a) (b)

(c) (d)

Fig. 3. 3D Renderings of initializations and segmentation results on the (a) LAD, (b) LCX, and (c,

d) RCA. For each, the initialization is shown on left as a dark point and the resulting segmentation

is shown on the right.

2.3 Constructing the Initialization

Using the vessel segmentation as starting point, two surfaces are created that act as

initializations for the detection step. These initializations are formed inside and outside

of the initial vessel segmentation so that plaques, which form within the vessel wall,

will be located between the two surfaces.

To create the interior surface a third localized energy is employed that relies only

upon the geometry of the surface and not image information. Here, the internal energy
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defined as FSHRINK = Hφ(y) penalizes interior area locally. Thus as the energy is mini-

mized, the segmented vessel surface will thin with each iteration, but the thickest parts

of the vessel surface will thin the fastest. Thus by running a few iterations, an interior

surface is created that preserves the topology of the original surface and is always inside

of it. This is similar to a medial axis (skeleton) except that relative thicknesses of vessel

segments are preserved, meaning that although all segments become thinner, thick seg-

ments remain thicker than thin segments. Also, the surface resulting from this process

will have a definite interior so that image statistics can be computed within it.

The exterior initialization is created by evolving the segmented vessel surface out-

ward along its unit normal for several iterations. In our case, this is functionally equiv-

alent to morphological dilation with a 5 mm×5 mm ball-shaped structuring element.

The end result is a surface which is always outside of the initial vessel segmentation.

2.4 Plaque Detection

The next step involves the application of the means separation internal energy from

Equation (5) to pull the two initial surfaces towards each other. Where no soft plaque

exists, the two surfaces will meet on the vessel wall. However, if a soft plaque deposit

exists between the two evolving surfaces they will each stop on the plaque boundary

and remain separated from one another. By identifying areas where the two contours do

not meet, soft plaques are detected.

The interior and exterior surfaces created in Section 2.3, are each deformed to min-

imize the means separation energy using the update function

dφ(x)
dt

=
∫

Ω̃y

B(x, y) · δφ(y)

((
I(y)− μout(x)

)2
Aout(x)

−
(
I(y)− μin(x)

)2
Ain(x)

)
dy

+λdiv

( ∇φ(x)
|∇φ(x)|

)
(7)

where Ain(x) and Aout(x) are defined as the areas of the local interior and exterior

regions, respectively. Minimizing this energy deforms the surface such that local means

are pulled apart as much as possible.

Initially, the local interior regions of the inner surface will only include bright blood

voxels. As the surface deforms, it will expand to capture more voxels containing blood

but will not expand into slightly darker soft plaque voxels. Similarly, the exterior surface

will not contract if doing so would cause soft plaque voxels, which are slightly brighter

than myocardium voxels, to move into its local exterior regions. This behavior allows

the two evolving surfaces to capture soft plaques between each other because neither

will move into the plaque voxels when driven by the localized means separation energy.

The two surfaces are evolved until convergence, and soft plaques are defined as

areas where the distance between the two surfaces is larger than one voxel. A label map

P , which is 1 where plaques exist and 0 elsewhere, is defined as

P =
(
1−H(φinterior)

) · H(φexterior + 1). (8)
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3 Experiments

The results of experiments on MDCT scans of 8 patients undergoing CTA, for which

we were able to obtain expert markings of soft plaques, are presented in this section. All

scans were taken with a Siemens Sensation 64-slice multi detector CT machine and ex-

amined by an expert investigator to mark soft plaque deposits. For each dataset, plaques

were detected using the algorithm presented in Section 2 based on a single-point ini-

tialization within the vessel tree of interest. The output of this detection algorithm was

then compared to markings made by an expert investigator. Note that the expert mark-

ings denote large areas that are likely to contain plaques while the proposed detection

algorithm finds the outline of the detected plaques.

First, we show examples of plaque detection on 2D slices where the behavior of the

algorithm is easy to visualize. Figures 4 and 5 show examples of non-calcified plaques

that cause negative and positive remodeling of the vessel wall, respectively. Each figure

shows the initial interior and exterior surfaces, both surfaces after evolution with the

local means separation energy, the expert markings, and the detected plaque.

(a) Initial Surfaces (b) Result of Evolution (c) Expert Marking (d) Detected Plaque

Fig. 4. A 2D view of detection results on the LAD (also shown in Figure 6a). The vessel demon-

strates negative remodeling in the presence of plaque. The images depict (a) the initial interior

and exterior surfaces, (b) the result of evolution with the local means separation energy, (c) the

expert markings, and (d) the detected plaque.

(a) Initial Surfaces (b) Result of Evolution (c) Expert Marking (d) Detected Plaque

Fig. 5. A 2D view of detection results on the RCA (also shown in Figure 6d). The vessel demon-

strates positive remodeling in the presence of plaque. The images depict (a) the initial interior

and exterior surfaces, (b) the result of evolution with the local means separation energy, (c) the

expert markings, and (d) the detected plaque.
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Figure 6 shows rendered 3D views of the results from all 4 datasets that contained

soft plaques. For each vessel tree, the segmented vessel is shown with truth markings

and detected plaques. The datasets include plaques located in the LAD, LCX, and RCA

vessel trees. In these experiments, plaques were identified well based on a single-click

input. In total, 8 plaques were marked by the expert investigator within the 4 datasets.

The proposed algorithm correctly identified 7 of 8 (87.5%) plaques with 1 false negative

and 0 false positives. Additionally, the 4 datasets in which the LAD, LCX, and RCA

were determined to be free of plaques were tested and, the algorithm correctly detected

0 plaques.

(a) (b)

(c) (d)

Fig. 6. 3D Renderings of detection results on the (a) LAD, (b) LCX, and (c, d) RCA. For each,

the expert markings are shown in blue on the left, and the detection results are shown in yellow

on the right.

4 Conclusions

In this note, we presented a technique that is capable of segmenting vessel trees and

detecting non-calcified plaques automatically based on a very simple user input. The

algorithm is based on a localized active contour framework that employs a scale param-

eter to restrict the statistical characteristics of the vessel into local regions. This allows

simple probabilistic models based on local means to accurately extract the vessel and

find areas where soft plaques exist. Experiments have shown good results that match

experts’ markings regarding the location of plaques.
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Future work on this method will include coupling the evolution of the interior

and exterior surfaces so that information about local intensities and geometries can be

shared in order to detect plaques more robustly. Furthermore, a larger study is planned

in which a larger number of datasets will be analyzed, a quantitative analysis will be

performed, and the method will be compared with intravascular ultrasound imagery

to confirm the presence and composition of detected plaques. We believe this work has

the potential of being an important step forward in automatically detecting non-calcified

plaques, which have been clearly linked with the occurrence of heart attacks and stroke.
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Abstract. In order to successfully perform automatic segmentation in
medical images containing noise and intensity inhomogeneities, mod-
ern algorithms often rely on a priori knowledge about the respective
anatomy. This is often introduced by statistical shape models (SSMs)
which are typically based on one-to-one point correspondences. In this
work, we propose a unified statistical framework for image segmentation
with shape prior information. The shape prior is an explicitly represented
probabilistic SSM based on point correspondence probabilities, and the
segmentation contour is implicitly represented by the zero level set of
a higher dimensional surface. These two aspects are unified in a Max-
imum a Posteriori (MAP) estimation where the level set is evolved to
converge towards the boundary of the organ to be segmented based on
the image information while taking into account the prior given by the
SSM information. The optimization of the MAP formulation leads to
an alternate update of the level set and an update of the fitting of the
SSM. We demonstrate the efficiency of our new algorithm with soft tissue
segmentation where adaptive weights ensure that the SSM constraint is
optimally exploited. Our experimental results show the well-posedness of
the approach on noisy kidney CT data impaired by breathing artefacts.

1 Introduction

Segmentation algorithms play a major role in medical image analysis, however,
due to typical medical image characteristics as poor contrasts, gray value in-
homogeneities, contour gaps and noise, the automatic segmentation of many
anatomical structures remains a challenge. To overcome these problems, models
incorporating a priori knowledge about mean and variance of shape and gray
levels as first proposed by [1] are often employed. However, a SSM is easily too
constrained for some segmentation tasks when the number of training obser-
vations is too small to represent all the probable shape variabilities. To lighten
this constraint, deformable models which balance between SSM and image infor-
mation are frequently proposed (e.g. [2–4]). These SSMs are typically based on

Probabilistic Models For Medical Image Analysis 2009

34



one-to-one point correspondences and the segmentation is explicitely parameter-
ized which makes them inflexible to topological changes. In this work, we propose
an automatic segmentation method that couples an implicit parameterization of
the segmentation with a probabilistic SSM based on point correspondence prob-
abilities [5]. We integrate the explicit SSM information into an implicit level set
framework where the contour of the segmentation is represented by the zero level
set of a higher dimensional function. This front propagation approach was first
proposed by [6] and later used for image segmentation by [7]. By choosing an
implicit over an explicit representation, our algorithm is kept flexible to different
segmentation problems, no remeshing mechanisms have to be implemented, the
algorithm can be adapted easily to non-spheric topologies and the integration of
regional statistics is straightforward. As a result, the segmentation method does
not suffer from the limitations of SSMs while enjoying their benefits in yielding
robust and smooth segmentations. An elaborate overview of level set segmenta-
tion methods and their advantages can be found in [8]. Methods have already
been proposed to make and incorporate statistics on surfaces directly on the
level-set surfaces by doing for instance PCA particularly on distance functions
as first proposed by Leventon et al. [9] and later adapted by Tsai et al. [10] as
well as Rousson et al. [11]. In [12] Cremers extended the approach by dynamical
priors for tracking problems. This approach is intuitive and the integration of
the priors on shape variation into the level set segmentation is straightforward.
However, understanding the variability information on distance functions is not
obvious so that it seems difficult to exploit it for a physical modeling of the
shape variability. In contrast, by modeling the a priori shape knowledge via an
explicitly represented, point-based SSM, we are able to incorporate variation
modes with a physical significance which can be controlled directly.
In order to put the implicit representation within a unified statistical framework,
we developed a MAP estimation of the level set which is optimized based on the
image information as well as the SSM information about probable shapes. The
MAP estimation is optimized by alternately updating the level set and updating
the SSM parameters to best fit the current zero level set. As our segmentation
method is focused on soft tissue in low quality images, we chose the level set
formulation presented by Chan and Vese [13]. We further refine this approach
by using a prior knowledge about grey value distributions inside and outside the
organ as presented in [14] in order to robustify against intensity inhomogeneities
across patients as well as inside the respective structures.
The remainder of this paper is organized as follows: The probabilistic SSM and
the development of the MAP estimation are presented in section 2. Results of
experiments on noisy kidney CT data are shown in section 3. Section 4 discusses
the algorithm and results and concludes the paper.
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2 Method

2.1 Statistical Shape Model Based on Correspondence Probabilities

In order to develop a comprehensive statistical formulation, we chose to use the
probabilistic shape model proposed in [5]. In this model, the model and obser-
vation parameters are computed in a unified MAP framework which leads to an
optimal adaption of the model to the set of observations. The registration of the
model on the observations is solved using an affine version of the Expectation
Maximization - Iterative Closest Point (EM-ICP) algorithm which is based on
probabilistic correspondences and proved to be robust and fast [15]. The alter-
nated optimization of the MAP explanation with respect to the observation and
the generative model parameters leads to very efficient and closed-form solutions
for (almost) all parameters. The SSM is explicitly defined by 4 model parameters
Θ = {M̄, vp, λp, n}:
– mean shape M̄ ∈ R

3Nm parameterized by Nm points mj ∈ R
3,

– variation modes vp consisting of Nm 3D vectors vpj ,
– associated standard deviations λp which describe - similar to the classical

eigenvalues in the PCA - the impact of the variation modes,
– number n of variation modes.

From the parameters Θ of a given structure, the shape variations of that struc-
ture can be generated by M = M̄ +

∑n
p=1 ωpvp with ωp ∈ R being the de-

formation coefficients. The shape variations along the modes follow a Gaussian
probability with variance λp:

p(Ω) =
n∏
p=1

p(ωp) =
1

(2π)n/2
∏n
p=1 λp

exp

(
−

n∑
p=1

ω2
p

2λ2
p

)
, Ω = {ω1, ..., ωn}. (1)

In order to account for the unknown position and orientation of the model in
space, we introduce the rigid or affine transformation T consisting of a matrix
A ∈ R

3×3 and a translation t ∈ R
3. A mean model point m̄j can then be

deformed and placed by T � mj = A(m̄j +
∑n

p=1 ωpvpj) + t.

2.2 Level Set Segmentation Using a MAP Approach

The MAP Formulation Given a shape represented as a set of points with
model parametersΘ in our SSM, we first model the probability of the surface best
separating the interior and exterior of the object. This amounts to specifying the
probability of a function φ whose zero level set is the object boundary knowing
the SSM deformation parameters Q = {T,Ω}. For the second step, we assume
the following image formation model: The intensity is assumed to follow a law
pin for the voxels inside the object and a law pout outside. Given this generative
model, the segmentation is the inverse problem: The MAP method consists of
estimating the most probable parameters φ and Q given the observation of an
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image I : X → R. Hence, we evolve the level set function φ such that p(φ,Q|I)
is maximized.

MAP = argmaxp(φ,Q|I) = argmax
p(I|φ,Q)p(φ|Q)p(Q)

p(I)
. (2)

The shape prior does not add any information when the zero level set of φ is
known, so I and Q are conditionally independent events p(I|Q,φ) = p(I|φ), and
we can write

p(φ,Q|I) = p(φ, T,Ω|I) =
p(I|φ)p(φ|T,Ω)p(T,Ω)

p(I)
. (3)

p(I) is constant for a given image. Besides, we assume p(T ) to be independent
and uniform, so we derive the following energy functional:

E(φ,Q) = −α log(p(I|φ)) − τ log(p(φ|Q))− κ log(p(Ω)) (4)

with introduced weights α, κ, τ ∈ R to normalize the scale of the distributions.
The first term of equation (4) describes the region-based energy with object
specific priors which are given by the normalized grey value distributions pin
inside the organ and pout outside the organ as found in the training data set
which leads to

log(p(I|φ)) = −
∫
X

Hε(φ(x)) log pin(I(x))dx −
∫
X

(1−Hε(φ(x))) log pout(I(x))dx.

Hε(φ(x)) is a continuous approximation of the Heaviside function which is close
to zero outside the object and close to one inside the object.
The front propagation of φ is guided by the probabilistic SSM which models
all points x as a mixture of Gaussian measurements of the (transformed) model
points mj . The probability of a point x modeled by the SSM given Q is the
normalized sum of correspondence probabilities of x and all mj and equals

p(x|Q) = pΘ =
1
Nm

Nm∑
j=1

exp(−|x− T � mj |2
σ2
θ

). (5)

For a contour Γ describing the zero level set of φ, the log of the probability is
computed by log(p(φ|Q)) = log(

∏
x∈Γ p(x|Q)) =

∫
x∈Γ

log p(x|Q)dx. Integrating
over the whole length of the contour is then expressed by

log(p(φ|Q)) =
∫
X

δε(φ(x))|∇φ(x)| log p(x|Q)dx, (6)

with δε(φ(x)) having a small support > 0. We then add a normalization over the
length which leads to log(p′(φ|Q)) = log(p(φ|Q)p(φ|l0)) =

∫
X δε(φ(x))|∇φ(x)|

(log p(x|Q) − β)dx with β = 1
l0
∈ R where l0 controls the normalization of

the length. (For p(x|Q) = const this equation is generalized to the classical
smoothing term

∫
X δε(φ(x))|∇φ(x)|dx as used by [13].)

The definition of p(Ω) is given by the Maximum Likelihood in equation (1).
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a) b)

Fig. 1. Illustration of the probabilistic SSM represented by a white contour slice. a)
Correspondence probability for image points x. b) Gradient magnitude of probability.

Segmentation Minimization of (4) is done by alternating a gradient decent
for the embedding function φ with an update of the parameters T and Ω which
serves to match the SSM to the current zero level set. The gradient descent for
computing ∂E(φ,Q)

∂φ with fixed Q is given by

∂φ

∂t
= δε(φ)

(
α1 log(pin)− α2 log(pout)− τ < ∇(log pΘ),

∇φ
|∇φ| >

+div
( ∇φ
|∇φ|

)
(β − τ log pΘ )

)
. (7)

To fit the SSM to the current zero level set, T is computed by

∂E(φ, T,Ω)
∂T

=
∂

∂T

∫
X

δε(φ(x))|∇φ(x)| log

⎛⎝ 1
Nm

Nm∑
j=1

exp(−|x− T � mj |2
σ2
θ

)

⎞⎠ dx = 0

with fixed φ and Ω. We employ the affine EM-ICP registration where first the
correspondence probabilities between the zero level set and the points of the
SSM are established in the expectation step and then T is computed in the
maximization step.
Subsequently, we fix φ and T and compute the Ω which solve ∂E(φ,Ω,T )

∂Ω = 0. This
leads to a matrix formulation in a closed form solution. For a detailed derivation
please refer to [5].
The constraints of the SSM on the level set propagation are twofold. The cur-
vature term log pΘ div

(
∇φ
|∇φ|

)
ensures that smoothness of the contour is more

important at locations of low SSM probability, see figure 1a). Hence, we use
a prior whose contour is length minimizing. In addition, the scalar product
< ∇(log pΘ), ∇φ

|∇φ| > ensures that the zero level set is actively drawn towards
the SSM shape, see figure 1b). The variance σ2

θ is a sensitive parameter and has
to be carefully adapted to the problem at hand.
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a) b) c) d) e)

Fig. 2. Statistical Shape Model computed for a training data set of 10 segmented kid-
neys rendered with vtk. (a) shows the meanshape, (b-e) show the meanshape deformed
with respect to first and second mode of variation: M̄ − λ1v1, M̄ + λ1v1, M̄ − λ2v2,
M̄ + λ2v2.

2.3 Practical Aspects

Intensity Distribution In order to determine pin and pout, we sample the
intensities around the surface and estimate the density functions using a Parzen
window approach. We do this on the same training data set we built the proba-
bilistic SSM on. We use a Gaussian kernel and chose a width of h = 5 based on
empirical tests.

Automatic Initial Positioning In order to determine the initial SSM defor-
mation parametersQ, we apply an evolutionary algorithm. A random population
of shapes is built by generating a random set of normally distributed transfor-
mations Tk and deformations Ωk and using them to deform the mean shape M̄ .
In each iteration, the fittest individuals are selected and Tk as well as ωkp are
modified randomly to again generate a random set until a good initial position
and shape are found. The fitness depends on the sum of distances between SSM
points and the nearest voxel with high image gradient magnitude. An example
is depicted in figure 3a).

3 Experiments and Results

We apply our method to the segmentation of the left kidney in CT images. The
images (512×512×(32−52) voxels with resolution 0.98×0.98×(2.9−5.0)mm3)
as well as the segmentations were kindly provided by the department of Com-
puter Science, UNC, Chapel Hill. The CT images are quite noisy, and the quality
lacks because of breathing artefacts.
Experiment Setup: The data set consists of 16 kidney CTs. The probabilistic
SSM for the kidney is built using a training data set of 10 segmented observa-
tions, see figure 2. The segmentation method is then tested on the remaining 6
kidneys. For the segmentation, we set the weights α1 = 1, α2 = 1, κ = 1, β = 0
and τ = {0.1, 0.2}. In most cases, the algorithm converged after 150 iterations.
Each data set is segmented once with the level set segmentation without shape
priors as proposed by [14] and once with the probabilistic SSM prior informa-
tion integrated in the level set segmentation. For comparison purposes, we also
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Fig. 3. Segmentation Results on a kidney in CT data, sagittal slice. The blue contour
is the gold standard segmentation. Image (a) shows the initial contour in yellow and
the contour after applying the automatic evolutionary algorithm as described in section
2.3 in white. Image (b) shows the result of the unconstrained (red) and the result of
the SSM constrained (green) level set segmentation.

add the segmentation results on the same data set using the SSM directly in an
Active Shape Model (ASM) approach as proposed in [16]. Starting from a well-
defined explicit surface mesh (in contrast to an implicit segmentation contour),
suitable boundary candidates are searched by evaluating certain grey value and
gradient characteristics in normal direction, and the SSM is transformed and
deformed in model space in order to optimally approximate the surface spanned
by the best fitting candidates.

3.1 Experimental Results

We compare the results with the gold standard segmentations by evaluating the
Jaccard coefficient, the Dice coefficient and the Hausdorff distance, see table 1.
Using the SSM as an ASM does not lead to satisfying results. This is due to
the difficulty of determining reliable contour candidates in the noisy CT images
impaired by breathing artefacts. In contrast, the level set framework using a-
priori information on the grey level intensities yields good segmentation results
overall. The SSM constraint on the level set evolution yields even better results
in all cases. The advantage of adding the prior shape information can be seen
distinctly for patient 2 where the Hausdorff distance diminished from 9.95mm to
5.0mm and for patient 6 where the Hausdorff distance diminished from 12.57mm
to 7.68mm. This is due to the fact that the evolving zero level is attracted by
a neighbouring organ with similar grey value intensities as the kidney. This
leakage can be successfully prevented by integrating the SSM prior on shape
probabilities. As an example, the effect on patient 2 is shown in figure 3b).

3.2 The Role of the Parameters

As our functional in eq. (7) is derived by a MAP explanation, in theory all
coefficients should be equal to 1. Expanding on this probabilistic analogy, the
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ASM only LS LS + SSM

D(A,B) - 0.93 0.93
Pat1 J(A,B) - 0.88 0.87

H(A,B) 16.66 8.66 6.40

D(A,B) - 0.91 0.93
Pat 2 J(A,B) - 0.83 0.88

H(A,B) 7.34 9.94 5.0

D(A,B) - 0.89 0.91
Pat 3 J(A,B) - 0.81 0.84

H(A,B) 7.58 5.83 5.10

D(A,B) - 0.88 0.89
Pat 4 J(A,B) - 0.78 0.80

H(A,B) 10.11 8.01 6.40

D(A,B) - 0.92 0.92
Pat 5 J(A,B) - 0.86 0.86

H(A,B) 14.52 4.58 4.24

D(A,B) - 0.84 0.86
Pat 6 J(A,B) - 0.73 0.75

H(A,B) - 12.57 7.68
Table 1. Segmentation Results for six different data sets. Left: Segmentation using
the SSM as an Active Shape Model. Middle: Level set segmentation without SSM.
Right: Level set segmentation using the probabilistic SSM constraint. D(A,B): Dice
coefficient. J(A,B): Jaccard coefficient. H(A,B): Hausdorff distance in mm.

traditional coefficients of the variational methods (as e.g. in [13] or [11]) can
be seen as powering factors which flatten or peak the density distributions.
Concerning the SSM term (eq. (6)), the standard deviation σθ of the probabilistic
SSM controls the matching of the SSM to the zero level set. This means that in
practice, σθ should have values around 5mm to guarantee a successful matching
for the problem at hand. However, the value of σθ also controls the strictness
of the spatial constraint, so the introduction of the coefficients τ, β and α is
necessary in order to position the influence of the SSM with respect to the other
terms. What is more, β can be equal to 0 as the smoothness term div

(
∇φ
|∇φ|

)
is

also governed by τ as can be seen in eq. (7). Moreover, employing −τ log pθ as
weight has the advantage of using a distance-dependent smoothing term. Figure
4a) shows the influence of the choice of σθ for the Hausdorff distances obtained
in the segmentation experiments with α = 1, β = 0 and τ fixed to 0.1. These
parameters lead to satisfying results for all kidneys except kidney 1. As can be
seen, the optimal values for σθ are similar for all kidneys and should not exceed
5mm in this case.
The relation between the parameters τ and σθ are illustrated in figure 4b) where
the Hausdorff distances for two kidney segmentations are plotted with respect
to σθ for different values of τ . As can be seen, for a smaller τ the optimal σθ
becomes smaller as well which results in a left shift of the curve. This is due to
the fact that a smaller σθ as well as a greater τ result in a stricter constraint
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Fig. 4. Hausdorff distances. a) shows the Hausdorff distances of the segmentation re-
sults under parameters α = 1, β = 0 and τ = 0.1 for all kidneys with respect to σθ.
b) illustrates the relation between the parameters τ and σθ and their influence on the
resulting Hausdorff distances.

of the level set front propagation. However, the best result for the Hausdorff
distance remains the same for both choices of τ .

4 Discussion

We proposed a novel algorithm for automatic segmentation of soft tissue. The
algorithm employs a probabilistic SSM which is explicitly represented as a point
cloud in combination with an implicitly defined evolving contour which makes
regridding mechanisms obsolete. The coupling between point-based statistical
shape models and level sets as proposed here is new to our knowledge of the
literature on this subject and opens new insights on how to take the best of
both worlds. We developed a MAP estimation of the level set which is optimized
based on the image information as well as the SSM information about probable
shapes. The MAP explanation leads to a two-phase formulation where an en-
ergy functional is alternately optimized with respect to the embedding level set
and the deformation of the underlying SSM. The approach can be used for non-
spherical surfaces and can be adapted to applications on data sets with different
topologies as the connectivity between points does not play a role. First experi-
ments showed that the new method works well and improves for some cases the
approach of using an unconstrained level set segmentation. Especially when the
intensity patterns of the organs close by are similar to the organ of interest, the
level set segmentation can leak and produce erroneous results. The Hausdorff
distance in this case yields a large value. By integrating the SSM probabilities,
we reduce this leakage. The leakage problem of level set algorithms can be seen in
different segmentation tasks such as the prostate. The proposed algorithm offers
a solution to this problem by including the SSMs in a probabilistic framework
such that they bring robustness to the segmentation process. Even from a low
number of samples a prior on the probabilities can be extracted so that no huge
training data set is necessary. From a theoretical point of view, a very powerful
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feature of our method is that we are optimizing a unique criterion. However, the
practical convergence rate has to be investigated more carefully as it depends
on the choice of weights in the functional as well as the variance σ2

θ which con-
trols the probability of occurrence with respect to the SSM. In the case of an
organ shape which differs greatly from the shapes in the training data set for
the SSM, a great sigma is needed in order to not constrain the contour evolution
too much (as e.g. for Pat. 1, figure 4a)), so σθ is momentarily used somewhat
as interactive parameter which is not the optimal solution. In current work, we
want to extend the MAP formulation by integrating a priori knowledge about
the expected volume V0 which is given by the probability p(φ|V0) and V0 can be
determined by evaluating the training data set. Further evaluation on other data
includes the application on a coupled segmentation of acetabulum and femoral
head.

References

1. Cootes, T., Taylor, C.: Statistical models of appearance for computer vision. Tech-
nical report, University of Manchester (2004)

2. Weese, J., Kaus, M., C, L., Lobregt, S., Truyen, R., Pekar, V.: Shape constrained
deformable models for 3D medical image segmentation. In: IPMI 2001. (2001)
380–387

3. Heimann, T., Münzing, S., Meinzer, H.P., Wolf, I.: A shape-guided deformable
model with evolutionary algorithm initialization for 3D soft tissue segmentation.
In: IPMI 2007. Volume LNCS 4584. (2007) 1–12

4. Kaus, M., von Berg, J., Niessen, W., Pekar, V.: Automated segmentation of the left
ventricle in cardiac MRI. In: MICCAI 2003. Volume LNCS 2878. (2003) 432–439

5. Hufnagel, H., Pennec, X., Ehrhardt, J., Handels, H., Ayache, N.: Shape analysis
using a point-based statistical shape model built on correspondence probabilities.
In: Proceedings of the MICCAI’07. Volume 1. (2007) 959–967

6. Osher, S., Sethian, J.: Fronts propagation with curvature dependent speed: Algo-
rithms based on hamilton-jacobi formulations. Journal of Computational Physics
79 (1988) 12–49

7. Malladi, R., Sethian, J., Vemuri, B.: Shape modeling wit front propagation: A level
set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence
17(2) (1995) 159–175

8. Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to
level set segmentation: Integrating color, texture, motion and shape. International
Journal of Computer Vision 72(2) (2007) 195–215

9. Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic
active contours. In: Computer Vision and Pattern Recognition. Volume 1. (2000)
316–323

10. Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W.,
Willsky, A.: A shape-based approach to the segmentation of medical imagery using
level sets. IEEE Transactions on Medical Imaging 22(2) (2003) 137–154

11. Rousson, M., Paragios, N., Deriche, R.: Implicit active shape models for 3d seg-
mentation in mr imaging. In: Medical Image Computing and Computer-Assisted
Intervention MICCAI 2004. Volume 3216. (2004) 209–216

Probabilistic Models For Medical Image Analysis 2009

43



12. Cremers, D.: Dynamical statistical shape priors for level set-based tracking. IEEE
Transactions on Pattern Analysis and Machine Intelligence 28(8) (2006) 1262–1273

13. Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image
Processing 10(2) (2001) 266–277

14. Ehrhardt, J., Schmidt-Richberg, A., Handels, H.: Simultaneous segmentation and
motion estimation in 4D CT data using a variational approach. In: SPIE Medical
Imaging 2008. Volume 6914. (2008)

15. Granger, S., Pennec, X.: Multi-scale EM-ICP: A fast and robust approach for
surface registration. In: Proceedings of the ECCV’02. Volume 2525 of LNCS.
(2002) 418–432

16. Hufnagel, H., Ehrhardt, J., Pennec, X., Handels, H.: Application of a probabilistic
statistical shape model to automatic segmentation. In: World Congress on Medical
Physics and Biomedical Engineering, WC 2009, München. (2009) To appear.

Probabilistic Models For Medical Image Analysis 2009

44



Bayesian Probability Maps For Evaluation Of Cardiac
Ultrasound Data

Mattias Hansson1, Sami Brandt1,2, and Petri Gudmundsson3

1 Center for Technological Studies, Malmö University, Sweden,
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Abstract. In this paper we propose a Bayesian approach for describing the posi-

tion distribution of the endocardium in cardiac ultrasound image sequences. The

problem is formulated using a latent variable model, which represents the in-

side and outside of the endocardium, for which the posterior density is estimated.

As the Rayleigh distribution has been previously shown to be a suitable model

for blood and tissue in cardiac ultrasound image, we start our construction by

assuming a Rayleigh mixture model and estimate its parameters by expectation

maximization. The model is refined by incorporating priors for spatial and tem-

poral smoothness, in the form of total variation, preferred shapes and position, by

using the principal components and location distribution of manually segmented

training shapes. The posterior density is sampled by a Gibbs method to estimate

the expected latent variable image which we call the Bayesian Probability Map,

since it describes the probability of pixels being classified as either heart tissue

or within the endocardium. Our experiments showed promising results indicating

the usefulness of the Bayesian Probability Maps for the clinician since, instead

of producing a single segmenting curve, it highlights the uncertain areas and sug-

gests possible segmentations.

1 Introduction

Echocardiography is more accessible, mobile and inexpensive compared to other imag-

ing techniques and has become a widely used diagnostic method in cardiology in recent

years. Unfortunately ultrasound images struggle with inherent problems which in large

part stem from noise, and is often referred to as speckle contamination. Speckle is the

result of interference between echoes, which are produced when the ultrasound beam

is reflected from tissue, and has the properties of a random field, see [1, 2]. The use

of the Rayleigh distribution in modeling model speckle in ultrasonic B-scan images is

well-established through early works, such as [3, 1], and more recently [4].

There is much previous work done in the field of segmentation of cardiac ultrasound

images, of which [5] provides an excellent overview. Here we will only mention those

works which, like our algorithm, treat segmentation of blood and tissue as a pixel-

classification or region-based problem. Our model makes a dependency assumption

of neighboring pixels via total variation. A similar approach is employed in [6–10],

where Markov random field (MRF) regularization is used. Like our model [7, 9–11]
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uses a Bayesian framework, although the construction of the posterior density function

is different. Our approach uses priors on location and shape; of the forementioned, only

[9] uses a shape prior. Also in [9] probabilistic pixel class prediction is used, which is

reminiscent of the proposed Bayesian Probability Maps.

In this paper, we present a new method of determining the position of the endo-

cardium in ultrasound sequences. This may be used for determining ejection fraction

and assessment of regional wall abnormalities of the heart; measures used in diagnosis

of ischaemic heart disease. The problem is formulated using a latent variable model,

which represents the inside and outside of the endocardium. The method uses priors for

spatial and temporal smoothness, in the form of total variation, preferred shapes and

location, by using the principal components and location distribution of manually seg-

mented training shapes. The main steps of the method are: 1) We assume a Rayleigh

mixture model for the pixel intensities and estimate the parameters by expectation max-

imization. 2) The posterior distribution of the latent variables is sampled, using the

estimated mixture parameters. 3) The mean of the posterior gives us the Bayesian prob-

ability map, which describes the position distribution of the endocardium. Instead of

giving a single segmenting curve, the certainty of which may vary along the curve, our

method provides a more versatile measure.

Our method shares some analogy with other region-based methods, but our ap-

proach of describing the position of the endocardium as the expected latent variable

image and incorporating priors on location, shape and smoothness in space and time, is

in its construction novel to our knowledge.

2 Model

Our goal is to determine the position of the endocardium in an ultrasound sequence.

To accomplish this we represent the endocardium by the latent variable model with

values one and zero for the inside and outside, respectively and estimate the posterior

distribution of the latent variable model

P (u|z, θ) ∝ p(z|u, θ)P (u|θ), (1)

where u is the vector of latent variables, z represent image intensities stacked into a

single vector and θ are parameters. The Rayleigh distribution has been reported to be

an appropriate for modeling blood and tissue in cardiac ultrasound images , see [3,

1, 4]. Therefore to construct the likelihood p(z|u, θ), we assume a Rayleigh mixture

model for pixels intensities in the ultrasound images, as described in Section 2.1. In

Section 2.2, we construct the prior distribution P (u|θ) by using prior knowledge such

as temporal and spatial smoothness, shape and location.

2.1 Likelihood

We model the ultrasound data as a two component mixture model, one for the object

intensities and zero for the background. Denoting the intensity value of pixel k in an

ultrasound image by zk, we assume that

p(zk|θ) = αprayl(zk|σ1) + (1− α)prayl(zk|σ2), (2)

2
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where θ = {α, σ1, σ2} are the mixture model parameters and prayl(z|σ) = z
σ exp(− z2

2σ ),
σ > 0 is the Rayleigh probability density function. Pixels are assumed to be indepen-

dent in the mixture model. The likelihood is then defined as

p(z|u, θ) =
∏
j

P (Uj ∈ obj|zj , σ1)ujP (Uj ∈ backgr|zj , σ2)1−uj , (3)

where Uj and uj are the random latent variable j and its realization, respectively,

corresponding to zj and P (Uj ∈ obj|zj , θ) = αprayl(zj |σ1)/(αprayl(zj |σ1 + (1 −
α)prayl(zj |σ2)) and P (Uj ∈ backgr|θ) = 1− P (Uj ∈ object|zj , θ).

2.2 Prior

Our prior model

P (u|θ) = PB(u|θ)PTV|B(u|θ)Pshape|B,TV(u|θ)Plocation|B,TV,shape(u|θ) (4)

consists of four components, where each characterizes different kinds of properties pre-

ferred. The Bernoulli component PB is the discrete latent variable distribution follow-

ing from the Rayleigh mixture model. The total variation PTV|B enforces spatial and

temporal smoothness for latent variable images. Possible shape variations around the

mean shape are characterized by trained eigenshapes of manually segmented images

through Pshape|B,TV. The sequence of ultrasound images is divided into subsequences,

to take the temporal variations of the endocardium into account, and so for each part

of the ultrasound sequence a corresponding set of eigenshapes and mean is used. The

location prior Plocation|B,TV,shape is constructed from the mean of the unregistered bi-

nary training shapes. The location prior describes the experimental probability value

for each pixel location being either inside or outside of the endocardium, thus allowing

only similar latent variable values as observed in the training data.

The Bernoulli prior is defined as

PB(u|θ) =
∏
j

αuj (1− α)1−uj (5)

and is thus a prior on the proportion of zeros and ones in u and j ∈ {1, ..., N}, where

N is the total number of latent variables in u.

Let Iu(x;n) be a latent variable image, where x and its n are spatial and temporal

coordinates, respectively. The total variation prior is then given by

PTV|B(u|θ) ∝ exp{−λTV||Iu(x;n) ∗ h||L1},
where h is a three dimensional Laplacian kernel and ∗ denotes convolution.

Let Iu,r(x;n) be the spatially registered latent variable image, corresponding to

Iu(x;n), where the center of mass has been shifted to the origin; un
r and ūn

r are the

corresponding latent variable vectors. The shape prior is defined as

Pshape|B,TV(u|θ) ∝
∏
n

exp{−λshape(un
r − ūn

r )T (Cn + λ0I)−1(un
r − ūn

r )}, (6)

3
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Fig. 1: Location prior (green) for a frame in an ultrasound sequence. The probability of

a latent variable being sampled as endocardium is zero outside the colored area.

where Cn represents the truncated covariance of the training shapes, whose center of

mass has been shifted to the origin, and λ0I is the Tikhonov regularizer [12]. The shape

prior cannot strictly impose a shape which does not exist in the data, i.e. a shape which

has a very low likelihood. However the shape prior can enhance structures which have

low likelihood, which may be due to the effects of noise. The advantage of this is that

structures which are e.g. tissue, will never be classified as endocardium.

The location prior is defined as

Plocation|shape,TV,B(u|θ) ∝
{

1 if 1∑
j uj

∑
n

∑
x h
(
g ∗ Īutrain(x;n)

)
Iu(x;n) = 1

0 otherwise

(7)

where Īutrain = 1
K

∑
k I

k
utrain

is the mean training image and K is the number of train-

ing images. g is a Gaussian kernel and h is the step function s.t. h(t) = 1 for t > 0,

otherwise h(t) = 0. This component has the effect that when sampling individual la-

tent variables outside of the (smoothed) mean shape, the result of sampling will be that

the latent variable is set to zero. Inside the (unregistered) mean shape the sampling is

unaffected.

The three regularization parameters λTV, λshape and λ0 control the influence of

the priors. Increasing λTV makes the sample temporally and spatially smoother, while

increasing λshape makes the impact of the shape prior larger. Finally λ0 controls the

influence of the mean shape in the formation of the shape prior.

3 Algorithm

Our algorithm for generating Bayesian Probability Maps can be divided into three parts.

First the mixture model parameters are estimated by the EM algorithm from our ultra-

sound data, as these parameters are needed to construct the posterior distribution of

position of the endocardium. The posterior is then sampled by Gibbs sampling and the

samples are used to compute the Bayesian probability map. The algorithm is summa-

rized in Fig. 2.

4
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Fig. 2: Summary of the proposed algorithm to construct the Bayesian probability map.

3.1 Estimation of mixture model parameters

The complete data likelihood is represented according to the latent variable model as

p(z,u|θ) =
∏
j

prayl(zj |σ1)ujprayl(zj |σ2)1−uj , (8)

where z are the pixel intensity values and u = (u1, ..., uN ) are interpreted as missing

data, s.t uj = 1 if xj is inside the heart chamber, and otherwise uj = 0. The mixture

parameters θ = {α, σ1, σ2} are estimated by Expectation Maximization (EM) [13].

That is, on the E-step, we build the expected complete data loglikelihood, conditioned

on the measured data and the previous parameter estimates, or

χ(θ, θ̂(n−1)) = Eu|z,θ̂(n−1){log p(z,u|θ))}

=
N∑

j=1

[
P (Uj ∈ obj|zj , θ̂

(n−1)) log prayl(zj |θ) (9)

+ P (Uj ∈ backgr|zj , θ̂
(n−1)) log prayl(zj |θ)

]
.

On the M-step, the expected complete data loglikelihood is maximized to obtain an

update for the parameters,

θ̂(n) = argmax
θ

χ(θ, θ̂(n−1)) (10)

and the steps are iterated until convergence.

3.2 Sampling of the Posterior

The sampling of the posterior (1) was performed by conventional Gibbs sampling [14,

15] i.e. drawing samples from

P (uj |u(i)
1 , . . . , u

(i)
j−1, u

(i−1)
j+1 , . . . , u

(i−1)
N )

=
{
P (uj = k|u(i)

1 , . . . , u
(i)
j−1, u

(i−1)
j+1 , . . . , u

(i−1)
N )

}1

k=0
, j = 1, 2, . . . , N.

(11)

After iteration the center of the heart is calculated, which determines the area of in-

fluence of the shape prior. Īutrain > 0.1 defines a region, which contains a large part of

the endocardium, but without most of the blood present outside the endocardium. The

center of mass of Iu(y;n) is calculated within this region and is used as an approxima-

tion of the center of the heart.

5
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3.3 Sample Mean

To characterize the posterior distribution, we compute estimate conditional mean of the

latent variable vector over the posterior

E{u|z, θ} ≈ 1
M

∑
i

u(i) =
(
P̂ (Uk ∈ obj

)N
k=1

≡ ûCM (12)

by the latent variable sample vectors u(i). By the strong law of large numbers ûCM →
E{u|z, θ}when n→∞. The corresponding image IûCM represents the Bayesian prob-

ability map.

4 Experiments

4.1 Material

The ultrasound data used in this paper consists of cardiac cycles of two-chamber (2C)

apical long-axis views of the heart. The sequences were obtained using the echocardio-

gram machines Philips Sonos 7500, Philips iE33 or GE Vivid 7, from consecutive adult

patients referred to the echocardiography laboratory at the Department of Cardiology at

Malmö University Hospital, Sweden, which has a primary catchment area of 250,000

inhabitants. Expert outlines of the endocardium in the sequences have been provided by

the same hospital.

4.2 Initialization

We estimate mixture model parameters for pixels in our data lying within the non-

zero region of the mean of all training images. This is a natural constraint since we do

not sample latent variables outside this region. As an initial estimate of mixture model

parameters we set α(0) to the proportion of object pixels in the training images, and

σ1 and σ2 are set to maximum likelihood estimate σ̂ = ( 1
2Q

∑Q
i=1 x

2
i )

1
2 of object and

background pixels in the training data, where Q is the number of pixels in the training

set. Prior parameters λTV, λshape, λ0 are set manually.

The Gibbs sampling algorithm is seeded by a sample obtained by Bayesian classi-

fication of the mean of the annotated images for each category of the heart cycle. The

placement of these is determined by correlation of the sample, latent variable images,

with masked log probability densities. Specifically, the position of Iinit(x; k), the initial

latent variable image at time k, is determined by matching it and a masked log proba-

bility matrix W by correlation. W is the matrix resulting from termwise multiplication

of the mask matrix 	Īutrain(x;n)
 and the probability matrix p(Zk|σ1), which gives the

object probability of each pixel zj in ultrasound image Zk in the sequence.

4.3 Evaluation

We divide our data into two sets: training set and validation set. The training set consists

of 20 cardiac cycles. The training set is further divided into sets, corresponding to parts

of the cardiac cycle. The validation set consists of 2 cardiac cycles.

6
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5. CONCLUSION AND FUTURE WORK

As evaluation measure the expected misclassificationEmc of a pixel, w.r.t the expert

outline, is used. Let Itrue(x;n) be ground truth images corresponding to the data z.

Then the expected misclassification of a pixel in the examined sequence is given by

Emc =
1
N

∑
n

∑
x

(
1− Itrue(x;n)

)
P
(
Iu(x;n) = 0

)
+ Itrue(x;n)P

(
Iu(x;n) = 1

)
.

(13)

A lowEmc guarantees that the Bayesian Probability Map is a true reflection of the entire

heart cycle, not just a few selected images.

4.4 Results

In Figure (3) and (4) results from two validation sequences are displayed. Eight frames

have been selected from each sequence, four from the systole and diastole phase of the

cardiac cycle, respectively. Validation sequence A consists of 41 frames, and sequence

B of 26.

The Bayesian Probability Map displayed, for both validation sequences, is formed

from 50 samples. The probability map spans colors from red to blue with degree of

probability,of area being within the endocardium. Hence, red indicates the highest prob-

ability.

For sequence A we obtain Emc = 0.07, while Emc = 0.11 for sequence B. The

higher expected misclassification for sequence B is clearly due to the fact that a large

amount of blood is present outside the endocardium. However the probability map

clearly captures the shape of the endocardium.

We compared our results with a Graph Cut method as described in [16–18]. We

made this comparison since this method uses MRF, like [6, 7, 9–11]. In Figures (5) and

(6) we observe that the Graph Cut method fails to identify the location as clearly as the

proposed method.

5 Conclusion and future work

We have presented a novel approach to cardiac ultrasound segmentation, which con-

sists of modeling the endocardium by latent variables. The latent variable distribution

is then sampled which yields Bayesian Probability Map, which describes the location

of the endocardium. In the future, we plan to introduce a connectivity prior for the la-

tent variables, and to increase the sensitivity of categorization by refining the mixture

model. Overall, the proposed Bayesian approach provides a framework into which such

improvements can be easily incorporated and further evaluated. Furthermore we will

introduce methods for optimizing the sampling process.

7
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(A1) (A2)

(A3) (A4)

(A5) (A6)

(A7) (A8)

Fig. 3: Validation sequence A (41 frames). BPM with overlaid expert outline (white).

Systole (A1-A4) and Diastole (A5-A8). Emc=0.07, λTV=0.75, λshape=38.5, λ0=100.
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(B1) (B2)

(B3) (B4)

(B5) (B6)

(B7) (B8)

Fig. 4: Validation sequences B (26 frames). BPM with overlaid expert outline (white).

Systole (B1-B4) and Diastole (B5-B8). Emc=0.11, λTV=0.73, λshape=40, λ0=100.
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(A1) (A2)

(A3) (A4)

(A5) (A6)

(A7) (A8)

Fig. 5: Graph Cut (red) applied to Validation sequence A with expert outline (white).

Systole (A1-A4) and Diastole (A5-A8).
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(B1) (B2)

(B3) (B4)

(B5) (B6)

(B7) (B8)

Fig. 6: Graph Cut (red) applied to Validation sequence A with expert outline (white).

Systole (B1-B4) and Diastole (B5-B8).
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Abstract. This paper presents Markov surfaces, a probabilistic algo-
rithm for user-assisted segmentation of elongated structures in 3D im-
ages. The 3D segmentation problem is formulated as a path-finding prob-
lem, where path probabilities are described by Markov chains. Users de-
fine points, curves, or regions on 2D image slices, and the algorithm
connects these user-defined features in a way that respects the underly-
ing elongated structure in data. Transition probabilities in the Markov
model are derived from intensity matches and interslice correspondences,
which are generated from a slice-to-slice registration algorithm. Bezier
interpolations between paths are applied to generate smooth surfaces.
Subgrid accuracy is achieved by linear interpolations of image intensities
and the interslice correspondences. Experimental results on synthetic and
real data demonstrate that Markov surfaces can segment regions that are
defined by texture, nearby context, and motion. A parallel implementa-
tion on a streaming parallel computer architecture, a graphics processor,
makes the method interactive for 3D data.

1 Introduction

Despite many significant advances in machine vision, many 3D image segmen-
tation in radiation oncology, cardiology, and psychiatry still can not be fully
automatic. Several examples, especially when the boundary of the object is not
clearly separable using intensity differences, are shown in Figure 1. In Figure 1
(a), the background and the cross-shaped object at the center have the same
texture patterns with a slightly different orientation. The transmission electron
microscopy (TEM) data of retinal ganglia shown in Figure 1 (b) is hard to be
segmented, even if the regions there can be distinguished by some combination
of texture and dark boundaries. Figure 1 (c) shows an example of a magnetic
resonance imaging (MRI) of a heart. The wall between a left atrium and a left
ventricle in the left image is usually very thin and fuzzy.
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It is usually hard to get good segmentation results without user interaction,
especially when the boundary of the object is not clearly separable using intensity
differences. Semiautomatic segmentation using user interaction, therefore, seems
necessary in these cases.

(a) Texture image (b) TEM data (c) Heart MRI

Fig. 1. Examples that conventional intensity-based image segmentation methods fail
to work.

Several methods [1] [2] [3] [4] [5] have been proposed for semiautomatic
segmentation. A live wire algorithm is proposed in [1] to formulate boundary
extraction as a graph searching problem. It utilizes the start points and the end
points specified by users, and generates paths between these points using local
gradient features. Falcao et al improved the efficiency of this method using live
lane, and Schenk et al extended the live wire method to 3D based on shape-
based interpolation and optimization. Both methods need users to interactively
specify points for segmentation.

Ardon et al [3] proposed a surface extraction method based on the start and
end curves specified by users. A network of minimal paths between these curves
are generated using Fast Marching method, and a 3D surface is acquired by
the interpolation between minimal paths. A 3D level set algorithm is performed
for segmentation using the acquired 3D surface as initialization. Although this
approach may provide good results, the topology of the network is often prob-
lematic [4]. An implicit method is proposed in [4] for this issue. It segments the
object by finding a 3D real function using transport equations such that the
network of minimal paths is contained in its zero level set.

All these methods, however, rely only on the gradient information. They
may have problems when weak edges are present, e.g., in Figure 1 (c). The
method proposed in this paper, Markov surfaces, generalizes these methods by
using region information in a probabilistic framework. It allows users to define
surfaces or regions in 3D data and to follow object boundaries in a way that
does not require any specific formulation of an edge. This method is especially
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useful for segmentation problems where the objects of interest are elongated in
a predefined direction, which occurs regularly in 3D medical images.

The paper is organized as follows. Details of the probabilistic framework are
introduced in Section 2. Section 3 discusses implementation issues. Experimen-
tal results are shown in Section 4, followed by Section 5, where a summary is
presented.

2 Proposed Method

The proposed segmentation system consists of two parts: a preprocessing part,
which establishes correspondences between slices by 2D image registration, and
an interactive part, which finds the Markov surfaces that connect user defined
regions. Once the mapping between slices are acquired, the user can select a start
curve to compute cost or probability, for the entire input volume, of attaching
every point to the initial conditions via a Markov chain. The user then selects an
end curve, and the algorithm backtracks through the cost volume to create a set
of curves, each of which has the highest probability of connecting the two sets.
This process can be repeated until desired segmentation results are obtained.

2.1 A Probabilistic Formulation for Elongated Structures

The goal of this section is to create a method that allows users to quickly (inter-
actively) define features (curves or regions) on disparate slices of a 3D dataset
and connect these regions to form 3D structures in a way that conforms the the
data. The strategy is to make it lightweight and general and thereby quickly
applicable to a wide range of different applications and data types.

The proposed framework constructs the most probable paths between regions
using a Markov chain model that incorporates the probability of correspondence
between points on two different slices. Here we define the ith slice fi of a volume
f(x, y, z) to be the 2D function defined by fixing one of the coordinates, so that
we have fi(x, y) = f(x, y, i).

Denote a particular path W = (w1,w2, . . . ,wn) as having probability P (W) =
P (w1,w2, . . . ,wn), where wi is a position of the path on the slice i of the in-
put data. We model the path as a Markov chain [6], so that probability of each
subsequent position along the path depends only on the previous position and
probability. This gives

P (W) = P (w1)
n−1∏
i=1

P (wi+1|wi) (1)

The proposed strategy is to define the conditional probabilities in terms of a
transition function from each pixel on one slice to every pixel on the next. Thus

P (wi+1|wi) = F (wi+1,wi), (2)
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where F (wi+1,wi) may be considered as weights on a directed graph that con-
nects every pixel in one slice to every pixel in the next.

We define the initial probability P (w1) in terms of a user-defined region,
A (e.g., a starting curve). These probabilities could include some uncertainty
around this curve, or alternatively, as in this paper, a binary mask:

P (w1) =
{
a > 0 w1 ∈ A

0 otherwise (3)

where, for curves or points in a continuous domain, this would be, formally, a
measure.

The path W̃ that maximizes P (W) is defined:

W̃ = argmax
W

[P (W)] = argmin
W

[
−

n∑
i=2

logF (wi,wi−1)− logP (w1)

]
(4)

where − logP (W) is referred as the path cost for the path W.
A variation on Dijkstra’s algorithm for dynamic programming, described in

Section 2.4, is proposed to find the optimal path to every point in the volume. In
practice, users define the start and end curves for an object on different slices in a
volume, and the method quickly connects these regions using the most probable
paths, as shown in Figure 2. The probability of the paths are derived from a set
of automatically determined correspondences, and thus the resulting surfaces
follow the structure of the data.

Start Curve

End Curve

Fig. 2. Overview of the proposed 3D segmentation process using 2D tracking.

2.2 Slice-to-Slice Correspondence Estimation

The first step of the Markov surfaces is to find a dense set of correspondences
between 2D slices in a 3D volume. There are a variety of ways that one could
find such correspondences, such as patch correlations [7] or feature matching [8].
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A deformable image registration method is applied here, which represents the
correspondences as a smooth displacement field.

Let I denote a 2D image where I(x) : Ω �→ R and x ∈ Ω ⊂ R
2, and Ii and

Ii+1 be two consecutive slices in the 3D volume. Define a correspondence from
image Ii to Ii+1 as a 2D transformation vector field vi,i+1(x) : Ω �→ R

2 that
maps each pixel in Ii to Ii+1.

(a) Source image (b) Warping vectors (c) Target image

Fig. 3. Vector field for warping between two images. Warping the source image (a)
with the vector field (b) gives the target image (c).

Slice-to-Slice correspondence estimation is achieved by minimizing the fol-
lowing the energy E:

E =
1
2

∫
x∈Ω

(Ĩi − Ii+1)2 + α‖∇v‖2 (5)

where Ĩi = Ii(x + vi,i+1(x)), Ii+1 = Ii+1(x), v = vi,i+1(x), x ∈ Ω, and α is a
constant parameter. The regularization term ‖∇v‖2 helps to produce a smooth
vector field and makes the problem well posed.

A gradient flow is used to compute vi,i+1, similar to [9, 10]. The update
equation for v is written as

vk+1 =
1

(I +ΔtαL)

[
vk +Δt(Ii+1 − Ĩki )∇Ĩki

]
= G �

[
vk +Δt(Ii+1 − Ĩki )∇Ĩki

]
,

(6)
where G is a Gaussian kernel of width σ =

√
2αΔt.

Because the energy function E we want to minimize in this problem is not,
generally, convex, the solution of the minimization converges to local minima.
Therefore, images with large deformations require better optimization strategies.
To overcome such problems, we use cascading multigrid scheme (coarse to fine)
with a 4-to-1 averaging D combined with a Gaussian smoothing kernel G (to
eliminate aliasing effects) for down sampling the input images, and a 1-to-4
projection kernel U for up sampling the vector images. Figure 3 shows an example
of a vector field for warping between two images.
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A cascading multigrid scheme (coarse to fine) is applied in the implementa-
tion to handle large deformations. A 4-to-1 averaging combined with a Gaussian
smoothing kernel G is utilized to downsample and process the input images,
followed by a 1-to-4 projection kernel to upsample the vector images.

2.3 Slice-to-Slice Mapping Probability

In this section we define the slice-to-slice mapping probability F (p,q), defined in
Eq. 2, which indicates the transition probability for a point p on slice i to a point
q on slice i+ 1. A bilateral fall-off function F is applied based on two measures:
the distance d(p,q) = |p + vi(p) − q| from the correspondence given by the
registration and the intensity difference g(p,q) = |fi(p)− fi+1(q)| between the
image values on the adjacent slices in the path. Thus, the transition function is

F (p,q) =
1
Kp

e
−

d
2(p,q)2

2k2
d e

−
g(p,q)2

2k2
g (7)

where kd and kg are user-given parameters, andKp is the normalization constant.
The cost computation based on the probability function (7) is therefore the
quadratic expression:

Cnew(x) = Cn−1(x̃) + log(Kp) +
d2(x̃,x)

2k2
d

+
g2(x̃,x)

2k2
g

, (8)

where Cnew(x) represents the new cost on grid x computed from the grid x̃ in
the previous slice.

2.4 Shortest Path Cost Computation

A variant of Dijkstra’s algorithm [11] is applied here to compute the optimal
path on a directed graph formulated in Equation 4. The strategy is to compute
a sequence of optimal paths to every pixel on each successive slice. Let Cn(x,y,n)
be the cost of the optimal path from the first slice to pixel (x,y,n) on slice n.
For every neighbor (x̃, ỹ,n−1) of the pixel (x,y,n−1) in the slice n−1, the cost
Cnew is computed using Cnew = Cn−1(x̃, ỹ,n− 1)− log(F (x̃, ỹ,n− 1;x,y,n)),
and the minimum cost among all the neighbors is taken as the minimum cost of
the path Cn(x,y,n).

The proposed algorithm computes cost values on each slice in sequence, from
the starting to the ending slice. Because of the strict causal relationship and the
parallel nature of the method, its implementation on parallel architectures, such
as graphics processing units, is straightforward and gives a significant speed-up,
allowing the Markov surfaces to be generated and visualized at interactive rates,
immediately after the user has defined the starting region (and while they are
selecting the ending region).

Curves connecting the regions are generated by finding a path for every point
on the end curve that connects to the start curve. This is done by backtracking
from the ending region through each previous pixel on the optimal path to the
starting slice. Figure 4 shows an example of backtracking from wn on the end
slice n through W = {wi ∈ Ω|i = 1, ..., n} to slice 1, the start slice.
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w4

wn

..........

Slice 1
Slice 2

Slice 3
Slice 4

Slice n−1
Slice n

Start curve

w

End curve

n−1

w2

w1

w3

Fig. 4. Backtracking from a point wn on the end curve to the start curve.

2.5 Path Interpolation and Forward Update

Paths may merge during backtracking [4]. Path merging generates separate
points, which makes surface extraction challenging. A path interpolation method
using Bézier curve [12] is applied to generate a continuous curve during back-
tracking. Bézier curve interpolation regularizes the extracted surface by dynam-
ically adjusting paths to formulate a smooth curve in each backtracking slice.
During regularization new paths are added; existing paths are adjusted; abnor-
mal paths are removed. Curve smoothing using kernel averaging may be neces-
sary before interpolation, especially for closed start curves.

The backtracking paths may only reach a small portion of the start curve [4],
especially when the specified start curve is open. In this case we record the
unmatched points in the start curve, and add their corresponding points to the
backtracking curve in the next slice. Each unmatched point in the start curve
may have multiple corresponding points. Only the closest one to the backtracking
curve in the next slice is selected. This process is repeated from the start slice
to the end slice, and Bézier curve interpolation is applied again for continuous
curves.

3 Implementation Issues

3.1 Subgrid Cost Computation

The cost computation above assumes that the search on each previous slice is
limited to pixel values, and thus paths are limited to the grid, which can result
in aliasing and inaccuracies. Here we propose a more accurate subgrid method
that solves for continuous locations at each slice using a linear interpolation of
the intensity, cost, and correspondence positions from the previous slice. For this
interpolation we divide each quadrangle of pixels into four triangles (by adding
a new vertex with a value that is the average of its neighbors, as in Figure 5),
and interpolate the necessary quantities on these triangles using barycentric
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Fig. 5. Illustration for subgrid computation: the algorithm relies on linear interpolation
on a set of 4 triangles for each set of 4 adjacent pixels on a slice.

coordinates. The optimal cost is computed for this analytic quantity over all four
triangles on every quadrilateral contained in the corresponding neighborhood
on the previous slice. The optimal cost and position for each pixel are those
associated with the minimum over all these triangles in the previous slice. If the
log transition probabilities are quadratic in position, cost, and intensity (as they
are in this paper), the optimal cost on each triangle has a closed form solution,
otherwise optimal costs must be obtained through some root trapping method.

3.2 Acceleration using Graphics Processors

Nonrigid image registration and optimal cost computation in the proposed method
are highly parallelizable. They are therefore implemented on a graphics process-
ing unit (GPU). Efficient computation on the GPU entails reusing memory in
the access of overlapping neighborhood regions and the reduction of memory
latency for random access. For this task, we use texture hardware on the current
GPUs because texture memory is cached and interpolation is done for free by
hardware. In this way we can get a high cache hit rate and significantly reduce
the running time by using texture memory of the GPU.

4 Experimental Results

Experimental results are provided in this section. The proposed segmentation
system is implemented on a Windows XP PC equipped with an Intel Core 2 Duo
2.4 GHz CPU, 4 GB main memory, and an NVIDIA Geforce 8800 GT graphics
card.

Image registration and cost computation are time consuming processes, and
they cannot be done in real-time on a conventional computer. For example, 2D
registration of a 300× 300 image (e.g., Figure 3) takes about 28 seconds on the
CPU after 600 iterations. The same registration can be done only in 0.7 second
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on the GPU. Slice-to-slice registration for a large 3D volume could easily take a
few minutes even on the GPU, but it needs to be computed only once for each
volume along each direction of interest. Thus, we consider a preprocessing step,
done just before the interactive segmentation process.

Table 1 compares the running times (in seconds) of computation on the CPU
and the GPU on one synthetic and two real 3D datasets. The MRI volume is
about four times larger than the other two volumes. The most important factor
in computation time is the size in the cost computation, because the algorithm
complexity of cost computation is O(kN) where k is the size of neighbor search
and N is the size of input data (i.e., the number of voxels). Also, because of
the benefit of using local memory (or texture cache [13]), the neighbor search
size k affects the running time less significantly in the GPU version. Thus, the
speed gain associated with the GPU implementation increases proportionally
with neighbor search size.

Synthetic Seismic MRI
(150 × 150 × 50) (301 × 111 × 32) (640 × 460 × 16)

CPU time 4.86 21.5 596

GPU time 0.25 0.46 3.8

Search width 1.8 4.3 16

Speedup 19 46 156

Table 1. Comparison of running times for cost computation.

Fig. 6 illustrates the effects of Bézier interpolation and forward update. Back-
tracking results in separate points in Fig. 6(b) from the end curve in Fig. 6(a).
Bézier interpolation of these points provides continuous contour in Fig. 6(c).
Forward update is performed when the start curve in Fig. 6(d) is partly reached
in Fig. 6(e). Fig. 6(f) shows the results from forward update in the next slice by
adding those points corresponding to the unmatched points in the start curve.
Fig. 6(g) shows the final results by applying Bézier interpolation.

Results on real and synthetic images demonstrate the effectiveness of the
method. These results are better understood by referring to the accompany-
ing video supplements. Each dataset has 30-50 slices, and intermediate results
shows the results in the middle slices. Fig. 7 shows the segmentation results of
a synthetic 3D texture and the video tracking results of a cup in real applica-
tion. Fig. 8 displays the effects of the proposed method on real medical images.
Volume renderings of the Markov surfaces are provided to show the segmented
path.

Probabilistic Models For Medical Image Analysis 2009

65



(a) (b) (c)

(d) (e) (f) (g)

Fig. 6. Illustration of Bezier interpolation and forward update.

5 Summary

This paper addresses a user-assisted segmentation method, Markov surfaces, for
elongated structures in 3D images. Markov surfaces are based on a probabilistic
framework that finds the optimal paths that connect user-defined regions. Com-
putationally demanding components, such as nonrigid image registration and
cost/path computation, are implemented on the GPU, resulting in an interac-
tive technique.
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Fig. 7. Segmenting synthetic and real data. (a)(e) Start curves. (b)(c)(f)(g) Interme-
diate results. (d)(h) End curves.
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Fig. 8. Segmenting real medical data. (a)(e) Start curves. (b)(c) Intermediate results.
(c)(g) End curves. (d)(h) Volume rendering of the Markov surfaces.
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Decision Forests with Long-Range Spatial

Context for Organ Localization in CT Volumes
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Microsoft Research Ltd, Cambridge, UK

Abstract. This paper introduces a new, efficient, probabilistic algo-
rithm for the automatic analysis of 3D medical images. Given an in-
put CT volume our algorithm automatically detects and localizes the
anatomical structures within, accurately and efficiently.
Our technique builds upon randomized decision forests, which are enjoy-
ing much success in the machine learning and computer vision communi-
ties. Decision forests are enriched here with learned visual features which
capture long-range spatial context. In this paper we focus on the detec-
tion of human organs, but our general-purpose classifier might be trained
instead to detect anomalies. Applications include (and are not limited
to) efficient visualization and navigation through 3D medical scans.
The output of our algorithm is probabilistic thus enabling the modeling
of uncertainty as well as fusion of multiple sources of information (e.g.
multiple modalities). The high level of generalization offered by decision
forests yields accurate posterior probabilities for the localization of the
structures of interest. High computational efficiency is achieved thanks
both to the massive level of parallelism of the classifier as well as the use
of integral volumes for feature extraction.
The validity of our method is assessed quantitatively on a ground-truth
database which has been sanitized by medical experts.

1 Introduction

This paper presents a new, efficient algorithm for the accurate detection and
localization of anatomical structures within CT scans. This work represents a
significant step towards automatic parsing and understanding of medical images.

Our effort is motivated by recent studies which indicate how the great ma-
jority of a radiologist’s time is spent searching through scanned volumes (often
slice by slice) and navigating through visual data. Even with modern 3D visual-
ization tools locating the organ(s) of interest and selecting optimal views is time
consuming. Automatic tools for localizing major anatomical structures within
3D scans promises to speed up navigation and improve the user’s work-flow [1].
For instance, a cardiologist may just click on a button to take him/her to the
most appropriate view of the heart and its valves. Robust and efficient, proba-
bilistic organ detection is also useful as input to other, more specialized tasks,
e.g. detecting the heart to initialize a coronary tree tracer tool.

The two main contributions are: 1) We introduce an efficient algorithm for
organ detection and localization which negates the need for atlas registration;
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thus overcoming issues related to, e.g. : i) possible lack of atlases, and ii) selecting
the optimal model for geometric registration. 2) We introduce new, context-
rich visual features which capture long-range spatial correlations efficiently. The
simplicity of our features combined with the intrinsic parallelism of our classifier
yield high computational efficiency. Finally, our algorithm produces probabilistic
output, useful for instance to keep track of uncertainty in the results, to take
into account prior information (e.g. about global location of organs) or to fuse
multiple sources of information (e.g. different acquisition modalities).

The proposed algorithm is applied here to the task of localizing nine anatomi-
cal structures (head, heart, left eye, right eye, l. kidney, r. kidney,
l. lung, r. lung, and liver) in CT volumes with varying resolution, vary-
ing cropping, different patients, different scanner types and settings, contrast
enhanced and not etc. Quantitative assessment is executed on a number of man-
ually labelled ground-truth CT volumes.

Previous work. In the last few years research in object detection and recogni-
tion has made huge progress. The published work which is relevant to medical
applications may be broadly categorized into the following three groups:

Geometric methods include template matching, and convolution techniques [2].
Geometrically meaningful features are used in [3, 4] for the segmentation of the
aorta and the airway tree, respectively. Such geometric approaches often have
problems capturing invariance with respect to deformations (e.g. due to patholo-
gies), changes in viewing geometry (e.g. cropping) and changes in intensity. Tech-
niques built upon “softer” geometric models with learned spatial correlations
have been demonstrated to work well both for rigid and deformable objects [5].

Atlas-based techniques have enjoyed much popularity. Recent techniques for sin-
gle and multiple organ detection and segmentation based on the use of probabilis-
tic atlases include [6–10]. The apparent conceptual simplicity of such algorithms
is in contrast to the need for accurate, deformable registration algorithms. The
major problem with n-dimensional registration is in selecting the appropriate
number of degrees of freedom of the underlying geometric transformation; espe-
cially as it depends on the level of rigidity of each organ/tissue.

Supervised, discriminative classification. Discriminative classification algorithms
such as Support Vector Machines (SVM), AdaBoost and Probabilistic Boosting
Trees have been applied successfully to tasks such as: automatic detection of tu-
mors [11–14], pulmonary emphysema [15], organs in whole-body scans [19] and
brain segmentation [16–18]. Our approach is also a discriminative classification
technique. It achieves multi-class recognition efficiently and probabilistically. The
classifier employed here is a random decision forest which, in non-medical do-
mains has been shown to be better suited to multi-class problems than SVMs,
as well as being more effective than boosting [20, 21]. A model of spatial context
is learned by automatically selecting visual features which capture the relative
position of visual patterns. Next we describe the details of our technique.
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Fig. 1. Constructing labelled ground-truth databases. Organs within 3D CT
scans are labelled via 3D, axis-aligned bounding boxes; different colours indicating
different organs. Note that the fact that the boxes overlap is not a problem as they are
used to indicate the position of the organ centre and the organ’s approximate extent.

2 Automatic Parsing of CT Volumes

This section presents our ground-truth database, describes the decision forest
classifier in the context of CT images and illustrates the visual features employed.

2.1 Labelled ground-truth database and exemplars

We have 39 CT volumes which have been annotated with 3D bounding boxes cen-
tred on each organ using our own annotator tool (shown in fig. 1). The user loads
a CT scan, locates the organ of interest and draws a 3D box tightly around the or-
gan. The database is split randomly into training and test sets as outlined in sec-
tion 3. We focus on the following nine organs: head, heart, left eye, right
eye, l. kidney, r. kidney, l. lung, r. lung, and liver. The use of axis-
aligned boxes enables speedy manual annotation and is sufficient for tasks such as
detection1. Our dataset comprises both contrasted and non-contrasted CT data,
from different patients, cropped in different ways, with different resolutions and
acquired from different scanners.

The goal is to determine the centre of each organ in previously unseen CT
scans. A supervised technique such as ours needs to be trained from positive and
negative examples of organ centres. Exemplars are provided from the annotation
boxes as follows (cf. fig. 2). For each organ (e.g. the right kidney in fig. 2) we
denote its annotation box with Ba. The set of positive training example points
for the organ centre are defined as the set of points within a small box B+; with
B+ of fixed size and located in the centre of Ba. Similarly, negative examples
are all points outside the box B− with same centre and aspect ratio as Ba but
50% in size. The region between B− and B+ is ignored.

1 2D annotation boxes (with no pixel-wise annotation) are used extensively in the PAS-
CAL VOC challenges: pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/
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Fig. 2. Positive and negative training examples. (a) A 3D view illustrating the
ground truth annotation box Ba, the box of positive examples B+ and the box of
negative examples B−. (a) A 2D view further clarifying the regions where exemplars
for the organ centre are taken. Positive examples are sampled within the box B+ (in
green). Negative example points are sampled outside the box B− (in red).

2.2 Decision forests for recognition in 3D medical images

This section describes our adaptation of decision forests to the task of organ
detection and localization in 3D CT scans.

A random decision forest [23, 24] is a collection of deterministic decision trees.
Decision trees are popular classification algorithms which are known to suffer
from over-fitting (poor generalization). Recently, it has been shown that the
ensemble of many randomly trained decision trees (a random forest) yields much
better generalization while maintaining the advantages of conventional decision
trees [23]. Intuitively, where one tree fails the others do well.

We use the following notation. A voxel in a volume V is defined by its coordi-
nates x = (x, y, z). The forest is composed of T trees denoted Ψ1, · · · , Ψt, · · · , ΨT ;
with t indexing each tree (fig. 3). In each tree, each internal node (split node)
performs a binary test on the input data and based on the result directs the
data to the left or right child. The leaf nodes do not perform any action, they
just store probability distributions over the organs of interest. Next we describe
how the split functions are chosen and how the leaf probabilities are computed.
Forest training. Each point x of each training volume is associated with a
known (manually obtained) class label Y (x). The label indicates whether the
point x belongs to the positive set of organ centres (see fig. 2) or not. Thus,
Y (x) ∈ { head, heart, left eye, right eye, l. kidney, r. kidney, l.
lung, r. lung, liver, background }, where the background label indicates
that the point x is not an organ centre.

During training T is fixed (we use T = 10). Then, each point x is pushed
through each of the trees starting at the root. Each split node applies the follow-
ing binary test: ξ > f(x;θ) > τ and sends the data to the respective child node.
f(·) is a function applied to x with parameters θ. The parameters θ identify the
visual features which needs be computed. Features are described in the next sec-
tion; for now it suffices to say that f computes some scalar filter response at x.
ξ and τ are parameters of the split node. The purpose of training is to optimize
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Fig. 3. Random Decision Forests. (a) An example random decision forest made of
3 trees. In each tree the internal nodes (shown with ellipses) perform simple tests on
the input data while the leaf nodes (shown as squares) store the posterior probabilities
over the classes being trained. During testing, a data point is pushed simultaneously
through all T trees until it reaches T leaf nodes. The probability assigned to that point
is the average of the probabilities of all the reached leaves (see text). (b) Each internal
node performs a simple binary tests on the input data x, based on the feature response
f(x; θ). The quantities ξ, τ and θ are parameters of the splitting test in that node.

the values of θ, ξ, τ of each split node by maximizing the data information gain,
just like in the standard C4.5 tree training algorithm [25].
Injecting randomness for improved generalization. However, unlike standard tree
training methods, here the parameters of each split node are optimized only over
a randomly sampled subset Θ of all possible features (here |Θ| = 500, details in
section 2.3). This is an effective and simple way of injecting randomness into the
trees, and it has been shown to improve generalization.

During node optimization all available features θi ∈ Θ are tried one after
the other, in combination with many discrete values for the parameters ξ and
τ . The combination ξ∗, τ∗,θ∗ corresponding to the maximum information gain
is then stored in the node for future use. The expansion of a node is stopped
when the maximum information gain is below a fixed threshold. This gives rise
to asymmetrical trees which naturally stop growing when no further nodes are
needed. In this work the maximum tree depth D is fixed at D = 15 levels.

Finally, by simply counting the labels of all the training points which reach
each leaf node we can associate each tree leaf with the empirical distributions over
classes Plt(x) (Y (x) = c), where lt indexes the leaf node in the tth tree (fig. 4f).
This training procedure is repeated for all T component trees.
Testing. During testing each point x of a previously unseen CT volume is
simultaneously pushed through each of the T trees until it reaches a leaf node.
Thus, the same input point x will end up in T different leaf nodes, each associated
with a different posterior probability. The output of the forest, for the point x,
is the mean of all such posteriors, i.e. :

P (Y (x) = c) =
1
T

T∑
t=1

Plt(x) (Y (x) = c) . (1)
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Other ways of combining the tree posteriors have been explored and simple
averaging appears to be the most effective (as demonstrated also in the vast
literature). Also, analyzing the variability of individual tree posteriors carries
useful information about the uncertainty of the final forest posterior.
Organ detection. At this point detecting the presence/absence of an organ c is
done simply by looking at the max probability Pc = maxx P (Y (x) = c). The
organ c is considered present in the volume if Pc > β, with β = 0.5.
Organ localization. The centre of the organ c is estimated by marginalization
over the volume V :

xc =
∫

V

x p(x|c) dx, (2)

where the likelihood p(x|c) = P (Y (x) = c) by using Bayes rule and assuming
uniform2 distribution for organs. Furthermore, maximum a-posteriori classifi-
cation for each voxel x may also be obtained as: c∗ = arg maxc P (Y (x) = c).
After having described our classification algorithm, next we provide details of
the visual features employed.

2.3 Visual features and learned spatial context

The problem with identifying anatomical structures in CT images is that differ-
ent organs may share similar intensity values. Thus, local intensity information
is not sufficiently discriminative and further information such as texture, spatial
context and topological cues must be used to have any chance of success. The
problem then is how to capture and model such information efficiently.

Here we consider visual features which capture both the appearance of anatom-
ical structures as well as their relative position (context) within the decision
forest framework. For each location x context is modeled by integrating infor-
mation coming from multiple regions which are offset by a quantity Δ in a
given direction. Figures 4 explains the main concepts with a 2D illustration.
A feature θ is defined as a reference point o paired with two boxes F1, F2

and two signal channels C1, C2. The shapes Fi are just 3D boxes displaced
with respect to o. The channels Ci could be for example the CT intensity
(C(x) = I(x)), or the magnitude of the 3D gradient (C(x) = |∇I(x)|). Given
a point x in a volume, computing the feature response f(x;θ) corresponds to
aligning the reference point o of the feature θ with the point x and computing
f(x;θ) =

∑
q∈F1

C1(q) − b
∑

q∈F2
C2(q). The parameter b ∈ {0, 1} indicates

whether both feature boxes are used or only one (in fig. 4 b = 0 for simplicity).
As shown in fig. 4 these features tends to capture the relative layout of visual

patterns (e.g. kidney patterns tend to occur a certain distance away, in a certain
direction, from liver patterns, fig. 4d). The use of rectangular regions enables
efficient integral volume processing [29, 30, 16]. Our features may be thought
of as a generalization of the Haar-like features used in [26, 30, 16, 17]. In fact,
we do not use manually predefined Haar subdivisions of a canonical cuboid.
Our classifier is free to select features with very large offsets Δ, which enables
2 Alternatively one can weight each class based on its own volume in the training set
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Fig. 4. Context-rich visual features, a 2D illustration. (a) Sagittal view of a
patient’s abdomen. (b) Features (denoted θi) are defined as the rigid pairing between
a box F and a reference point o. Here we show only some of the infinite possible features.
In practice we use 3D axis-aligned boxes. (c) Computing the feature response f(x; θ)
at position x within a volume corresponds to aligning o with x and computing the sum
f(x; θ) =

∑
q∈F I(q) (cf. text. For simplicity here we use intensity as the channel and

only one rectangle). For feature θ13 when o is on the kidney the rectangle F is in a
region of low density (air). Thus the value of f(x; θ) is small for those points. During
training the algorithm will learn that feature θ13 is discriminative for the position of
the right kidney when associated with a small, positive value of the threshold ξ13 (with
τ13 = −∞). The region for which the condition ξ13 > f(x; θ) > τ13 is true is shown
in green. (d,e) Similar to (c) but with different features. (f) Training associates each
node with optimal values of ξ, τ, θ. In this example, a data point which follows the
highlighted path (in blue) gets assigned a high probability of being the centre of a
kidney. (g) The points which satisfy all three conditions in (f) lie in the intersection
of the three regions (c, d, e), highlighted in dark green, inside the organ of interest.

capturing very long-range spatial interactions. Inspection of the trained trees
reveals that often the Δ of selected features can be as large as the image width.
For simplicity, in this paper we only consider intensity and gradient as channels.
However, our features are more flexible and general than that as they allow to
incorporate complex filters such as SIFT, HOG etc. Multiple modalities may
also be exploited; e.g. in the case of MR one may use T1, T2, FLAIR etc. More
complex visual cues such as the ones described in [27, 28] or differently shaped
aggregation regions may also be employed.

During training, for each split node the set Θ is obtained by randomly gener-
ating for each feature the two boxes F1, F2 (e.g. their centre and dimensions are
randomly selected) and the corresponding channels C1, C2. Then all nodes are
optimized and once training completes the trees, their nodes and the selected
features are frozen and the testing phase proceeds deterministically.
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2.4 Discussion and comparisons

The classifier used here is related to the Probabilistic Boosting Tree in [16]. In
our case, the tree nodes contain test functions that are simpler than the boosters
used in [16], with advantages in terms of speed both during training and testing.
Furthermore, as shown in [20], a collection of simple, randomized trees tends to
yield better generalization than a single tree of boosters.

In [17] the authors capture context by means of an algorithm which at each
iteration uses the posteriors of the previous iteration as features. This produces
good results at a cost of multiple iterations. Our algorithm is not iterative and
captures spatial correlations of visual patterns, namely “appearance context”.
Furthermore, our kernels have much longer range. Finally, we do not require
preregistration of the CT volumes.

Localizing anatomical structures by atlas registration is a popular option.
However, such techniques have to deal with issues such as: i) the optimal choice
of degrees of freedom of the registration model (e.g. both fully rigid and fully
deformable transformations are bad); ii) the optimal choice of the reference tem-
plate (e.g. an adult male body? a child? or a woman? contrast enhanced or not?);
and iii) robustness to anatomical anomalies (training a classifier on data which
presents anomalies allows the system to learn invariance to those).

The work in [19] makes use of information gain to optimize the scheduling
of single-organ boosted detectors. In our work we use information gain at the
level of feature selection, and detection happens via an ensemble of decision trees
simultaneously for all organs. The selected features are organized hierarchically,
with the most discriminative ones in the top layers of each tree. This has the
advantage of “sharing” the most discriminative features amongst classes (organs)
and sets of classes, with positive effects on generalization (e.g. see [31] for details
on feature sharing and [20] for a detailed comparison between AdaBoost, decision
trees and decision forests). Next we quantify the performance of the proposed
algorithm and compare it to some known alternatives.

3 Experimental Results and Validation

This section presents qualitative and quantitative assessment of the accuracy of
our algorithm applied to the tasks of organ detection and localization.

3.1 Automatic organ detection and localization

Qualitative results are shown in fig. 5. Our classifier applied to previously unseen
CT scans produces accurate posteriors for the location of organ centres. In these
visualizations the computed posteriors are used to modulate the transfer function
employed during 3D rendering. For instance, notice how the mass of the heart
probability (in red) is correctly concentrated around the centre of the heart
region. Similarly for the light brown region indicating the liver, etc.
Quantitative evaluation of accuracy. Localization accuracy is assessed here by
running training and testing multiple times. In each round the database is split
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Fig. 5. Results of automatic organ detection and localization. (a) The original
3D CT data rendered using a manually-designed colour transfer function. (b) Three
views of the 3D organ posterior probabilities computed by our algorithm for the local-
ization problem. Different colours indicate different organs. Larger opacities indicate
larger probability of a voxel being the organ centre. Notice how well eyes (green), head
(yellow), heart, lungs, liver and even kidneys (purple) have been localized. A faint body
outline is shown to aid visualization. (c) 3D views of the automatically detected bound-
ing boxes including the heart and left lung. (d,e) Results on two more test datasets.
The different datasets (related to different patients) are cropped differently and have
different resolutions.

randomly into a training and a test set (with approximate ratio of 2 : 1). For
all algorithms evaluated in this section the same 10 random splits are used. The
forest is optimized on the training set only, and then applied on the test set.
Then, the location of each organ centre is computed and compared with ground
truth. Resulting localization errors collected from 10 runs (with D = 15, |Θ| =
500) are shown below (in mm).

organ head heart l. eye r. eye l. kidney r. kidney l. lung r. lung liver mean across organs

median 25.58 18.31 24.04 25.71 13.52 29.49 22.93 21.94 19.01 22.28 mm

mean 29.92 21.32 28.78 27.14 25.42 44.52 27.05 26.75 22.68 28.18 mm

std 12.80 5.67 18.88 18.66 9.82 15.00 7.25 9.44 5.30 11.42 mm

Standard deviations (computed across the means of all runs) are reported
here only to provide an indication of stability with respect to different train/test
splits. Our algorithm achieves an overall localization error of ∼ 2 cm for median.
Eyes show the largest localization uncertainty across different runs (largest std),
probably due to their smaller size. Furthermore, the use of larger training sets
together with global position and shape priors [16] promises to improve general-
ization across different individuals and anatomies (e.g. missing organs etc.), and
increase both the accuracy and its confidence further.
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3.2 Comparisons with other algorithms

Gaussian Mixture Models. For comparison we implemented a GMM-based tech-
nique where each organ is modelled by fitting a Gaussian Mixture Model to
its distribution of CT intensities. During testing, for each voxel x we evaluate
the probability of that point being the centre of a certain organ c. The centre
position is then estimated as in (2). Localization errors are reported below:

organ head heart l. eye r. eye l. kidney r. kidney l. lung r. lung liver mean acr. organs

median 53.48 88.54 81.56 85.59 133.04 123.38 89.32 89.59 99.63 93.79 mm

mean 144.27 98.32 174.56 168.42 125.55 128.04 104.88 100.29 98.06 126.93 mm

std 95.63 9.55 121.46 114.19 18.70 15.10 8.48 6.19 14.76 44.90 mm

The table above shows much larger errors than with our technique. An analy-
sis of the posteriors shows that some organ labels are almost uniformly scattered
spatially. This induces a bias of the detected centres towards the centre of the
volume (thus incorrect), with at times low variance. The reason for such unsat-
isfactory results is that the GMM approach is based solely on the organs global
appearance and fails to capture spatial context; and ways of integrating spatial
context efficiently within a GMM-based approach are not straightforward. In
this case the use of further features such as gradients did not seem to help much.
Template matching. We also compared our technique with a template based
method. Here, each organ is represented by a set of 3D templates, extracted
from the training volumes and each containing the whole organ. During testing,
for each organ c we convolve the input volume with all exemplars for that organ
and select as centre the point associated with the maximum correlation score
over all exemplar templates. Localization errors are reported below.

organ head heart l. eye r. eye l. kidney r. kidney l. lung r. lung liver mean acr. organs

median 167.53 226.54 96.00 98.53 215.31 343.64 230.12 30.89 96.18 167.19 mm

mean 240.31 191.94 238.12 300.05 229.23 303.29 177.18 134.42 150.46 218.33 mm

std 209.08 24.16 51.33 57.20 33.09 67.33 24.41 40.03 55.15 62.42 mm

In this case the results are still worse than with our technique. We believe
this is because rigid templates fail to model variations in object’s shape, scale
and cropping. In this case too the use of gradient features did not help. Finally,
as the number of organs of interest increases having to store exemplar templates
becomes prohibitive, and the processing burden shifts from training to test.

3.3 Computational efficiency

Training our decision forest model on ∼ 26 datasets currently takes around 10
hours on an 8-core Intel desktop. We are planning to port the algorithm onto a
High Performance Computing cluster which should reduce training to only about
1 hour. Testing is much faster. In fact, a GPU implementation (following [22])
runs in ∼ 2 sec for an approximately 5123 volume.
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4 Conclusion

This paper has introduced a new algorithm for the efficient detection and local-
ization of anatomical structures within Computed Tomography volumes.

We have presented efficient 3D visual features which capture long-range spa-
tial context and help discrimination accuracy. Those features have been incorpo-
rated within a random decision forest classifier. The algorithm’s parallel nature
and the efficiency of its visual features account for the high computational effi-
ciency. The learned model of context accounts for the good localization accuracy.

Next, we plan to extend our technique to other imaging modalities such as
MRI, PET-CT and ultrasound. Also, adapting our algorithm to perform hier-
archical detection (e.g. thorax → heart → mitral valve) will help dealing with
detailed anatomical structures and will yield richer semantic parsing of medi-
cal images. Finally, we would like to extend our work to producing pixel-wise
segmentation of complex anatomical structures such as elongated blood vessels.
This will necessitate building pixel-wise annotated ground-truth databases and
promises to deliver useful results.
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Abstract. This work aims to design a detection and segmentation method
using a graphical model in the context of multi-object brain image seg-
mentation. We resort to dynamic programming as the optimization strat-
egy to find the global minimum energy for the relation graph. Compared
to other graphical models like tree structures, the proposed approach
offers flexibility in accommodating more interactions among objects and
thus can inhibit error propagation. Also, the new method is able to de-
tect and segment a larger number of objects by searching for the global
optimum energy in an efficient way. Experimental results show that the
proposed approach achieves a comparable accuracy to other state-of-the-
art methods.

1 Introduction

The goal of anatomical segmentation of human brains is to divide a brain image
into anatomical subregions, such as, tissues and structures. Structure segmen-
tation is more difficult than tissue extraction because a structure is usually a
further segmentation of a tissue. However, structure segmentation plays a signif-
icant role in the study of human brain functioning and brain disease diagnosis
[1–3]. Various methodologies have been proposed to tackle the difficult prob-
lem of brain structure segmentation [4–8]. Among others, tree-based methods
[9–11] are emerging as an interesting way to manage the inter-relations between
structures/objects. The weakness of a tree structure lies in the relatively sim-
ple interactions among nodes or objects. As a connected graph, a tree has the
fewest edges, which equals the number of objects minus one. If more compli-
cated interaction is desirable, then a tree structure is not satisfactory because
no loop is allowed in a tree. On the other hand, the spatial relation among the
brain structures is complex. In some cases, three or more structures are gathered
together so it is hard to establish a hierarchical relationship like a tree among
these structures.

In this paper, we present a novel dynamic programming-based graphical
model to deal with brain structure segmentation. Dynamic programming (DP)
is able to downsize the relation graph to a simple enough graph. As such, the
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relation graph can be complicated with many edges as long as DP is applicable.
This overcomes the shortcoming of a tree graph with very limited number of
edges. Furthermore, the DP-based method excels if the number of objects grows
significantly. In this scenario, the tree-based methods tend to propagate errors
along a single tree path due to the limited interactions. Note that there is only
one path between any two nodes in a tree. Another important advantage of the
dynamic programming-based method is the ability to find the global optimum
in an efficient way. During the downsizing of the graph, DP keeps the records
of the best candidates of the eliminated nodes and incorporates the associated
energy in the subgraph. When the subgraph is optimized, the original graph is
also optimized. The computational complexity of DP is exponentially lowered
compared to an exhaustive search.

2 Methodology

2.1 Multi-Object Template Construction

Without prior information of shape and position, the task of extracting a pool
of brain structures is very difficult since the structures often do not have clear
boundaries in the brain. The template or atlas of multiple structures in the brain
is served as the prior information for the detection and segmentation. It contains
two-fold information. First, what are the shapes of the target structures? Second,
what are the relations of position among these structures?

A legitimate template can be constructed from the ground truths of a set of
segmentations. Multiple descriptions of the shapes and relative positions of the
structures can be combined by a certain strategy. In this paper, we adopt a quick
and simple strategy to construct the template so we use the ground truth of one
segmentation. The ground truth delimitates the shape of each structure and
determines position relations among the structures. We assume that different
subjects have similar profiles in the two aspects (shape and position).

We create a graph to further define the relations among the structures. The
vertices in the graph represent objects/structures. If two objects interact, there is
an edge connecting the corresponding vertices. The weight of a vertex is pertain-
ing to the similarity between the object and the superimposed image. The weight
of an edge reflects the relative position between two interactive objects. The aim
is to minimize the total weights associated with the whole graph. We create a
graph that is suitable for dynamic programming to apply. The requirement is
that the graph can be reduced into a smaller graph with fewer vertices. When
the original graph is optimized, the smaller graph also reaches an optimum. We
call such a graph a DP-graph. The vertices in a DP-graph can be eliminated one
by one on a certain order until a manageable size of vertices is remained. After
one vertex is eliminated, all the weights associated to it are incorporated to the
smaller graph through a bookkeeping of the best candidates.

Theoretically, dynamic programming can be applied to many kinds of graphs.
In the current context, we apply it to a triangulated graph which strikes a
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good balance between complexity and efficiency [12]. We target to detect and
segment 12 structures in the brain and the constructed graph has 15 vertices.
Three structures (lateral ventricle, the third ventricle and the fourth ventricle)
are segmented in advance and serve as the base objects. The other objects are
left/right thalamus, caudate, putamen, pallidum, hippocampus and amygdala.
The interactions among them are shown in Fig. 1. We build these edges according
to the spatial proximity of the objects.

Fig. 1. The relation graph for 15 brain structures. LV: lateral ventricle, 3V: the third
ventricle, 4V: the fourth ventricle, L/RTh: left/right thalamus, L/RCa: left/right cau-
date, L/RPu: left/right putamen, L/RPa: left/right pallidum, L/RHi: left/right hip-
pocampus, L/RAm: left/right amygdala.

2.2 Matching Measures

We formulate the matching process between a template and an image as an
optimization process of a specific energy. Each objects in the template can be
superimposed on the image in several candidate positions. As such, the multi-
object template has many configurations based on the combination of different
positions of each object. We design an energy to measure both the similarity
between each object and the underlying image region and the proper distances
among the objects. The energy is composed of two components. One is the
single-object measure and the other is the measure for two interactive objects.
The two measures supplement each other. The unary measure is used to draw
one object to the position where a brain structure exists probably. The binary
measure regulates the inter-position between two interactive objects. The total
energy is expressed by,

ET (P ) = α
∑

i

Eu(pi|I) +
∑

i

∑
j∈Ni

Eb(pi, pj), (1)

where ET (P ) denotes the objective total energy of the model, Eu is a unary
measurement for a single object, pi is the position of part i represented by
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spatial coordinates, Eb measures a compatibility between two objects, P is the
set of possible positions of all objects, I is the input image, and Ni is the set of
objects linking to object i.

The unary measure assumes that (1) the intensity level inside one object is
approximately homogeneous and its variation should be small; (2) The voxels
around the boundary of the object usually undergo an abrupt change of intensity
and the gradient magnitude therein should be large. The two assumptions are
valid considering that the brain structures are usually made of the same tissue
type, e.g. white matter or grey matter, and they are often surrounded by a
different tissue although the boundary may be lowly contrasted. The premises
lead to the following formulation for the unary measures:

Eu(pi|I) =
1
ai

∫∫∫
Ai

(I(x, y, z)− I(Ai))2dxdydz − βi

bi

∫∫∫
Bi

|∇I(x, y, x)|dxdydz,

(2)
where I(Ai) is the mean intensity in the image region Ai that is overlapped with
object i and ai is the volume of the region Ai. Bi is the boundary of object i,
bi is the area of the boundary Bi and I(x, y, z) is the intensity of the voxel at
coordinate (x, y, z).

The binary measure adjusts the relative position of two objects that are
connected by one edge in the graph. It is content free and does not depend on
the image data. When two objects are too close or too faraway compared to
the beginning status, the measure imposes a large penalty. If two objects have a
significant overlapping, the unreal configuration is also punished by the measure.
The binary measure is defined as,

Eb(pi, pj) = ||(Cpi
− Cpj

)− (Ĉpi
− Ĉpj

)||+ L · I{aij/aj > τ}, (3)

where Cpi
is the coordinate vector of the center of mass of object i at position pi

and Ĉpi is the initial center of mass of object i. ||v|| denotes the norm of vector v.
I{event} is an indicator function, i.e., if the event is true, I = 1; otherwise I = 0.
aj is the volume of object j, aij is the volume of the overlapping region between
objects i and j, and τ is a tolerance factor with respect to the overlapping extent.
L is a very large positive penalty.

The parameters α and β determine the weights between terms in the energy.
If we allow loose interaction among objects, we can set α to a large value. β helps
to reduce the difference in magnitude between the gradient and the variance. It
can be set according to the ground truth of the training image as follows,

βi = (
1
at

i

∫∫∫
At

i

(I(x, y, z)− I(At
i))

2dxdydz)/(
1
bti

∫∫∫
Bt

i

|∇I(x, y, x)|dxdydz), (4)

where xt represents the same quantity x(x = bi, Ai, ai, Bi) as aforementioned
except with the known position of object i superimposed on the training image.
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2.3 Optimization by Dynamic Programming

Once the energy is defined, we can then move the template around the input
image to find the optimal position for each object. In the process we regard
that positions with smaller energy are better than those with larger energy. The
optimization is challenging since the search space is huge. Suppose there are n
objects in a triangulated graph and for each object there are k possible positions
to choose. If we enforce exhaustive search for a global minimum, we need to
calculate the energy kn times. However, if we apply dynamic programming to
the optimization, the energy is calculated only (n − 2)k3 times with increased
spatial requirement.

Dynamic programming (DP) is a strategy that solves a problem by downsiz-
ing. A problem suitable for DP can usually be formulated in a recursive way. DP
simplifies the problem by solving a less complicated sub-problem first. When the
original problem is optimized, the sub-problem is also optimized on a smaller
support. Dynamic programming does the bookkeeping and records the optimal
extension from the sub-problem to the original problem. The downsizing contin-
ues until a sub-problem with a manageable scale is obtained and can be solved
easily. Afterwards, the solution of the smallest sub-problem is used to track back
to the solution of the original problem.

Dynamic programming can be applied to problems in various domains. In the
present context, a graph is eligible if there is always a cell (a connected subgraph
with 3 or more vertices) that has only one shared edge (we call it an anchor edge)
with the rest part of the graph before each downsizing. All the edges except the
anchor edge are exclusive to the cell. We call such a cell a dangling cell. The
simplest dangling cell is a triangle. It is not necessary that the graph has only
one kind of cell. The DP strategy is to collapse the dangling cell to the anchor
edge. The best configurations in the dangling cell for every possible configuration
of the two vertices of the anchor edge are memorized. Collapse the cells one by
one and the original graph is downsized to a much smaller scale. In each collapse,
the vertices in the dangling cell are eliminated except for the two vertices of the
anchor edge.

Take the current setting shown in Fig. 1 as an example. The cells are all
triangles. There are more than one dangling cells in the present iteration, e.g,
LAm-LHi-LTh, LPa-LPu-LTh, LV-LCa-LPu, and their anchor edges are LTh-
LHi, LPu-LTh and LV-LPu, respectively. We can choose any of them to start
collapsing. The sequence of vertices to be eliminated is called the elimination
order. We adopt for the graph an elimination order of (LAm, LHi, LPa, LCa,
LPu, LTh, RAm, RHi, RPa, RCa, RPu, RTh). After the 12 vertices are elimi-
nated, the graph is downsized to a single triangle which can be simply optimized
by brute force. The bookkeeping makes it possible to transit from a large graph
to a smaller one without loss of information. The bookkeeping is the process
of memorizing the best position for an eliminated vertex given the positions
of the vertices of the anchor edge in the same dangling cell. Note that all the
k2 position combinations of the vertices of the anchor edge need to be kept for
later use. For example, during the elimination of vertex LAm, DP memorizes the
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best position for each position combination of LHi and LTh. The corresponding
weights for each configuration are also registered, i.e. the sum of three weights
on vertex LAm, on edge LAm-LHi and edge LAm-LTh. Then, replace the old
weight on the anchor edge LHi-LTh with the above sum after deleting LAm and
its edges. Thus a smaller subgraph is generated. The iteration continues until
three vertices 4V, 3V and LV are left. We assume the true configuration of the
smallest subgraph is easily obtained. The backtracking from the last triangle to
the other ones is achievable thanks to the bookkeeping during downsizing. We
now know the best choices of the positions of some initial vertices, e.g. 4V, 3V
and LV. In the reverse order of elimination, we can find the best position of the
other vertices. For instance, the optimal position of RTh can be retrieved since
it is recorded in the bookkeeping of 3V and LV. 3V, LV and RTh are once in
the same dangling cell during the elimination and recall that the best position
of RTh is kept for every possible position combination of 3V and LV during the
bookkeeping process. The backtracking is then repeated for RPu, RCa and so
on. In the end, the optimal positions for all the eliminated vertices are found.

The pseudocode of the dynamic programming for the graph is shown in Al-
gorithm 1. The notations are as follows. N is the number of objects in the
graph. s is the number of possible poses for each object. Edge(p, q, i) is the op-
timal energy accumulated on edge i when the two objects a and b linked by
edge i have poses of p and q. Adj(i, j) is the index (the 3rd dimension in array
Edge) of the edge between objects i and j, if i and j are adjacent. Adj(i, j) = 0
otherwise. ElimOrder(i) is the ith object to eliminate. Tri(i, 1), Tri(i, 2) and
Tri(i, 3) are the three objects indices in triangle i. Tri(i, 1) is the first to elim-
inate. Triangle(p, q, i) is the optimal pose of the object Tri2Obj(i) which is
the first-to-eliminate object in triangle i and the two other objects a and b in
triangle i have poses of p and q. Obj2Tri(i) is the index (the 3rd dim in array
Triangle) of the triangle which the first-to-eliminate object is i.

It is worth pointing out that though the current setting of triangular collaps-
ing is similar to some existing methods [13, 14], the dynamic programming-based
framework can be applied to more complicated situations since the dangling cell
can be far more complex than a triangle.

After the dynamic programming is finished, we fine-tune the coarse segmen-
tation by means of the non-rigid B-spline registration between the input image
and the moved trained image [10]. The moved training image has been deformed
according to the displaced template obtained from the DP process. The similarity
metric for the B-spline registration is mutual information. The final segmenta-
tion is thus obtained by propagating the registered template label to the input
image.

3 Experiment

In the experiments, we applied the proposed method to the public database,
IBSR [15], which contains 18 sets of T1-weighted brain MR images with expert-
segmented internal structures. The bias-corrected images are of 256× 256× 128
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Algorithm 1 : Dynamic programming for a triangulated graph
Require: ElimOrder, Edge, Tri, Triangle, Obj2Tri
Ensure: pos, optimal

for each edge v do

for s1 = 1, · · · , s do

for s2 = 1, · · · , s do

Edge(s1, s2, v) = the binary measure for one object in position s1 and the
other object in position s2 (the two objects are linked by edge v);

end for

end for

end for

for i = 1, · · · , n− 3 do

c = ElimOrder(i), a = Tri(Obj2Tri(c), 3), b = Tri(Obj2Tri(c), 2);
for p = 1, · · · , s do

for q = 1, · · · , s do

minEnergy = a large number;
for r = 1, · · · , s do

e = accumulated energy on the edge linking a and c + accumulated energy
on the edge linking b and c + unary energy for object c in position r;
if e < minEnergy then

minEnergy = e;
Triangle(p, q, Obj2Tri(c)) = r;

end if

end for

Increase Edge(p, q, Adj(a, b)) by minEnergy;
end for

end for

end for

optimal = minp,q(Edge(p, q, 1));
for i = n− 3, · · · , 1 do

c = ElimOrder(i);
t = Obj2Tri(c);
pos(c) = Triangle(pos(Tri(t, 2), pos(Tri(t, 3), t);

end for

Return pos and optimal;
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voxels with various voxel sizes. Some of the target structures in the data sets are
of low contrast and hard to detect even for human visual inspection.

Before executing the algorithm, we set the parameters of the method once
and they were fixed in all the tests. α was set to 4 since the average degree of
the vertices in the graph is around 4. We believe the overlapping of more than
10% of the object region is unacceptable so τ was set to 0.1. The grid size of the
third-order B-spline was 5× 5× 5. The search space for object positions was set
to be within the range of 5 × 5 × 3 voxels from the initial positions and hence
k = 75 poses were explored for each object/structure. The magnitude of the
whole search space for 12 objects was 7512. The segmentations of 4V, 3V and
LV were acquired from the training. Alternatively, we can adopt an automatic
method to segment the ventricles as in [10]. We adopted the commonly-used
Dice metric to quantify the difference between the segmentation results and the
ground truths. The Dice score is defined as Dice = (2||A⋂B||)/(||A|| + ||B||),
where A and B are two shapes to be compared. Dice equal to 1 means a perfect
match between two shapes and Dice equal to zero means no overlapping. The
larger the Dice score is, the more overlapping the two shapes have.

We randomly chose a subject in the data sets as the only template. Then
the proposed method was tested on the other 17 data sets. The Dice scores
for the segmentation results before and after the application of the proposed
approach are shown in Fig. 2. Here the initial segmentations are the regions
superimposed by the template before we apply the proposed method. It is ob-
served that the proposed method improves the segmentation of all structures by
more than 10 percentage points on average. When the initial segmentations have
a large variance, the DP-based method can decrease the variance and obtains
more consistent results. The experiments were run in MatLab codes on a 2.13
GH CPU with 1 GB memory. The average running time is around 74 minutes
per data set. We also show one example of the original image, ground truth and
the segmentation result in Fig. 3.

Fig. 2. The average Dice scores and their standard deviations for the initial segmen-
tation (left green bars) and the final segmentation (right yellow bars). Th: thalamus,
Pu: putamen, Ca: caudate, Pa: pallidum, Hi: hippocampus, Am: amygdala. Results of
the same type of left and right structures are combined.
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Fig. 3. One slice of a data set and corresponding segmentations. From left to right are
original image, ground truth, segmentation result, 3D visualization of the ground truth
and 3D visualization of the segmentation result.

4 Discussion and Summary

The same as other graphical models [10], the proposed method has some advan-
tages over other methodologies, such as level sets, fuzzy logic and registration-
based segmentation. For example, the graphical methods are usually more ef-
ficient than registration-based segmentation because the former processes the
structures directly while the latter makes use of the whole brain information.
Level set methods require the initialization to be close to the target. Otherwise,
the level sets will converge to irrelevant structures in the brain. The proposed
method circumvents the initialization problem by finding the global optimum
through dynamic programming.

Quantitative comparison of the proposed method with the related methods
is not conclusive because the methods were tested on different databases, tar-
geted different sets of structures, or evaluated by different similarity metrics.
The proposed method performed slightly better than a related method that was
also tested on IBSR [16]. Their Dice scores for caudate, hippocampus, amyg-
dala, putamen and pallidum were 0.76, 0.67, 0.63, 0.78 and 0.71. Ours are 0.76,
0.70, 0.64, 0.83 and 0.65. Generally speaking, in the related methods [5–7], the
Dice scores for caudate, putamen and thalamus ranged from 0.75 to 0.90. The
scores for pallidum, hippocampus and amygdala ranged from 0.60 to 0.75. The
proposed method achieved comparable accuracies.

One limitation about the current method is that although the dynamic pro-
gramming is capable of finding the global minimal energy, the energy formu-
lation itself is not perfect. It is not ensured that the global minimal energy
coincides with the true structure positions. It is an even more complicated case
considering that the template possesses moderately different shapes from the
true shapes. Theoretically, during the position search, we can allow sophisti-
cated shape search simultaneously but this will make the computational burden
formidable. It remains a profound future topic how to design a nearly-perfect
energy to accommodate various shape changes while enabling efficient optimiza-
tions. All in all, the current work upgrades previous methods [10, 11] based on
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simple graphs (e.g. trees) to a more advanced method. This DP-based method
allows more interaction in the relation graph and thus remains stable and robust
to error propagation in spite of more objects.
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Abstract. Accurate automatic segmentation of anatomical structures is usually
considered a difficult problem to solve because of anatomical variability and vary-
ing imaging conditions. A prior description of the shape of the anatomical struc-
ture to be segmented can reduce the ambiguity associated with the segmentation
task. However this prior information has to be prepared specifically for the struc-
ture of interest, usually supervised and under favorable imaging conditions. An
alternative is to consider the shape of the object sequentially, along a particular
dimension of the data. This is the approach taken here, i.e. on-line modeling of
sequential shape information which is combined with sequential segmentation of
the intensity distributions for the segmented structure and the surrounding region.

1 Introduction

A clinical Magnetic Resonance (MR) scan of a tumor in a human brain contains pixels
that represent pathological and non-pathological tissues. The structure of these tissues
can be considered on a slice by slice basis, i.e. in a sequential segmentation process. Po-
tential benefits of sequential segmentation include adaptation to changes in the intensity
distributions due to e.g. inhomogeneities in the magnetic field and adaptation to other
unknown variations e.g. structural. Medical imaging data is often multi-dimensional
(including 3 spatial dimensions and a time dimension). The medical analysis of such
data is complex, requiring advanced medical and information technology knowledge
and skills, see e.g. [1, 2]. Furthermore sequential segmentation approaches require con-
siderably less memory in comparison to segmentation techniques that process large
multi-dimensional data sets non-sequentially.

Sequential segmentation and summarization processes may ultimately be medically
useful. A sequential segmentation process can be used to sequentially estimate patho-
logical structures such as tumors or even non-pathological structures such as cardiac
tissues that may or may not be defined over time. Shape is inherent to the sequential
segmentation process, whether implicitly considered (i.e. for initialization purposes on
subsequent image slices) or explicitly. We consider an explicit model of shape where
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the shape information is not only estimated from the segmentation process but also used
in subsequent estimation steps to assist with subsequent image slice segmentations. We
consider shape to be an important factor, providing additional information for an intel-
ligent segmentation framework.

An ideal medium for shape modeling are active contour models which have been
extensively investigated in conjunction with prior shape knowledge since at least [3, 4].
These spline based approaches are limited by topological constraints unlike level set
based active contour approaches that have been extensively investigated with the use of
prior shape knowledge since [5]. PCA is often used in these techniques to compress and
summarize the important components of a set of characteristic level sets [5, 6] or con-
trol points modeled using Active Shape Modeling (ASM) [7]. Many prior shape based
segmentation methods have been demonstrated to be quite robust, providing accurate
outlines of the shape of the object being segmented. However, preparation of extensive
prior shape knowledge is not always convenient and even cumbersome. Furthermore,
many methods can encounter difficulties if the structure of interest assumes a new shape
that can not be easily approximated by the shape model. This is a realistic problem for
medical images that are associated with an inherent variability associated with popula-
tion differences and potential pathological structures. Sequential estimation techniques,
requiring minimal user assistance are a valid alternative where shape and segmentation
information is propagated slice to slice.

Fig. 1. Example of temporal sequential segmentation in the sagittal plane. Top row shows left
atrium outline and bottom row, outline of the right atrium. Images correspond to a cardiac MRI
scan acquired at Bristol Royal Infirmary. The algorithm was initialized in both cases by a manu-
ally defined region on an initial slice in the sequence for each result.

Sequential segmentation, results illustrated in figure 1 using the methodology de-
scribed here, has previously been considered by a limited number of authors. An inter-
esting paper by Cho et al. [8] described ways to augment the sequential segmentation
process via physical measurements inherent in the MRI scanning process. However the
additional physical information is often not available. Senegas et al. [9] utilized se-

Probabilistic Models For Medical Image Analysis 2009

92



3

quential segmentation techniques for cardiac sequences where shape information was
propagated across the temporal dimension from a manually positioned mean location,
however the authors utilized a statistical prior model for cardiac shape. Vaswani et al.
[10] considered sequential segmentation techniques for both medical data and conven-
tional video. Initialization was provided by manually placed geometric objects with
manipulation of parameter settings. The included results appear to be rough estimates
of the structures of interest.

We also consider shape in a sequential segmentation framework, where a structure
of interest is manually defined for a single 2D image slice. Empirical parameter estima-
tion is also undertaken for the model components. Section 2 describes our methodology,
uniquely outlining a model for the sequential shape information in an on-line non-linear
setting which is embedded in an image model that considers image information and the
overall level set gradient descent based optimization process. Section 3 then presents
exemplar results from spatial and temporal sequential estimation processes for patho-
logical and non-pathological structures, respectively. Section 4 closes the work with a
short discussion.

2 Methodology

The model of the shape information is described next, in Section 2.1. Section 2.2 then
describes the important elements of an image model for n dimensional intensity in-
formation which also provides an ideal medium in which to embed the shape model
defined earlier. Section 2.3 then summarizes the optimization process used to sequen-
tially estimate the bounds of the structure of interest.

2.1 Shape model

The primary focus of the work here is the shape of a structure of interest Sj that evolves
from one image slice j to the next j+1. This shape Sj is synonymous to a partition of the
image space into two mutually exclusive regions, consisting of foreground Fj = {x|fjx}
and background B = {x|bj

x} pixels x, where Ωj = Fj ∪ Bj and fjx ∈ {0 1} and
bj
x = 1− fjx are binary foreground and background labels, respectively. The partition of

the image space is referred to here with qj = {Fj Bj} for image slice j. The foreground
pixels Fj define the structure of interest for image slice j.

We consider the level set φj � Sj as the primary representation of shape infor-
mation in our model. φj enables important geometric information to be conveniently
incorporated into the modeling process and it can be considered synonymous to the im-
age partition qj where pixel level labeling information is fully encapsulated by the level
set representation. This can be seen from the properties of the level set which include:
φj
xc

= 0 on the coterminous foreground and background regions for contour points xc

and φj
x = ±min |x−xc| ∀xc|φj

xc
= 0, i.e. the contour point with minimum Euclidean

distance, see e.g. [11]. Also (here in this work) φj
x ≤ 0 for x ∈ Fj and φj

x > 0 for
x ∈ Bj . The shape φi of the structure of interest for the current image slice can be
controlled via comparisons with a set of shapes Φi−1 from a dynamically built space
of good shape hypotheses from previous image slices. The comparison of φi with Φi−1
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should be invariant to translation Ti
s, scale si

s and rotation Ri
s to enable meaningful

comparison resulting in a normalized shape space Ωs representation, where the sub-
script s refers to the normalized shape space. Thus, Φi−1 and φi have equivalent shape
space forms given by Θi−1

x = Φi−1

As(x) and θi
x = φi

As(x) ∀ x where

Ai
s(x) = si

sRi
sx + Ti

s (1)

is the similarity transformation from image space x ∈ Ω to shape space Ai
s(x) ∈ Ωs

for the object shape in image slice i. Shape comparisons also have to be in the current
image space requiring the inverse transformation of (1), i.e. Ai(x) = siRix + Ti

where Ai(x) ∈ Ω. As the shape information is learned on-line, without supervision,
the resulting estimated shapes will not be perfect representations and hence can be
considered to be inherently noisy. Thus we may define a probabilistic shape space with
probability distribution pm(θ|Mi−1) that represents the distribution of the learned noisy
shapes over a normalized shape space Mi−1 = {θj |0 ≤ j ≤ i − 1} consisting of
shapes up to the current image slice. We can then define a locally weighted shape space
expectation Θ̄i−1 to provide a best estimate over the shape distribution pm(θ|Mi−1)
(which acts as a prior) and a local weighting distribution pw(θ|θi−1). This best estimate
can then be used to compare the currently evolving shape rather than a global mean
or one based on assumptions on the linearity of the shape space or even one based on
local integrity. The local weighting is given here by a Gaussian distribution pw(θ|θi−1)
centered on the previous image slice object shape θi−1, so that4

Θ̄i−1 =
∫
θ

θ pm(θ|Mi−1) pw(θ|θi−1) dθ. (2)

θj for j = 0...i − 1 are considered to be distributed according to pm(θ|Mi−1), so that
the expectation is approximated via

Θ̄i−1 =

∑i−1
j=0

[
θjWi−1,j

]∑i−1
j=0Wi−1,j

(3)

where Wi−1,j = exp( 1
|Ωs|

∑
x∈Ωs

(θi−1 − θj)2) is the local weighting for θi−1 and θj

image slice shapes and previously identified object shapes are θj for image slice j. Each
weight can then be considered to form an element in a weight matrix that encompasses
the similarity of shapes at different image slices. A simple comparison between φi and
Φi−1 can then be the sum of squared differences in the current image space:

Cs(φi, Φi−1) =
∑
x∈Ω

(
φi
x − Φ̄i−1

Ai(x)

)2

, (4)

where Φ̄i−1

Ai(x) = Θ̄i−1
x , and Ai(x), defined earlier, transforms the shape space estimate

Θ̄i−1 to a current image space estimate Φ̄i−1

Ai(x). A sum of squared differences calcu-
lation implicitly assumes a Gaussian distribution. Therefore taking the exponential of

4 The expected shape in a probabilistic region of the shape space (c.f. (2)) is Θ̄i−1 =∫
θ∼pw

θ pm(θ|Mi−1) dθ =
∫
θ

θ pm(θ|Mi−1) pw(θ|θi−1) dθ =
∫

θ∼pm

θ pw(θ|θi−1) dθ.
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(4) results in a Gaussian distribution and considering the partition representation then
ps(qi|qi−1) can be used to symbolize the distributional form of (4), hence

ps(qi|qi−1) ∝ exp
(−Cs(φi, Φi−1)

)
. (5)

This defines the shape distribution of the foreground region given past observations
via a non-linear shape estimation process. A probabilistic image model is now defined,
combined with this shape model, providing a medium for sequential segmentation of
image structures in volumetric medical images that simultaneously takes account of
both the shape and image information.

2.2 Image Model

Let Ij
x : R

2 × R
+ → R

n be an n dimensional image intensity at pixel x ∈ R
2 and

image slice j ∈ R
+ where e.g. n = 1 for gray scale images. Considering all image

slices j up to a current image slice i, i.e. ∀j, j = 0...i then we can use Bayes theorem to
calculate a conditional probability density p(q|I) for a set of image partitions q given
a set of image intensities I up to slice i

p
(
q = {qj |∀ j, j = 0...i}|I = {Ij |∀ j, j = 0...i}) =

p(I, q)
p(I)

, (6)

where p(I) is the marginal data probability density which is not dependent on the im-
age partition information and can therefore be ignored for the purposes of optimization.
p(I, q) is a joint probability density which is expanded assuming Markov first order de-
pendence of the image data, p(q|I) ∝ p(qi−1|qi)p(qi)p(I0|q0)∏i

j=1 p(I
j |qj , Ij−1, qj−1).

p(I0|q0) is the initial image’s data likelihood term, p(qi−1|qi) is the probability density
of all image partitions, except the current slice i.e. qi−1 = {qj |j = 0...i − 1} given
the current slice partition qi. p(qi) is the prior probability density of the current slice
partition. p(qi−1|qi) and p(qi) are related to shape and contour labeling smoothness
respectively.

The data likelihood term p(Ij |qj , Ij−1, qj−1) can then be divided into foreground
and background terms (assuming conditional independent pixel intensities via the par-
tition terms),

p(q|I) ∝ p(qi−1|qi)p(qi)p(I0|q0)
i∏

j=1

∏
∀x∈Ω

[
pF(Ij

x|qj ,mj
F)fj

xpB(Ij
x|qj ,mj

B)bj
x

]
(7)

where mj
F = {Ij−1

F , qj−1} and mj
B = {Ij−1

B , qj−1} and the powers fjx and bj
x act as

mutually exclusive switches between the foreground and background. pF(Ij
x|qj ,mj

F)
and pB(Ij

x|qj ,mj
B) thus correspond to two different PDFs for the foreground Ij

F =
{Ix|x ∈ Fj} and background Ij

B = {Ix|x ∈ Bj} image intensities respectively. The
initial image’s data likelihood can also be similarly expanded. However, to save space
the non-expanded form will be retained.

Probabilistic Models For Medical Image Analysis 2009

95



6

A smooth labeling and a smooth boundary (both of which are defined as synony-
mous to each other here) separating the foreground and background regions are desir-
able properties of an image space partition for segmentation applications. These prop-
erties can be achieved by minimizing the length of the boundary of the partition qi.
Therefore p(qi) � p(L) ∝ exp (−λκL) where λκ is an exponential rate parameter and
L is the length of the contour defining the partition (c.f. [12]). Substituting this term
into (7) gives

p(q|I) ∝ p(qi−1|qi)p(L)p(I0|q0)
i∏

j=1

∏
∀x∈Ω

model based intensity competition︷ ︸︸ ︷[
pF(Ij

x|qj ,mj
F)fj

xpB(Ij
x|qj ,mj

B)bj
x

]
.

(8)
The intensity part of this equation has been labeled as “model based intensity compe-
tition” indicating that the foreground and background terms work in competition with
each other. Foreground/background competition is the basis of many active contour
techniques e.g. as first proposed in [13, 14]. However, the intensity components used
here are first order Markovian, i.e. they remember intensity information from the pre-
ceding slice via mj

F and mj
B.

A Gaussian distribution possesses symmetry about the mean, so that we can define
here ps(qi|qi−1) � p(qi−1|qi) (see (5)) which is of the form found in (8), so that

p(q|I) ∝ p(L)
∏
∀x∈Ω

⎡⎣ps(qi
x|qi−1

x )p(I0
x|q0)

i∏
j=1

[
pF(Ij

x|qj ,mj
F)fj

xpB(Ij
x|qj ,mj

B)bj
x

]⎤⎦ .
(9)

This probabilistic model now incorporates memory based intensity competition terms,
a spatial smoothness term and a shape based term. The current image slice partition qi

is estimated here using a gradient descent level set based optimization process which is
now described.

2.3 Optimization process

A gradient descent level set based approach is used to optimize (9) and (1) in the ex-
periments that follow, see e.g. [15, 16]. The optimization of (9) is made possible via the
variational derivative (see Appendix) given by

∂φi
x

∂t
= −2λs

(
φi
x − Φ̄i−1

A(x)

)
+ δ0(φi

x)

⎛⎝λκKx − ln

(
pF(Ij

x|qj ,mj
F)

pB(Ij
x|qj ,mj

B)

)
+ λ

ln
ai

b
ai

f
a

⎞⎠
(10)

where λs is a shape term parameter which corresponds to the inverse variance of the
shape density ps(qi|qi−1) and Kx = −∇ · (∇φx/|∇φx|) is the curvature of the level
set at point x. The curvature result follows p(L) ∝ exp (−λκL) (in (9)) and using
the definition of length defined in [15], i.e. L �

∫
Ω
|∇H(φi

x)|dx where H(·) is the

Probabilistic Models For Medical Image Analysis 2009

96



7

Heaviside function. An advection term has also been introduced to regularize the fore-
ground area λln ai

b
a /λ

ln ai
f

a where λa is an area term weight and ai
b =

∑
x∈Ω Δxbi

x and
ai

f =
∑

x∈Ω Δxfix are the background and foreground areas respectively. This advec-
tion force penalizes large changes in the area of the segmented structure, to counteract
the reduction in the object area that might occur due to the curvature based force and
any mis-alignment of the template shape.

The evolving data PDFs pF(Ii
F|qi,mi) and pB(Ii

B|qi,mi) are approximated here
with finite Gaussian mixtures with parameters estimated from the histograms of the
image intensities from the currently estimated image regions Ii

F, Ii
B and the image

intensities from the previous slice, Ii−1
F and Ii−1

B . The parameters of the finite Gaussian
mixture models are estimated here using Expectation Maximization and the number of
finite mixtures in the Gaussian mixture model was set to 6. This was empirically found
to provide the best results for the test sequences.

In common with many active contour techniques manual parameter adjustment is
also required to control the relative contribution of the individual components which
have to be tuned for sequences with different properties. The similarity alignment trans-
form (see [16]) also has weight parameters which can be kept constant once suitable
values have been determined.

3 Experiments and Results

The sequential segmentation process described here can be applied to spatial and or
temporal sequences. A single 2D manually defined segmentation is used here for ini-
tialization. Subsequent slices are segmented by automatically propagating the shape and
intensity information from one slice to the next. Parameter estimation for the different
components in (10) is performed using empirical methods.

3.1 Spatial sequential segmentation

A spatial sequential segmentation process result (3D) that identifies the bounds of a tu-
mor in the transverse plane is illustrated in figure 2. This result uses a central transverse
2D slice for manual initialization. Intensity and shape information is then automatically
propagated, via the model described here, to the remaining image slices in the 3D data
volume. The bounds of the tumor are successfully located for each image slice in the
3D data volume.

The shape of the spatial pathological structure in figure 2 possesses very little varia-
tion other than changes in scale. However the shape of the temporal structure of interest
that follows (cardiac MRI) possesses greater variation in shape.

3.2 Temporal sequential segmentation

A temporal sequential segmentation result (3D) was illustrated earlier in figure 1 for
a Cardiac MRI sequence where the left and right atriums are successfully segmented.
The algorithm was initialized using two 2D image slices, one for the right atrium and
another for the left atrium.
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Fig. 2. Result from spatial sequential segmentation process in the transverse plane that identi-
fies the bounds of a tumor for subsequent slices after manual initialization (bottom left). Images
correspond to T1 + Gadolinium MRI scan, 59 Year old female at the NMR Center of the Mas-
sachusetts General Hospital with a 1.5 Tesla General Electric Sigma and provided by the Center
for Morphometric Analysis (http://neuro-www.mgh.harvard.edu/cma/ibsr).

Fig. 3. Comparative temporal sequential segmentation of right atrium in the sagittal plane after
single 2D image slice manual initialization. 1st row: original data; 2nd row: sequential segmen-
tation using intensity and curvature information only; 3rd row: sequential segmentation using the
proposed method. Images correspond to a cardiac MRI scan acquired at Bristol Royal Infirmary.
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A further temporal sequential segmentation result (3D) of the right atrium after
manual initialization is shown in figure 3 where the result is compared with a result
using intensity information combined curvature but no shape model.

Figure 3 demonstrates an interesting result where the intensity information com-
bined with a curvature based force is not able to identify realistic bounds of the right
atrium. However the result corresponding to the work described here using learned on-
line shape information enables prior information to be carried across from one image
slice to the next, assisting with identifying the boundary of the right atrium.

3.3 4D: Combining temporal and spatial sequential segmentation

In the results above the temporal and spatial sequential segmentations are obtained in
three dimensions. The same technique can be used to segment in higher dimensions.
An example of 4D sequential segmentation in both the temporal and spatial domains is
presented in figure 4.

The 4D sequential segmentation result in figure 4 was obtained by initializing the
algorithm with a single 2D image slice, corresponding to a single sagittal section at a
particular time instance. After all image slices in the temporal domain are segmented
for a particular sagittal location, the algorithm propagates to another sagittally adja-
cent image slice for a particular time instance and then subsequent time instances are
segmented for that sagittal location. The algorithm was able to successfully propagate
the shape information to other time instances and other spatial locations in the sagittal
plane. A comparison is also made with an algorithm using no shape model. The shape
of the tracked atrium using only an intensity based model with curvature degenerates,
particularly as new spatially located image slices are encountered. This is further il-
lustrated by sensitivity calculations in comparison to partial volume calculated ground
truths, in figure 5. The model described here has a much better sensitivity at the systolic
stage of the cardiac cycle despite the significant changes in the shape of the heart.

4 Discussion and Conclusions

A new active contour based sequential segmentation framework has been presented.
This utilizes high-level shape information that is learned on-line, adapting to new shape
configurations whilst constraining the evolution of the active contour. Results have
shown that the combined framework is able to segment structures of interest under-
going complex deformations of shape. The main shortcomings of the method are that it
is computationally complex, requiring significant time to segment a single image slice
and, similar to many active contour tracking frameworks, successful segmentation is
highly dependent on an empirical selection of parameter values that control the relative
contribution of the different model components.
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Using the model described in this paper:

Using intensity and curvature information only:

Fig. 4. Results of sequential segmentation in four dimensions in the temporal and spatial domains.
Each row is a different sagittal slice through the subject and each column is a different time in-
stance. The right atrium outline is delineated for all image slices for the model described here (top
two rows), where the algorithm was initialized using a single 2D image slice in a single sagittal
time instance. If only intensity information combined with curvature is used in the modeling pro-
cess (bottom two rows) then the shape of the tracked region degenerates as more image slices are
segmented. Images correspond to a cardiac MRI scan acquired at Bristol Royal Infirmary.
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Appendix

Maximization of (9) can be used to obtain a partition of the image data that most closely
matches the given shape model and intensity information. This is also equivalent to
minimization of the negative logarithm which is simpler, hence we minimize

E(q, I) = −
∫
Ω

[
ln ps(qi

x|qi−1
x ) (A-1)

+ ln p(qi
x|qi

Nx
) +

i∑
j=1

[
fjx ln pF(Ij

x|qj ,mj
F) + bj

x ln pB(Ij
x|qj ,mj

B)
]⎤⎦dx.

The foreground and background labellings fj , bj are equivalent to functions of the
Heaviside function on the level sets, i.e. H(φj

x) = bj
x = (1− fjx) hence

E(q, I) = −
∫
Ω

[
ln ps(qi

x|qi−1
x ) + ln p(qi

x|qi
Nx

)+ (A-2)

i∑
j=1

[
(1−H(φj

x)) ln pF(Ij
x|qj ,mj

F) +H(φj
x) ln pB(Ij

x|qj ,mj
B)
]]

dx,

where now − ln p(qi
x|qi

Nx
) = λκ|∇H(φj

x)|. Minimization of (A-2) can be performed
via gradient descent on the variational derivative w.r.t. a gradient descent time parameter
t, ∂E(q,I)

∂φi = −∂φi

∂t where the level sets have been parametrized as a function of pixel
location x and the gradient time parameter t, i.e. φ(x, t). The variational derivative
can therefore be shown to be given by (10). An analytical solution to ∂φi

x

∂t = 0 is
not available, therefore finite difference approximations are used to iteratively find the
solution, i.e.

φi
x(t+ 1) = φi

x(t) +Δt

(
−2λs

(
φi
x − Φ̄i−1

A(x)

)
(A-3)

+ δ0(φi
x)

(
λκKx − ln

(
pF(Ij

x|qj ,mj
F)

pB(Ij
x|qj ,mj

B)

))
− λ

ln
ai

b
ai

f
a

)
,

where Δt corresponds to the size of the time step. The Dirac delta function restricts
the computations to the contour rather than the entire level set. Therefore, following
[17], the computations are extended to the entire set of pixels in the image space Ω by
replacing δ0(φi

x) with |∇φi
x| and a narrow band (|φi

x| < T where T ∈ R
+ is a real

positive value) is also used to reduce the number of computations necessary to update
the position of the contour. |∇φi

x| is approximated here with a non-oscillatory upwind
finite difference scheme, see e.g. [18].

The level sets are reinitialized here every treinit iterations to retain the smoothness
and distance properties of the level set using a signed distance transform, [19]. The
optimization of (A-3) continues until convergence which is assessed by comparing the
sum of squared differences of the level set every treinit iterations or until a maximum
number of iterations have been reached (tmax).
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Abstract. High angular resolution diffusion imaging is an increasingly
important image modality. The nature of the diffusion data makes mix-
tures of probability distributions particularly suitable for modeling its
signals. In this paper, we introduce Bayesian finite mixture models for
studying the diffusion field. We apply a spatially variant mixture model
to study prior distributions on the model parameters of the field. The
mean vectors and covariance matrices are independent of lattice loca-
tions, but the mixture weights are allowed to differ from one location
to another. Spatial smoothness is achieved by placing a Markov ran-
dom field prior on top of the mixture weights. The output is a general
model that can be used in different HARDI applications, such as fiber
tracking and image denoising. The latter is illustrated in this study, with
promising results on a real dataset.

1 Introduction

Diffusion weighted magnetic resonance imaging (DWI-MRI) is a technique that
produces in vivo images of biological tissue weighted by the local characteristics
of water diffusion. Using the decrease in MRI signal with respect to a baseline
T2 scan when a gradient in the magnetic field is applied in a given direction,
the water diffusivity in that direction can be estimated. By sampling different
directions, a full diffusion profile can be reconstructed for every voxel in the
scanned volume. Since water diffuses along axonal fibers in the brain, DWI can
be used to follow neural tracts in the white matter and generate a map of the
connections between different brain regions. DWI is currently the only way to
study these fiber bundles in a non-invasive manner.

The most popular way of reconstructing fiber orientations is diffusion ten-
sor imaging (DTI)[1, 2], in which a zero-mean Gaussian probability distribution
function (PDF) is fitted to a relatively small set of data measurements. How-
ever, this model fails to explain fiber crosses and bifurcations[3]. One way of
overcoming the limitations of DTI is to sample the diffusivity on a high number
of directions on a sphere around each voxel. This approach is known as high
angular resolution diffusion imaging (HARDI)[3, 4]. From the HARDI data, the
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PDF of the water diffusivity on a spherical shell (orientation distribution func-
tion, ODF[5]) can be computed.

This paper presents spatially variant Gaussian mixture model (GMM) for
DW-MRI. Mixture models have been successfully applied to DW-MRI[3, 6–9];
they suit this task very well because fiber crossings and bifurcations can be
modeled as the sum of two or more mixture components. In this study, the mean
vectors and covariance matrices are fixed but the mixture weights are allowed to
vary across the image. Smoothness is ensured by placing a Markov random field
(MRF) prior on top of these weights. This idea was applied to natural image
segmentation by Nikou et al. in [10]. King et al. [11] also described a similar
system in a general way, though without any mathematical formulation. The
output of the algorithm is a general model that can be used in different DW-
MRI applications; a denoising technique is illustrated here. Denoising is very
attractive in HARDI because acquiring a high number of images with different
gradient directions in limited time leads to a low signal to noise ratio (SNR).

2 Methods

2.1 Image model

Let x(r) = [x1(r)...xD(r)]t be the vector of D features representing the HARDI
data at voxel r = (i, j, k). We assume that x is a realization of a Gaussian
mixture model (GMM):

p(x(r)) =
C∑
c=1

πc(r)G(x(r)|μc,Σc) (1)

where G(x(r)|μc,Σc) is a Gaussian distribution with mean μ and covariance
Σ. The weights of the mixture π(r) = [π1(r)...πC(r)]t are spatially variant, and
they lie in the probability simplex

∑C
c=1 πc(r) = 1, with πc(r) ≥ 0.

Now, we add a MRF prior on top of the mixture weights to model the fact
that neighboring pixels should be characterized by similar Gaussian mixtures:

p(Π) ∝
3∏

d=1

C∏
c=1

β−N
d,c exp

[
−1

2

∑
r
(2πc(r)− πc(r + ud)− πc(r − ud))

2

β2
d,c

]
(2)

where Π is the set of weight vectors at all spatial locations, N is the total
number of voxels, β2

d,c is the variance of the mixture component c in direction
d = {1, 2, 3}, and ud represents the a unit vector along d. The interpretation
of this prior is simple: when one mixture component at one voxel is predicted
as the average of the values of its neighbors in direction d, the error follows a
zero-mean Gaussian distribution with variance β2

d,c/2.
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2.2 Data space

The HARDI data consists of a set of MRI images corresponding to different
gradient directions and intensities. At each location r and direction k, the signal
intensity decreases by water diffusion according to the Stejskal-Tanner equation:

Sk(r) = S0(r) exp[−bkDk(r)]⇐⇒ Dk(r) =
1
bk

log
(
Sk(r)
Sk(r)

)
where S0 is the non-diffusion weighted baseline T2 intensity, Dk(r) is the appar-
ent diffusion coefficient (ADC), and bk is the Le Bihan’s factor, which groups
information from the pulse sequence, gradient strength, and other physical con-
stants. The SNR of the baseline S0(r) is typically much higher than the SNR of
the gradient images because it is not attenuated by diffusion and because several
acquisitions of S0(r) are usually available. In that case, it is fair to assume that
S0(r) is a perfect estimate and only the gradient images Sk(r) are affected by
noise. Then, the data for each voxel is fully characterized by its vector of ADCs.
This is the feature set used in this study: x(r) = {Dk(r)}.

2.3 Maximum likelihood estimation

Initialization: choice of C with minimum message length criterion A
good starting point for the algorithm that estimates the parameters of the com-
plete image model (described in section 2.3 below) is to carry out the estimation
without considering the MRF from equation 2. This amounts to the classical
problem of estimating the parameters of a GMM, which can be solved with the
expectation maximization algorithm (EM)[12]. The EM can in turn be initialized
with the K-means algorithm, which is further initialized with random samples
from the training data. Since the EM algorithm is prone to getting stuck in local
optima, it is a good idea to run it several times with different initializations and
keep the parameters that produce the highest likelihood.

A key design parameter in GMMs is the number of components C. One way
of determining C is to assign it a very high initial value, run the EM algorithm,
and then merge down components as long as the minimum message length[13]
(MML) decreases. MML is a performance function that combines the likelihood
of the data and a penalty term for the complexity of the model, which increases
with the number of components. At each step, all possible pair-wise merges are
considered. If the MML of the model resulting from the best merge is lower
than the MML of the current model, the merge is carried out, and the process
is repeated. Otherwise, the algorithm terminates.

Optimization with EM algorithm The spirit of the optimization algorithm
is similar to that of [10]. The parameters to estimate are the mixture component
parameters {μc,Σc} and the class variances β2

d,c. The functional to maximize
combines a term for the GMM (see details in [14]) and a term for the MRF:

Q =
∑

r

C∑
c=1

(zc(r) [log(πc(r)) + log (G(x(r)|μc,Σc))])− . . .
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. . .− 1
2

∑
r

C∑
c=1

3∑
d=1

[
log(β2

d,c) +
[2πc(r)− πc(r + ud)− πc(r − ud)]2

β2
d,c

]
(3)

where zc(r) is the posterior probability that the voxel belongs to component c:

zc(r) =
πc(r)G(x(r)|μc,Σc)∑C
p=1 πp(r)G(x(r)|μp,Σp)

(4)

The functional Q from equation 3 can be maximized using EM. In the E step, the
posterior probabilities zc(r) are calculated using equation 4. In the M step, the
estimates of the parameters {μc,Σc} , β2

d,c and the mixture weights at each pixel
πc(r) must be updated to maximize Q. The update equations for the mixture
model parameters are well-known:

μc ←
∑

r
zc(r)x(r)∑
r
zc(r)

, Σc ←
∑

r
zc(r)[(x(r)− μc(r)][x(r)− μc(r)]t∑

r
zc(r)

(5)

Updating the mixture weights is more complicated. Simultaneous optimization
of all the weights is very difficult and impractical. Instead, coordinate ascent
can be used: voxels are visited in random order and their weights are optimized
under the assumption that weights are all other locations remain constant. The
algorithm usually converges after five or six passes. Every time a voxel is visited,
the equation ∂Q/∂πc(r) = 0 must be solved. The derivative introduces terms
depending on neighbors of neighbors:

∂Q

∂πc(r)
=

zc(r)

πc(r)
−

3∑
d=1

6πc(r) − 4πc(r + ud) − 4πc(r − ud) + πc(r + 2ud) + πc(r − 2ud)

β2
d,c

Setting this derivative equal to zero gives a second degree equation of the form
aπc(r)2 + bπc(r) + c = 0:

−6
3∑

d=1

⎛⎜⎜⎝∏
p=1
p�=d

β2
d,c

⎞⎟⎟⎠ π2
c (r) +

3∑
d=1

⎛⎜⎜⎝∏
p=1
p�=d

β2
d,c

⎞⎟⎟⎠ [4πc(r + ud) + 4πc(r − ud)− . . .

. . .− πc(r + 2ud)− πc(r − 2ud)]πc(r) + zc(r)
3∏

d=1

β2
d,c = 0 (6)

Due to the positive nature of variances and probabilities, it is always the case
that a ≤ 0 and c ≥ 0, which guarantees that one solution will be positive and
the other negative; the positive one is kept. Because each weight is optimized
independently, the sum of all weights for a given voxel will not in general be equal
to one. The weights must hence be projected onto the constraints (

∑
c πc = 1,

πc ≥ 0). This is a simple quadratic program that can be efficiently solved[15].
Finally, the updated mixture weights give the new class variances:

β2
d,c ←

1
N

∑
r

[2πc(r)− πc(r + ud)− πc(r − ud)]2 (7)

The algorithm is summarized in table 1.
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1. Initialize the mixture model components {μc, Σc} with the standard GMM.
2. Initialize the mixture weights for every voxel with those from the standard GMM.
3. While the functional Q from equation 3 keeps increasing significantly, repeat:

a) Calculate the posterior probabilities zc(r) with equation 4.
b) Update the mixture model components with equation 5.
c) Calculate the next mixture weights πc(r) at each voxel by solving equation 6.
d) Project the mixtures onto the constraints by solving a quadratic program.
e) Update the class variances β2

d,c
with equation 7.

Table 1. EM algorithm to estimate the model parameters.

2.4 Application to image denoising

A possible application of the model is image denoising, which is very attractive in
HARDI because the large number of DW images to acquire limits the acquisition
time and hence the SNR. In a Bayesian framework, the goal to maximize the
posterior probability of the underlying noise-free image given the noisy version.
Optimizing this probability directly is computationally very demanding. As in
the previous section, coordinate ascent can be used. In this context, this strategy
is known as iterated conditional modes (ICM)[16]: voxels are visited in random
order, and their values are optimized by maximizing the conditional posterior
p(x(r)|x∗(r), x̂(S \ r)), where x∗(r) is the observed value at the given voxel
and x̂(S \ r) is the current reconstruction at all other locations. The algorithm
typically converges after five or six iterations.

According to the image model in this study, the joint conditional distribution
of the mixture weights π(r) and the “real” image value x(r) at each voxel is:

p(x(r),π(r)|x∗(r),π(S \ r)), x̂(S \ r)) ∝ ...

p(x∗(r)|x(r),π(r)) · p(x(r),π(r)|π(S \ r)), x̂(S \ r)) = F

Assuming: 1. that the values for the rest of voxels are not noisy, 2. that the
image value at one pixel only depends on the “real” value at that pixel, 3. that
such noise-free value only depends on the mixture weights at the given location,
and 4. that those mixture weights form a Markov random field (ℵr represents
the neighborhood of r):

F = p(x∗(r)|x(r)) · p(x(r)|π(ℵr),x(ℵr),π(r)) · p(π(r)|π(ℵr),x(ℵr))

= p(x∗(r)|x(r))︸ ︷︷ ︸
NOISE MODEL

· p(x(r)|π(r))︸ ︷︷ ︸
GMM

· p(π(r)|π(ℵr))︸ ︷︷ ︸
MRF

(8)

The first term in equation 8 corresponds to the noise model (rician in MRI):

p(x∗(r)|x(r)) =
K∏

k=1

S0(r)e−b
k

x
∗

k
(r)

σ2
exp(−

S2
0(r)e−2b

k
(x

k
(r)+x

k
(r))

2σ2
)I0(

S2
0(r)e−b

k
(x

k
(r)+x

∗

k
(r))

σ2
)

where I0 is the modified Bessel function of the first kind with order zero. The
second term is just the GMM from equation 1. The third term is a product of
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univariate Gaussians corresponding to the MRF. Each Gaussian is the result of
multiplying the conditional probabilities given by the neighbors in each of the
three spatial directions:

p(π(r)|π(ℵr)) =
C∏
c=1

3∏
d=1

G
(
πc(r + ud) + πc(r − ud), β2

d,c

)
=

=
C∏
c=1

G

⎡⎢⎣2πc(r)|
∑3

d=1(πc(r + ud) + πc(r − ud))
∏3
p=1
p�=d

β2
p,c∑3

d=1

∏3
p=1
p�=d

β2
p,c

,

∏3
d=1 β

2
d,c∑3

d=1

∏3
p=1
p�=d

β2
p,c

⎤⎥⎦
Thanks to the fact that the partial derivatives of F (or rather its logarithm,

to simplify the expressions) with respect to πc(r) and xk(r) can be quickly
computed analytically, the image value and mixture weights at each voxel can
be easily optimized using gradient ascent. For the same reasons as in the EM
algorithm in section 2.3, it is necessary to project the mixture weights onto the
constraints after each step (again, the method from [15] can be used).

3 Experiments and results

3.1 Data

100 HARDI images were acquired at the Center for Magnetic Resonance at the
University of Queensland using a 4 Tesla Bruker Medspec scanner with a trans-
verse electromagnetic headcoil. Diffusion-weighted scans utilized a single-shot
echo planar technique with a twice-refocused spin echo sequence to minimize
eddy-current induced distortions. The timing of the diffusion sequence was opti-
mized for SNR. 94 diffusion-sensitized gradient directions and 11 baseline images
with no diffusion-sensitization were obtained for every subject. Imaging param-
eters were: b-value = 1159 s/mm2, TE/TR = 92.3/8,259 ms, voxel size = 1.8
mm 1.8 mm 2.0 mm. The acquisition time was approximately 15 minutes.

The 11 baseline images were merged down to a single estimate of the reference
S0(r) using the method in [17]. The baseline image was used to calculate a mask
corresponding to the brain using the BET algorithm[18]. The calculated mask
was then applied to all the diffusion images.

The diffusion vector image was downsampled from 94 to 30 directions using a
Laplace-Beltrami regularized spherical harmonic expansion[19] of order six, with
regularization coefficient λ = 0.006. The 30 directions were determined using
an electrostatic approach[20]. The reason for downsampling is double. First, it
lightens the computational load of the algorithms. Second, it provides a version
of the images with low noise level. These 30-directional images will be used as
ground truth in this study.

Finally, the 100 images were randomly divided into two groups: one for train-
ing purposes and one for testing the model.
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Fig. 1. Metrics in the training stage (a) GMM (best of five) (b) MML (c) MRF-GMM.

3.2 Training the model

Pilot experiments with small chunks of data showed that 25 ∼ 30 components
was a reasonable value for C. The GMM (without MRF) was therefore trained
using 35 components at first, so that the MML criterion would bring them down
to the expected amount. The training process was repeated five times with dif-
ferent random seeds for the K-means algorithm, and the model with the best
likelihood was kept. Not all the data were used in the training, but 25x25x20-
voxel patches randomly extracted from the 50 test images. The only condition
was that at least two thirds of the voxels of each patch should be within the
corresponding brain mask. This provides approximately half a million training
voxels, approximately 30 per model parameter to estimate. The evolution of the
log-likelihood with the number of iterations is displayed in figure 1-a.

Once the GMM was trained for C = 35, components were merged until the
MML did not decrease anymore, which happened at C = 25 (figure 1-b). Finally,
the resulting GMM was used as initialization for training the GMM-MRF model.
The EM algorithm converges very rapidly, as seen in figure 1-c. Apart from the
model, the average over all training pixels of the mixture weights (henceforth
π̄c) was saved. These values will be used in the initialization for the denoising
algorithm. The model components and weights are displayed in figure 2.

3.3 Denoising

The 50 test images were artificially corrupted with Rician noise (σ=40, which
gives SNR≈ 9) and then restored using the proposed denoising algorithm. The
noisy versions were used to initialize the estimate of the image values. The mix-
ture weights for each voxel were initialized with the following expression:

πc(r) =
π̄cG(x(r)|μc,Σc)∑C
p=1 π̄pG(x(r)|μp,Σp)

which is very similar to equation 4, with the difference that the local mixture
weights are replaced by the average weights π̄c over all the training data after
the last step of the EM algorithm. The value of the parameter σ of the Rician
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Fig. 2. Trained GMM components. For each component, the average weight over the
training data π̄c and the first mode of variation (μ ± 2

√
λ1e1, where {μ, λ1, e1} are

the mean, first eigenvalue and first eigenvector of the covariance matrix) are shown.
The components were min-max normalized and smoothed with a Gaussian radial basis
function for display.

distribution is assumed to be known exactly. When unknown, this parameter can
be efficiently estimated from the background pixels by studying their statistical
moments [21] or histogram [22].

Figure 3 shows the 16th DW component, as well as the ADC field, for the orig-
inal, corrupted and denoised versions of a sample slice. The proposed algorithm
is compared with three simple strategies: Gaussian blurring with standard devia-
tion σg=3 mm, anisotropic diffusion[23] and Rician adapted non-local means[24].
Rician bias correction was added to the first two in order to take advantage of
the fact that the noise power is known exactly; the non-local means filter already
makes use of thiss information. The Gaussian filter required a high value for σg
to eliminate the noise, resulting in too much smoothing. Anisotropic diffusion
works slightly better, but it still oversmoothes the image. Non-local means, on
the other hand, does not blur the edges as much, but the noise is still very no-
ticeable. Our method clearly outperforms the others, even though a little bit of
high-frequency details are still lost.

Assuming that the original images are almost noise free, which is fair because
they are the product of evaluating an expansion in spherical harmonics that was
fitted to 94 directions, it is possible to quantitatively evaluate the method by
calculating the symmetrized Kullback-Leibler divergence between the ODFs (cal-
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Fig. 3. For the original, corrupted and denoised versions of a sample axial slice: 16th

DW component (left) and ADC field around the internal capsule in a region of the slice
(right). The white square marks the region for which the ADC field is displayed. The
gradient direction for this DW component is zenith 0.9556 rad, azimuth 2.8768 rad.

culated using a spherical harmonic expansion of order four[25]) of the original,
corrupted and denoised images. The results in table 2 show that the divergence
decreases with the complexity of the method, as one would have expected. Fi-
nally, the fact that the mixture weights were optimized jointly with the image
values allows us to plot the probability maps for the components of the mixture.
Sometimes the maps correlate almost directly with anatomy (see figure 4).

4 Discussion

In this paper we use a statistical approach, Bayesian finite mixture models,
to study the DW-MRI data field. A denoising application has been illustrated
here, but the proposed framework is general and can be used in other DW-
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Fig. 4. Probability maps for the components of the GMM that predominate around
the corona radiata.

Method Noisy image Gauss. blur NL means Anis. diff. This study

Average 9.23·10−3 7.31·10−3 5.86·10−3 5.28·10−3 4.40·10−3

p value w.r.t. prev. method N/A 3.76·10−4 3.39·10−3 1.96·10−4 7.31·10−8

Table 2. First row: average KL distance to ODF of original image, in order of increas-
ing complexity. Second row: p values for paired t-tests between each method and the
previous one (t-test at image level, as opposed to pixel level).

MRI applications. While most of the literature in this domain has focused on
improving the fit of the individual DW-MRI data points, we provide a different
perspective by providing a statistical framework for capturing the relationship
of the neighboring diffusion profiles. The intrinsic multi-modal properties of the
data make mixture models very suitable. Our model learns the prior on top of
the distributions for the different spatial locations, which, to the best of our
knowledge, has never been studied in this field.

Future research directions include:

– Studying more efficient algorithms for the learning and computing stages.
Training the model takes approximately eight hours with our current Java
implementation, whereas denoising a volume of size 128x128x55 voxels takes
roughly two hours. Given that Java is an interpreted language and that the
code was not optimized for speed, we believe that the execution time of the
denoising algorithm could be reduced to 10-15 minutes.

– Finding an efficient way to maximize the marginal probability p(x(r)) rather
than the joint probability p(x(r),π(r)) in the denoising algorithm. The
problem is that calculating the marginal probability would require statis-
tical sampling to compute the integral p(x(r)) =

∫
RC p(x(r),π(r))dπ(r),

which has no analytical solution. Because the denoising algorithm is already
rather slow due to the large size of the data, and because optimizing the
joint probability provides good results, p(x(r),π(r)) was maximized here.

– Studying whether the trained model could be used with HARDI images from
another source. In principle, it should be possible to resample the HARDI
data to the 30 directions used here and adapt the value of the class variances
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to accommodate other image resolutions. However, the impact of changing
the Le Bihan’s factor is not clear. Validation on a different dataset would be
required to address these issues.

– Exploring more general baseline models: we tested an approach based on
assuming that the parameters {μc,Σc} are the realization of a Dirichlet pro-
cess with level of resolution α and base measure G0[26]. The main advantage
is that the number of mixture components does not have to be predefined.
Instead, new components are created dynamically to best accommodate the
data. The likelihood with which new components are created is controlled by
α(see [27] for details). Unfortunately, pilot experiments showed a very high
sensitivity of the number of components to the level of resolution. Exploring
possible modifications to tackle this problem remains as future work.

– Applying the model to more applications, such as fiber tracking.
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Abstract. In this article we present a subtraction imaging approach for
the assessment of difference in the cerebral blood flow between intra- and
inter-ictal SPECT images of epilepsy patients. The workflow consists of
a rigid, automatic image registration of the SPECT images, an intensity
normalization, and an alignment of the differences with an MRI. For the
registration, the statistical measure of normalized mutual information is
applied. The probability density estimation is sensitive to the input data,
the sampling approach, and the kernels applied for Parzen-windowing.
An adaptive scheme to estimate the required parameters is mandatory,
because the system has to work reliably for a large number of images. We
propose data-driven estimation techniques for a B-spline Parzen-window
density estimation that is adapted to the variation within the random
measures by an anisotropic binning approach. The optimal kernel widths
are determined by a log-likelihood estimation.
The approach has been integrated into a commercially available software
and applied to a collective of 26 epilepsy patients. Results are presented
for a blind evaluation study with physicians from the Department of
Nuclear Medicine of the University Hospital in Erlangen. The results
show a good correlation of 81% between the certain outcomes of the
proposed workflow and the standard procedure.

1 Introduction

In epilepsy surgery planning, inter- and intra-ictal SPECT images are acquired
between epileptic seizures and closely afterwards. The goal is to find the location
of the seizure onset by comparing the cerebral blood flow (CBF) inferred from the
images. Standard side-by-side visual assessment techniques are not ideal, because
the patient position and orientation may have changed between the acquisitions,
and the images lack a normalization to standardized intensity values (e. g. as
Hounsfield units in CT).

In [1], we introduced a workflow for SPECT epilepsy imaging. The basic idea
is to use image subtraction similar to digital subtraction angiography (DSA) in
order to visualize the differences between both images. The subtraction image
then depicts changes in the CBF between both acquisitions. In order to be able
to perform a difference operation on two SPECT images, we have to compensate

Probabilistic Models For Medical Image Analysis 2009

115



for patient motion and variations of the tracer uptakes between the acquisitions.
A previously acquired MRI is integrated into the workflow and used to spatially
localize the differences. In this article, we refine the concepts of the prior work
and extend the registration, as well as the intensity normalization, by automatic,
data-driven density estimation techniques.

The similarity measure used in the registration of the SPECT images has to
be invariant to intensity variations, changes in blood flow activity, and structured
noise. We apply normalized mutual information (NMI) [2] and use parameters
that are adapted to the input data. This principally concerns the discrete prob-
ability density functions (PDF), which are computed by a novel, quasi-adaptive
Parzen-window estimator based on cubic B-spline kernels. Structured noise in the
background is handled by an automatic determination of background thresholds
for both images, which can afterwards be reused within the intensity normal-
ization. After the registration, we relate the intensities between both images by
fitting an affine model into the joint PDF. The final result of the workflow is a
subtraction image that can be fused with an MR scan.

We have applied the algorithm to a collective of 26 epilepsy patients and the
results of the proposed workflow have been evaluated in a blind study.

2 Related Work

The workflow, presented in Hahn et al. [1], is based on the application of sub-
traction methods in the context of SPECT imaging. Other approaches make
use of statistical parametric mapping, for example Chang et al. [3] and McNally
et al. [4]. Their methods, however, require collectives of norm patients in order
to identify those variations that are due to the epileptic disease. Koo et al. [5]
proposed settings for the visualization of subtraction results in order to achieve
a good correlation in the detection of the focal spots with other, well established
techniques.

Image similarities can be modeled in a statistical framework. Here, the inten-
sity values are regarded as random measures of an unknown distribution. Using
nonparametric density estimation, efficient PDF estimators can be realized by
a discretization of the Parzen-window technique [6, 7]. The density estimation
is based on the work by Viola [8] and Hermosillo et al. [9]. Knops et al. [10]
and Katkovnic and Shumulevich [11] investigated the effects of the kernel width
parameter on the estimator and showed that state-of-the-art, isotropic binning
is outperformed by adaptive techniques. Depending on the sampling pattern,
numerical problems arise in the discretization of the estimator, as described by
Maes [12] and Pluim et al. [13]. Thévenaz et al. [14] proposed quasi-random
sampling based on Halton sequences in order to overcome these problems.

The structured noise within reconstructed medical images often poses prob-
lems to the registration, as the algorithm tends to align not only the interesting
image content, but also the background noise. Some authors have tried to elim-
inate this problem by using intensity thresholds within the joint PDF [15, 16],
or by masking the background region of the images [17]. Although this removes
all influences of the background, mis-registrations with the background regions
are partly or entirely disregarded.
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3 Methods and Materials

This section is organized as follows. After a brief summary of the similarity mea-
sure for the registration in section 3.1, we present in part 3.2 an adaptive binning
scheme that is used to re-quantize the image intensities for a given number of
histogram bins. Based on a similar scheme, we describe in section 3.3 the auto-
matic detection of the intensity thresholds for the background, which is assumed
to contain structured noise. The density estimation is subject of part 3.4, where
the efficient Parzen-window discretization using histograms is presented. The
density estimation techniques are used for the registration, and afterwards, for
the normalization of the SPECT intensities, as described in section 3.5.

3.1 Normalized Mutual Information

In an automatic, intensity-based image registration, a distance measure D is
used as an objective function for the alignment between a reference image R
and a template image T . For a spatial transform Φ : R

3 �→ R
3, which consists of

rotation and translation parameters in our case, the term TΦ is used to refer to
the transformed template image:

TΦ(x) = T (Φ(x)) (1)

During the registration, we search for an optimal transform Φ̂ that minimizes
the distance measure:

Φ̂ = argmin
Φ
D[R, T , Φ] (2)

Distance measures based on image intensity statistics are widely used for multi-
modal registration tasks and also for single modalities where the intensities are
not normalized, for example the SPECT image pairs in our application. Based
on Shannon’s theory [18], the information content within the images is measured
using the entropies of the marginal PDFs pR and pTΦ

, and the joint PDF pR,TΦ
:

H(R) = −
∫

R

pR(r) log pR(r) dr (3)

H(TΦ) = −
∫

R

pTΦ
(t) log pTΦ

(t) dt (4)

H(R, TΦ) = −
∫

R2
pR,TΦ

(i) log pR,TΦ
(i) di (5)

where r, t, and i = (r, t)T are intensity random measures of R and T . In the
following, we make use of the normalized mutual information (NMI) [2], which is
less variant to overlap effects than the common mutual information, which was
introduced by Wells et al. [19] and Maes et al. [20]:

DNMI[R, TΦ] = −H(R) +H(TΦ)
H(R, TΦ)

(6)

Here, DNMI is written as a distance measure, i. e. smaller values indicate a better
result.
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A common technique to estimate the intensity PDFs is Parzen-windowing.
In a one-dimensional case with n random samples x1, x2, . . . , xn, the Parzen-
window PDF estimator yields [7, 21]:

pλ,n(x) =
1
n

n∑
i=1

Kλ(x− xi) , (7)

with Kλ being the kernel PDF of width λ. Unfortunately, this approach has a
high computational complexity and the storage requirements needed for large
numbers of samples are high. If the random samples are discretized into a his-
togram, a discretization error is introduced on the one hand, but on the other
hand, a lot of computations can be saved. The non-parametric estimator then
resembles the behavior of a mixture model with as many components as bins.
The n samples are stored in a discrete histogram hn with b bins (b > 1). Here,
hn(xi) provides the fraction of samples that fall into the bin corresponding to
xi. p̂λ,n is the discretized PDF estimator that differs from pλ,n in (7) by the
application of histogram binning:

p̂λ,n(cj) =
b∑
i=1

hn(ci)Kλ(cj − ci) = (hn 	Kλ) (cj) ≈ pλ,n(cj) , (8)

where cj is the intensity value corresponding to the center of the j-th bin, and
‘	‘ the convolution operator. We assume in the following, that p̂λ,n is an approx-
imation of its continuous counterpart, as indicated in (8).

3.2 Adaptive Binning Scheme

In data-driven approaches that estimate the optimal kernel width, one can ob-
serve that the result is directly related to the uncertainty within the data. Due
to the discrete nature of histograms, this uncertainty is reflected by a varying
smoothness or degenerations. Estimators using constant kernel widths cannot
distinguish between regions of high and low certainty within one histogram.
Therefore, several authors suggest making this parameter spatially variant. A
disadvantage of adaptive, anisotropic kernel widths is the increased computa-
tional complexity for both the estimator and the formulation of its derivatives.
In medical imaging, this increase in complexity is prohibitive. In addition, the
efficient evaluation scheme (8) cannot be applied to estimators with varying ker-
nel sizes. Therefore, we propose a trade-off in favor of a higher computational
efficiency.

Instead of determining different kernel widths for an equidistantly spaced his-
togram, the image intensities are initially sampled into a histogram of varying
bin widths. The corresponding bin centroids define a quantization characteristic,
which can be used to map the input intensities to re-quantized output values.
These, in turn, can be represented with an equidistantly spaced histogram. A
density estimation on this re-quantized intensity space then does not have to
account for different bin widths of the histogram and the convolution-based esti-
mator (8) can be applied. The nonlinear mapping is computed as a preprocessing
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step in the beginning, which means that it has to be computed only once for each
image, but requires a distance measure that is invariant to this type of intensity
transform, a property that is fulfilled by DNMI (6).

In order to distribute the bin centers for the initial histogram with a minimal
quantization error, we apply an approach introduced by Lloyd [22] and Max [23].
It minimizes the noise power N for a specific number of bins by an iterative
refinement of the bin center locations. The spatial region of the i-th bin within
the domain of the random variable is defined by the interval [li−1; li] with the
centroid ci. The noise power of the re-quantization with respect to the signal
PDF p(x) is:

N =
b∑
i=1

∫ li

li−1

(ci − x)2p(x) dx . (9)

Lloyd [22] proposed a fixed point iteration scheme to numerically minimize (9)
with respect to the bin intervals and centroids. Again, p(x) is unknown, but can
simply be exchanged by the histogram of the entire image with full intensity
resolution, or a suitable Parzen-window estimator.

3.3 Background Threshold Detection

Tomographic, medical images are the result of discrete, modality-specific re-
construction methods that are based on physical measurements. In practice,
these measurements are affected by detector noise and many physical effects,
which may impair the reconstruction result. Problems for image registration
algorithms especially arise from structured noise in the reconstructed images.
Thévenaz et al. [17] presented a robust technique to distinguish between the
object and background region within an image. They used the aforementioned
Max-Lloyd quantization algorithm on a low pass filtered version of the image.
Combined with the filtering, the algorithm computes the bin widths for a dis-
crete histogram of two bins. The boundary between these two bins is assumed
to separate intensities in the background from object values. The authors used
the algorithm to determine the background region within PET images. We ap-
ply the background values to down-weight the corresponding region within the
joint PDF – instead of thresholding it – in order to reduce the influence of the
background and the contained noise. The background thresholds are also used
for the intensity normalization 3.5.

3.4 Density Estimation

Very common choices for the kernel PDF Kλ are the Gaussian or cubic B-
spline [24, 25]. Using a cubic B-spline B yields the following Parzen-window ker-
nel KB

λ :

KB
λ (x) =

1
λ

B
(x
λ

)
(10)

The B-spline function is commonly defined recursively by the Cox-de Boor re-
cursion formula, however, in the case of degree three, the kernel may be written
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as a non-recursive function:

KB
λ (x) =

⎧⎪⎪⎨⎪⎪⎩
1
λ

(
4
3 − 2 |x|

λ + x2

λ2 − |x|3

6λ3

)
, if |x|

λ ∈ [1, 2[
1
λ

(
2
3 − x2

λ2 + |x|3

2λ3

)
, if |x|

λ ∈ [0, 1[

0 , otherwise

(11)

KB
λ can be discretized either by sampling of the kernel values or recursive fil-

tering. This specific window function has some advantages over, for instance, a
Gaussian: it has a local support and fulfills the partition of unity constraint [26].

A necessary requirement for the implementation of the estimator is the spe-
cification of λ. Unfortunately, this parameter is dependent on the data, i. e. the
values and the number of the random samples. In order to get an optimal PDF
estimator, it is necessary to apply data-driven estimation techniques. A leave-
one-out estimator is usually plugged into a log-likelihood function with respect
to the kernel width in order to measure how good it resembles the missing data.
Let pjλ,n−1 be the estimator after deleting the j-th sample. The resulting log-
likelihood objective function then yields [27]:

L(λ) =
n∑
j=1

log pjλ,n−1(xj) . (12)

An optimal value λ̂ for the kernel width maximizes L
λ̂ = argmax

λ
L(λ) . (13)

To optimize (13), it is necessary to search for a zero crossing of the derivative of
(12) with respect to λ. The problem can be solved using an iterative, nonlinear
optimization scheme, e. g. Newton’s method. The derivatives of L with respect
to λ are:

∂

∂λ
L(λ) =

n∑
j=1

1
p̂jλ,n−1(xj)

∂

∂λ
p̂jλ,n−1(xj)

∂2

∂2λ
L(λ) =

n∑
j=1

− 1(
p̂jλ,n−1(xj)

)2

(
∂

∂λ
p̂jλ,n−1(xj)

)2

+
1

p̂jλ,n−1(xj)
∂2

∂2λ
p̂jλ,n−1(xj)

(14)

For the B-spline kernel function KB
λ , the derivatives of the estimator yield:

∂

∂λ
p̂jλ,n−1(xj) =

b∑
i=1

hjn−1(ci)
∂

∂λ
KB
λ (xj − ci)

∂2

∂2λ
p̂jλ,n−1(xj) =

b∑
i=1

hjn−1(ci)
∂2

∂2λ
KB
λ (xj − ci)

(15)
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Similar to the kernel function (11), we formulate the derivatives of KB
λ for three

cases.
Case 1: |x|

λ ∈ [1, 2[

∂

∂λ
KB
λ (x) =

1
λ2

[
2|x|
λ
− 2x2

λ2
+
|x|3
2λ3
− λKB

λ (x)
]

∂2

∂2λ
KB
λ (x) =

2
λ3

[
−2|x|

λ
+

3x2

λ2
− |x|

3

λ3
− λ2 ∂

∂λ
KB
λ (x)

] (16)

Case 2: |x|
λ ∈ [0, 1[

∂

∂λ
KB
λ (x) =

1
λ2

[
2x2

λ2
− 3|x|3

2λ3
− λKB

λ (x)
]

∂2

∂2λ
KB
λ (x) =

2
λ3

[
3|x|3
λ3
− 3x2

λ2
− λ2 ∂

∂λ
KB
λ (x)

] (17)

Case 3: |x|
λ /∈ [0, 2[

∂

∂λ
KB
λ (x) =

∂2

∂2λ
KB
λ (x) = 0 (18)

The equations (15) are again convolutions with the partial derivatives for the
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Figure 1. Convolution kernels for the kernel width estimation using a B-spline window
function KB

λ
printed for a kernel width λ = 1. The kernel function, the first derivative,

and the second derivative with respect to λ are plotted within the locally supported
region.

kernel width of the Parzen-window kernel. Due to its local support, the spline
kernel is very suitable for an implementation of the log-likelihood optimization
using a discrete convolution operator and the kernel functions shown in Figure 1.
The multivariate density kernel width estimation is realized analogue to the 1-D
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Figure 2. (a) Parzen-window log-likelihood function for a B-spline kernel KB
λ

cross-
validation and an estimation of 100 samples drawn from a normal distribution with
λ = 4. (b) Shows the corresponding first and second order derivative with respect to
λ.

case and the 1-D kernels can be applied subsequently to each dimension of the
histogram, because the multivariate B-spline kernel is separable. Figure 2 shows
example curves that can typically be observed for the log-likelihood optimization
of the kernel width. In this example, the width of a cubic B-spline kernel has
been adapted to 100 sample values drawn from a Gaussian distribution with
mean zero and a variance of 4.

3.5 Intensity Normalization

As mentioned above, for a correct interpretation of the differences between the
SPECT images, the intensities have to be normalized to a common intensity
range. This is necessary due to different acquisition times and changes in the
overall tracer uptake within the human body. We model the mapping by an
affine intensity transform similar to the proposals of Liao et al. [28]. In order to
be invariant to the intensities of the background, we restrict the affine mapping
to the region of the joint PDF above the background thresholds, i. e. the proba-
bilities for joint intensities each belonging to intensities corresponding to brain
tissue. The thresholds are determined using the approach described in section
3.3. The components of the intensity mapping are computed by linear regression
within the joint PDF. This leads to an affine intensity transformation and, in
the ideal case, a clustering at the diagonal entries of the joint PDF after the
mapping.

4 Results

The proposed method has been applied to a collective of 26 epilepsy patients
and assessed by physicians. Each patient underwent the standard diagnostic
procedures, and, from the patient charts, the location as well as the number of
the focal spots were known. The images have been anonymized within the clinics
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and handed blinded to us. The subtraction images were then generated with the
proposed workflow and randomly ordered into a set of evaluation protocols. For
the registrations, the number of bins has been computed automatically using
a threshold for the quantization error of 0.05%. The number of samples has
been 10% of the overlap domain, and at least 10.000 for lower resolutions in
the multi-level optimization. No misregistrations were encountered during the
experiments. Based on a fusion of the subtraction image with the corresponding
MRI, the physicians had to specify the locations and the number of the focal
spots, their certainty, and a rating of the image quality. No additional data was
provided for the evaluation. The results of two physicians from the Department
of Nuclear Medicine, University Hospital Erlangen, showed a good correlation
of the proposed method with the conventional procedure. On an ordinal scale
ranging from very uncertain, uncertain, certain to very certain, 45% of the results
from the subtraction workflow were classified as certain. The observers reached
a correlation value of 81% for correctly locating the focal spot in those cases.
In the uncertain cases, still 53% of the focal spots have been located correctly.
The overall image quality was rated good on an ordinal scale between very bad,
bad, good, and very good. The intra-observer variability was 88% for the results
computed from two evaluation passes.

An example for the density estimation and the normalization, using an affine
model, is shown in Figure 3. Resulting subtraction images fused with the corre-
sponding MR images are presented in Figure 4.

5 Discussion

In this article we have presented data-driven parameter estimation techniques
for the Parzen-window estimation of intensity distributions, which are required
for statistical image similarity measures. The proposed algorithms have been
integrated into a normalized mutual information registration and applied to align
intra- with inter-ictal SPECT images of epilepsy patients. After the registration,
the estimated densities are used for the intensity normalization between the two
SPECTs in order to allow for an image subtraction. The difference image is then
fused with an MRI to spatially localize the focal spots.

Regarding the evaluation, in the cases where the physicians indicated a high
certainty, the results showed a high correlation with the standard evaluation
method. In cases of low certainty, an inspection of the subtraction results revealed
no failure of the algorithm, but instead often showed several weak focal spots
that gave no clear information about the seizure onset. This might lead to the
conclusion that the diagnosis of these patients with only the SPECT images
is generally uncertain also in the standard approach. An evaluation based on
real ground truth data (i. e. results from surgery) would be necessary to confirm
this. Please note that only the difficult cases are undergoing a further analysis
using multiple SPECT and MR images. A major advantage of the presented
algorithm is the low amount of time that is required for the physician to assess
the patient data in the beginning of the diagnosis. This suggests to combine the
approach with the standard procedure, giving the physician a good indication
of interesting regions within the data.
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Figure 3. The figures show the joint PDF of two input SPECT images (a) before, (b)
after the registration, (c) with the model fitted into the joint PDF without background
content, and (d) the joint PDF after applying the intensity normalization. The figures
also show the diagonal through the histogram space (solid red line), the fitted affine
model (dashed red line), and the threshold region for the background (solid blue line).

(a) (b)

Figure 4. Two example patients taken from the collective. The images show the
SPECT subtraction image fused with the corresponding MRI.
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Abstract. An open issue in the use of hybrid PET / MRI scanners
is the attenuation correction of the PET image. In order to solve this
problem, we propose to perform a nonrigid registration of an atlas CT
image with the MRI. The registered atlas CT contains the information
about the tissue densities necessary for the attenuation correction.
In multi-modal, nonrigid image registration, the correspondence between
the intensity values is not known a priori. Statistical, multi-modal dis-
tance measures determine this correspondence during the registration
solely from the intensity distributions. Without the incorporation of prior
knowledge this may lead to wrong results, such as the alignment of the
skull with brain tissue, or the skin with fat surrounding the skull. There-
fore, we propose a novel, PCA-based regularization of the nonrigid reg-
istration. This limits the possible registration results to morphologically
plausible deformations. The model is constructed such that it is invari-
ant to global translations in the registration. Thus, the registration is
less dependent on the initial, rigid preregistration.
Results are presented on a database of 18 CT datasets for the training
of a PCA deformation model. MR images of the same patients have
been rigidly registered with the corresponding CT datasets, which are
used as ground truth for the tests. The evaluation is performed using a
leave-one-out cross-validation by registering an atlas onto the total of 38
MRI datasets and comparing the deformed atlas with the ground truth
CT of the patient. Results indicate a better performance of the proposed
approach compared to the standard. On average, the mean squared error
is decreased by 18% and the sensitivity for correct soft tissue and bone
alignment is increased by 4%.

1 Introduction

The advent of hybrid scanners, for example the combination of PET (Positron
Emission Tomography) and CT (Computed Tomography) imaging within one
machine, has brought many new possibilities to the field of medical imaging,
such as the invention of highly specific tumor markers. However, the superior
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tissue contrast and the large variety of different sequences offered by MRI make it
desirable to replace the CT with an MRI (Magnetic Resonance Imaging) scanner
in such hybrid systems. Although there are still technical difficulties to overcome,
first combined PET / MRI scanners for acquisition of the human head have
already been built, and it is only a matter of time until they enter the market.

One of the difficulties to overcome in PET / MRI hybrid scanners is the
attenuation correction of the PET image. In PET, the aim is to measure the
concentration of a radioactive marker within the patient body. The quantity
that the machine can actually measure is the radiation emitted by the tracer.
The rays are attenuated by the anatomical structures while traveling through the
human body. Therefore, it is necessary to provide an attenuation map for each
acquisition in order to perform an attenuation correction of the dose measured
in the PET image. The map can be created, for instance, from a CT, where
the relation between the intensities within the image and the tissue densities is
known.

The values measured by MRI, however, are not related to the attenuation,
therefore, no straightforward solution is currently available for the attenuation
correction in case of a hybrid PET / MRI scanner. In the following, we propose
a method based on the registration between an atlas CT and the MRI image.
The deformed atlas image then replaces the missing CT of the patient and can
be used for the attenuation correction.

The multi-modal, nonrigid registration, which is used to perform such an at-
las registration, offers many degrees of freedom in the spatial domain. It is more
difficult than the mono-modal registration, because the relation between the im-
age intensities is not known a priori. This may lead to mis-registrations where
a low value for the distance measure indicates a good alignment of the images,
however, the deformation may not be correct in the physical and morpholog-
ical sense. Hence, we propose a novel regularization of the nonrigid registra-
tion process that incorporates prior knowledge in terms of a deformation model.
This morphologically-based regularization utilizes a PCA (Principal Component
Analysis) of the previously acquired deformation fields computed from CT im-
ages of a collective of patients. These registrations performed within the CT
modality use a sum-of-squared differences similarity measure. The intra-modal
registrations are, in our experience, better conditioned than the multi-modal,
nonrigid registrations between CT and MRI. The result of this learning phase is
an atlas CT, together with a model for the variations within the deformations.
This prior knowledge is used to constrain the registration between the MRI of
the hybrid scanner with the atlas CT to penalize morphologically improbable
deformations.

This article is organized as follows. First, we introduce related work regarding
the attenuation correction, morphological models in image registration, and the
nonrigid registration. The methods provide information about the registration,
distance measures, and the model generation. In the final section we present a
leave-one-out cross-validation of 18 CT images used for the atlas CT creation
and applied to MR images, and discuss the results.
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2 Related Work

A very recent survey of PET / MRI attenuation techniques can be found in
[1]. Usually, the employed methods are categorized into segmentation- or classi-
fication-based approaches. In segmentation-based correction, the intensities of
the MRI image are directly transformed into an attenuation map. Using an
atlas for the correction, an atlas CT is transformed into the space of the MRI to
provide the tissue densities. In addition, combined methods can be applied that
first perform an atlas registration and use additional knowledge from the atlas
to improve the results of a classification approach [2].

Statistical morphological constraints in image registration have already been
employed. Wang and Staib [3] describe a method that generates a sparse PCA-
based model on a set of boundary points that they use to constrain the dense
nonrigid registration. Kim et. al.[4] construct a dense PCA-based deformation
model from registrations with a standard registration approach. The model is
used to generate a large set of sample images which are then compared to the ref-
erence image in order to find a good starting position for a standard registration
approach. An alternative to a simple PCA model is proposed by Xue and Shen
[5]. They, instead, use a wavelet PCA that has the advantage to also capture
very local and fine grained deformations. Nevertheless, the model is only used
for an initial registration followed by an unconstrained nonrigid registration.

In this work we focus on a nonrigid, nonparametric atlas registration of a
CT dataset with MRI, similar to the approaches presented in [6, 7]. As distance
measure we employ the mutual information (MI), based on the works of Vi-
ola [8] and Hermosillo [6]. As regularization term we employ a curvature term
introduced by Fischer and Modersitzki [9].

3 Methods

In the following, we present the applied nonrigid registration framework 3.1 that
is used both to generate the atlas CT, and to register the MRI with the atlas
CT. In section 3.2, we describe the applied intensity distance measures, which
are used as objective functions for the registration. The regularization of the
registrations is based on the curvature of the deformation field 3.3, which is then
supplemented by the deformation model created with the PCA on the sample
deformation fields. The novel regularization approach is described in 3.4, followed
by the modeling of the translation invariance 3.5.

3.1 Nonrigid Registration Framework

In nonrigid, nonparametric registration the dense deformation field u is calcu-
lated between the spatial positions of each voxel. It is determined by minimizing
a distance measure D, which evaluates the quality of the match between the
moving image M and the fixed image F . Its optimization is subject to a smooth-
ness constraint S to ensure that the resulting deformation does not contain any
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cracks, ridges, or folds. This constraint is usually incorporated as a penalty term
weighted by a parameter α ∈ R>0, i.e. lower values of α will result in a less
smooth deformation field, but a better match and vice versa. The optimization
of the distance alone is ill-posed and the addition of the smoothness constraint
is related to classical Tikhonov regularization [10]:

û = argmin
u
E(F,M,u) = argmin

u
D(F,Mu) + αS(u) (1)

Mu(x) = M(x− u(x))

The optimization problem is to find a minimizer for the functional (1) in the
space of all deformation fields U . If we assume that E is sufficiently smooth
and differentiable, and with appropriate boundary conditions, we can apply the
calculus of variations to find a minimizer û. For the direction v ∈ U of the first
variation, the Gâteaux derivative of (1) is defined as:

δE(F,M,u ◦ v) = lim
ε�→0

E(F,M,u + εv)− E(F,M,u)
ε

=
dE(F,M,u + εv)

dε

∣∣∣∣
ε=0

(2)
For the existence of a minimizer for (1), it is necessary that the Gâteaux deriva-
tive vanishes for all variations v: δE(F,M, û ◦ v) = 0. If U is assumed to be
a Hilbert space that defines a scalar product, the gradient of the functional
with respect to the optimal displacement vanishes, ∇UE(F,M, û) = 0, and the
minimizer is a solution to the Euler-Lagrange equations associated with this
problem:

∇UE(F,M,u) = ∇UD(F,Mu) +∇US(u) (3)

As solver, we employ a Newton-type method that uses a numeric approximation
of the second derivative of D.

3.2 Distance Measures

For the mono-modal registration between the CT images, we apply the widely
known sum-of-squared differences measure. It is based on the assumption that
the intensities of corresponding tissue within the two images are equal, or differ
by noise at the utmost.

DSSD(F,Mu) =
1
|Ω|
∫
Ω

(Mu(x)− F (x))2 dx (4)

with Ω being the spatial domain of the overlap between F and Mu.
Distance measures based on image intensity statistics are widely used for

multi-modal registration tasks. Based on Shannon’s theory [11], the information
content within the images is measured using the entropies of the marginal PDFs
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pF and pMu
, and the joint PDF pF,Mu

:

H(F ) = −
∫

R

pF (f) log pF (f) df (5)

H(Mu) = −
∫

R

pMu
(m) log pMu

(m) dm (6)

H(F,Mu) = −
∫

R2
pF,Mu

(i) log pF,Mu
(i) di (7)

where f , m, and i = (f,m)T are intensity random measures of F and M . In the
following, we make use of the MI, which was introduced by Wells et. al.[12] and
Maes et. al.[13]:

DMI(F,Mu) = −MI(F,Mu)
= H(F,Mu)−H(F )−H(Mu)

=
∫
R2

pF,Mu
(i) log

pF,Mu
(i)

pF (f)pMu
(m)

di (8)

Here, DMI(Mu, F ) is written as a distance measure, i.e. smaller values indicate
a better result.

3.3 Curvature Regularizer

The choice of a suitable smoother depends on the type of application. Common
regularization techniques are based on Dirichlet, elasticity, fluidal, and higher
order functionals. Among the latter ones, curvature regularization is an approach
that features some advantages for medical image registration [14]:

SCURV(u) =
∫
Ω

|Δu|2 dx . (9)

This regularization term does not penalize affine transformations and leads to
smooth displacement fields.

3.4 PCA Regularization

To generate the proposed morphological model, a series of mono-modal regis-
trations is performed on CT images. The images are rigidly aligned, before a
nonrigid registration is employed, which yields the training deformations. The
mono-modal is considered to be more robust than the multi-modal registration,
especially as one has to deal with less local minima during the optimization. For
n input images, the resulting sample deformation fields wi with i = 1, . . . , n are
then used to extract the mean deformation and the principal modes of variation
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by means of a PCA.

w̄ =
1
n

n∑
i=1

wi

W = ((w1 − w̄), . . . , (wn − w̄))

WWTvi = λivi
s.t. |vi|2 = 1

(10)

where w̄ denotes the mean, and WWT the covariance matrix of the deforma-
tion. The Eigenvalue / Eigenvector decomposition of WWT (10) is performed
as described in Murase and Lindenbaum [15]. The resulting Eigenvectors vi
form an orthonormal vector space, which is an important property for the fol-
lowing article. Choosing the m components with the largest Eigenvalues λi and
arranging them in a matrix V our model consists of the components w̄ and
V = (v1, . . . ,vm). Using this model, the registration energy (1) is then supple-
mented by an additional regularization term P, which enforces the result to be
close to the model space.

min
u
E(F,M,u) = D(F,Mu) + αS(u) + βP(u)

P(u) =
1
s

(
u− (w̄ + VVT (u− w̄)

))2
=

1
s

(
(I−VVT )(u− w̄)

)2 (11)

where β is again a weighting factor that governs the strictness with which the
morphological model is applied, and s is a normalization factor equal to the
number of voxels in the images. In P(u), we measure the squared difference
between u and its projection onto the PCA model. Thus, P(u) quadratically
penalizes a deviation from the model. For the optimization, the derivative of the
new energy term P is calculated as

∇UP(u) =
2
s
(I−VVT )T (I−VVT )(u− w̄)

=
2
s
(I− 2VVT + VVTV︸ ︷︷ ︸

=I

VT )(u− w̄)

=
2
s
(I−VVT )(u− w̄)

(12)

The identity VTV = I is due to the orthonormality of V. The calculation of
∇uP is thus very closely related to calculating P itself, which saves a lot of
computational complexity.

3.5 Translation Invariance

For the generation of the model, as well as its application, the datasets were
aligned by a rigid registration. This is a necessary step for the usage of PCA
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models, because they are, in general, dependent on a consistent initial position-
ing. Even though the used rigid registration performed very well, it did not
always yield consistent results in the translational alignment. This is mostly due
to the variation in the data for inter-patient registration cases. For example,
when the facial bone between two datasets matches very well, the rigid registra-
tion will tend to align it, and, if the back of the skulls is morphologically similar,
the rigid registration is likely to match this part best. The rotation did gen-
erally not suffer from these problems. A successful nonrigid registration might
incorporate these inconsistencies into the deformation model, which then leads
to problems later in the application stage.

To overcome these inconsistencies in the preregistration, we introduce a defor-
mation model in the following that is invariant to global translations, i.e. global
translations in a vector field will neither be learned nor penalized. In order to
do this, the global translation is removed from the training data. Nonetheless,
the global translation can still be incorporated by augmenting the PCA model
with additional basis vectors for the global translation.

Let the vector field u be organized in the components of the coordinate
system (x, y, z):

u = (u1, . . . , us︸ ︷︷ ︸
x components

, us+1, . . . , u2s︸ ︷︷ ︸
y components

, u2s+1, . . . , u3s︸ ︷︷ ︸
z components

)T (13)

The calculation of the global translation t(u) can be written as a matrix vector
product:

e0 = (0, . . . , 0)T ∈ R
s

e1 =
1√
s
(1, . . . , 1)T ∈ R

s

bx =

⎛⎝e1

e0

e0

⎞⎠ ∈ R
3s by =

⎛⎝e0

e1

e0

⎞⎠ ∈ R
3s bz =

⎛⎝e0

e0

e1

⎞⎠ ∈ R
3s

B = (bx,by,bz)

t(u) = BBTu
(14)

where the vectors bx,by,bz describe a global translation along the corresponding
coordinate axis. They are mutually orthogonal and normalized to |b[x,y,z]| = 1.
Accordingly the model is generated with the modified samples

w̃i = wi − t(wi) (15)
= wi −BBTwi

and the mean of the modified samples

¯̃w =
1
n

n∑
i=0

w̃i (16)
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The new sample vectors w̃i are therefore orthogonal to the vectors b[x,y,z] that
compose B.

BT w̃i = BT (wi −BBTwi)
= BTwi −BTB︸ ︷︷ ︸

=I

BTwi

= 0 (17)

The regularizing term is adapted in the same way, by subtracting the global
translation t(u) from the current deformation field u before applying the PCA
model.

P(u) =
1
s

(
(I−VVT )(u− ¯̃w − t(u))

)2
=

1
s

(
(I−VVT )(u− ¯̃w −BBTu)

)2
(18)

=
1
s

(
(I−VVT )(I−BBT )(u− ¯̃w)

)2
(19)

=
1
s

(
(I−VVT −BBT )(u− ¯̃w)

)2
(20)

=
1
s

(
(I− ṼṼT )(u− ¯̃w)

)2

(21)

Ṽ = (ṽ1, . . . , ṽm,bx,by,bz)

The step from (18) to (19) is possible because ¯̃w is a linear combination of w̃i,
which means that ¯̃w is orthogonal to B (i.e. BBT ¯̃w = 0) due to (17). The same
argument can be applied to the step from (19) to (20): the components vi of V
are linear combinations of the training vectors w̃i and, accordingly, orthogonal
to the vectors b[x,yz] of B. Therefore, the product VVTBBT = 0. Essentially,
the whole process of eliminating the global translation in the calculation of P
yields a new basis Ṽ by augmenting the principal components V artificially with
the vectors b[x,y,z]. Note that Ṽ is still orthonormal, which allows the calculation
of the derivative of P exactly as in (12).

∇uP(u) =
2
s
(I− ṼṼT )(u− ¯̃w) (22)

4 Results

For an evaluation of the proposed approach, 18 CT datasets were used for the
training of the model consisting of the mean deformation and the first 10 compo-
nents of the PCA. The algorithm was then applied to 23 T1- and 15 T2-weighted
MRI scans from the same patients in a leave-one-out cross validation. Prior to
the experiments, the tables present within the CT images have been segmented
and ignored during the segmentation. The CT and MRI of the same patient
were rigidly registered in order to provide a ground-truth CT for every patient’s
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MRI dataset. This rigidly registered, ground-truth CT was used, in combination
with the deformed atlas CT, to calculate objective quality measurements for the
nonrigid atlas registration results. All patient data was resampled to a common
volume size of 129 × 129 × 104 voxels and an isotropic spacing of 1.95 mm in
order simplify model generation and evaluation.

Regarding the choice of the α parameter, please note that our algorithm
operates in physical space and not on a unit square, or with a unit spacing.
Intensity values were also taken into account without any rescaling. The weights
for the regularizing terms can, therefore, differ from the values presented in
the related work. For the generation of the training deformations, the mono-
modal, nonrigid registration that uses the sum-of-squared-differences measure
was regularized with a weighting factor of α = 0.01. The multi-model registration
was driven by the MI distance measure and carried out with and without the
PCA regularization. With the PCA regularization enabled, the weighting factors
were chosen as α = 7 and β = 0.01. This choice represents a rather low value
for α and would result in very large local deformations without the additional
morphological regularization. An example of this setting is shown in Fig. 1. Here

(a) (b) (c)

(d) (e) (f)

Fig. 1: The images show results for a single example of (a) an MR and its corre-
sponding (d) CT image. The registration result with α = 7 and no PCA model
regularization is shown as (b) the deformed atlas CT and (e) the checkerboard
fusion with the ground truth CT. Corresponding results with the usage of the
prior knowledge can be seen in (c) and (f).

α = 7 was used with and without PCA regularization. The effect is clearly
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visible, especially in the facial region, when comparing the registration results
with the ground truth CT. Accordingly, for the nonrigid registration without
PCA regularization, a much higher value for α is used in order to regain the
necessary stability. Empirically, we determined a value of α = 60 as a good
choice. Tables 1 and 2 present the results for the comparison between the two

Method Measure

MSE DistBO SE(ST) SE(BO) SE(ST,BO)

No PCA 25440.8 ± 7715.2 0.41 ± 0.25 84.8 ± 2.8 64.0 ± 11.4 81.2 ± 3.2

PCA 21297.9 ± 10466.7 0.25 ± 0.10 84.3 ± 3.6 70.8 ± 6.0 82.0 ± 3.2

Table 1: Results for the leave-one-out cross-validation on T1-weighted MRI data.
The values shown consist of the mean and the standard deviation for the cor-
responding measure calculated over all datasets. For mean squared error in
Hounsfield units (MSE) and the distance to the bone mask in mm (DistBO),
smaller values indicate better results. The sensitivity measures for segmented soft
tissue (SE(ST)), bone (SE(BO)), and the combination of both (SE(ST, BO)),
larger values are better.

Method Measure

MSE DistBO SE(ST) SE(BO) SE(ST,BO)

No PCA 29914.7 ± 17514.4 0.55 ± 0.46 83.3 ± 5.3 58.8 ± 13.3 79.0 ± 6.5

PCA 23966.4 ± 10371.6 0.31 ± 0.16 84.3 ± 5.0 66.4 ± 7.9 81.1 ± 5.3

Table 2: Results for the leave-one-out cross-validation on T2-weighted MRI data.
For a description of the values, see table 1.

approaches for T1- and T2-weighted MRI scans. The results of the registration
are compared with the ground truth CT of the patient, who was left out for the
cross-validation, based on a number of measures: The mean square error (MSE)
was calculated between the intensities of both images. Since especially bone
densities between different patients are usually not directly comparable, this
is only a coarse measure. To compensate for these differences, the CT images
are segmented into three classes for further comparisons: air, soft tissue (ST),
and bone (BO). Based on these segmentations the class-specific sensitivities for
soft tissue (SE(ST)), bone (SE(BO)), and the joint sensitivity (SE(ST,BO))
are calculated. A final measure (DistBO) is computed in order to provide a
quantitative measure of the spatial distance between the segmentations of the
bone. This measure determines the average euclidean distance between each pixel
segmented as bone in one image to the nearest pixel segmented as bone in the
other image. On average, the MSE measure for T1 and T2 data is decreased by
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18% and the DistBO measure by 42% using the proposed algorithm. The overall
sensitivity for correct soft tissue and bone alignment is increased by 4%.

5 Discussion

In this article, we have introduced a novel, PCA-based regularizing energy. This
morphological term constrains the deformation to be close within the known
space of variability that is learned from a training set of deformations. We have
shown that this model is invariant to global translations and is able to compen-
sate for morphologically unreasonable deformations when other regularization
energies are reduced. The presented results indicate a better performance of the
proposed approach with respect to especially the MSE and the distance between
the bone segmentations. These two criteria are of special interest for the at-
tenuation correction, because the location of the bones has a high impact on
the corrected result. Except for the mean values of the soft tissue sensitivity,
the registration with the incorporation of the prior knowledge performed better
than the standard algorithm.
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Consistent Atlas Estimation on BME Template

Model: Applications to 3D Biomedical Images.

Stéphanie Allassonnière, Estelle Kuhn, J. Tilak Ratnanather and Alain Trouvé

Abstract. This paper aims at validating a methodology proposed in [1,
2] for estimating a Bayesian Mixed Effect (BME) atlas, i.e. coupled tem-
plates and geometrical metrics for estimated clusters, in a statistically
consistent way for a sample of images. We recall the generative statistical
model applied to the observations which enables the simultaneous estima-
tion of the clusters, the templates and geometrical variabilities (related
to the metric) in the population. Following [1–3], we work in a Bayesian
framework, use a Maximum A Posteriori estimator and approach its
value using a stochastic variant of the Expectation Maximisation (EM)
algorithm. The method is validated with a data set consisting of 3D
biomedical images of dendrite spines from a mouse model of Parkinson’s
disease. We show the performance of the method on the estimation of
the template, the geometrical variability and the clustering.

1 Introduction

In the field of Computational Anatomy, one aims at segmenting images, detecting
pathologies and analysing the normal versus abnormal variability of segmented
organs. The most widely used techniques are based on the comparisons between
subjects and a prototype image (usually called template in the literature). Such
a prototype is an image whose biological properties are known and which - in a
sense to be defined - characterises the population being studied. This template
contains common features of the population which would not be revealed by
multiple inter-subject comparisons.

Regarding the large variability of anatomical structures, a template only may
be not able to summarise the diversity of a whole population. For example, two
populations can have the same template but can be distributed quite differently
around (very like points clouds in a manifold can be concentrated or spread in
many different way around their means). Therefore, in addition to the template, a
parametrisation of the shape variability around a given template is of importance
in producing relevant statistical summary of a population. These two parameters
will together be considered as an atlas in the following.

One way to estimate an atlas in a population is to use statistical learning
approaches on statistical models. Statistical learning on such models consists of
tuning its parameters to maximise the penalised data likelihood of the observed
population. Among all the statistical models, generative statistical models make
assumptions on how the observed images are derived from the atlas. These mod-
els do not only explain data but are also able to randomly generate new data.
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When simulating a large number of likely images (according to the model), one
can better interpret and even exhibit unexpected behaviours that would not be
easily detectable by a visual inspection of a small population (typical case in
medical image analysis).

One further step is to consider that the population is composed of several sub-
groups. The population is therefore summarised by the weight of each cluster
and an atlas for each of them. Since the clustering may not be known, the
corresponding model enables an estimation of both the distribution of the sub-
groups in the population and the cluster atlases at the same time.

Our special interest is the construction of a statistically consistent atlas,
called Bayesian Mixed Effect (BME) atlas, as the estimation of the templates and
their global geometric variabilities in estimated cluster for a given population in
a statistically consistent way.

The usual way to measure the geometrical heterogeneity is to map the tem-
plate to all the observations (or the other way around) and do some statistics
on these deformations (typically PCA). Many registration methods have been
developed for this purpose, for example in [4–6]. Based on this, several different
approaches have been proposed recently to estimate templates. Some are based
on a minimisation of a penalised energy function describing the cost to match
the template to the observations [7–9]. Another view, closer to ours, is to pro-
pose a statistical model whose parameters are the template and the mappings
between this template and the observations [10] or [11, 12] and the optimisation
is done via maximum likelihood. Even if these methods lead to interesting re-
sults and effective computation schemes, they suffer from different limitations.
First, in most cases, the deformation is applied to the observations instead of
the template. However, these images are only noisy observations known on a
discrete fixed grid of voxels. Applying the deformation to these discretly sup-
ported images requires interpolating between voxels and therefore creates errors
which are difficult to control. The template is computed as an arithmetic mean
of the deformed noisy observations which leads to a noisy version of this tem-
plate. Moreover, the modelling implies inexact matching. One way to model this
is to consider that the difference between the deformed image and the template
is an independent additive noise. This noise accounts for both the acquisition
noise and the fact that the model does not describe the reality (but is only an
approximation of the true distribution). Assuming the deformation is invertible,
applying the mapping to the observations is equivalent to apply its inverse to
both the template and the noise. There is no suitable interpretation of this fact;
there is no reason for the noise to be affected by the mapping which is only a
mathematical tool we introduce. The last but not least drawback is that the
deformations are considered as nuisance parameters which have to be optimised.
Knowledge of these elements only gives information subject by subject and noth-
ing about the global nature of the population. Moreover, the convergence of such
procedure has not been proved and has even been shown to fail for a phantom
example [1].
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For these reasons, we consider the model proposed in [1]. Indeed, the authors
consider the usual modelling called the Deformable Template model. This as-
sumes that each observation is a random deformation of the template which is
then corrupted by an additive Gaussian noise term. This avoids the interpolation
problem as well as the lack of meaning of the deformed noise mentioned below.
The deformations are unobserved random variables whose probabilistic distribu-
tion has to be estimated. This generative statistical model defines a global in-
formation of the geometrical variability inside the population. This distribution
also characterises the metric on the deformation space. Thanks to this model,
the estimation of the template is correlated to this estimated metric and vice
versa.

To take into account the heterogeneity of the whole population, we use the
extended model based on a mixture of the previous models (cf. [1, 3]): each
observation belongs to one component of the mixture governed by its parameters
(template, noise and metric). The observation memberships are specified through
hidden random labels whose weights are estimated as well.

We summarise here this efficient methodology, called Bayesian Mixed Effect
(BME) template [13], to construct a BME atlas, i.e.clusters distribution, tem-
plates and geometrical metrics, via a consistent estimation, given a sample of
images. We focus on its validation in the context of 3D biomedical images of den-
drite spines which have a large geometrical variability (various shapes) in order
to show its performance in terms of estimation and generation of new plausible
shapes.

In this paper, the model and the estimator are detailed in Section 2. We then
present the algorithm in Section 3. Section 4 is devoted to the experiments. We
end this paper with some conclusions and a discussion in Section 5.

2 BME Template Model and MAP Estimation

We consider a population of n gray level images which we aim to automaticaly
cluster in a small number of groups called components later. We assume that
each observation y belongs to an unknown component t. We work within the
small deformation framework [10] so that conditional on the image membership
to component t, there exists an unobserved deformation field z : R

3 → R
3 of a

continuously defined template It : R
3 → R and a Gaussian centred white noise1

ε of variance σ2
t such that

y(s) = It(xs − z(xs)) + ε(s) = zIt(s) + ε(s) , (1)

where Λ is a discrete grid of pixels and the pixels location is denoted by (xs)s∈Λ.
Given (pk)1≤k≤kp a fixed set of uniformly distributed landmarks covering the
1 This model is relevant for grey level images. One could slightly modify it in order

to better interpret binary images. Instead of a Gaussian noise (usually used for im-
age matching with a L2 penalty term), one can use a Bernoulli distribution whose
parameter would be a continuous map rt(x), analogous to our template It(x). How-
ever, this model does not belong to the exponential family which make the coding
more complicated. The convergence of the algorithm has not been proved in this
case either.
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image domain, the template functions It are parameterised by coefficients αt ∈
R

kp through: It(x) = Kpαt(x) �
∑kp

k=1Kp(x, pk)αt(k) , whereKp is the kernel of
the Reproducing Kernel Hilbert Space (RKHS) in which we search the template.
The kernel controls the smoothness of the interpolation between landmarks.
It is also nicely described as the covariance operator of a Gaussian random
field globally defined on the image domain and defining a natural prior for the
template. The restriction of these Gaussian fields on the pk’s is an easily tractable
finite dimensional zero mean Gaussian vector with explicit covariance matrix.
This has the advantage of giving a prior that is essentially independent of the
number of landmarks kp, and that only depends on the global choice made for
the RKHS. In this context, the number of landmarks used determines a trade-
off between accuracy of the approximations of functions in the respective spaces
and the amount of required computation.

The same kind of decomposition with a second set of landmarks (gk)1≤k≤kg

and kernel Kg is used to parametrise the deformation field z by the unobserved
random vector β such that z = Kgβ. This random vector is assumed to follow
a Gaussian distribution with zero mean and covariance matrix Γ t

g depending on
the component t (which could be the natural prior associated with Kg as a first
guess but will be learnt from the data during the estimation process).

The model parameters of each component t ∈ {1, . . . ,m} are denoted by
θt = (αt, σ

2
t , Γ

t
g). We assume that θ belongs to the open parameter space Θ �

{ θ = (αt, σ
2
t , Γ

t
g)1≤t≤m| ∀t ∈ {1, . . . ,m} , αt ∈ R

kp , σ2
t > 0, Γ t

g ∈ Σ+
2kg,∗(R) }

and ρ = (ρt)1≤t≤m to the open simplex �. Here Σ+
2kg,∗(R) is the set of strictly

positive symmetric matrices. Let η = (θ, ρ), the hierarchical Bayesian structure
of our model is :⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ ∼ νρ, θ = (αt, σ
2
t , Γ

t
g)1≤t≤m ∼ ⊗m

t=1(νp ⊗ νg)

τn
1 ∼ ⊗n

i=1

m∑
t=1

ρtδt | ρ ,
βn

1 ∼ ⊗n
i=1N (0, Γ τi

g )| τn
1 , η

yn
1 ∼ ⊗n

i=1N (zβi
Iαi

, σ2
τi
IdΛ) | βn

1 , τ
n
1 , η

(2)

with

⎧⎪⎨⎪⎩νρ(ρ) ∝
(

m∏
t=1

ρt

)aρ

, νg(dΓg) ∝
(

exp(−〈Γ−1
g , Σg〉/2) 1√

|Σg|

)ag

dΓg,

νp(dσ2, dα) ∝
(
exp

(
− σ2

0
2σ2

)
1√
σ2

)ap · exp
(− 1

2α
t(Σp)−1α

)
dσ2dα,

where the hyper-parameters are fixed (their effects has been discussed in [1]).
All priors are the natural conjugate priors and assumed independent.

The Gaussian distribution set on the observations whose mean is the de-
formed template is the usual Deformable Template model used in image anal-
ysis and in particular image matching. This model is quite natural saying that
the observation is, up to an independent noise, close to the deformed template.
The Gaussian distribution used to model the deformation vector β is assumed
to have zero mean. This assumption corresponds to the intuitive fact that once
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we are moving around the template -the “mean shape” of the population-, the
mean of all these movements should be close to zero. Therefore, we only estimate
its covariance matrix. The last probabilistic distribution for τ is a common dis-
tribution on random variables on finite space, namely a finite sum of weighted
Dirac measures.

The system of equations (2) can be interpreted top to bottom, which cor-
responds to the generation of some images. The generation process consists in
first drawing the parameters from their prior distributions. Given these parame-
ters, pick a membership according to the weighted distribution. This label points
towards a component. For this particular component, draw a deformation with
respect to this Gaussian law and apply it to the pointed template. Adding a ran-
dom Gaussian noise whose variance is given by the membership to each voxel
independently gives you a new image. The estimation process takes the images
as observed elements and attempts to recover the parameters (giving that they
follow some constrains given by the priors). This scheme can be summarised in
Figure 1.

For each component t :
– ρt : probability of the component
– αt : template parameter
– Γ t

g : geometrical covariance matrix
– σ2

t : additive noise variance

For each observation yi :
– τi : component label
– βi : deformation parameters
– εi : additive noise

Fig. 1. Latent structure of BME-Template model.

In this context, in order to estimate the model parameters, we use a Maxi-
mum A Posteriori estimator, i.e. a value of the parameters which maximises the
posterior density on η conditional on yn

1 :

η̂n = argmax
η

q(η|yn
1 ). (3)

It has been proved in [1] that this estimator is consistent.

3 Convergent Algorithm for the Estimation

To solve this maximisation in a non linear context with missing variables in R
D

where D is large (typically D ≤ 3000), we use a Stochastic Approximation EM
algorithm (SAEM) [14] coupled with an MCMC procedure [15]. Our model be-
longs to the exponential density family which means that the complete likelihood
can be put in the following form: q(y, β, τ, η) = exp [−ψ(η) + 〈S(β, τ), φ(η)〉] ,
where the sufficient statistic S is a Borel function on R

3kg × {1, . . . ,m} taking
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its values in an open subset S of R
m and ψ, φ two Borel functions on Θ×� (the

dependence on y is omitted for sake of simplicity). We introduce the following
function: L : S ×Θ× �→ R as L(s; η) = −ψ(η) + 〈s, φ(η)〉 . Then, iteration l of
this algorithm consists of the following three steps.

Simulation step: Draw the missing data with respect to a transition prob-
ability Πηl

of a convergent Markov chain having the posterior distribution as
stationary distribution:

(βl+1, τl+1) ∼ Πηl
((βl, τl), ·) . (4)

Stochastic approximation step: Do the stochastic approximation on the
sufficient statistics:

sl+1 = sl +Δl+1(S(βl+1, τl+1)− sl) , (5)

where (Δl)l is a decreasing sequence of positive step-sizes and using the simulated
values (βl+1, τl+1).

Maximization step: Updated: ηl+1 = argmax
η

L(sl+1, η).

We refer to [3] for more details about the algorithm in particular for the
choice of Πη used in the simulation step. The MCMC procedure mainly con-
sists in a hybrid Gibbs sampler for which we use auxiliary Markov chains in the
Metropolis-Hastings step. It has been proved in [3], that, under mild assump-
tions, the sequence (ηl)l generated through this algorithm converges a.s. toward
a critical point of the penalised likelihood of the observations.

The theoretical convergence properties of the estimator and the algorithm
strengthen the potential of this method. We will now show the numerical results
on 3D biomedical images to highlight its practical performance.

4 Experiments

We run the algorithm on a set of murine dendrite spines [16–18]. The data set
consists of 50 binary images of microscopic structures, tiny protuberances found
on many types of neurons termed dendrite spines. The images are from control
mice and knockout mice which have been genetically modified to mimic human
neurological pathologies like Parkinson’s disease. The acquisition process con-
sisted of electron microscopy after injection of Lucifer yellow and subsequent
photo-oxidation. The shapes were then manually segmented on the tomographic
reconstruction of the neurons. The images are labelled by experts as belonging to
six different categories (called types): double, filopodia, long mushroom, mush-
room, stubby and thin. Some of these images are presented in Figure 2. This
figure shows a 3D view of some examples among the training set. Each image is
a binary (background = 0, object = 2) cubic volume of size 56. We can notice
here the large geometrical variability of this population of images.

The study in [16] showed a correlation between the spine type and its shape.
This study is based on a template shape and a given metric to compare the
spines through the computation of deformations. The estimation here aims at
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Fig. 2. 3D view of eight samples of the data set of dendrite spines. Each image is a
volume leading to a binary image.

Fig. 3. 3D view of eight synthetic data. The estimated template shown in Figure 4
is randomly deformation with respect to the estimated covariance matrix. The results
are then thresholded in order to get a binary volume.

proposing one or more templates with their correlated metric in order to exhibit
the common features of the population.

The computation of the Stochastic Approximation EM algorithm coupled
with the MCMC procedure is performed in Matlab. Experiments were performed
on 64bit system with 16GB of shared memory. Each run takes about a day with
the whole data set. The main difficulty concerns the resolution of the linear
system in α involved in the maximisation step at each iteration l of the algorithm.
The matrix involved in this linear system is very ill-conditioned. The effects are
edge effects on the template, i.e. some non-zero values of the voxel grey level on
the sides of the template image. Therefore, incomplete LU factorisation as a pre-
conditioner is performed to stabilise the numerical inversion. If this is insufficient
(in extreme cases), one solution would be to use full or partial pivoting strategies
as in Gaussian elimination. This leads to slightly longer algorithm but without
numerical issues.

One step further in the optimisation of the processing time is to parallelise the
loop on the observations. Indeed, given the current parameters, each observation
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is independent from the others. The simulation step can therefore be run on
separate processors. This divides the time of processing by the number of images.

4.1 One Component Model

In this section we present the result of the estimation using the single component
model. Since the training set shows very different shapes for the six categories, a
single template model might not be able to capture this large variability. In order
to have a little bit smaller variability, we focused on 30 images of only three spine
types to estimate our atlas with a single component model. We choose thin, long
mushroom and stubby.

The estimated template is presented in the left column of Figure 4. The
estimated image is real valued, in particular here in the segment [0, 2]. We do
not specify any criteria in order to impose a binary template. This is why the
estimated volumes look blurred. For 3D visualisation, one can threshold the
estimated image and binarise the values (most of the values are very close to
the extrema and it only creates really sharp boundaries). The resulting shape
is presented in the right column of Figure 4. As expected, the shape of this
estimated spine is a relevant representation of the data set. It is smoother than
the observations (as expected for an “average”) but it could be one of them.

One crucial improvement coming from our method is that we also get an
estimation of the geometrical variability through the covariance matrix Γg. In
order to visualise the accuracy of this coupled estimation and thanks to the
generative model, we simulate new synthetic data using the estimated values
of the parameters. Figure 3 shows eight images obtained by applying random
deformations (sampled from N (0, Γg)) to the estimated template. The resulting

Fig. 4. Estimated template with the one component model: Left: 3D representation of
the grey level volume. Right: 3D representation of the thresholded volume.

shapes look like potential dendrite spines. Indeed, we can see some similarities
between these synthetic images and some images of the data set as presented
in Figure 2. For example, the estimated geometrical variability has taken into
account shrinking the template to get a long and thin appearance. It has also
learnt to inflate one extremity and contract the other to get what is labelled
as long mushroom and to make the shape more or less curved. Considering the
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huge dimensionality of the deformation space, this estimation is pretty good. In
this model, the deformation is not constrained to be a diffeomorphism. This can
affect the estimation in a way that the estimated geometrical variability could
create holes or overlaps in the template. In these experiments, this problem did
not occur. One way however to correct this would either be to tune the hyper-
parameters which controls the deformation regularity or to use diffeomorphisms.

The last parameter which is estimated is the variance of the additive Gaussian
noise. This parameter is quite interesting since it helps to see how close the model
managed to fit the data. In our experiments, the estimated standard deviation
of the noise in the one component case is 0.1387. Since the data set is very
heterogeneous, it is very low. Indeed, as a comparison, one can look at the 2D
experiments on hand written digits in [2]. The standard deviations of the digits
were between 0.1 and 0.3. This suggests that the estimation in this 3D case of
dendrite spine is relevant.

4.2 Two Component Model

Fig. 5. Estimated templates of the two components with the 30 image training set: 3D
representation after thresholding.

The large geometrical variability of the spine shapes leads to consider several
different sub-populations in the data set. However, since the data set is of small
size (at most 50 images), the estimated parameters would not be accurate in a
mixture model involving more than two sub-groups called components. Indeed,
we have to estimate one template and one covariance matrix for each component.
This leads to parameters of large dimension. The small number of images in each
component would not give enough information to perform the computation of
the corresponding atlas accurately. For this reason, we restrict the estimation to
two components.

We ran the algorithm on the previous data set of 30 images of the three
types used for the single component estimation. We also use the whole data set
of 50 images from the six dendrite spines. The estimated templates are shown
in Figure 5 for the three categories and in Figure 6 for the whole training set.
We only show the thresholded shapes for illustrating the differences between the
two component templates.

The two estimated components show very different shapes. Indeed, we can
see that the second template has a curved shape with a thin extremity and a
larger one on the other side. The other template size is more isotropic. The
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curvature of the two shapes is also distinct. These two shapes are quite relevant
representatives of the spine population. The first component looks to contain
the stubby group which corresponds to plumper shapes. Whereas the second
component gathers the thin and long mushroom groups. The estimated weights
of the components in the population are respectively 0.32 and 0.68 which actually
match the number of such shapes in the data set.

To see the impact of the different spine types on the estimation, we ran the
same algorithm with the whole data base of the 50 images with the six different
types. This training set has a larger geometrical variability than the previous one
since we increase the number of spine types considered. But the estimation may
be sharper since more images are available for each component parameters to
be estimated. While clustering the data, the algorithm only uses a percentage of
the data set for a given component and therefore estimates its high dimensional
parameters (template and covariance matrix) using only this sub-sample. This
yields a small number of images per cluster and may produce a relatively blurred
image since the geometrical variability has not been well-estimated. When more
images are available, the number of images per component increases and even if
the variability increases, the estimation is supposed to better capture it.

The two sub-groups are expected to be quite different from the previous
ones and so their respective templates. These templates are shown in Figure 6.
The estimated shapes are again good representations of the whole population.
The subdivision is made between more isotropic shapes (similar to the previ-
ous stubby type) and longer ones, curved and with irregular boundaries. This
summarises the differences which appear in the training set.

Fig. 6. Estimated templates of the two components with the 30 image training set: 3D
representation after thresholding.

Concerning the experiment with a data set of 30 images, the estimated stan-
dard deviations are 0.1780 and 0.1659 respectively. One would expect a lower
value compared to the one component. However, the small number of images
leads to less precise parameters and therefore a slightly higher value of the stan-
dard deviation. For the last experiment with the whole data set, the values are
0.1521 and 0.1800. These values are quite good again compared to the 2D ex-
ample of hand written digits. The slightly larger values (compared to the single
component) may come from the fact that even if the training set is bigger, the
variability increases as well.
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It would be interesting to run the algorithm with a larger data base of only
these six types and six possible components. It would also be interesting to either
repeat the kind of study presented in [16] or to use the model as a classifier.
Concerning the second application, we trust this model in particular looking at
the classification results obtained in [1] on some hand written digits. The huge
geometrical variability is even higher in this “phantom” example since there are
some change of topology. We think that this methodology would give interesting
results if we had the chance to analyse new data of this type.

5 Discussion and Conclusion

We considered a generative statistical model and a stochastic algorithm to es-
timate mixtures of deformable templates to construct a BME Atlas. The theo-
retical statistical properties of the estimator and of the algorithm were estab-
lished. We validated them by numerical results. Indeed, we ran this estimation
on highly variable 3D shapes of murine dendrite spines. The results in the one
component model using a sub group of the data involving only three different
types of dendrites are relevant on both the estimation of the template image
and of the geometrical variability around its template. Using the two component
model with the same data set of three different types of spines, we capture more
precisely the variability. This leads to two different templates representing char-
acteristic shapes of the data set. We also ran the two component model with
the whole training set involving six types of spines. The estimated templates
are also quite relevant and face the large heterogeneity of the training sample.
This method can be used to estimate different population atlases such as healthy
controls and Parkinson’s disease populations and then compute likelihood ratios
in order to classify new un-labelled images. Another possibility is to compute
atlases at different stages of the disease in order to characterise its evolution.
These applications may increase the knowledge and understanding of diseases.
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Abstract. We present a framework to deformably register simulated
X-ray images to a combined statistical model of pelvis anatomical struc-
ture, created from a population of CT scans. The primary contributions
are: 1) a framework to create and analyze bone density variations, sep-
arate from shape variations and 2) an augmented 2D/3D registration
framework that couples shape and density priors to create accurate pa-
tient specific models. Our statistical model representation consists of a
tetrahedral mesh for approximating bone shape and Bernstein polyno-
mials defined within each tetrahedron for bone density. All datasets in
the given population are registered deformably to a template CT dataset.
The shape and density statistics are extracted using principal component
analysis on the corresponding mesh vertices and voxels of the shape-free
deformed subjects respectively. In the registration framework, we regis-
ter the 2D input images to the 3D shape prior and estimate the bone
density parameters in a least-squares like setup by projecting the den-
sity modes on to the input image space. This approach was tested using
leave-n-out experiments, with n = 8, datasets using an atlas of 63 full
pelvis CT datasets.

1 Introduction

Statistical modeling and analysis of anatomical shapes is a promising research
area in medical imaging with a variety of applications such as segmentation,
2D/3D registration and reconstruction of anatomical structures, pre-operative
planning, analyzing population variations [1][2]. Statistical models are primarily
built from principal component analysis (PCA) on point distribution models rep-
resenting anatomical shapes [3] or from deformation fields [4]. More often than
not, point distribution models characterize shape variations only. Hence, when
used in applications such as 2D/3D registration, the resulting models would
match the input images in shape but not in bone density properties. Cootes et
al. have proposed a method to create active appearance models (AAM) by con-
catenating shape and intensity vectors into a single vector and computing PCA
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on the resulting matrix [3]. A weight factor Ws is introduced to scale the shape
vector so that the units of the shape and the intensity vectors are normalized.
Following this work, 3D shape-intensity atlases were created by combining shape
and intensity vectors, with Ws = 1, as seen in [5], [6], [7]. After computing PCA
on the combined vector, the shape and intensity modes were separated and re-
normalized. The correlation between the bone shape and the density sub-spaces
is not clearly explained in these works and needs to be explored if the shape
vectors were to be combined with the intensity vectors.

The application of such shape-intensity atlas in a 2D/3D registration frame-
work can be seen in [5], [8], [9]. Hurvitz et al. have proposed a combined atlas
with three components consisting of a shape model, a CT-like reference image
and a reference surface of the bone and an inverse warping method to estimate
the intensity properties [9]. Their model consists of only mean intensity and does
not incorporate any intensity variations present in the population. Yao et al. [5]
and Steininger et al. [8] use shape and intensity variations in the registration
framework. The proposed approach in these works is to project the prior model
and estimate model parameters from the shape-intensity priors that maximizes
a given similarity metric. This method requires model instantiation and projec-
tion in each step of the optimization algorithm which could be computationally
expensive.

In this paper, we extend an existing 2D/3D deformable registration method
to incorporate bone density variations. The primary contributions are: 1) a
framework to create and analyze bone density variations, separate from shape
variations and 2) an augmented 2D/3D registration framework that couples
shape and density priors to create accurate patient specific models. We cre-
ate two models, one for shape and one for CT intensities and integrate them
into a 2D/3D registration method. We present alternate methods of computing
density statistics in both the CT voxel intensity space and the polynomial ap-
proximation. In the registration framework, we register 2D patient images to a
shape statistical model first, and successively estimate the density parameters
in a least-squares setup. This registration method enables us to create CT-like
patient specific models from the 2D X-ray images that match the shape and den-
sity properties of the patient. The primary difference between the above cited
works and our proposed approach is that we recover the density parameters in
a single step by linearly projecting the density model on to the 2D input image
space. After the rigid and shape registration of the model, projection images are
created for each density mode. The density parameters are computed such that
the similarity between the linear combination of these projection images and
the input images is maximized. The rest of the paper is organized as follows.
We present our density atlas construction and registration method in Section 2,
experiments and results in Section 3, followed by discussion in Section 4.

Probabilistic Models For Medical Image Analysis 2009

152



2 Method

In this section, we briefly outline our earlier work on shape statistical models,
discuss our new framework to create and integrate density models into a 2D/3D
registration method.

2.1 Model Representation

Following Yao’s work [5], we use a tetrahedral mesh to represent bone shape
and Bernstein polynomials to approximate bone density or CT numbers within
each tetrahedron. A tetrahedral mesh is defined by a set of vertices P and a
list of tetrahedra T . Each vertex Pi is a point in 3D. The CT densities in each
tetrahedron are approximated using Bernstein polynomials. Given a tetrahedron
Tj = (v0, ..., v3), where vi is a vertex, they can be arranged in a homogeneous
matrix of the form [2]:

MT =
[
v0 v1 v2 v3
1 1 1 1

]
(1)

The density of each cell is approximated using a local Bernstein polynomial
function inside the volume of the cell:

f j
u =

∑
‖k‖=d

βj
kB

d
k(u) =

∑
‖k‖=d

βj
k

(
d

k

)
uk0

0 uk1
1 uk2

2 uk3
3 (2)

Here, u = (u0, u1, u2, u3) = M−1
T x are the barycentric coordinates of a point

x in homogeneous coordinates; k = (k0, k1, k2, k3) is the power index of the basis
function Bd

k , with d being the degree of the polynomial;
(

d
k

)
= d!

k0!k1!k2!k3!
is a

multinomial factor; and β is a free coefficient. The advantage of this polyno-
mial representation is that it enables us to compute line integrals in a closed
form to create digitally reconstructed radiographic (DRR) images in the 2D/3D
registration algorithm [2]. Polynomial representation can also be viewed as a
dimensionality reduction step.

2.2 Shape Statistical Model

From a population of CT datasets, Vi, i = 1, 2...n, we manually select a template
dataset, VT , segment and mesh the anatomy of interest resulting in a template
mesh, MT . We register each CT dataset, Vi, deformably to the template dataset
using a 3D grayscale deformable registration method proposed in [10]. This re-
sults in a warped volume, V T

i and a deformation field, Di
T . We interpolate this

deformation field at each vertex location of the template mesh to create mesh
instances of the subjects. The vertices of these mesh instances define our point
distribution model. We compute PCA on the mesh vertices to create a shape
model consisting of mean shape and dominant shape modes. This shape model
is further refined by using an iterative bootstrapping technique proposed in [11].
With this method, we update the atlas as datasets are being added and stabilize
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the modes by registering the datasets to the atlas iteratively. This method yields
consistent shape models. Given the linear parameterization of the shape prior,
any new shape instance can be approximated as follows:

S = S0 +Σm
j=1λjS

j (3)

where S0is the mean shape, Sj are orthonormal shape mode vectors, and λj are
mode weights/parameters.

2.3 Density Statistical Model

For each dataset Vi, we have a deformation field, Di
T , defining the vector flow

from the template to the subject space, and a warped volume,V T
i , obtained

by deforming the subject into the template. These warped volumes are shape-
independent, i.e., they resemble the template shape, but the intensities are de-
rived from the individual subject datasets. The voxels of these volumes define
PDM for analyzing bone density properties. To extract intensity variations, we
stack these shape-free volumes into a big matrix and perform PCA on the data
matrix resulting in a mean density volume and dominant density modal volumes
(see Figure 1(a)).

Mesher

3D/3D
registration

PCA on 
Voxel

Intensities

Template 
CT

Training 
CT 

Population

Template 
Mesh

Shape-Free
Warped CT

Deformation
Field

Mean
Volume

(V0)

Voxel
Modes

(Vk)

Fit
Polynomial

Mean
Coefficient 

(C0)

Coefficient
Modes 

(Ck)

Fit
Polynomial

Mesher

3D/3D
registration

PCA on 
Coefficients

Template 
CT

Training 
CT 

Population

Template 
Mesh

Shape-Free
Warped CT

Deformation
Field

Mean
Coefficient

(C0)
Polynomial

Coefficients 
(C)

Coefficient
Modes 

(Ck)

Fit
Polynomial

(a)

(b)

Fig. 1. Density Statistical Model Construction Pipeline: (a) Voxel based density sta-
tistical model; (b) Polynomial representation based denstity statistical model;
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The parametric linear model of volumetric density model is given as follows.

V = V 0 +Σn
k=1μkV

k (4)

To map voxel-based density modes to polynomial space, we fit 3rd degree Bern-
stein polynomials to the template mesh and modal density volumes. This is
achieved by solving for the unknown coefficients β in equation (2), where f j

u are
derived from the density modes and u from the template mesh.

Alternatively, we fit polynomials to the master mesh MT and the deformed
subjects V T

i to create polynomial approximation of the intensities of each sub-
ject. We then perform PCA on the polynomial coefficients resulting in polyno-
mial density modes (See Figure 1(b)). The linearized parametric form is given
as follows:

C = C0 +Σn
k=1μkC

k (5)

where C0 is the mean intensity polynomial, Ck are orthonormal intensity mode
vectors, and μk are mode weights/parameters. To map the polynomial space to
voxel space, we transform voxel coordinates to barycentric coordinates, relative
to the tetrahedron in which the voxel is contained and then evaluate the poly-
nomial at these points, as shown in equation (2). Here the goal is to compute f j

u

matrix, given the coefficients β and the 3D location, u.

2.4 Registration Framework

We present a new registration framework that combines the shape atlas with
a density atlas to create accurate patient specific models (See Figure 2). We
use a mutual information based rigid 2D/3D registration method presented in
[12], although any such 2D/3D deformable registration method would satisfy our
requirements in this work. A detailed analysis of the shape based 2D-3D regis-
tration method used in this paper is given in [12]. In this method, projection
images or DRRs are created by computing line integrals of the density polynomi-
als along the lines of sight through the space of the mesh cells. This deformable
registration method estimates the approximate pose and shape of the patient
anatomy by matching the atlas to a set of 2D input images. After estimating the
shape, we create projection images of the atlas with various density modes from
the intensity atlas. We then solve for the density parameters in a least-square
like method that maximizes the similarity between the linear combination of the
density projections and the input images. The density parameters are estimated
in a single step with this method.

The pseudocode for the algorithm is as follows:
1. Input: X-ray images/DRRs Ii, where i is the image number/view angle, camera

pose parameters (intrinsic and extrinsic) Pi, mean shape S0 and shape modes
Sk, k = 1, 2, ..n, mean density C0 and density modes Cl, l = 1, 2, ..m

2. Register the input images to the shape model, rigidly and deformably to esti-
mate the pose and shape parameters respectively. The output consists of a pose
F (R, T, S) and mode weight parameters λ such that

(F, λ) = argmax
(F,λ)

X
i

MI
“
Ii, DRR

“
F.

“
S0 +Σn

j=1λjS
j
”””

(6)
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Fig. 2. Registration framework flowchart

3. Transform the shape model and create DRRs of the registered shape model with
mean density and density modes.

Sest = F ∗
“
S0 +Σm

j=1λjS
j
”

(7)

dmean
i = DRR

`
Sest, Pi, C0

´
(8)

dk
i = DRR

`
Sest, Pi, Ck

´
(9)

where dk
i is the kth density mode projected in ith view direction

4. Formulate a least-squares problem to solve for density mode parameters μ such
that

μ = argmin
μ

X
i

“
Ii −

“
dmean

i +Σm
k=1μkd

k
i

””2

(10)

5. Generate the new patient specific model by sampling the estimated shape model
on a voxel grid using the estimated coefficients

Cest = C0 +Σm
k=1μkC

k (11)

CT est
patient = V oxelize

`
Sest, Cest´ (12)

3 Experiments and Results

3.1 Atlas Experiments

A statistical model of full pelvis anatomy is created from CT scans of 63 healthy
individuals. The template mesh model consists of 26875 vertices and 105767
tetrahedra. We have used a 3rd order Bernstein polynomials to approximate
the CT intensities. The original CT datasets are downsampled from 512x512x82
voxels with voxel size of 0.9375mm3 to 256x256x128 voxels and 1.875mm3. The
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original CT intensities are specified in Hounsfield units (HU) as signed integers.
The dynamic range is adjusted such that all the voxels have positive intensity
numbers by adding +1000 (HU for air is -1000) to the original units. For vol-
umetric density model, we cropped the volumes to contain 165x95x128 voxels.
The projection images of the shape atlas and the density atlas are shown in
Figures 3 and 4 respectively.

(a)

(b)

(c)

(f)(d)

(e) (g)

Fig. 3. DRRs of mean shape and first three principal modes. (a) mean shape (S0);
(b)-(c) Mode 1(S0± 3λ1S

1); (d)-(e) Mode 2 (S0± 3λ2S
2; (f)-(g) Mode 3 (S0± 3λ3S

3)

mean mode1 mode2 mode3

DRRs

Cross
sectional
slice

Fig. 4. Top row: DRRs of mean density and first three principal modes (left to right)
from polynomial coefficient based density model. Bottom row: An example cross sec-
tional slice of volumes representing mean density and the first three principal modes
(left to right) from the volumetric density model

To assess these models, we have performed leave-one-out experiments in
which an atlas is created from all but one dataset and the left-out dataset is
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reconstructed from the model. For shape atlas, we have measured surface dis-
tance between the left out subject and the reconstructed subject from the model.
Our analysis shows that we can estimate any given instance with an average ac-
curacy of 1.5 mm using the first 15 dominant shape modes. For density atlas, we
have measured the RMS error between the estimated volume and the left out
volume in Hounsfield Units.

E(V true, V est) =

√√√√ 1
nvox

nvox∑
i=1

{V true − V est}2 (13)

Since our registration method requires the density modes in polynomial rep-
resentation, we have computed the density models in both the volumetric and
polynomial space. The leave-out analysis for both volumetric and polynomial
based density models is shown in Figure 5. The results show that the density
modes from these two representations (voxel and polynomial), are identical and
the residual errors from the intensity atlases are comparable. By identical modes,
we mean that the intensity mode contributions are similar, i.e., similar anatom-
ical regions are bright in both the images.
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Fig. 5. Root Mean Squared residual errors from leave-out validation using density
models from polynomial coefficients and shape free warped volumes

3.2 Registration Experiments

The proposed method is validated using a leave-n-out validation method, with
n = 8. Eight datasets were randomly selected from a population of 63 datasets.
The remaining 55 datasets were used to build the shape and density statistical
models. Projection images (DRRs) were created for these 8 datasets with the im-
age size of 512x512 pixels, at views 0◦, 90◦, 135◦. Based on our analysis presented
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above and in [11], we have retained 15 shape modes and 12 density modes along
with the mean shape and mean density in the atlas. For each dataset, all three
projection images are registered to the shape atlas simultaneously to estimate
the shape parameters.

Prior to estimating the density parameters, we render the estimated shape
with mean density (1) and density modes (12 modes) for each view angle (3
views) resulting in (12+1) x 3 = 39 DRRs for each left-out subject. After solving
for the density parameters in a least-squares setup given in equation (10), we
estimate the new polynomial coefficient using equation (5). A CT-like volume is
created using the estimated shape and the polynomial. The root mean squared
residual errors are computed between the approximated CT and the original CT.
Since the goal of the proposed method is to create patient specific models that
match both in shape and intensity properties, we chose to use the root mean
squared error metric, (See equation 13), between voxel intensities to validate
our approach. As we are using DRRs created from the original CT datasets,
we could say that the spectrum of CT intensities for both the volumes and the
polynomial representation as well as the input DRRs is the same and hence
this error metric would be valid. When considering registration with real X-ray
images, an intensity calibration step is needed to map the intensities of the input
X-ray images to the underlying CT intensities in the density model. The results
from these leave-out experiments are shown in Table 1.

(1) (2) (3) (4) (5)

#

Strue− RMS ( RMS( Δ
Sest Vtrue , Vest

mean) Vtrue , Vest
modes ) ((3)-(4))/(3)

(mm) (HU) (HU) %

1 1.94 109.92 58.88 46.43

2 1.62 128.32 96.0 25.19

3 1.90 98.4 77.12 21.63

4 2.60 51.68 41.6 19.50

5 2.48 109.44 84.8 22.51

6 1.95 73.44 50.56 31.15

7 2.30 72.96 47.52 34.84

8 2.93 101.28 85.76 15.32

avg 2.21 93.18 67.78 27.07

Table 1. Residual errors from leave-out-validation tests of the augmented registration
algorithm with the combined atlas of shape and density variations. Columns 3 shows
residual errors when using mean density only and column 4 shows residual errors with
mean density and density modes. The % reduction in RMS error between columns 3
and 4 is given in Column 5.

The second column shows the accuracy of the shape registration in terms of
the surface distance between the registered atlas shape, Sest and the original
shape Strue. The third column presents the root mean squared error between
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the original CT volume, V true, and the CT-like approximation of the registered
atlas with mean density only, V est

mean. The fourth column presents the residual
error between the original CT, V true, and the CT-like approximation of the
registered atlas with mean density and density modes, V est

modes. Column 5 shows
the % reduction in the residual errors from using mean density (column 3) to
the density modes (column 4). The error values are specified in Hounsfield units.

4 Discussion and Conclusion

We have proposed a framework to analyze bone density variations in a given
population. We presented alternate ways of computing density models in either
the voxel space or the polynomial space. Our analysis shows that the first 12
eigen modes explain 80% of the variation. The augmented registration framework
shows an average reduction of 27% in terms of root mean squared error of the
voxel intensities in Hounsfield units, measured after compensating for the CT
intensities with the density model. The best case error reduction was 46%. These
results show that the bone density properties can be recovered in a single step
by linearly projecting the 3D density modes onto the 2D image space. And
the resulting 3D registered models exhibit similar bone density properties as the
input X-ray images. Although, we have demonstrated the method using a specific
2D/3D registration algorithm, the extension presented here can be applied to
any volumetric or mesh-based 2D/3D registration algorithm.

The accuracy of the density atlas depends on the deformable registration
method as well as the number of datasets in the population. The sample size
is small compared to the dimension of the input vector. We believe that an in-
crease in the population size would result in more compact model generation. We
are currently working towards increasing the atlas population to 150 datasets.
With a more accurate density model, the registration accuracies can be further
improved. Although the accuracy of the density registration depends on the ac-
curacy of shape registration, our results indicate that with a reasonable shape
registration, we are still able to achieve a significant reduction in RMS error
values with the density model. We are exploring ways to refine the shape reg-
istration by estimating the shape parameters and the density parameters in an
iterative approach. Other experiments such as using real X-rays instead of DRRs,
truncation, partial anatomy etc. to understand the behavior of the density prop-
erties in relation to the shape properties need to be performed. However, we
believe that the results presented here are promising and validate the hypothesis
that the combined shape and intensity atlas would yield better patient specific
models.
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Abstract. Multiple neighboring organs or structures in medical images
are frequently represented by labeling the underlying image (e.g. a brain
into WM, GM, CSF). Given the different sources of uncertainties in
shape boundaries (e.g. partial volume effect and fuzzy segmentation), it
is favorable to adopt a labeling approach that not only encodes uncer-
tainty but also facilitates algebraic label manipulation (e.g. performing
PCA). In this work, we extend the label space representation of Mal-
colm et al. [1] to barycentric label space, in which a proper invertible
mapping between probability vectors and label space is proposed. The
probability vectors act as barycentric coefficients describing arbitrary la-
bels in label space and a non-singular matrix inversion maps points in
label space back to probabilities. The elimination of conversion errors
compared to the original label space mapping is demonstrated quantita-
tively and qualitatively on artificial objects and brain image data, and in
the context of smoothing, linear statistics, and uncertainty calculation.

1 Introduction

There are numerous sources of uncertainties in shape boundaries, including
graded decomposition [2], image acquisition artifacts, segmentation by multiple-
raters, and image segmentation algorithms intentionally designed to output fuzzy
results [3, 4]. It is important not to ignore these uncertainties in subsequent anal-
yses and decision-making [2, 5].

There have been numerous works on fuzzy and probabilistic shape represen-
tations, speaking to the increasing popularity of manipulating and processing
uncertain shapes [6–9]. For example, Sladoje et al. showed that higher preci-
sion shape measurements (e.g. boundary length and roundness estimates) are
obtained from fuzzy boundaries [10, 11]. Saad et al. demonstrated how measures
of label certainty can be leveraged to improve the segmentation [12].

Shape representations come in many different forms; they may be implicit or
explicit; boundary or medial-based; binary or multi-shape (or multi-object); and
crisp (or hard) or fuzzy (or probabilistic, uncertainty-encoding, etc). Although
a full review is beyond the scope of this paper, we highlight some key related
works.

Cootes et al.’s seminal work on point distribution models (PDM) was based
on representing shapes by (crisp) landmarks followed by performing principle
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component analysis (PCA) [13]. Other linear and non linear shape analyses
were also performed by many groups on boundary [14–16] as well as medial-
based representations [17, 18]. The crisp, impulse-like landmarks were replaced
by probabilistic landmarks using Gaussian mixture models (GMM) in [19, 20].
Many approaches represented multi-shapes by labeling the underlying image
domain. We highlight main works in this area leading to our proposed approach.

Characteristic function or binary map: χ : R
d → {0, 1} is used to

represent a single binary shape, i.e. n=2 (object vs. background), where n is
the number of labels or shape classes, and d is the image dimensionality. χ(x)
is 1 if pixel x is interior to the shape and 0 if it’s exterior. The set of possible
labels is Ln=2 = {0, 1}. Characteristic functions were generalized to multi-shape
(n > 2) in [21], using vector images χ : R

d → {0, 1}n, where each image layer
represents one shape. The labels of this multi-shape crisp representation are
the vertices of an (n − 1) dimensional simplex with an orthogonal corner, e.g.
L3 = {(0, 0), (1, 0), (0, 1)}, L4 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}, etc.

Signed distance function: The characteristic function χ can be represented
using a level set of a function φ. Typically, φ is chosen as the signed distance
function (SDF) of the shape boundary, and χ would be the region enclosed
within the zero level set of φ. By definition, φ(x) is positive outside the shape
(i.e. when χ(x) = 0), negative inside, and zero along the shape boundary C =
{x ∈ R

d|φ(x) = 0}. A multi-shape labelled image (n > 2) can be represented
by layering n distinct SDFs [21]. In [22], Mansouri et al. used n − 1 SDFs to
represent the n labels, whereas Vese and Chan used a binary encoding of up to
n labels using only ceil(log2(n)) level set functions [23]. The reader is referred
to [24] and the references within for other alternative multi-object formulations.

Bernoulli and categorical distribution: To allow for fuzzy labels, χ(x)
is replaced by the Bernoulli distribution with probability p : R

d → [0, 1], where
p(x) (resp. 1− p(x)) measures the probability of pixel x being along or enclosed
within the object’s boundary (resp. exterior). The set of possible labels becomes
L2 = {(p, 1 − p)t|p ∈ [0, 1]}, where (.)t denotes transposition. Extending this
approach to multi-shape essentially amounts to replacing the Bernoulli with
the categorical distribution, where a vector of n probabilities p : R

d → [0, 1]n is
assigned to every pixel, yielding Ln = {(p1, p2, . . . , pn)t|pi ∈ [0, 1]∧∑n

i=1 pi = 1}.
The aforementioned representations do not form vector spaces and hence do

not facilitate algebraic manipulations. For example, the addition of two SDFs is
generally not a valid SDF (e.g. as in [25]), and similarly for the layered character-
istic functions. Although feasible solutions are obtained from convex combina-
tions of probability vectors (e.g. [26]), the probability space is not closed under
linear combinations. Further, SDFs and characteristic functions are not designed
to encode uncertainty. Furthermore, in the layered characteristic functions, one
label (typically the ‘background’) is represented as 0 = (0, 0, 0, . . . , 0)t, i.e. the
origin of the orthogonal simplex, which causes a bias (e.g. during smoothing)
since 0 is a unit distance from any other vertex, whereas any two non-zero la-
bels are separated by a distance of

√
2. The layered approaches also consider
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labels independently and their space complexity increases linearly with n (or
logarithmically in the case of using a binary encoding, as in [23]).

Unit-hyperspherical labels: To reduce the spatial demand of the lay-
ered approaches, Babalola and Cootes distributed the n labels as vectors on the
surface of a hypersphere, e.g. S

2 [27]. Besides not forming a vector space, this
approach presents a difficulty when deciding which vector to assign to each label,
especially since linear combinations of pairs or triplets of labels at boundaries
and junctions of different classes should not be mistaken with any other label.

The logarithm of odds ratio (LogOdds): This representation not only
encodes label uncertainty but is also closed under addition and scalar multi-
plication [28]. The first n − 1 entries of the probability vector are mapped to
logit(pi) = log( pi

1−Pn−1
i=1 pi

), i.e. Ln = {(logit(p1), logit(p2), . . . , logit(pn−1))t|pi ∈
(0, 1)}. Maximally uncertain labels (pi = 1/n ∀i) end up as zero level sets of the
logit function. Since the generalized logistic function is the inverse of the logit,
a homeomorphism exists between the probability space and LogOdds space, and
the vector space structure of the latter is induced on the former. Although pow-
erful, LogOdds suffers from not being suitable for representing certain (or crisp)
labels, because whenever ∃i �−− pi = 1, log(0/1) and log(1/0) have singularities.
LogOdds also requires normalization and intermediate mapping which may be
problematic [28, 1, 29].

Label space: Proposed by Malcolm et al. [1, 29], label space forms a vector
space facilitating algebraic manipulations. It does not require normalization or
arbitrary mappings and does not produce bias towards any label. It is capable
of encoding label uncertainty as well as completely certain labels without sin-
gularities. Labels are mapped to a regular simplex in n− 1 dimensions and the
certain labels (∃i �−− pi = 1), denoted {li}n

i=1, are mapped to the n equally spaced
vertices of the simplex. The uncertain labels (pi �= 1 ∀i) are mapped to a linear
combination of the crisp labels’ positions. In general, any probability vector p is
mapped to a unique point l in label space1 Ln ⊂ R

n−1 using

l =
n∑

i=1

pili ∈ Ln (1)

The label space is thus defined as Ln = {∑n
i=1 pili | pi ∈ [0, 1] ∧∑n

i=1 pi = 1}.
To calculate the probability for z ∈ Ln being label l ∈ Ln, Malcolm et al. apply:

P (z = l) = exp(−‖z − l‖2)/
n∑

i=1

exp(−‖z − li‖2) (2)

To map a point z ∈ Ln back to a probability vector p = (p1, p2, . . . , pn), we must
then calculate the probabilities P (z = li) ∀i = 1, 2, . . . , n, according to (2).

In this paper, we argue that (2) does not provide a proper inverse mapping
of (1). If we refer to the mapping in (1) by f : p→ l (probabilities to label space)
and to that in (2) by gM : l → p (M for Malcolm), then ideally we would like
1 From this point onward, Ln refers to label space.
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to have gM = f−1, hence (gM ◦ f)(p) = gM (f(p)) = p. However, equation (2)
does not in general guarantee this. To demonstrate this, as a simple example,
take n = 3 and p = (1, 0, 0). Then, according to (1), we obtain z = l = l1. If we
now apply (2), we expect to obtain P (z = l1) = 1, since the label of z is l1, but
instead we obtain 1/(1 + exp(−‖l1− l2‖2) + exp(−‖l1− l3‖2)) = 1/(1 + 2ε) �= 1,
where ε = exp(−L2), with L being the length of any side of the regular simplex.
We also expect P (z = l2) = P (z = l3) = 0, but instead we obtain ε/(1 + 2ε).
Similar calculations for crisp labels for any n ≥ 2, i.e. p = (1, 0, 0, . . . , 0)t, or a
permutation thereof, can be easily shown to give p̂ = (1, ε, ε, . . . , ε)t/(1+(n−1)ε),
or a respective permutation thereof. We note that for maximally uncertain labels
the correct inverse is obtained. As we will see in Section 3, the error in gM is
proportional to the label certainty.

We adopt Malcolm et al.’s forward mapping f : p→ l ∈ Ln in (1). However,
in this paper, we propose to replace gM : l → p in (2) with a proper inverse
function based on barycentric coordinates: gB : l→ p (B for barycentric).

2 Barycentric Label Space

The theory of barycentric coordinates states that the Cartesian coordinates of
any n dimensional point located on a n−1 dimensional simplex can be calculated
as a weighted linear sum of the coordinates of the simplex vertices [30]. In par-
ticular, the coefficients of this linear sum are called the barycentric coordinates.
From (1), we observe that the probabilities p1, p2, . . . , pn are also coefficients of
a weighted linear sum of simplex vertices: the n certain labels l1, l2, . . . , ln ∈ Ln.
Therefore, pi, i = 1, 2, . . . , n, are barycentric coordinates. Therefore, we can re-
gard (1) as the mapping that converts barycentric coordinates p to Cartesian
label space coordinates l. In other words, the barycentric representation of l ∈ Ln

is equivalent to its corresponding probability vector.
We now shift our attention to the procedure for converting the Cartesian

coordinates of a point on a simplex to its barycentric coordinates, as we will
adopt this same procedure to convert points in label space to their corresponding
probability vectors. We denote the Cartesian coordinates of a point in label space
as l = (lx1 , lx2 , . . . , lxn−1)

t ∈ Ln ⊂ R
n−1 and the coordinates of the i-th certain

label as li = (li,x1 , li,x2 , . . . , li,xn−1)
t.

For n = 2, (1) gives l = p1l1 + p2l2. Since p1 + p2 = 1 and l ∈ L2 ⊂ R
1

is described by a single coordinate, we have lx1 = p1l1,x1 + (1 − p1)l2,x1 , which
can be re-written as (l1,x1 − l2,x1)p1 = (lx1 − l2,x1) and hence p1 = (l1,x1 −
l2,x1)

−1(lx1 − l2,x1). For n = 3, l = p1l1 + p2l2 + p3l3 ∈ L3 ⊂ R
2 is rewritten as(

lx1

lx2

)
= p1

(
l1,x1

l1,x2

)
+ p2

(
l2,x1

l2,x2

)
+ (1− p1 − p2)

(
l3,x1

l3,x2

)
(3)

Re-arranging gives

p1 (l1,x1 − l3,x1) + p2 (l2,x1 − l3,x1) + (l3,x1 − lx1) = 0
p1 (l1,x2 − l3,x2) + p2 (l2,x2 − l3,x2) + (l3,x2 − lx2) = 0

(4)
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which can be rewritten in matrix form as T3p = l− l3, where the subscript 3 in
T3 indicates the value of n, and where

T3 =
(
l1,x1 − l3,x1 l2,x1 − l3,x1

l1,x2 − l3,x2 l2,x2 − l3,x2

)
; p =

(
p1

p2

)
; l − l3 =

(
lx1 − l3,x1

lx2 − l3,x2

)
(5)

For any n, we obtain the following linear system of equations

Tnp = l − ln (6)

Tn =

0
BBB@

l1,x1 − ln,x1 l2,x1 − ln,x1 . . . ln−1,x1 − ln,x1

l1,x2 − ln,x2 l2,x2 − ln,x2 . . . ln−1,x2 − ln,x2

...
...

. . .
...

l1,xn−1 − ln,xn−1 l2,xn−1 − ln,xn−1 . . . ln−1,xn − ln,xn

1
CCCA ;

p = (p1, p2, . . . , pn−1)
t; l − ln = (lx1 − ln,x1 , lx2 − ln,x2 , . . . , lxn−1 − ln,xn−1)

t

(7)

where Tn is of size (n−1)2 and its i-th column is li− ln. Tn is non-singular since
its n − 1 columns are essentially the edges of the simplex in n − 1 dimensions.
The probabilities p corresponding to l ∈ Ln can now we be obtained using

p = T−1
n (l − ln); pn = 1− p1 − p2 − · · · − pn−1 (8)

3 Results

3.1 Error in the inverse mapping

Adopting (1) as the forward mapping f : p → l, we compare two alternative
inverse mappings (g : l→ p): Malcolm et al.’s gM captured by (2) and gB of our
proposed approach summarized in (8). We use a relative inverse composition
error εinv(p) = ‖(g ◦ f)(p)− p‖/‖p‖, which we calculate for both methods as
εinv

M and εinv
B . Ideally, (g ◦ f)(p) = p and hence εinv(p) = 0. In Figure 1(a), we

examine εinv as a function of n. Note that εinv
B is practically zero whereas εinv

M

increases with n and plateaus at roughly 0.7 at n =100. Note that the variance
in εinv

M is decreasing with n. Since εinv is dependent on p, the mean and standard
deviation in Figure 1(a) are the result of a Monte Carlo simulation with 10,000
random probability vectors for each n sampled from a Dirichlet distribution with
parameters α1 = ... = αn = 1, giving a uniform distribution within the n − 1
dimensional open simplex and zero elsewhere [31].

3.2 Relationship between error and uncertainty

We explore the relationship between the inverse mapping error and the uncer-
tainty. In Figure 1(c), we note that εinv

B is practically zero (10−16), whereas εinv
M

is only zero at the centre of the simplex (pi = 1/3, i = 1, 2, 3) and increases
outwards reaching maximal error at the vertices (the certain labels) (Figure
1(d)). In Figure 1(b), we quantify εinv

M as a function of uncertainty, measured
as the normalized (by the maximum entropy for each n) Shannon’s entropy
−Pn

i=1 pi log2 pi

−Pn
i=1

1
n log2

1
n

= − 1
log2 n

∑n
i=1 pi log2 pi. Note the monotonically decreasing non-

linear behavior of εinv
M vs. entropy.
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Fig. 1: Relative inverse composition error εinv. (a) εinv
M (blue with vertical error

bars) and εinv
B (red) as a function of n. (b) εinv

M as a function of normalized
Shannon’s entropy for n = {1=lowest blue curve, 2, 3, . . . , 10=topmost green
plot}. (c) εinv

B and (d) εinv
M at the different points in L3.

3.3 Effect of error on fuzzy brain images

We applied gB and gM to probabilistic maps of 20 subjects from BrainWeb [32].
For each subject and at each pixel, 12 probability values capture the pixel’s fuzzy
membership to one of 12 classes: cerebrospinal fluid (CSF), gray matter (GM),
white matter (WM), etc. (full list in Table 1). For each subject, we calculated
εmsp = 1

N

∑N
i=1 ε

inv(xi), where N is the number of pixels xi in the mid-sagittal
plane (MSP). The average εmsp over 20 subjects using gB was εmsp

B = 0.780 ×
10−16 vs. εmsp

M = 0.835 for gM . In Table 1, we present a similar comparison but
with a region-specific error εr, r = {1, 2, . . . , 12}. εr

B (using gB) is practically zero
whereas εr

M (using gM ) is ca. 0.83 ∀r. Figure 2 presents a qualitative comparison
of the probability maps of CSF, GM, and WM for a single subject, averaged over
20 subjects in probability space, and averaged in L12 followed by using either
gB or gM . Note the similarity in the results obtained by gB to the average
probabilities and the erroneously attenuated probabilities resulting from gM .
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Label εr
B εr

M

1. background 0.212e-16±0.063e-16 0.837± 0.000
2. CSF 1.161e-16±0.103e-16 0.834± 0.001
3. grey matter 0.989e-16±0.105e-16 0.833± 0.001
4. white matter 1.789e-16±0.235e-16 0.833± 0.001
5. fat 2.649e-16±0.160e-16 0.836± 0.001
6. muscle 1.172e-16±0.121e-16 0.832± 0.001
7. muscle/Skin 0.354e-16±0.146e-16 0.836± 0.000
8. skull 0.368e-16±0.229e-16 0.836± 0.000
9. vessels 1.048e-16±0.044e-16 0.828± 0.001
10. around fat 0.852e-16±0.107e-16 0.831± 0.002
11. dura matter 0.852e-16±0.071e-16 0.833± 0.001
12. bone marrow 0.706e-16±0.061e-16 0.836± 0.001

Table 1: εr (mean±s.d.) for 12 brain regions averaged over 20 subjects.

Fig. 2: Comparison between probability
maps of CSF (left column), GM (mid-
dle column), and WM (right column),
obtained in alternative ways (the dif-
ferent rows): the probability map of a
single BrainWeb subject (first row), the
average probability map of all subjects
(2nd row), the average performed in la-
bel space and mapped back to proba-
bilities using our barycentric approach,
gB (3rd row), and using Malcolm et
al.’s method, gM (last row). Probabil-
ity value p(x) = 1 is shown as white and
p(x) = 0 as black.

3.4 PCA in label space

Since our approach shares the same mapping f : p→ l as in [1], performing PCA
in label space yields the same variation modes for both approaches. However,
we show the effect of errors in gM when exploring the modes in probability
space, compared to accurate results using gB . In the first experiment, we created
a training set of probability maps containing only two types of 50×50-pixel
images (Figure 3). One set contains a crisp rectangle, i.e. p(x) = (1, 0)t inside
and (0, 1)t outside, and the other contains the same rectangle except that its
lower side is characterized by uncertainty (the probability changes gradually from
inside to outside: (1, 0), (0.9, 0.1), . . . , (0, 1). The maximum likelihood labeling of
both probability maps produce the same labeling. The probability maps are
converted to label space L2 (using (1)), on which PCA is performed. To explore
the principle modes of variation in probability space, we used either gM or gB
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(Figure 3). Note how using gB results in probability values accurately relating to
what is exhibited in the training set, whereas poor probability values result when
using gM . In the second experiment, we followed similar steps but on BrainWeb
data, where PCA was performed on L12 ⊂ R

11 of the MSP of all 20 subjects.
The results in Figure 4 show improved results when using gB over gM .

Fig. 3: PCA in L2 on rectangular shapes. (leftmost column) The two types of
images in the training set. (5 rightmost columns) Mean probability map displaced
{−1,−0.5, 0, 0.5, and 1}×√λ along the the first mode of variation, where λ is the
variance explained by that mode, using gB (1st row) and gM (2nd row). p(x) = 1
is shown as white and p(x) = 0 as black. Note the attenuated probabilities
resulting from gM that do not reflect the values in the training data.

3.5 Smoothing in label space

We re-created the smoothing experiment from [1], in which the label space and
binary vector ([21]) representation of an image with 4 labels (including back-
ground) are smoothed. As demonstrated in [1], Figure 5(f) shows background
labels appearing near the junction between non-background labels when the bi-
nary representation is used, whereas smoothing in L4 smoothes out the sharp
corners at the junction without erroneous background labels (Figure 5(e)). The
fuzzy labels appearing after smoothing in L4 are converted to crisp labels using
the nearest crisp label. Similar results are obtained if the maximum likely label is
chosen. Figure 5(a-d) compares the probability maps obtained using either gB or
gM following the label space smoothing iterations. Note that gM inappropriately
attenuates the probability values.

3.6 Effect of error on uncertainty

An important advantage of probabilistic representations of multi-shape fields
is the ability to calculate uncertainty values in the image domain. Uncertainty
calculations have the potential to influence end users’ confidence in the results
(e.g. probabilistic or multi-rater segmentation results) and may affect decision-
making for clinical tasks such as diagnosis or therapy. Further, uncertainty values
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Fig. 4: PCA in L12 on BrainWeb data. Rows 1-3 show the variability in the
resulting probability maps for CSF, GM, and WM. p(x) = 1 is shown as white
and p(x) = 0 as black. The 4th row uses the first three rows as RGB channels.
Columns 1-3 are obtained using gB , whereas columns 4-6 are obtained using
gM . The columns 1,2, and 3 correspond the mean probability map displaced
by {−2, 0, and 2} × √λ, respectively, along the the first mode of variation, and
similarly for columns 4,5, and 6, where λ is the variance explained by that mode.
Note the low probability values when using gB .

are useful for self-learning algorithms as demonstrated in [12]. Figure 6 compares
the uncertainty values obtained after converting probability fields to label space
and back to probability using either our gB or gM . The normalized uncertainty
at every pixel x is calculated as U(p(x)) = −1

log2 n

∑n
i=1 pi(x) log2 pi(x), and the

absolute error in uncertainty when using gM is calculated as εuncert
M (x) = |UM −

U |, where UM = U(gM ◦f)(p(x)), and similarly for εuncert
B (x) when using gB . The

results are obtained on the smoothed data set from Figure 5 (the first smoothing
iteration) and on a fuzzy membership map of the MSP of a BrainWeb subject
in Figure 2. Note how gM results in inaccurate uncertainty calculations.

4 Conclusions

Richly labelled fields are common in medical imaging for representing multiple
organs or substructures. Given different sources of uncertainty in the labeling
(e.g. graded decomposition, multiple raters, fuzzy processing, probabilistic seg-
mentation), it is desirable to have a multi-shape representation that encodes
uncertainty. It is also desirable that this representation forms a vector space
facilitating algebraic manipulation (e.g. smoothing or statistical analysis), be
capable of representing certain as well as uncertain labels, is devoid from ar-
bitrary normalization or other ad-hoc operations, and provides an invertible
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Fig. 5: Smoothing in label space. The top row shows (a) the initial (before
smoothing) probability map of region 1 (the top half of the image), (b) re-
gion 2 (lower left quadrant), (c) region 3 (lower right quadrant), (d) the three
probability maps combined into one RGB rendering, (e) each pixel is labelled
according to the nearest crisp label in label space (similar results obtained with
the maximum likely label), and (f) using the binary vector representation of
[21]. The remaining rows show increasing levels of smoothing performed in label
space (except for (f)). Note that there are two, left and right, sub-columns under
each main column corresponding to using our method (gB) and Malcolm et al’s
(gM ), respectively. In (a-d), pure red, green, and blue correspond to probability
1 and black to zero. In (e), the pure colors correspond to the three labels, with
a forth black (or background) label erroneously appearing under (f). Note how
our method returns improved probability maps (in (a-d)), even though the crisp
labels are the same (in (e)) and are better than (f).

(a) (b) (c) (d)

Fig. 6: Effect of the inverse mappings gB and gM on uncertainty calculation. (a)
Probability map p(x) (three probability entries are visualized as RGB channels).
(b) Uncertainty U(p(x)) = U(gB ◦ f)(p(x)). (c) U(gM ◦ f)(p(x)). (d) Absolute
error in uncertainty εuncert

M (εuncert
B = 0 not shown). The 1st row uses the first

smoothed image of rectangles from Figure 5 whereas the MSP of a BrainWeb
subject is used in the 2nd row. The RGB channels in the brain example corre-
spond to CSF, GM, and WM, respectively. In all images pure white, red, green,
or blue corresponds to 1 and black to zero.
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bijective mapping with probabilistic atlases. Label space is a powerful approach
but whose inverse exponential mapping falls short of satisfying that last require-
ment of invertibility. To address this deficiency, we substituted the exponential
inverse mapping (from label space to probability vectors) with a mapping that
is based on solving a non-singular system of linear equations, which in turn is
based on ideas from the theory of barycentric coordinates. In contrast to the
mapping of [1], we showed that in our barycentric approach the composition of
the mapping and its inverse guarantees the identity transformation. We quanti-
fied these inversion errors for different types of images (e.g. brain, rectangular
shapes) and image manipulation scenario (e.g. smoothing, linear statistics, and
uncertainty calculation).
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Abstract. This paper introduces the benefits of probabilistic time se-
ries analysis to the field of medical region contouring. By reviewing where
time series methods have been previously used in shape description, we
argue that time series analysis has much more to offer than current au-
toregressive or Markov random field models, through probabilistic meth-
ods that lead to full statistical models of shape. We then introduce two
examples, namely Langevin and Gaussian Process models. The com-
bination of generative probabilistic methods allows novel segmentation
frameworks. Moreover, we show how the probability distributions can be
conditioned by image models and by run-time interactions. The resulting
frameworks allow multiple solutions to a single segmentation task, where
the end result is ultimately governed by modest user interactions. This,
and the underlying nonlinearity of the shape priors, makes the methods
particularly suited to tumours and lesions that have irregular form. Ex-
periments validate the segmentation tools and prove the benefits of the
global shape information in terms of accuracy and user demand.

1 Introduction

Regions such as tumours and lesions in medical images have poorly defined
shape. Due to the complex biological processes that form these regions, there
is no obvious shape similarity between examples. In addition, these regions are
often associated with high levels of boundary ambiguity due to partial volume ef-
fects and low image contrast. In practice, tumour and lesion segmentation calls
for semiautomatic methods with often high amounts of user demand. Given
the problems of boundary ambiguity and poor shape definition, we believe that
segmentation should remain semiautomatic, but that any semiautomatic tool
should possess two qualities. First, a tool should give the user complete control
over the segmentation, with minimal interaction. Second, the automated part of
the semiautomatic framework should be capable of producing alternative solu-
tions, whereby the user ultimately governs the result.

Statistical shape models (SSMs) have proven to benefit medical region seg-
mentation [1, 2] and naturally reduce demand on the user of a semiautomatic
� Work funded by EPSRC. We also thank Dr. D. Tozer at the Institute of Neurology,

London, for providing MS lesion contours.
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tool. The success of these methods is partly due to their use of generative models
to drive an optimisation scheme. Moreover, probabilistic SSMs lend themselves
to efficient interactivity, where probability distributions are conditioned on in-
formation provided during run-time [3–5]. To apply these ideas to tumour and
lesion contouring, we seek probabilistic SSMs that do not assume the same level
of shape similarity as the models in [1, 2]. For this purpose, we call on another
family of shape models, which represent a region boundary as a time series. Pre-
vious time series shape models [6–9] have proven to be discriminative, but they
do not provide generative, probabilistic, statistical models and their impact on
the segmentation community has been relatively low. We revisit the time series
literature to vedise new SSMs that are both discriminative and generative, as
well as forming the basis of novel, interactive segmentation frameworks by virtue
of their probabilistic nature.

The rest of this paper is organised as follows. Section 2 reviews earlier use
of time series for shape modelling and motivates a new look at probabilistic
methods. Section 3 introduces time series models of Langevin and Gaussian
Process and section 4 defines SSMs based on these, describing their training
methods, discriminative and generative techniques and how they are built into
segmentation frameworks. Experiments in section 5 test whether using the shape
priors reduces demand on the user and increases accuracy for liver tumour and
multiple sclerosis (MS) lesion contouring.

2 Previous Work

The field of statistical shape modelling is dominated by methods using the point
distribution model (PDM) popularised by Cootes et al. [1] in ’Active Shape
Model’ segmentation. The limitations of these methods stem from their assump-
tion that all examples of a region can be aligned in a meaningful manner, with
correspondence points around their boundary. Another family of SSMs [6–9]
relax this assumption by representing a 2-dimensional region boundary as a
vector of radial distances r = {r0, . . . , rN−1}, measured from a fixed location
xc = {xc, yc} inside the region (figure 1). We refer to r generally as a radial time
series, where specific types differ by what ’time’ represents. Two examples are
boundary arc-length s (eg. [8]) and the angle θ between radial vectors (eg. [6]).
Let us define a shape in each case by a parameter set Q comprising

Qgen = {r, s,xc} = {{r0, . . . , rN−1}, {s0, . . . , sN−1}, {xc, yc}} (a)
Qstar = {r, θ,xc} = {{r0, . . . , rN−1}, {θ0, . . . , θN−1}, {xc, yc}} (b),

(1)

where the generalised case Qgen in 1a can represent any two-dimensional shape,
while the polar representation 1b is limited to the ’star-shaped’ set where all
boundary points of a shape, denoted Qstar, are visible from xc. Two main
families of radial time series models are the circular autoregressive (CAR) model
[6, 7, 10] and Markov models [11, 9, 8]. The CAR model introduced by Kashyap
and Chellappa [6] expresses each point ri as a weighted sum of the radii at
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earlier time points on the boundary, plus a noise term, giving the generalised
CAR equation

ri = α+
m−1∑
j=0

pjri−j + σωi, (2)

where α is proportional to the mean radius, p = {p0, . . . , pj, . . . , pm−1} is a vec-
tor of weights and m ≤ N is the number of ’lag terms’ in the model, also referred
to as the ’order’ of the model. The model is used for shape classification, by treat-
ing the parameter vectors p as feature vectors. The method has proven useful
for classification and recognition of star-shaped and non star-shaped boundaries
that are not too complex, including medical examples (eg. [10]). However, the
linearity of the model causes it to struggle in classifying more complex shapes
[7]. The CAR model also breaks down when used to characterise boundaries
that are noisy [12] or occluded [8]. There are no examples in the literature, of
using CAR models in segmentation, either by developing generative models or
adapting the classifiers for shape regularisation.

The 1D Cyclic Markov Random Field (1D-CMRF), first seen in [11], treats
the radial time series as a vector of N discrete random variables ri, and each
radius ri as a site in a Markov Random Field (MRF). After choosing a point
inside the region, the 1D-CMRF is defined by

Pr(r = ρ) ≥ 0 (3)

and
Pr(ri = ρi|rj = ρj , j �= i) = Pr(ri = ρi|rj = ρj , j ∈ Wi), (4)

where ρ = {ρ0, . . . , ρi, . . . , ρN} is a possible configuration for r, ρi is a ’hidden
variable’ or sample point for ri and Wi is a ’clique’ or neighbourhood of i. MRF
methods that if equation 3 holds then the joint probability Pr(r) is uniquely
determined by conditional probabilities in equation 4 and that these follow a
Gibbs distribution, i.e. Pr(r) ∝ exp[−∑j∈Wi

Uj ] where Uj is an energy function
or ’clique potential’ that embodies the a priori information, combining image
and shape priors. In [9] the clique potential is a weighted sum of both ’low-level’
(smoothness) and ’high-level’ constraints. The high-level information is a crude
shape model, which penalises differences between a radial time series and those
in a ’library’ of training examples. This is not strictly a statistical shape model.

In summary, radial time series models show promise in describing medical
regions without assuming high level shape similarity, but there is a need for
probabilistic models that are generative, nonlinear, give a true statistical repre-
sentation of training data and lend themselves to supervised segmentation. The
next section describes dynamical models that offer these properties.

3 Background

3.1 Langevin models

Langevin models describe the dynamics of a time dependent state vector v(t)
as a stochastic process. The models are characterised by a deterministic part
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A(v(t)) known as the drift function and a stochastic part B(v(t)) known as the
diffusion function. The generalised Langevin equation is given by

dv/dt = A(v(t)) +B(v(t))ω(t), (5)

where ω(t) is uncorrelated, time dependent noise with zero mean. Langevin mod-
els assume a Markov property, encoded in the transition density

Pr(v(t)) = Pr(v(t)|v(t −Δt)), (6)

where Δt is a constant delay parameter. The transition density evolves according
to a Fokker-Planck equation. The first and second conditional moments in the
Fokker-Planck equation, denoted D(1) and D(2), relate to the Langevin drift and
diffusion functions by

A(v(t), t) ∼ D(1)(v(t), t)/Δt and B(v(t), t) ∼ D(2)(v(t), t)/
√
Δt . (7)

Training a Langevin model involves finding parametric functions for the drift
A(v(t), a) and diffusion B(v(t),b), where a and b are parameter vectors, by
choosing simple functional forms and estimating the parameters from training
data.

In section 4.1 we will see that shape scoring can take advantage of the con-
ditional probabilities (transition densities) central to Langevin models. For this
we notice that the joint probability of a series of N points under a Langevin
model is given by

Pr(v) = Pr(v0)
N−1∏
i=0

Pr(v(t+Δt)|vi−1 = v(t)) (8)

and use equation 8 in an objective function
Finally, generative Langevin models approximate the time evolution of the

state vector as the limit of a stochastic difference equation (SDE), following Itô’s
interpretation [13]. A Langevin SDE has the form

dv(t) = A(v(t))dt+B(v(t))ω(t) (9)

where dt is an integration time step, which can be solved numerically by stochas-
tic integration using the explicit Euler-Maruyama scheme

v(t+ dt) = v(t) + dt A(v(t)) +
√

dt B(v(t))ω(t). (10)

3.2 Gaussian Process models

A Gaussian Process (GP) treats a time series as a N -dimensional random vector
of outputs v = {v0, . . . , vi, . . . , vN−1} corresponding to inputs at discrete time
points t = {t0, . . . , ti, . . . , tN−1}. The output at time ti has an associated prob-
ability Pr(vi|ti), which follows a normal distribution and the vector of outputs
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has a multivariate normal distribution v ∼ NN(μ,Σ(v,v)), where μ is a dis-
crete mean function and Σ(v,v) is the N × N matrix of covariances ε(vi, vj)
between pairs of outputs. Each covariance is a function of the corresponding
inputs ε(vi, vj) = f(ti, tj) where f is a kernel function. The mean function μ

and the covariance function ε(vi, vj) completely define a GP [14].
Training a GP involves fitting a discrete function μ and a parametric kernel

function ε(vi, vj , a) to training data, where a is a vector of parameters. Ideally
the functions and parameters are estimated together by Bayesian model selection
[14]. It is common however, to choose a sensible mean function and form of the
covariance kernel, and the task reduces to estimating the parameters a.

As in the Langevin case, we wish to ’score’ unseen radial time series according
to the probability that they belong to a shape model. In section 4.2 we will see
that a probabilistic shape score can take advantage of the fact that GPs are
based on multivariate normal distributions.

Finally, generative GP models simulate a time series by drawing a random
vector of outputs v′ from the prior distribution. This involves solving

v′ = μ+ Az, (11)

where A is the Cholesky decomposition of Σ(v,v) and z is a N -dimensional
vector of independent values drawn from N (0, 1).

4 Probabilistic Models in Supervised Contouring

Frameworks

This section introduces common components of the new time series frameworks
followed by the shape modelling techniques specific to Langevin (section 4.1)
and GP(section 4.1) SSMs.

Starting with a series derived from a training contour, we take the centre r̄
of the occupied state space and subtract this from the whole series, translating
it into a zero-mean field, and separately store r̄ as the scale parameter. Figure 1
illustrates the relationship between zero-mean field, radial time series and shape
for the star-shaped parametrisation.

Next, we define an image observation model in the time series framework,
given here for the star-shaped case. We introduce a radial profile model , using
a boundary measure as a function of radius. The boundary measure is based on
both the magnitude |g| and direction ψ of the image gradient as shown in figure 2.
We define an estimate x′

c of the region centre by a pixel selected manually by
the user of an interactive tool. After obtaining x′

c we sample |g| and ψ along the
each radial vector θi. In the case of the gradient magnitude we fit a Gaussian
function with mean ĝi at the first peak of |g| and standard deviation σgi given
by the full width at half maximum. Next we take an estimate r̄′ of the scale
parameter from the mid-point of all the profile means ĝi, i = 0, . . . , Nobs − 1
where Nobs is the number of observation angles. Finally, we form the likelihood
ratio pon

i /poff
i , where pon and poff represent the probabilities that the local
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Fig. 1. Example training contour from a liver tumour (a), with estimates of the centre
xc and scale parameter r̄, and the corresponding radial time series (b) in original polar
co-ordinates and (c) translated into the zero-mean field.
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g
i )

(a) (b) (c)

Fig. 2. Observation model from an example synthetic image. (a) Synthetic region with
boundary given by a liver tumour contour, showing an estimate of the centre x′

c
, local

boundary direction ϕ and radial vector at arbitrary angle θi. (b) Greyscale representa-
tions of the magnitude |g| (top) and direction ϕ (bottom) of image gradient sampled
along radial vectors, with angle θi marked. (c) Radial profile of gradient magnitude
corresponding to angle θi, with Gaussian fit after translating into the zero-mean field
and re-scaling to the range {0 . . . 1}.

section of a generated shape corresponding to {ri, θi} is on or off the region
boundary, given by

pon
i (r) = exp

[−(ψi(r) − φi(r))2
]
, and

poff
i (r) = 1− exp

[−(
r − ĝi
σgi

)2
]
,

(12)

and φi is the angle with respect to the horizontal, made by the contour section
from point {ri−1, θi−1} to {ri, θi}.

The observation model will be used in conjunction with generative SSMs
to form the basis of a probabilistic optimisation scheme in segmentation. Sec-
tions 4.1 and 4.2 present Langevin and GP SSMs using the general time series
notation r(t), and demonstrate for polar parametrisation r(θ).
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4.1 Langevin SSMs

We train a Langevin model by adapting the method in [15] to learn fromM series
rm, m = 1 . . .M , created as above. We divide the range {rmin, . . . , rmax} of
the whole training set into bins of equal width Δr centred on discrete values rn.
For the nth bin, we identify all points on all series for which |r(t)− rn| < Δr/2.
We then construct a histogram of radii at the displaced positions r(t + Δt)
from all these points, allowing wrapping of the closed boundary, to obtain an
approximation of the transition density Pr(r(t + Δt)|r(t) − rn < Δr

2 ), which
we model with a normal distribution by estimating the mean μn and standard
deviation σn. Repeating for all bins gives a discrete approximation of the drift
and diffusion functions

A(rn(t)) = μn − rn and
B(rn(t)) = σn where rn ∈ {rmin, . . . , rn, . . . , rmax}.

(13)

Finally, we use a Levenberg-Marquardt routine to estimate parameters a and
b for a chosen family of drift and diffusion functions that best fit the discrete
estimations. We find that exponential, quadratic and polynomial functions work
well in practice. We choose the function with the lowest χ2 error to model a given
region type with a given contour parametrisation. Figure 3 shows examples of
trained Langevin models.

−20 0 20−0.5

0

0.5

A
(r

(s
),

a)

r(s)

μn-rn
A2(r(s),a)

−20 0 200

0.5

1

1.5

B
(r

(s
),

b
)

r(s)

σn
B1(r(s),b)

−10 0 10−1

0

1

A
(r

(θ
),

a)

r(θ)

μn-rn
A3(r(θ),a)

−10 0 100

1

2

B
(r

(θ
),

b
)

r(θ)

σn
B3(r(θ),b)

(a) (b) (c) (d)

Fig. 3. Drift/diffusion functions (a)/(b) for liver tumours with generalised parametri-

sation and (c)/(d) for MS lesions with star-shaped parametrisation. A2 is 5th order
polynomial, B1 is constant, A3 is exponential and B3 is cubic.

We derive a probabilistic ’score’ for unseen shapes from the log of the joint
conditional probabilities. The score is given by

SLAN =
1
N

(
log Pr(r(t0)) +

[N−1∑
i=1

log Pr(r(ti +Δt)|r(ti), a)
]

+ log Pr(r̄)
)
. (14)

Next we present a generative model based on the Euler-Maruyama scheme
for shape generation in polar co-ordinates

r(θi+1) = r(θi) + dθ A(r(θi)) +
√

dθi B(r(θi))ω(θi) +Δx cos(θi) +Δy sin(θi),
(15)
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where {Δx,Δy} allow uncertainty on the estimate of the region centre x′
c, which

we build into a further adaptation of the Euler-Maruyama scheme. We combine
equation (15) with a boundary tracking algorithm in polar co-ordinates. The
algorithm repeats the SDE solution many times at each step θi+1, which draws
several samples from the transition density Pr(ri+1|ri, a,b). This forms the prior
distribution in a particle filtering algorithm that is otherwise similar to that in
[16]. The algorithm uses factored sampling to compute posterior densities

Pr(ri+1|ri, a,b,D) ∝ Pr(ri|a,b,D)× q(ri+1|ri, a,b)× l(D|ri+1), (16)

where q(ri+1|ri, a,b) = N (ri −A(ri+1, a), B(ri+1,b)) is the shape prior arising
from equation (15) and l(D|ri+1) is a data likelihood term derived from the radial
profile model above. For a given {Δx,Δy} we solve equation (16), terminating
when a series of N radii forms a closed loop with negligible discontinuity. We
repeat for several x′

c drawn from N2(x′
c, σc) where the variance σc models the

uncertainty on xc. We weight each hypothesis by equation (14) and estimate the
maximum a-posteriori (MAP) solution by factored sampling.

4.2 Gaussian Process SSMs

We present a general GP SSM using a periodic kernel function ε(ti − tj , a) =
exp[−a sin2((tj−ti)/2)], with a single free parameter a related to the length scale
of correlation. We use a constant mean function for rotation invariance. To train
the GP model we estimate kernel parameters using Markov Chain Monte Carlo
(MCMC) methods. Starting withM training series, we seek the parameter a that
maximises the joint probability density function Pr(r1:M |a). For convenience we
take the sum of the log probabilities

∑M
m=1 S

m
GP where

SmGP =
N

2
log(2π)− 1

2
log(|Σ(a)|) − 1

2
(
(rm − μ)TΣ−1(a)(rm − μ)

)
+ log Pr(r̄).

(17)
We also use equation 17 as a probabilistic score for unseen shapes.

Next we constrain the generative model by treating the radial profiles in
D as noisy observations and using these to condition the prior following the
description in [14]. This yields the posterior covariance matrix Σpost replacing
Σ in equation (11). Finally the MAP solution is given by the posterior mean
μpost which we calculate analytically. As in the Langevin case we repeat for
several centre point estimates x′

c, scoring each solution by (17) and selecting the
final contour by factored sampling. Finally, we incorporate a novel method of
user-supervision shown in figure 4, which exploits the probabilistic nature of a
GP. The user marks a point on the region boundary missed by the contour. The
polar-co-ordinates of such a point define a low-noise observation that further
conditions the prior model.

5 Experiments

We perform user trials to test the segmentation frameworks and evaluate the
SSMs for the chosen applications of liver tumour and MS lesion contouring. We

Probabilistic Models For Medical Image Analysis 2009

192



−5

0

5

r

0 π
θ

2π

−5

0

5

r

0 π
θ

2π

−5

0

5

r

0 π
θ

2π

(a) (b) (c)

Fig. 4. Top row: shapes generated by the GP SSM during supervised contouring, show-
ing the initial contour (a) followed by MAP estimates from the refined model when
the user selects (b) one, and (c) three boundary points marked ’�’. Bottom row: cor-
responding radial time series in the zero-mean field, where black lines show the MAP
solution, grey points show noisy observations ĝ ± σg from the radial profile model and
’�’ are polar representations of user-identified boundary points.

start with 241 star-shaped training contours from manual liver tumour segmen-
tations [17] and 1307 from MS lesions. We remove three test contours from each
set and train SSMs on the remaining contours. We use the test contours to cre-
ate synthetic images with known ground truth by assigning different greylevel
histograms inside and outside a contour, then smoothing the result with a 3× 3
pixel averaging kernel (figure 5). In the case of MS lesions we also use the PD
weighted MR images from where the training data were extracted, so in total
there are 9 images to segment.

(a) (b) (c)

Fig. 5. (a)/(b) Example synthetic liver tumour/MS lesion. (c) An MRI MS lesion.
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To isolate the role of the shape priors we compare each framework with a
second version, where the learned shape information is replaced with a normal
prior. In the Langevin case we replace drift and diffusion functions with station-
ary transition densities N (0, 1). In the GP case we replace the covariance matrix
with the N ×N identity matrix.

We asked 10 volunteers to delineate the 9 regions in a randomised sequence,
using both tools with learned and normal priors. Segmentation comprises two
stages of initialisation by choosing a centre point xc, which the user can change
until satisfied, and post-editing. In the Langevin framework, post-editing involves
’dragging’ contour points onto the region boundary. In the GP framework, users
can mark boundary points as low-noise observations (section 4.2) and the up-
dated model is displayed in real-time. We evaluate the tools in terms of user
demand, accuracy and variability, and perform paired-samples t-tests to identify
significant differences between a tool used with learned and normal priors.

We measure user demand by the number of interactions Nint, where one
interaction is a contour point ’dragged’ for the Langevin tool or a boundary
point selected for the GP tool. we also use the Hausdorff distance dH [18] to
measure the similarity between a final contour accepted by the user and the ini-
tial contour before post editing. We take the mean Nint or dH over 10 users and
compare a tool using learned and normal priors. Tables 1 and 2 show the results
for the Langevin and GP tools respectively. These results reveal increased use-

Measure Prior
Langevin SSM

synth. LT synth. MS MRI MS

use.

Nint
normal 16.08±6.45 8.68±2.71 11.58±5.62

learned 10.52±5.90∗ (0.002) 8.18±3.90 10.25±3.93

dH

normal 6.20±1.27 3.01±0.43 2.81±0.48

learned 4.41±1.47∗ (0.019) 2.76±0.73 2.77±0.70

acc.

DSC
normal 0.96±0.01 0.87±0.02 0.80±0.02

learned 0.96±0.01 0.88±0.02 0.80±0.02

MMD
normal 0.77±0.13 0.63±0.15 1.23±0.04

learned 0.79±0.13 0.63±0.11 1.15±0.05 ∗ (0.050)

Table 1. Differences in useability (use.) and accuracy (acc.) between Langevin seg-
mentation with and without learned shape priors, where p-values (in brackets) indicate
significant improvement for the learned priors.

ability in all cases where the tools use learned shape knowledge, with significant
improvements for all region types with the GP tool and for the (larger) liver
tumour shapes with the Langevin tool. We also count the number of times a
user repeats an initialisation before accepting or editing a contour. The learned
shape priors lead to a significant reduction in this number for both tools and all
region types with p = 0.017 for Langevin and p = 0.039 for GP tools.
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Measure Prior
Gaussian Process SSM

synth. LT synth. MS MRI MS

use.

Nint
normal 9.88±3.08 3.66±2.34 4.23±1.81

learned 4.93±1.96∗ (< 0.001) 2.43±1.55∗ (0.010) 2.73±1.30∗ (0.001)

dH

normal 4.26±0.91 1.62±0.50 1.98±0.35

learned 3.69±0.74∗ (0.021) 1.54±0.58 1.88±0.49

acc.

DSC
normal 0.93±0.01 0.85±0.01 0.76±0.04

learned 0.95±0.01∗ (0.003) 0.86±0.02 0.78±0.04∗ (0.004)

MMD
normal 1.37±0.13 0.73±0.08 1.47±0.05

learned 1.09±0.14∗ (0.003) 0.70±0.11 1.38±0.07

Table 2. Differences in useability (use.) and accuracy (acc.) between Gaussian Pro-
cess segmentation with and without learned shape priors, where p-values (in brackets)
indicate significant improvement for the learned priors.

We measure accuracy by the similarity between a segmentation and the
ground truth, using one region-based similarity measure, namely the Dice simi-
larity coefficient (DSC) [19], and one boundary-based similarity, the mean min-
imum distance between contours (MMD) which is equivalent to the modified
Hausdorff distance [20]. Tables 1 and 2 show the results for the Langevin and
GP tools respectively. All the significant results reveal a positive effect of the
shape priors. We also measure the inter- and intra-operator variability by the
similarity between the contours created for the same region by one user on two
occasions, and by two separate users. The shape priors do not reduce these vari-
abilities, as the level of user control still allows for idiosyncratic segmentation.

6 Conclusions and Future Work

We have designed SSMs for global shape priors in applications lacking correspon-
dence points, and shown them to improve the useability and accuracy of super-
vised contouring tools. The work shows that probabilistic time series models
have a lot more to offer the field of shape modelling than current autoregressive
or Markov random field models.

Future work will extend the GP model to use novel kernels specific to differ-
ent applications, and generalise the models beyond star-shapes using the Qgen
parametrisation. We propose two extensions to 3-dimensions [21]. The first uses
the radial profile model to propogate observations through 2D slices and the
second uses the ’spiral’ transform as in [22], which turns a 3D surface into a
radial signature similar to the time series used above.
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Abstract. In this paper, we propose a fully automatic method to seg-
ment three bone compartments in MR images of a knee joint based
on previous segmentation results as a priori information. The proposed
method utilizes the branch-and-mincut technique which unifies graph-
cut for optimization and branch-and-bound tree search. In spite of its
efficiency, branch-and-mincut is not readily applicable to high resolution
MR volume images, due to computation complexity and limitations in
storage space. To alleviate these problems, we propose an efficient frame-
work where we first simultaneously obtain an initial segmentation of MR
images and a coarse rigid registration of the mean shape template by
constrained branch-and-mincut, and then refine the result by determin-
ing the optimal shape prior among the database. Our main contribution
is the constrained branch-and-mincut technique, which by utilizing not
only the bound but also the segmentation results at each mincut compu-
tation dramatically enhances the efficiency of branch-and-mincut applied
to a set of translation based shape priors with little sacrifice in accuracy.
In addition, we also exploit intensity priors to boost both efficiency and
accuracy. The performance was evaluated cross-sectionally, where eight
baseline MR images having pre-segmentation of bones were provided for
leave-one-out validation. The experiments demonstrate the effectiveness
of the proposed framework.

1 Introduction

Osteoarthritis (OA) is a leading cause for disability and about 40% of adults
aged 55 or older have frequent knee pain [1]. Strategies to prevent knee OA
are currently very limited, and degradation of articular cartilage is believed as
one of its hallmarks [2]. Assessment of cartilage volume/thickness using MR

� This research was supported by Basic Science Research Program through the Na-
tional Research Foundation of Korea(NRF) funded by the Ministry of Education,
Science and Technology (20090074888)

Probabilistic Models For Medical Image Analysis 2009

197



images has been shown to provide an accurate measure for OA progression [3].
To derive these measurements, cartilage must be accurately segmented. This
task is nontrivial and automation has been shown to be exceedingly difficult [3]
due to the complexity of cartilage geometry, small size, and the low contrast
with surrounding tissues. On the other hand, knee bones are of considerable size
and have consistent intensities. Furthermore, the distinctive contrast at bone-
cartilage-interfaces (BCI) can be used as the reference for assessment of changes
in thickness of cartilage over time. In this paper, we propose a fully automatic
segmentation method of knee bones in MR images provided by the osteoarthritis
initiative (OAI, http://www.oai.ucsf.edu). We believe that the proposed method
will help segmentation of cartilage and quicken the pace of research on knee OA.

There have been many approaches [4–6] to segment knee bones using various
techniques, such as geodesic active contours [4], support vector machine with
phase information [5], and interactive graph-cut [6]. Recently, numerous binary
segmentation methods have been based on energy optimization where the solu-
tion is much less likely to be stuck in local minima. The proposed framework is
based on the branch-and-mincut method [7], which integrates graph cuts [8] and
branch-and-bound tree search. Graph-cut determines the optimal state of a bi-
nary Markov random field (MRF) mainly relying on the gray level uniformity of
regions and the continuity of contours. This may suffer from over-segmentation
or over-smoothed boundaries. Although high level a priori knowledge would help
overcome these limitations, the processes of learning and applying this knowledge
inherently suffers from uncertainties. In the literature of similar approaches [9–
11], [9] manually provided the position of a known object, [10] approximated both
the shape position of the object while learning, and [11] relied on a manually
given bounding box and approximated color distributions of the foreground and
background. Unlike these methods, branch-and-mincut [7] can efficiently obtain
the optimal value of the latent parameters by establishing aggregate potentials
to represent this uncertainty.

Although branch-and-mincut efficiently deals with multiple shape priors, re-
quired computation greatly increases with the number of priors. Considering the
number of shape templates, translations, and rotations, this may grow huge, es-
pecially in 3-D. Furthermore, required storage is also much larger, rendering this
method inapplicable to 3-D MR images. The proposed method alleviates these
problems by partitioning the solution into a two step approach. In the first step,
an initial segmentation along with the optimal translation of the mean shape
template is obtained by constrained branch-and-mincut. In the second step, the
optimal rotation along with the optimal among the set of shape templates is
determined and segmentation is refined. Preprocessing is included as an option
to handle cases when the intensity levels vary for different MR images. Figure 1
shows a flowchart of the proposed method, while figure 2 show an example of
the segmented bone components by our method.

The main contribution of this paper lies in the constrained branch-and-
mincut technique, where the efficiency of branch-and-mincut applied to a set
of translation based shape priors is greatly improved by utilizing the segmen-
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Fig. 1. Flowchart of the proposed method.
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Fig. 2. Examples of segmentation results obtained by the proposed method of (a)
femur, (b) tibia, and (c) patella.

tation results at each mincut computation with little sacrifice in accuracy. In
addition, by combining shape and intensity priors, we were able to boost both
efficiency and accuracy.

2 Method

2.1 Review of Branch-and-Mincut

Many recent methods that deal with binary segmentation [10, 11, 9] have been
based on minimizing an energy on an MRF in the form of (1) (following the
notation of [7]) via graph cuts [8],

E(x, ω) =
∑
p∈V

F p(ω)xp +
∑
p∈V

Bp(ω)(1− xp) +
∑

p,q∈E
P pq(ω) |xp − xq|, (1)

where x represents the vector of labels constituted by binary labels xp for each
voxel p in the whole set of voxels V, and F p(ω) and Bp(ω) are foreground and
background unary potentials of p, respectively. P pq(ω) is the pairwise potential

Probabilistic Models For Medical Image Analysis 2009

199



of neighboring voxels pairs p, q ∈ E , and all potentials are based on the non-
local prior ω. Here, ω governs the behavior of the potentials, thereby ultimately
controlling the segmentation results.

Though we can determine the global minimum of (1) by the min-cut algo-
rithm [12] when ω is fixed, determining the optimal ω and x jointly is much more
difficult. When ω is altered, potential functions are changed, and the graph is
redefined. Thus, finding the optimal ωopt that induces the minimum energy be-
comes increasingly difficult as the set Ω of non-local priors grows since min-cut
for all ω ∈ Ω must be computed.

Branch-and-mincut avoids such brute force computation by defining the lower
bound

L(Ω) ≤ min
x∈2V ,ω∈Ω

E(x, ω) (2)

of the minimum of eq (1) over both the vector of labels x and non-local prior ω
as

L (Ω) = min
x∈2V

⎡⎣∑
p∈V

min
ω∈Ω

F p(ω)xp +
∑
p∈V

min
ω∈Ω

Bp(ω)(1− xp)

+
∑

p,q∈E
min
ω∈Ω

P (p, q)(ω) |xp − xq|
⎤⎦ , (3)

by introducing the concept of aggregate potential as F p
Ω = min

ω∈Ω
F p(ω), Bp

Ω =

min
ω∈Ω

Bp(ω), P pq
Ω = min

ω∈Ω
P (p, q)(ω) which are the minimum values of pixelwise

and pairwise potentials over the whole non-local prior set Ω. These terms can
be obtained by interchanging the order of computing the minimum. L(Ω) can
likewise be computed by min-cut, and we can efficiently search Ω by excluding
subsets with high lower bounds based on branch-and-bound tree search. Here,
the child nodes represent a subdivision of the current non-local prior set. The
whole process starts with the full set of non-local priors Ω, and at each iteration
the the current node with the subset corresponding to the lowest lower bound
is branched. The lower bound for the child nodes are successfully computed,
and this process is repeated until the current node is comprised of a single
shape prior, i.e., the global optimum among Ω. The required number of min-cut
computations correspond to the number of traversed nodes, which is typically
much smaller than the number of all shape priors.

For segmentation with shape priors, the non-local prior set Ω is comprised of
shape templates δ ∈ Δ with specific positions. By defining the unary potentials
for each pixel p as the Hamming distance with the template, (F p(ω) = 0 if
p is assigned as foreground and F p(ω) = 1 if p is background; background
potentials defined similarly), the aggregate potentials can be efficiently computed
by utilizing translational invariance. Pairwise potentials are defined as

P (p, q) = λ2

(
e−|Ip−Iq|2/σ

|p− q|

)
(4)
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based on pixel gradients |Ip − Iq|. We note that σ is defined as that in [8]. Thus,
minimizing (1) on Ω will be equivalent to determining the δ and its position
that best coincides with high gradient edges as the optimal.

2.2 Initial Segmentation by Constrained Branch-and-Mincut

Upon analysis of the given problem and the characteristics of the branch-and-
mincut method, we have made the following observations. From hereon, we refer
to cropped 3-D segmentation masks as shape templates and the positioned shape
mask inside the MR image voxel space as shape priors.

For segmenting knee bones from MR images from the OAI: (1) The OAI has
a fixed scanning protocol, thereby limiting the rotation and the position of bones
in OAI MR images. (2) Bones in the knee joint have limited variation in shape
compared to other organs in the body.

For branch-and-mincut: The efficiency of branch-and-mincut is maximized
when the overlap between the priors of leaf nodes with the same parent is max-
imized. Consequently, shape priors with a single shift in the position of the
shape template are clustered when constructing the tree for translation. Overlap
between different templates is typically much less than the overlap between tem-
plates with a single shift, thereby making branch-and-mincut on only the set of
translations most efficient. Following [13], each node is hierarchically clustered
following the oct-tree structure.

These observations motivated the first step of our framework, where initial
segmentation of the input MR image and coarse registration of a single mean
shape template is done by branch-and-mincut where the set of shape priors Ω are
comprised by translated templates ignoring rotation and scale variations. Here,
the mean shape template is constructed from the whole set of shape templates
by first aligning the templates and creating a union volume, where each voxel is
assigned as filled if that voxel is filled in more than half of the templates.

Direct application of branch-and-mincut is very inefficient in our specific case,
and the ratio of nodes traversed was very high. Since the possible translation
interval is relatively small compared to the size of bones in the given MR images,
the difference between each shape prior becomes small and the problem of deter-
mining the optimal translation becomes more ambiguous. Nonetheless, the node
with the set containing the optimal translation is repeatedly branched early on
in the tree search. Therefore, by excluding nodes with subsets that are unlikely
to contain the optimal translation early on, we can prune the set of candidate
priors more effectively. We also noticed that only the max-flow values were uti-
lized in the branch-and-mincut process, while the specific segmentation results
were completely overlooked. Therefore, we develop a very simple yet highly ef-
fective method to constrain branching of nodes depending on the segmentation
results obtained at each particular node.

Our method starts from the observation that since the shape template is
invariant to translations, so too are the aggregate potentials for different intervals
with equal length, thus making the total sum of both foreground and background
unary potentials equal. This is shown in figure 3.
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(a) (b)

Fig. 3. (a) Left: two shape priors (represented in yellow and blue, respectively) based
on different translations of the same template. Right: the aggregate potentials of shape
priors within the interval formed by the two translated priors shown left. (b) Same
as (a) but translated rightward. The shape of the aggregate potentials are translation
invariant.

Therefore, the difference between the unary energy Eunary(x, ω) (sum of the
first and second terms of the RHS of (3)) after min-cut computation for dif-
ferent ω occurs purely from the difference in the number of voxels that have
been assigned contrary labels to the labels in ω. This occurs when the increase
in Eunary(x, ω) due to the contrary assignment is smaller than the decrease
in the sum of pairwise potential Epairwise(x, ω) (the third term of the RHS of
(3)), thereby reducing total energy. Therefore, we assume that if Eunary(x, Ω1) is
larger than Eunary(x, Ω2), Epairwise(x, Ω1) must be smaller thanEpairwise(x, Ω2)
in order for the two subsets Ω1, Ω2 ⊂ Ω to be comparable. Otherwise, the bound-
aries found for Ω1 and its pairwise energy is worse than pairwise energy even with
the additional sacrifice made in unary energy, making it highly unlikely for Ω1 to
contain the optimal prior. This is shown in figure 4. To make our argument more
concrete, we compare the normalized pairwise potential Epairwise = Epairwise

∂B
since Epairwise depends on the area of the boundary surface ∂B. Thus, at each
branching step, we compute Eunary(x, Ωi) and Epairwise(x, Ωi), and compare
them with those of the prior sets with equal translation intervals currently added
to the active front of nodes. If both values are the largest, that node is not in-
cluded in the active front, thereby excluding the subtree based on that node.
This process is very simple to implement and requires very little additional com-
putation or storage space.

2.3 Refinement by Rigid Registration of Shape Templates

Since only a single mean shape template was applied in the initial segmenta-
tion step by constrained branch-and-mincut, a supplementary refinement step is
necessary to account for the whole set of shape templates separately. Although
applying the original unconstrained branch-and-mincut to a small translation
and rotation range may seem like a good way to do this, it is actually quite a
bad idea since the efficiency of branch-and-mincut decreases rapidly as the op-
timization problem becomes more ambiguous. Thus, branch-and-mincut is not
suitable for comparing between shape priors with limited variation.
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(a) (b)

Fig. 4. Aggregate potentials (red: F p
Ω = 0, Bp

Ω = c; green: F p
Ω = 0, Bp

Ω = 0; blue:
F p

Ω = c, Bp
Ω = 0) and segmentation results (red contour) overlapped to the MR image.

Left and right aggregate potentials are based on translation intervals of equal length
for both (a) and (b). (a) both the unary energy and normalized pairwise energy of
the left is larger than the right and therefore the subtree of left translation interval is
pruned. (b) Although the unary energy of the left is smaller than that of the right, the
normalized pairwise energy of the right is smaller than that of the left due to the large
gradient in the right part of the segment boundary. Thus both nodes are branched.

To efficiently determine the optimal template among the whole set while re-
fining segmentation results, we directly register each shape template δ in the
template set Δ via iterative closest points (ICP) [14] to the segmentation results
previously obtained by constrained branch-and-mincut. We then separately ap-
ply min-cut for each template with the registered template as the shape prior to
compute the minimum energy. This process is iterated for each δ until the en-
ergy does not decrease, and the segmentation result as well as the corresponding
optimal template is selected as the one with the minimum energy. This process
is represented in figure 5.

2.4 Combined Shape and Intensity Prior Based Potentials

To take advantage of all available information in our database, we augment the
Hamming distance unary potentials based on shape priors to include intensity in-
formation. Thus, foreground and background potentials are defined respectively
as:

F p(w) = −λ1 ln(
P (Ip|F )

P (Ip|F ) + P (Ip|B)
)× (cyω

p + 1), (5)

Bp(w) = −λ1 ln(
P (Ip|B)

P (Ip|F ) + P (Ip|B)
)× (c(1− yω

p ) + 1), (6)

The a posteriori probabilities P (Ip|F ) and P (Ip|B) are based on all of the origi-
nal segmentation results corresponding to the templates ofΩ and their intensities
in the MR images in our database, and yω

p is the Hamming distance based on
shape prior ω described in section 2.2. We expressed either potential of F p(w)
and Bp(w) as a product of the intensity and shape prior terms and introduced an
additional term c which controls the relative effect of shape to intensity. The +1
term is added so that the intensity priors are symmetrically enforced. ωs depend

Probabilistic Models For Medical Image Analysis 2009

203



(a) (b) (c) (d)

Fig. 5. Illustration of the refinement process. (a) The segmentation result obtained
from constrained branch-and-mincut with a single mean shape template overlapped to
the corresponding MR image. Yellow voxels represent foreground, i.e., voxels labeled
as bone. (b) Registered template overlapped on (a), where cyan voxels represent bone
voxels in the registered template. (c) Segmentation results obtained from min-cut with
the registered template of (b) as the shape prior. (d) Final optimal segmentation results
obtained by iterating (b) and (c).

only on shape templates and rigid motion parameters, and intensity priors are
fixed.

3 Experimental Results and Discussion

3.1 Description of Dataset and Quantitative Analysis

Eight 3-D sagittal double-echo and steady-state MR images with 384x384x160
voxels, and 0.36x0.36x0.70 mm3 voxel resolution were obtained from the OAI
database. Ground truth segmentations were obtained by a semi-automatic method [15]
in full resolution and experiments for the proposed method were conducted on
images which were downsampled by a factor of 2 for efficiency. The femur, tibia,
and patella were each segmented with a separate pass of the proposed method.

The performance of our method was evaluated by cross-sectional cases. Eight
baseline MR images having pre-segmentation of bones were provided for leave-
one-out validation.

The segmentation results are measured by the Dice Similarity Coefficient
(DSC), defined as the ratio of the overlapping volume to the mean of the two
volumes. As the measure of computational efficiency, we used the number of
min-cut computations, since this is the the core of the computations in branch-
and-mincut. We note that we applied the method of [12] and its implementation
offered in V. Kolmogorov’s web site [16], and all experiments were run on a
2.40GHz core2 Quad CPU with 2GB RAM, and c = 8, λ1 = 30, and λ2 = 1000.

3.2 Evaluation of Constrained Branch-and-Mincut

We first evaluate the effectiveness of constrained branch-and-mincut (CBNM)
in terms of efficiency and accuracy by comparing the results to original un-
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Table 1. Comparison between constrained branch-and-mincut (CBNM) and branch-
and-mincut (BNM). MC: number of min-cut computations; time: computation time
(sec); t: optimal translation vector; E: relative total energy, the global minimum com-
puted by original branch-and-mincut is set to 100; SP : segmentation performance (DSC
measure)

case MC time t E SP

CBNM BNM CBNM BNM CBNM BNM CBNM BNM CBNM BNM

1 333 649 233.2 361.3 (67,-4,13) (67,-4,13) 100 100 0.976 0.976
2 675 1979 303.2 950.3 (62,6,8) (61,6,9) 100.1 100 0.974 0.970
3 1061 6163 1131.4 3101.9 (63,10,10) (64,8,10) 100.2 100 0.817 0.824
4 485 1227 271.8 537.6 (54,5,9) (54,5,9) 100 100 0.978 0.978
5 245 887 131.5 317.9 (51,-2,9) (51,-1,9) 100.0 100 0.953 0.956
6 137 1111 92.8 410.4 (62,-5,8) (62,-5,8) 100 100 0.912 0.912
7 619 2109 355.8 1035.1 (50,7,11) (50,7,11) 100 100 0.958 0.958
8 265 829 157.7 330.3 (53,-4,5) (52,-4,5) 100.0 100 0.885 0.883

constrained branch-and-mincut (BNM). Table 1 presents the number of min-
cut computations MC, computation time in seconds, obtained final translation
t, computed total energy E, and segmentation performance SP for both con-
strained and unconstrained branch-and-mincut applied to the dataset with a
shape prior set comprised of 40× 40× 12 possible translations for a single mean
shape template of the femur. We note that for each case, the shape template
database applied was constructed in a leave one out fashion and templates were
aligned by translation when constructing the mean template. Rigid alignment
via PCA was also tested, but many cases resulted in overfitting, and alignment
by translation sufficed due to the fixed protocol of the OAI. The unary potentials
were computed based on (6) and (5) for both cases.

MC and time represent the efficiency while t, E, and SP represent the ac-
curacy of each method. Since branch-and-mincut determines the global optimal
energy and its corresponding shape prior, t, E, and SP for BNM are globally
optimal.

In terms of efficiency, our method reduced the number of min-cut computa-
tions to an average 30.4% of that of the unconstrained branch-and-mincut while
reducing the computation time to 37.2% on average. In terms of accuracy, we can
see that in half of the cases the constrained method obtained the global minimum
values, while for the rest some degradation in accuracy occurred. Nonetheless,
this decrease in accuracy was very small relative to the optimum, supporting the
performance of our constrained method. Especially, by observing the obtained
translation positions, we can see that the suboptimal results obtained by our
method differs to the optimal by only one or two voxels.

We note that the proposed method enhances efficiency not only in terms of
computation, but also in terms of memory. In [7] rotated and scaled templates
are assumed as separate templates, and only translated templates are considered
invariant. Thus memory for rotated and scaled templates, up to a number of
nrx× nry × nrz × ns, is needed, which is excessive even for advanced systems.
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Table 2. Segmentation performance for femur, tibia and patella by the proposed
CBNM with a single mean shape template and combined intensity and shape po-
tentials.

case 1 2 3 4 5 6 7 8

femur 0.976 0.974 0.817 0.978 0.953 0.912 0.958 0.883
tibia 0.976 0.983 0.970 0.982 0.943 0.908 0.985 0.889

patella 0 0.844 0.674 0.960 0.761 0.969 0.559 0.961

Table 3. Segmentation performance for femur, tibia and patella obtained by adding
preprocessing (applying histogram matching to the input MR image) and condition to
avoid overlap in bones to the method of table 2.

case 1 2 3 4 5 6 7 8

femur 0.967 0.979 0.939 0.972 0.946 0.926 0.938 0.897
tibia 0.977 0.984 0.972 0.972 0.970 0.903 0.984 0.926

patella 0.966 0.847 0.679 0.940 0.760 0.965 0.938 0.966

By utilizing a mean shape template, required memory is greatly reduced to that
storing a single template.

As for the atypically inferior segmentation performance #3 and #8, we found
that this was due to differences in intensity levels, where the #3 MR image was
unusually brighter than others while #8 was darker. This motivated us to include
a preprocessing step, which will be described in the next section.

We present the segmentation performance of constrained branch-and-mincut
with a single mean shape template and combined intensity and shape priors
(identical to that in table 1 for femur) in table 2. We can see that for tibia our
method gives adequate results, but lacks some accuracy for patella. Although
this is somewhat inevitable due to its small size and higher variability in shape,
the 0 result for case #1 was alarming. We found that the segmentation results
obtained were actually part of the femur, and we thus included a condition that
segmentation be done in the order of bone size, i.e., femur, then tibia, and then
patella, and that regions where bones were previously identified are avoided.
The results by adding this condition (along with preprocessing described in the
subsequent subsection) is given in table 3.

3.3 Preprocessing and Refinement

As mentioned in the previous section, we included a preprocessing step to con-
sider differences in intensity level among different MR images. Specifically, we
applied histogram matching to the input MR image, with the mean histogram
computed from the MR images in the database as the target. Table 3 represents
the performance when preprocessing is included.

We can see that although for some cases the performance decreased slightly,
the segmentation performance increased for cases including #3 and #8. The per-
formance especially increased dramatically for the femur of #3, and the patella
of #7 thereby supporting the overall utility of the preprocessing step.

Probabilistic Models For Medical Image Analysis 2009

206



Table 4. Segmentation performance for femur, tibia and patella by the proposed frame-
work of preprocessing, constrained branch-and-mincut, and refinement based on mul-
tiple shape templates.

case 1 2 3 4 5 6 7 8

femur 0.950 0.971 0.973 0.957 0.954 0.931 0.943 0.897
tibia 0.977 0.981 0.974 0.973 0.984 0.941 0.980 0.968

patella 0.965 0.846 0.688 0.954 0.764 0.969 0.951 0.978

(a) (b)

Fig. 6. Illustration of when refinement fails. (a) The yellow voxels are labeled as fore-
ground from the constrained branch-and-mincut step, and the cyan voxels are of the
registered shape template. (b) The result of applying min-cut with the shape template
corresponding to cyan voxels in (a) as the shape prior. Due to the high gradient in the
upper right side, the energy of result (b) is lower than the CBNM results of (a).

The results after refinement, i.e., the results of the full proposed framework,
are presented in table 4. The effect of refinement can be analyzed by comparing
the results of table 4 with table 3. The results deteriorated in cases #1, #2,
#4 for femur, cases #2 and #7 for tibia, and in cases #1, #2 for patella,
while results greatly increased in case #3 for femur, and cases #6 and #8 for
tibia. Figure 6 presents how refinement fails by showing the segmented femur
after refinement for case #4. Specifically, due to regions with high gradient not
actually on the bone boundary, the segmentation with minimum energy does
not correctly represent the true segmentation. This can also be seen in cases #2
and #8 of table 1 where despite the higher energy of the constrained branch-
and-mincut results, the performance was higher. This is related to how much
emphasis is given on matching boundaries to high gradients, and warrants future
research. As for the cases where results greatly improve, case #3 for femur shown
in figure 5 is a good example.

4 Conclusion

In this paper, a framework based on a new constrained branch-and-mincut
method which improves efficiency of both computational complexity and storage
space with little sacrifice in accuracy compared to original branch-and-mincut
was proposed. The framework enables automatic and efficient segmentation of
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bones in high resolution 3-D MR images of knee joints used in diagnoses of os-
teoarthritis. Evaluation of the proposed method was done on eight baseline MR
images having pre-segmentation of bones in a leave-one-out fashion, and exper-
imental results showed that computation was on average only 30.4% of that of
original branch-and-mincut considering translation parameters only. Since our
method deals with multiple shape templates in a separate refinement step, this
ratio will most likely decline even further when multiple templates are applied
to original branch-and-mincut. Furthermore, by registering shape templates and
further comparing corresponding segmentation energy, the proposed method suc-
cessfully determined the optimal template and improved robustness of the seg-
mentation performance. We hope this method will help segmentation of cartilage
or reviewing of cartilage thickness changes over time, which is the direction for
our further research.
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Abstract. Random fields (RFs) provide a valuable means for modeling
large numbers of dependent random variables. However, estimating RFs
is nontrivial, requiring sophisticated techniques such as stochastic relax-
ation. Unfortunately, these techniques provide no means for adjusting
classifier performance (e.g. sensitivity/specificity). Instead, they produce
a single, hard classification at a static operating point, thus precluding,
for example, the construction of receiver operator characteristic (ROC)
curves. Addressing this deficiency, we introduce weighted maximum a
posteriori (WMAP) estimation, a generalization of MAP estimation that
allows certain classes to be weighted more heavily than others. We also
introduce weighted iterated conditional modes (WICM), a novel adapta-
tion of ICM capable of WMAP estimation on RFs. We demonstrate the
use of WICM by integrating it into two separate Markov random field
(MRF) based classification systems capable of detecting prostate can-
cer (CaP) in 1) whole-mount histological sections and 2) multi-protocol
MRI. Specifically, we show how WICM can be used to arbitrarily adjust
the CaP detection sensitivity of these systems, yielding ROC curves.

1 Introduction

Many estimation tasks require the ability to classify multiple objects simultane-
ously. For example, these objects could be calcifications in a mammogram or the
pixels of a magnetic resonance image. Within a Bayesian framework each object
is modeled as a random variable, and the collection of these random variables is
called a random field (RF)1. If the random variables are assumed independent,
we can estimate each in isolation. This estimation typically involves an exhaus-
tive search. For example, obtaining the maximum a posteriori (MAP) estimate
(for a single random variable) entails calculating the a posteriori probability
for each possible class, and then choosing the class with the largest probability.
However, if the random variables are not independent, the entire RF must be
estimated collectively. Since the number of possible states of the random field
1 Though a Markov random field implies that the the inter-variable dependencies are

restricted to local neighborhoods, a Markov random field and a random field are
mathematically equivalent.
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is prohibitively large, an exhaustive approach is untenable2. Consequently, more
sophisticated schemes, such as iterated conditional modes [1] (ICM), simulated
annealing [2], or maximum posterior marginals [3], become necessary. These
schemes employ iterative techniques to converge to a single, hard labeling.

The capability of adjusting classifier performance (e.g. sensitivity/specificity)
with respect to specific classes is essential for many applications. For example,
the performance of commercial systems for detecting mammographic abnormal-
ities is typically adjusted to the highest detection sensitivity that incurs no
more than two false positive per image. In situations amenable to exhaustive
searches, means for modifying performance, such as thresholding or weighting
the a posteriori probabilities, are well established [4]. Unfortunately, analogous
methods compatible with the techniques required for classifying RFs have yet to
be proposed. Consequently, most RF-based classification systems restrict their
performance to a single, static operating point. To our knowledge, the only pre-
vious attempts [5,6] to adjust performance have resulted in ad hoc schemes that
leveraged the peculiarities of the ICM algorithm: Since ICM converges to a local
maximum (mode) of the a posteriori probability, varying the initial conditions
(i.e. the initial state of the RF) can vary the classification results. However, there
is no reason to believe that the modes of the a posteriori probability are asso-
ciated with meaningful classifications; and thus, such techniques are heuristic,
lacking any mathematical justification.

In this paper we introduce the first mathematically sound means for adjusting
the performance of an estimator compatible with RFs. Specifically, we introduce
weighted MAP (WMAP) estimation, a generalization of MAP estimation that
allows certain classes to be weighted more heavily than others. Furthermore, we
introduce weighted ICM (WICM), a novel adaptation of ICM capable of WMAP
estimation on RFs. We demonstrate their applicability in two separate classifica-
tion systems based on Markov random fields (MRFs): 1) for detecting prostate
cancer (CaP) in whole-mount histological sections (WMHSs) [7] and 2) for de-
tecting CaP in multi-protocol (T2-weighted and dynamic-contrast enhanced) 3
Tesla in vivo magnetic resonance imaging (MRI) [8]. Within this context, we
illustrate how WICM can be used to vary classification performance, enabling
the construction of receiver operator characteristic (ROC) curves.

The remainder of the paper is organized as follows: Section 2 reviews the
necessary nomenclature and introduces the WMAP formulation. In Section 3 we
derive WICM. Section 4 provides an evaluation of WICM in the context of our
CaP detection systems. Section 5 offers concluding remarks.

2 Weighted Maximum a Posteriori Estimation for MRFs

2.1 Markov Random Field Nomenclature and Assumptions

Let the set S={1, 2, . . . , N} reference N sites to be classified. Each site s∈S has
two associated random variables: Xs∈Λ ≡ {ω1, ω2, . . . , ωL} indicating its state
2 If a random field contains N random variables, each of which can assume one of L

classes, the total number of possible states is LN .
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(class) and Ys ∈ R
D representing its D-dimensional feature vector. Particular

instances of Xs and Ys are denoted by the lowercase variables xs∈Λ and ys∈R
D.

Let X=(X1, X2, . . . , XN ) and Y=(Y1, Y2, . . . , YN ) refer to all random variables
Xs and Ys in aggregate. The state spaces of X and Y are the Cartesian products
Ω=ΛN and R

D×N . Instances of X and Y are denoted by the lowercase variables
x=(x1, x2, . . . , xN )∈Ω and y=(y1, y2, . . . , yN )∈R

D×N . Let G={S,E} establish
an undirected graph structure on the sites, where S and E are the vertices (sites)
and edges, respectively. A neighborhood ηs is the set containing all sites that
share an edge with s, i.e. ηs = {r : r∈S, r �= s, {r, s}∈E}. If P is a probability
measure defined over Ω then the triplet (G,Ω, P ) is called a random field.

The conclusions in this paper are predicated on two assumptions. First, the
states X are assumed to constitute a Markov random field (MRF). That is, X is
a random field whose local conditional probability functions satisfy the Markov
property: P

(
xs
∣∣x-s

)
=P

(
xs
∣∣xηs

)
, where x-s=(x1, . . . , xs−1, xs+1, . . . , xN ), xηs

=(
xηs(1), . . . , xηs(|ηs|)

)
, and ηs(i) ∈ S is the ith element of the set ηs. Second,

we assume that each feature vector Ys is conditionally independent and iden-
tically distributed given its associated state Xs: P

(
y
∣∣x) =

∏
s∈S P

(
ys
∣∣xs) =∏

s∈S f
(
ys
∣∣xs), where the use of the single probability density function f indi-

cates that P
(
ys
∣∣xs) is identically distributed across S.

2.2 Weighted Maximum a Posteriori Estimation

Given an observation of the feature vectors Y, we would like to estimate the
states X. Bayes rule advocates selecting the estimate x̂∈Ω that minimizes the
conditional risk [4]

R
(
X
∣∣x̂,y) = E

[
C (X, x̂)

∣∣y] =
∑
x∈Ω

C (x, x̂)P
(
x
∣∣y) , (1)

where E indicates expected value and C (x, x̂) is the cost of selecting labels
x̂ when the true labels are x. For most classification tasks it is sufficient to
assume that the cost of mislabeling any individual site is 1) independent of
the remaining sites and 2) identical for every site. This implies the following:
C (x, x̂)=

∏
s∈S C(xs, x̂s), where C(xs, x̂s) is the cost of selecting label x̂s when

the true label is xs.
The most prevalent cost function for MRFs (though this cost is rarely ex-

pressed explicitly) is CMAP (x, x̂)=1−∏s∈S δ (xs−x̂s), where δ is the Kronecker
delta. That is, mislabeling any of the sites results in an identical cost of 1. To
allow certain decisions to be weighted more heavily than others CMAP can be
generalized as follows: CWMAP (x, x̂) =

[∏
s∈S α (xs)

] [
1−∏s∈S δ (xs−x̂s)

]
. In

this case mislabeling a system of sites whose true labels are x has an associated
cost of

∏
s∈S α (xs).

The connection between cost functions and estimation becomes clear when
CWMAP is inserted into (1)

RWMAP

(
X
∣∣x̂,y) =

∑
x∈Ω

{
P
(
x
∣∣y) [∏

s∈S

α (xs)

][
1−

∏
s∈S

δ (xs−x̂s)
]}
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=
∑
x∈Ω

[
P
(
x
∣∣y)∏

s∈S

α (xs)

]
−P (x̂∣∣y)∏

s∈S

α (x̂s) . (2)

Since the first term in (2) is not a function of x̂, minimizing (2) over x̂ is equiv-
alent to maximizing the second term. For convenience we will refer to this term
as the conditional benefit B (x|y), i.e

B (x|y) = P
(
x
∣∣y)∏

s∈S

α (xs) . (3)

(Since it will no longer be necessary to differentiate the true labels from their
estimates, the notation x̂ is henceforth dropped.) Note that if α(·) ≡ 1 then the
conditional benefit reduces to the a posteriori probability, and the minimization
of risk becomes maximum a posteriori (MAP) estimation. In this context max-
imizing the weighted a posteriori probability in (3) over x ∈Ω can be seen as
weighted MAP (WMAP) estimation, where α(xs) are the weights.

3 Weighted Iterated Conditional Modes

In [1] Besag introduced iterated conditional modes (ICM) as a means for max-
imizing P

(
x
∣∣y). By adapting ICM we can introduce a method for maximizing

the weighted a posteriori probability in (3). We begin the derivation of weighted
ICM (WICM) by reformulating B

(
x
∣∣y) as follows:

B
(
x
∣∣y) = P

(
x
∣∣y)∏

s∈S

α (xs) = α (xs)P
(
xs
∣∣x-s,y

)
P
(
x-s
∣∣y) ∏
r∈S,r �=s

α (xr)

∝ α (xs)P
(
xs
∣∣xηs

, ys
)
P
(
x-s
∣∣y) ∏
r∈S,r �=s

α (xr) (4)

The final step follows from the two assumptions of Section 2.1. Increasing the
first two terms of (4) necessarily increases B

(
x
∣∣y). This suggests a global opti-

mization strategy that sequentially visits each site s∈S and determines the label
xs ∈Λ that maximizes α (xs)P

(
xs
∣∣xηs

, ys
)
. The maximization of this quantity

is straightforward since P
(
xs
∣∣xηs

, ys
) ∝ P

(
ys
∣∣xs)P (xs∣∣xηs

)
. Note that WICM

converges to a local maximum of B
(
x
∣∣y). The WICM algorithm is as follows:

Weighted Iterated Conditional Modes
Input: Initial labeling x0, weights α(ω)
Output: Final labeling xk after iteration k
1. k = 0
2. do
3. k = k + 1
4. xk = xk−1

5. for ∀ s ∈ S do
6. xks = arg maxω∈Λ

[
α(ω)P

(
ω|xkηs

, ys
)]
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7. end for
8. while xk �= xk−1

It is illuminating to consider the case of binary classes, i.e. Λ= {ω1, ω2}. In
this situation step 6 in the above algorithm simplifies to the following:

xks =

{
ω1 if P

(
ω1|xkηs

, ys
)
> α(ω2)

α(ω1)+α(ω2)
= Twicm

ω2 otherwise.
(5)

Consequently, increasing Twicm∈ [0, 1] results in a greater preference for ω2, while
decreasing Twicm increases the tendency toward ω1. Note that when Twicm=1/2,
WICM is equivalent to ICM.

4 Experimental Results and Discussion

In this section we evaluate WICM by incorporating it into two separate MRF-
based classification systems for detecting prostate cancer (CaP). The goal of
both systems is to classify their respective sites S (specifically glands or pixels)
into one of two classes: Xs∈Λ ≡ {ω1, ω2}, where ω1 and ω2 indicate malignancy
and benignity. The basic procedure for both systems is similar: 1) Using the
distribution f (ys|xs), a Bayesian classifier assigns each site s a probability of
malignancy P (xs|ys) based solely on its feature vector ys. 2) If this probability
exceeds the threshold Tf , the state xs of site s is labeled malignant; otherwise
it is labeled benign. 3) Using these labels as the initial conditions x0, WICM
produces a final labeling xk. The performance (e.g. sensitivity and specificity)
of this procedure is a function of the two thresholds Tf and Twicm. Tf is fixed
at an empirically chosen value. (We have observed that system performance is
remarkably consistent over a wide range of Tf .) We vary Twicm to adjust classi-
fier performance. In the following subsections we use this approach to construct
ROC curves for our two classification systems. These ROC curves and the cor-
responding areas under them reflect the ability of each system to detect CaP.

It is worth mentioning that classification performance could conceivably be
adjusted by fixing Twicm and varying Tf . That is, since modifying Tf alters the
initial conditions x0, it can cause WICM to converge to a different local max-
imum of (3). However, there is no reason to assume that the individual modes
(local maxima) of the weighted a posteriori distribution correspond to meaning-
ful classifications; and consequently, this method has no obvious justification.

4.1 Detecting Cancerous Glands on WMHS

Methodology: The goal of this classification system is to detect malignant
glands in whole-mount histological sections (WMHSs) of the prostate. Figure
1(a) illustrates a prostate WMHS. The black circle delimits the approximate spa-
tial extent of CaP as delineated by a pathologist. The numerous white regions
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are the glands, which our system automatically identifies and segments. Fig-
ure 1(b) illustrates the segmented gland boundaries in blue. Figure 1(c) provides
a magnified view of the white box in Figure 1(b). Let the set S= {1, 2, . . . , N}
reference the N segmented glands in a WMHS. The random variable Ys ∈ R

indicates the area of gland s. Two glands are neighbors if the distance between
their centroids is less than 0.7 mm. The MRF is implemented using pairwise
probabilistic Markov models [7]. The distribution f (ys|xs) is described using a
parametric model—specifically, a mixture of Gamma functions. All results were
produced using leave-one-out cross-validation over 20 WHMSs from 19 patients.

(a) (b) (c) (d)

(e) (f) (g)
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Fig. 1. (a) H&E stained prostate histology section; black
ink mark provided by pathologist roughly indicates CaP
extent. (b) Gland segmentation boundaries. (c) Magni-
fied view of white box in (b). (d) Centroids of cancerous
glands after initial classification with Tf = 0.3. (e)-(g)
Final labels after WICM for Twicm ∈ {0.9, 0.5, 0.3}. (h)
ROC curve indicates CaP detection performance over all
20 WMHSs.

Results: The light green dots in Figure 1(d) indicate the centroids of those
glands initially classified as malignant (i.e. x0) with Tf =0.3. Figures 1(e)-1(g)
illustrate the final labels (i.e. xk)—dark green dots indicate the centroids of the
malignant glands—for Twicm ∈ {0.9, 0.5, 0.3}. Notice that as Twicm decreases,
indicating a increase in the weighting of the cancer class as compared to the
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benign class, the sensitivity increases. The black line in Figure 1(h) indicates
system performance3 over all 20 WMHSs as Twicm varies from 0 to 1.

4.2 CaP Detection in Multi-protocol MRI

Methodology: In this section we consider a classification system for detect-
ing CaP in multi-protocol in vivo MRI. This system combines functional and
structural information from dynamic-contrast enhanced (DCE) and T2-weighted
(T2-w) 3 Tesla MRI from six patients (18 2D slices). Figures 2(a) and 2(b) illus-
trate a T2-w MR image and a DCE MR image sampled at the first time point.
The green overlays indicate the cancerous extent as specified by a radiologist.
Let the set S = {1, 2, . . . , N} reference the N pixels in a T2-w MR image that
reside within the prostate. The random vector Ys∈R represents the 14 features
associated with pixel s. These features are comprised of the T2-w image inten-
sity, six textural features [8] extracted from the T2-w image, and the DCE image
intensity sampled at seven time points. The neighborhood ηs of a pixel s is the
typical 8-connected region. The MRF is implemented using pairwise probabilistic
Markov models. A random forest (i.e. bagging multiple decision trees classifiers)
was used to determine the distribution f (ys|xs). All results were produced using
leave-one-out cross-validation.
Results: The intensities in Figure 2(c) indicate the probability of malignancy
at each pixel. Those pixels labeled as malignant during the initial classification
with Tf = 0.1 are indicated by the red overlay in Figure 2(d). Figures 2(e)-(g)
illustrate the malignant labels after WICM for Twicm ∈ {0.8, 0.275, 0.008}. The
black ROC curve in Figure 2(h) indicates system performance over all 18 studies
as Twicm varies from 0 to 1.

5 Concluding Remarks

The inter-variable dependencies within random fields (RFs) necessitate the use
of sophisticated estimation strategies. Unfortunately, these strategies provide no
clear means for varying classification performance (e.g. sensitivity/specificity).
Instead, they produce a single, hard labeling at a static operating point. Ad-
dressing this deficiency, we introduced weighted maximum a posteriori estima-
tion (WMAP), a generalized form of MAP estimation that allows certain classes
to be weighted more heavily than others. We also introduced weighted iterated
conditional modes (WICM), an RF-compatible classification strategy capable
of WMAP estimation. To illustrate the value of WICM we applied it to sep-
arate MRF-based classification systems for detecting prostate cancer (CaP) in
whole-mount histological sections and multi-protocol MRI. We demonstrated
how WICM could arbitrarily vary the CaP sensitivity of these systems by ap-
propriately altering their associated cost functions.
3 The true positive rate is the ratio of malignant sites correctly classified to the to-

tal number of malignant sites. The false positive rate is the ratio of benign sites
incorrectly classified to the total number of benign sites.
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Fig. 2. (a) T2-w MR image with cancerous region as
delineated by a radiologist in green. (b) Corresponding
DCE image at first time point with cancerous region
in green. (c) Intensities indicate the probability of can-
cer for each pixel. (d) Initial classification produced by
thresholding probability image in (c) with Tf =0.1; can-
cerous labels shown in red. (e)-(g) Final classification af-
ter WICM for Twicm∈{0.8, 0.275, 0.008}. (h) ROC curve
indicates system performance over all 18 studies.

Though the concept of weighting probabilities as a means for adjusting clas-
sifier performance is well established, its extension to RFs is completely novel.
This extension, in retrospect, may seem obvious; yet, previous authors [5, 6],
requiring such capabilities, have instead resorted to using ad hoc methods.
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Abstract. The paper “Weighted Iterated Conditional Modes for Random Fields:

Application to Prostate Cancer Detection,” in Prob. Models for Med. Image Anal-
ysis, 2009, by J. Monaco et al., presents an extension of maximum a posteriori

(MAP) estimation in a Markov random field (MRF) by introducing weights in

the cost function optimized by MAP, and applies this idea to the generation of

receiver operating characteristic curves for classification. Perhaps unbeknown to

the authors, this conceptually simple generalization of MAP estimation of MRFs

has an interesting connection with other areas of decision theory. A discussion

of this connection provides theoretical insight into the authors’s contribution and

allows for practical elements of the proposed algorithm to be implemented on

firmer footing.

Commentary

In their excellent paper, Monaco et al. [1] demonstrate how a simple extension to max-

imum a posteriori (MAP) estimation in a Markov random field (MRF) allows for a

natural mechanism for producing receiver operating characteristic (ROC) curves on the

MRF’s performance for a given classification task. This contrasts with the static oper-

ating point typically found in the literature.

This extension is related to a powerful connection, unexplored in the paper, between

Bayesian methods and techniques from decision theory based on utility functions. In

particular, the introduction of the weights that generalize equation (1) into equation (2)

makes clear that CMAP (as well as CWMAP) can be interpreted as a log-additive utility

function [2]. Moreover, for a log-additive utility function U given by U = αcI + βcII,

where α and β are the probabilities of a type I error (false rejection of a true null

hypothesis) and a type II error (failure to reject a false null hypothesis), respectively,

and cI and cII are application-dependent costs associated with each type of error, the

minimum of U is achieved at a specific point along the ROC curve of the associated

Bayesian classifier [3,4]. Therefore, the proposed method works by varying the prob-

abilities of the loss incurred by type I and type II errors. Although this connection is

well known, the typical approach for sweeping ROC curves for a Bayesian classifier is

to use different thresholds on Bayes factors [5], and in doing so the connection between

these different approaches is lost.

A practical consequence of this observation is the provision of a theoretical justifi-

cation for varying thresholds Tf and Twicm simultaneously. One could already ask why
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the decision thresholds would be different depending on whether neighborhood infor-

mation is (P(xs|xηs ,ys)) or is not (P(xs|ys)) used. In view of the discussion above this

question could be reformulated as: why would U = Uf obtained from P(xs|ys) be kept

fixed while U = Uwicm obtained from P(xs|xηs ,ys) is allowed to vary? From a theoreti-

cal standpoint is seems natural to assume cI and cII the same in both cases and produce

the ROC curve by jointly varying Tf and Twicm. Given the authors’s important obser-

vation that "system performance is [...] consistent over a wide range of Tf " (Section

4), this change will have limited effect on performance on the data in which the pro-

posed method was tested. Nevertheless, this may not be the case for different data, and

it certainly adds to the elegance of the approach.
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Incorporating Prior Knowledge on Class

Probabilities into Local Similarity Measures for

Intermodality Image Registration
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Abstract. We present a methodology for incorporating prior knowledge
on class probabilities into the registration process. By using knowledge
from the imaging modality, pre-segmentations, and/or probabilistic at-
lases, we construct vectors of class probabilities for each image voxel. By
defining new image similarity measures for distribution-valued images,
we show how the class probability images can be nonrigidly registered in
a variational framework. An experiment on nonrigid registration of MR
and CT full-body scans illustrates that the proposed technique outper-
forms standard mutual information (MI) and normalized mutual infor-
mation (NMI) based registration techniques when measured in terms of
target registration error (TRE) of manually labeled fiducials.

1 Introduction

Intermodality image registration describes the task of aligning two images that
have been acquired using different modalities and thus have values with different
meanings. Typical registration methods are designed in terms of three compo-
nents: the allowable space of geometric transformations, the similarity measure
relating two images, and the optimization technique for finding the optimal value
of the similarity measure over the space of allowable transformations.

Mutual information (MI) [1, 2] is one of the most commonly used similar-
ity measures in intermodality image registration. The underlying assumption is
that if images values are treated as realizations of some underlying probabil-
ity distribution function, then the mutual information between both images is
maximized when they are aligned. The reason for the success of MI and related
measures such as normalized mutual information (NMI) [3] lies in the fact that
these measures do not make any underlying assumptions about the modalities.
This allows them to be used for a whole range of inter-modality registration
problems. In practice, however, most volume registration problems in medical
imaging applications use images acquired from a limited number of modalities,
including MR, CT, PET, and Ultrasound. When prior knowledge about the im-
ages, modalities, or optimal transformations is available, this knowledge can be
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exploited to enable better registration results than would be possible with MI
or NMI.

Prior knowledge has been previously exploited in a number of ways for im-
age registration [4–9]. Ashburner et al. [4] have shown how incorporating prior
knowledge about an object’s shape and scale can significantly improve accuracy
and reliability for affine registration. Leventon and Grimson [5], Guetter et al. [6],
Chung et al. [7], and Sabuncu and Ramadge [8] have all proposed variations on
the idea of learning the optimal joint distribution from exemplar aligned images
and then designing a similarity measure that reflects the difference between the
learned joint distribution and an observed joint distribution. Lee et al. [9] have
focused directly on learning an optimal similarity measure for a specific pair of
image modalities, assuming exemplar aligned images from those modalities are
provided.

While these techniques are useful for certain intermodal registration prob-
lems, they seem to rely directly on the image intensities; hence, they may not be
directly generalizable to all types of intermodal registration. Whereas CT scan-
ners are calibrated to yield images with an accuracy of within a few Hounsfield
units, this is not possible with MR scanners and MR typical field inhomogeneities
lead to severe intensity bias. Furthermore, it is not necessarily true that exem-
plar aligned images will always be available; this is especially true in situations
when nonrigid registration is required.

Other previous work has attempted to use prior information in the form of
tissue class probabilities to aid in registration. D’Agostino et al. [10] describe
how to align images by minimizing the Kullback-Leibler divergence between the
actual joint class distribution and an ideal joint class distribution, although their
formulation assumes that individual class probabilities in pairs of correspond-
ing voxel positions in two images are independent. Lorenzen et al. [11] avoid
making this assumption and propose an approach based on local KL divergence.
Although Lorenzen’s approach is applicable for the more general problem of
multiple image registration, it requires the additional step of atlas construction
even when only two images must be registered.

In this paper, we show how to design a nonrigid registration algorithm based
on vector valued images. Such a nonrigid registration algorithm exploits prior
knowledge about the imaging modalities, but unlike other techniques, it does
not require exemplar aligned images, independence assumptions, or atlas con-
struction. We compare the performance of the proposed nonrigid registration
technique versus standard MI-based registration on full-body MR/CT images,
measuring the results in terms of target registration error (TRE) on manually
labeled fiducial points.

2 Prior Knowledge on Class Probabilities

In medical images, the intensity at a given voxel depends on the underlying tissue
class at the voxel’s position. If it is possible to infer the underlying tissue class
at each position in an image, this knowledge could potentially be exploited by
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Fig. 1. Estimating class probabilities using Bayes’ rule and pre-segmented images.
Red/blue colors indicate high/low probabilities, respectfully.

a registration algorithm. In many situations, however, it is difficult to uniquely
identify the underlying tissue class at a voxel solely from the intensity value at
that voxel. This can be remedied by using additional information that may be
available directly from the imaging device, from a pre-segmentation, or from a
probabilistic atlas.

One example of additional information that may be provided directly from an
imaging device is the phase information in MR imaging that is available after MR
reconstruction [12]. This information is not usually used for diagnosis, but may
be useful in inferring the underlying tissue class. If no additional direct source
of information is available, class probabilities can be estimated based on the
intensity values by using pre-segmented images. Assuming that pre-segmented
images and the image to be registered have similar intensity characteristics, the
probability that a particular voxel has tissue class C, given the voxel intensity
I, is given by p(C|I). According to Bayes’ rule, p(C|I) ∝ p(I|C) · p(C), where
p(C) is a prior probability on how often class C is expected to occur. Figure 1
provides an illustration of the process of estimating class probabilities at each
voxel in a full-body MR scan.

Alternatively, if there is no direct source of additional information available,
and pre-segmentation is not desirable, probabilistic atlases can be used to provide
prior information about which tissue class is expected at different positions in
the patient [13, 14]. Since the anatomy of different subjects shows structural sim-
ilarities, the images of different subjects can be brought into alignment through
intersubject registration. For example, a template MR image for which tissue
labels are available can be registered to a patient MR image. Applying the same
transformation on the label image yields a tissue label prediction for the patient
MR image. Performing this procedure for several template MR image and label
pairs can be used to derive a position-depedendent prior probability p(C|X).
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This prior probability can be combined with the intensity-derived class estimate
using Bayes’ rule:

p(C|I,X) ∝ p(C|X) · p(I|C) (1)

Whether estimated directly from the imaging modality, or indirectly from
pre-segmented images or probabilistic atlases, once class probabilities have been
derived for each voxel, they can be used to form distribution-valued images.
These distribution-valued images can be subsequently used for registration, hope-
fully yielding better results than registration based solely on the original intensity-
valued images.

3 Nonrigid Registration Preliminaries

In this section, we describe a variational framework for registering two images,
using MI or NMI as a similarity measure. In the next section, we will extend
this framework and introduce new similarity measures to allow for vector-valued
and distribution-valued images.

Consider two images, a reference image R and a floating image F , both
as functions mapping Ω ⊆ R

d �→ R
N . Define a deformation Φ : R

d �→ R
d by

Φ(x) = x−u (x), and call u the displacement. The general form of the variational
registration problem is given by:

min
u

E(R,F,u) := S(u) + αJ (R,Fu) , (2)

where J is a similarity measure that quantifies the similarity between the refer-
ence image R and the deformed floating image Fu := F (Φ), S is a regularizer
that ensures that the minimization problem is well-posed and that the solution
is smooth in some sense, and α is a weighting parameter.

In this paper, we will assume the use of the curvature regularizer [15]:

S(u) :=
∫

Ω

d∑
j=1

(Δuj(x))2dx . (3)

Normally, variational registration proceeds by identifying the Euler-Lagrange
equations associated with (2) and embedding them in an artificial time. When
the curvature regularizer is used, this process yields the evolution equation:

∂tu(x, t) +Δ2u(x, t) = −αf(x, R, Fu) , x ∈ Ω, t > 0, (4)

u(x, 0) = u(0)(x) , (5)

where u(0)(x) is typically chosen to be 0, and where Dirichlet or Neumann bound-
ary conditions are typically imposed on the boundary of Ω. The equilibrium
solution of (4)–(5) yields a stationary point of (2).

To handle large deformations, we follow a strategy similar to fluid registration
[16], and solve the evolution equation in terms of the velocity field v instead of
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the displacement field u; i.e.,

∂tv(x, t) +Δ2v(x, t) = −αf(x, R, Fu) , x ∈ Ω, t > 0, (6)
v(x, 0) = 0 , (7)

where the velocity and displacement are related by the material derivative:

v(x, t) = ∂tu(x, t) + (∇u(x, t))T v(x, t) . (8)

The vector field f(x, R, Fu) that forms the nonhomogeneous term in (4) is
called the force vector, and it arises from the Gâteaux derivative of J . Force
vectors can typically be determined analytically from the similarity measure at
hand. For the MI and NMI, we first present the similarity measures and then
their corresponding force vectors. The MI and NMI are defined by:

MI(R,Fu) := H(R) +H(Fu)−H(R,Fu) , (9)

NMI(R,Fu) :=
H(R) +H(Fu)

H(R,Fu)
, (10)

where H(A) and H(A,B) are the marginal and joint entropies, defined by:

H(A) = −
∫ ∞

−∞
pA(a) log pA(a) da , (11)

H(A,B) = −
∫ ∞

−∞

∫ ∞

−∞
pA,B(a, b) log pA,B(a, b) dadb , (12)

and where pA(a) and pA,B(a, b) are the values of the probability density func-
tion of A at a, and the joint probability density function of (A,B) at (a, b),
respectively.

The corresponding force vectors for MI and NMI are given by:

fMI(x, R, Fu) = PH(x;Fu)− PH(x;R,Fu) , (13)

fNMI(x, R, Fu) =
PH(x;Fu)−NMI(R,Fu)PH(x;R,Fu)

H(R,Fu)
, (14)

where

PH(x;Fu) =
1
|Ω|

(
p
′
Fu(Fu(x))
pFu(Fu(x))

)
∇Fu(x) , (15)

PH(x;R,Fu) =
1
|Ω|

(
∂

∂f [pR,Fu(R(x) , f)]f=Fu(x)

pR,Fu(R(x) , Fu(x))

)
∇Fu(x) . (16)

The force vector for MI is derived in [17], and the force vector for NMI follows
a similar derivation.

Once the force vector has been chosen, the evolution equations (4) or (6)
can be approximately solved by introducing a discretization that is backward in
time and centered in space, and then by using Fourier methods [18] to resolve the
linear system that arises at each time step. If (6) is being solved, the displacement
field u can be computed from the velocity field v at each time step by Euler
integration of (8).
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4 Nonrigid Registration with Vector-Valued Images

If the images being registered are vector-valued or distribution-valued, the same
nonrigid registration framework can be utilized as long as appropriate similarity
measures and force vectors are defined.

We now denote the reference and floating images as functions mapping Ω ⊆
R

d �→ R
N ; namely, R = (R1, . . . , RN )T and F = (F1, . . . , FN )T. The bold font

indicates a vector quantity, whereas the regular font indicates a scalar quantity.
The variational registration problem (2) can still be used, but with R and F

replaced by R and F, respectively. We must now define similarity measures that
operate on these vector-valued images. One such measure can be envisioned as
the integral of the point-wise sum of squared differences between vector com-
ponents. We call this similarity measure the local SSD (LSSD), and define it
by:

LSSD(R,Fu) :=
∫

Ω

N∑
j=1

(
Rj(x)− Fu

j (x)
)2
dx . (17)

The corresponding force vector is derived in the Appendix and is given by:

fLSSD(x,R,Fu) = 2 [∇Fu(x)] (R(x)− Fu(x)) . (18)

Note that the matrix ∇Fu is the d × N Jacobian matrix of Fu defined com-
ponentwise by [∇Fu(x)]jk = ∂

∂xj
Fu

k (x). The force vector (18) can be inserted
into the evolution equations (4) or (6), and nonrigid regisration can proceed as
described in the previous section.

If our vector-valued images contain vectors of class probabilities at each voxel,
we can make the more restrictive assumption that not only are R and F vector-
valued images, they are distribution-valued; i.e., R,F : Ω ⊆ R

d �→ PN , where
PN is the open probability simplex defined in [19]:

PN :=

{
p |p = (p1, . . . , pN ) ∈ [0, 1] ∧

N∑
i=1

pi = 1

}
. (19)

Since the images are distribution-valued, other choices for the dissimilarity
measure can be made based on probability metrics or premetrics [20]. In this
article, we choose to design a similarity measure based on the Kullback-Leibler
divergence.

The Kullback-Leibler divergence [21] is a premetric that describes the relative
entropy between two distributions. For each position in the reference and floating
images, it is defined by:

KL(R(x) ,Fu(x)) :=
N∑

j=1

Fu
j (x) log

(
Fu

j (x)
Rj(x)

)
, (20)

An image similarity measure can be constructed by integrating (20) over the
image domain. We call this similarity measure the local KL divergence (LKL),
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and define it according to:

LKL(R,Fu) :=
∫

Ω

KL(R(x) ,Fu(x)) dx . (21)

The corresponding force vector is derived in the Appendix and is defined com-
ponentwise by:

[fLKL(x,R,Fu)]j := −
N∑

k=1

[∇Fu(x)]j,k

(
log
(
Fu

k (x)
Rk(x)

)
+ 1
)

. (22)

As with the LSSD similarity measure, the LKL force vector can be inserted
into the evolution equations (4) or (6), and nonrigid registration can proceed as
described in the previous section.

Note that the LSSD and LKL are not the only similarity measures that
can be designed for vector-valued or distribution-valued data. Theoretically, any
distance measure that can be defined in a vector space or over probability dis-
tributions can be developed into a similarity measure for image registration.
This shows a potential advantage over the registration approach of Lorenzen et
al. [11]. Even though our LKL similarity measure is similar to the one used by
Lorenzen, it does not require construction of an atlas; Lorenzen’s atlas construc-
tion step appears to be possible only when KL divergence is used, and it does
not appear to be easily generalizable to other similarity measures.

5 Registration Experiment

To validate the use of distribution-valued images in a practical registration, we
developed an experiment on a dataset of 4 human whole body MR and CT im-
ages, where patients were scanned with their arms above the head for both the
MR and the CT scan. Class probabilities for the classes air, fat, soft tissue and
bone were computed for the MR and the CT image. For the MR images they were
constructed from a normalized product of p (I|C) and p (C|I,X). Here, p (I|C)
was determined by histogram binning the intensities of all voxels that belong to
each of the four classes, where the class assignment was determined by using a
previously obtained segmentation. The quantity p (C|I,X) was determined by
averaging the result of several atlas registrations. For the acquisition of the MR
images we used a protocol that acquires opposed phased and inphase images in
one scan. Resolution was 2.6 × 2.6 × 2.6mm3 and TA = 18s, which allowed for
breath hold acquisition. In the CT images, the intensity alone was informative
enough and no atlas registration was necessary as an additional source of infor-
mation. We assumed that for the CT images, the intensity distribution p(I|C)
could be approximated by a mixture of Gaussians.

We performed nonrigid registration, both with MI and NMI on the original
MR and CT images, and with LSSD and LKL on class probability images. For the
MI and NMI computations, histograms (and joint histograms) were estimated
using 32 (and 32 × 32) bins. Linear (or bilinear) interpolation was used to
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accumulate partial weights in neighboring bins. Registration in all cases was
done over three levels in a multiresolution pyramid, with approximately isotropic
sampling at 2.6mm in each dimension at the finest level, and 10.4mm in each
dimension at the coarsest level. We varied the α parameter that trades off the
contribution of the similarity measure and regularizer, and we experimented with
various amounts of smoothing at each resolution level.

In order to assess errors in a physically meaningful sense, we manually placed
approximately 30 landmarks of corresponding points in each MR and CT image
pair, examples of which are shown in Fig. 2. These landmarks were unknown
to the registration algorithms; they were only used retrospectively to compute
target registration error (TRE).

Fig. 2. Manually placed landmarks in CT and MR image.

6 Results

For each similarity measure, we selected the best performing set of values for α
and smoothing amount at each resolution level. The resulting target registration
errors (TRE) are reported for each patient in Table 1. Results indicate that there
is an appreciable improvement in TRE for three out of the four patients when
using the vector-valued similarity measures over the MI/NMI.

To illustrate an example registration, Fig. 3 shows fused images before and
after a nonrigid registration algorithm using LKL was applied to one of the
patient datasets. The left images are slices from an MR dataset that are treated
as the reference image and remain unchanged; the right images are slices from a
CT dataset that is in its original position (upper) and warped aligned position
(lower). In the middle show the fused MR/CT slices, both before (upper) and
after (lower) nonrigid registration.
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MI NMI LSSD LKL

Patient 1 Median TRE 17.8 17.6 13.4 13.4
Patient 1 St. Dev. TRE 10.7 10.3 8.0 8.0

Patient 2 Median TRE 13.2 14.4 9.4 8.8
Patient 2 St. Dev. TRE 7.0 6.5 6.0 5.9

Patient 3 Median TRE 16.1 16.9 10.8 10.7
Patient 3 St. Dev. TRE 10.4 9.8 10.6 10.4

Patient 4 Median TRE 13.5 13.9 13.0 13.2
Patient 4 St. Dev. TRE 14.7 14.7 15.3 15.0

Table 1. TRE statistics (in mm) for each patient for each similarity measure.

Fig. 3. Example visualization of nonrigid registration. Left images are identical MR
slices; right images are CT slices before (upper) and after (lower) nonrigid registration.
Middle images are fused versions of the MR/CT slices before (upper) and after (lower)
registration.
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7 Conclusion

In this article, we have shown that prior knowledge on class probabilities can be
incorporated into intermodality image registration. Class probability vectors at
each voxel can be constructed from extra information provided by an imaging
device, from pre-segmentations, and/or from probabilistic atlases. Incorporation
of vector-valued or distribution-valued images into registration requires defining
new image similarity measures. In this paper, we presented two such measures,
the local SSD, and the local KL divergence, which do not rely on independence
assumptions or intermediate atlas formation. When tested on the problem of
nonrigid registration of MR and CT full-body images, registration using the
proposed measures outperformed standard MI/NMI-based registration a major-
ity of the time when measured in terms of target registration error on manually
identified fiducial markers.

Appendix

In this appendix, we derive the force vectors for the LSSD and LKL similarity
measures defined in (17) and (21), respectively. We note that for a general simi-
larity measure J (R,Fu), the force vector fJ (x,R,Fu) is related to the Gâteaux
derivative of J in the following way:

dJ (R,Fu;w) =
∫

Ω

〈fJ (x,R,Fu) ,w(x)〉 dx . (23)

To aid in the derivation of the force vectors for the LSSD and LKL similarity
measures, we present and prove the following Lemma.

Lemma 1 If the dissimilarity measure J (R,Fu) can be expressed as a func-
tional of the form:

J (R,Fu) =
∫

Ω

M(R(x) ,Fu(x)) dx , (24)

then the Gâteaux derivative dJ (R,Fu;w) can be expressed as:

dJ (R,Fu;w) =
∫

Ω

〈−∇Fu(x) [∇FuM(R(x) ,Fu(x))] ,w〉 dx . (25)

Proof. By the definition of the Gâteaux derivative, we have:

dJ (R,Fu;w) = lim
h→0

1
h

[∫
Ω

M(R(x) ,Fu+hw(x)
)
dx−

∫
Ω

M(R(x) ,Fu(x)) dx
]

= lim
h→0

1
h

∫
Ω

∫ 1

0

d

ds
M(R(x) ,Fu+hsw(x)

)
ds dx

= lim
h→0

1
h

∫
Ω

∫ 1

0

〈
d

ds
Fu+hsw(x) ,∇FuM(R(x) ,Fu+hsw(x)

)〉
ds dx
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= lim
h→0

1
h

∫
Ω

∫ 1

0

〈〈∇Fu+hsw(x) ,−hw〉 ,∇FuM(R(x) ,Fu+hsw(x)
)〉
ds dx

=
∫

Ω

∫ 1

0

〈〈−∇Fu(x) ,w〉 ,∇FuM(R(x) ,Fu(x))〉 ds dx

=
∫

Ω

∫ 1

0

〈−∇Fu(x) [∇FuM(R(x) ,Fu(x))] ,w〉 ds dx

=
∫

Ω

〈−∇Fu(x) [∇FuM(R(x) ,Fu(x))] ,w〉 dx ��

Now, the LSSD similarity measure (17) can be defined in terms of (24) with:

M(R(x) ,Fu(x)) =
N∑

j=1

(
Rj(x)− Fu

j (x)
)2

. (26)

For this case, we have:

∇FuM(R(x) ,Fu(x)) = −2 (R(x)− Fu(x)) , (27)

and (18) is a direct result of Lemma 1 and (23).
The LKL similarity measure (17) can also be defined in terms of (24) with:

M(R(x) ,Fu(x)) = KL(R(x) ,Fu(x)) =
N∑

j=1

Fu
j (x) log

(
Fu

j (x)
Rj(x)

)
. (28)

Now for this case, we have:

∇Fu

k
M(R(x) ,Fu(x)) = log

(
Fu

k (x)
Rk(x)

)
+ 1 , (29)

and (22) is a direct result of Lemma 1 and (23).
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Medial Models of Populations of Nearly Tubular
Objects∗
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Abstract. Many structures in the world and several in the human body are nearly

tubular in shape, i.e., have approximately circular cross-sections. Examples are

portions of blood vessels, the colon and the whole head and neck. The method

of modeling populations of slab-like objects as medial objects and segmentation

using statistical shape and appearance models has been shown to be successful for

several structures. However, the medial surface of a tubular object degenerates to

a curve, and the statistics of even nearly tubular objects represented as slabs will

typically be unstable. In this paper, we detail the representation, geometry and

means of computing statistics of a population of nearly tubular medial models.

We test our method on CTs of real rectums.

1 Introduction

In the human body, the blood vessels, the bronchi and the colon are examples of nearly

tubular objects. Segmenting these structures is an important task in medical imaging and

learning probability distributions on their populations is useful to segmentations [1].

Most of them can be thought of as a tube at the large scale with smaller scale changes

understood as deviations from the tube. Some of these are shown in Fig. 1.

There are several definitions of tubular objects in the literature. Koenderink [2] de-

fines a tube as the envelope of a set of spheres centered on a space curve. This is the

medial definition of a tube. Swept surfaces and generalized cylinders model tubes as

skeletal structures. A tubular generalized cylinder has a circular cross-section that may

vary in size and have a possibly bent axis. In this paper, we discuss geometry and statis-

tics for the former definition of tubes and then extend it to support deviations from the

tubular structure. In Section 1.1 we discuss prior work done on modeling tubular ob-

jects. Section 1.2 presents the segmentation objective that serves as the driving problem.

1.1 Prior Work

Generalized cylinders, also known as generalized cones, were fist proposed by Bin-

ford [3] with special instances studied extensively in computer vision. A straight ho-

mogenous generalized cone [4] is the surface obtained by sweeping a fixed cross-section

along a straight axis while possibly scaling it, whereas a straight homogenous general-

ized cylinder may have a cross-section that can change shape. Huang et al. [5,6] discuss

∗ This work was supported under NIH grant number P01 EB02779. We would also like to thank

other members of the Medical Image Display and Analysis Group at UNC Chapel Hill.
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Fig. 1. Renderings of quasi-tube models fitted

to different structures. From the left to right

the structures are sections of the skin surface

extracted from a 3D CT scan, carotid artery,

internal jugular vein and the pharynx.

Fig. 2. mean model of a rectum (cen-

ter) deformed by ±1.5 standard devia-

tions along the first mode of variation

(left and right), which resembles the

anatomical shape change due to gas.

generalized tubes that are constructed by sweeping a fixed cross-section along an axis

with certain constraints. Terzopoulos et al’s [7] physically motivated deformable model

uses image-based and regularity forces to deform the model. In our applications, it is

difficult to get image-based forces to work due to poor contrast and noise.

Several of these center-line based methods are agnostic to the choice of the center-

line. However, when modeling populations, there needs to be a principled way of finding

the center-line so that no unwanted variation introduced due to the modeling process is

reflected in the statistics. O’Donnell et al. [8] discuss a novel method of generalized

cylinders that works around part of this issue by starting with a base cross-section that

may be anisotropically scaled. Although they use only two scaling parameters, their

method can be extended to produce arbitrary scaling. Further, they allow for local de-

formations of the cross-section by a spline function on the surface. However, they have

not discussed any method to compute statistics of their structures.

The subtle differences between a skeletal and a medial axis are sometimes over-

looked; the two are used interchangeably in some of the cited work. Having a true me-

dial axis representation overcomes the issue of finding a unique center-line. The class of

generalized cylinders whose medial axis is a curve is restricted to those with a circular

cross-section. A non-circular cross-section results in a 2D medial surface.

A generalized cylinder and a structure with a well-defined medial axis are closely

related. When we sweep a constant circular cross-section along a curved axis, the curved

axis is the medial axis. However, if we sweep a non-constant circular cross-section

along a curved axis, then such a structure may not have a curve as its medial locus,

though some such objects (generated by sweeping spheres of varying sizes) will have a

curve as the medial locus. Even when a generalized cylinder does not have a curve as

its medial axis, it is useful to find an approximate medial axis for that object.

A quasi-tubular object can be thought of as a structure that is modeled as deviations

from a tubular object. In the general case, it is a structure with a cross-section that may

not be close to circular but does not vary much along the axis.
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A sweep of a cross-section along an axis may result in two adjacent cross-sections

crossing each other near a sharp bend on the axis. Such instances of the generalized

cylinder are illegal, restricting the range of permissible cross-sections and axes. Da-

mon [9] has described a method in the swept surface paradigm using a shape operator

that can be used to detect these illegal generalized cylinders.

Several alternative methods exist that focus on extraction of the center-line from

image data. Examples include the cores methods (height ridges of medial strength)

developed by Aylward et al. [10] and by Fridman et al. [11].

No specialized means of performing statistics have been developed for the gener-

alized cylinders and swept surface models discussed above, so they are best suited for

modeling individual quasi-tubular objects versus populations of them. Such statistical

descriptions on populations are useful if objects are to be segmented from images in

which they have low contrast at their boundaries. There has been some work on mod-

eling tubes with the help of a statistical shape model. The generalized stochastic tubes

developed by Huang et al. [12] aid in the segmentation of blood vessels but are spe-

cialized for this application. De Bruijne et al. [13] have adapted the method of Active

Shape Models with center-line based methods.

With statistical shape models a special concern is their robustness against the num-

ber of training samples, since in medicine these training samples can be very expensive.

As mentioned by Joshi et al. [14], the orientation of the narrow medial sheet of objects

with a nearly circular cross-section is sensitive to small changes in the boundary and

will result in a population with broad variation. By avoiding this variability, the method

we describe uses statistical shape models for which the probability estimation is partic-

ularly robust against the number of training samples.

1.2 The Driving Problem: Segmentation of Quasi-tubes

The method of segmentation via posterior optimization of m-reps developed by Pizer et

al. [15] has been successful in dealing with slab-shaped objects with a lot of variability

and poor contrast. We develop a new method that draws on the ideas from these methods

but represents a tube-like object with a discretely sampled medial space curve and then

models quasi-tubes as deviations from these tubes.

The segmentation method can be divided into two parts: training and the actual

segmentation itself. During training, a rough m-rep model of the object is allowed to

vary inside an optimizer that favors smooth models with a regularly spaced discrete

medial mesh and that match well with the image data. The resulting models are known

as training or fitted models.

These training models are then statistically analyzed. The variation in the shape

space of the models is studied using Principal Geodesic Analysis (PGA), developed by

Fletcher et al. [16], which is a variation of Principal Component Analysis (PCA) suited

for non-linear spaces. The result is a mean shape m and a prior p(m) for segmentation.

At the same time, the region around the object is divided into small parts and the dis-

tribution of intensities in each region is studied with the help of local region intensity

quantile functions, developed by Broadhurst [17] and Stough [18]. We then apply PCA

on these quantile functions to produce a likelihood function p(I|m) for segmentation.
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When an image is to be segmented, the mean model is placed close to the real

organ with the help of landmarks or manually. The model is allowed to deform along

its principal modes of variation in an optimizer that favors likely shapes and intensity

distributions around and within the object. The objective function maximized is the

weighted sum of log p(m) and log p(I|m) with the weights chosen to make the two

terms have equal variance. This is a variant of the method of posterior optimization.

The remainder of the paper is organized as follows. In Section 2 we describe the

representation and geometry for tubular medial models. In Section 3, we describe the

way in which we estimate probability distributions on these models. We then describe

the modeling of the deviations from a tubular to a quasi-tubular model in Section 4.

Section 5 gives more details of our training and segmentation approaches. Finally in

Section 6, we test our method on real data obtained from CTs of rectums and provide

both quantitative and qualitative results on the same.

2 Medial Models for Tubes

A first order tube m-rep is a continuous space curve with a cone placed at every point

along the curve. The axis of the cone is tangential to the space curve at the tip of the

cone. Sweeping the edges of the cone bases gives the boundary of the modeled object,

which is orthogonal to the rays from the cone tip to the cone base. The cones may have

a half cone angle greater than π/2 but less than π. They are not allowed to intersect

each other. Damon [19] has provided us with tools that can be used to measure local

self-intersection (folding) of the object implied by the medial surface of a slab m-rep.

In Section 2.1 we adapt these tools to do the same for tubular m-reps.

In practice, we represent the medial model of a tube by discretely sampling the

space curve of cone tips. Each sample, shown in Fig. 3, is called an atom. Associated

with each sample is its position in space, p = (x, y, z), and a cone with its tip positioned

on the sample. The cone in turn is represented by its bisector, Û0 = (U0,1, U0,2), the

half cone angle, θ, and the length of its inclined surface rays, r. The bisector of the

cone always points along increasing arc length. Thus, the bisector points in the same

direction when θ changes across π/2. To keep the discrete samples regularly spaced,

while developing the models, we impose a penalty, called irregularity penalty, on the

model that penalizes atoms moving away from the average of its neighbors.

The atoms at the two ends of the chain have an additional parameter describing

the curvature of the cap at that end. However, when we are modeling open tubes, the

end-atoms don’t have any special properties and are just like any other atom.

A continuous medial curve γ(u) is interpolated from these atom positions and cone

bisector vectors with the help of piecewise cubic Hermite splines. The cone bisector

vectors, scaled by the mean of the distance between the position of the atom and its two

neighbors, are used as the tangents in the Hermite interpolation.

To resolve the rotational symmetry, we have a parameter φ that rotationally orients

the entire tube along its length. One of the atoms in the tube is designated as a base

atom. Usually this atom is close to a feature in the object that can help fix the rota-

tional orientation. This feature can be an anatomic entity such as a part of a bone, a

certain neighboring organ or tissue that can be easily identified in the entire population.
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atom

medial curve

cone

tangent vector

half cone angle
boundary

Fig. 3. Representation of a tube

atom

Fig. 4. A mean model of

a rectum from one of our

studies showing the medi-

ally implied surface as a

wireframe.

Fig. 5. A quasi-tube

atom with spokes of

varying length and a

cut-away section of

the medially implied

surface shown in two

different orientations.

Whenever the cone for this atom is rotated around its bisector, all the other cones are

sympathetically rotated. This is needed for correspondences that depend upon the posi-

tion along the circumference of the tube such as those required for quasi-tube statistics.

The surface implied by the tubular medial model is called as the medially implied
surface and generated as follows. The circles at the base of the cones are discretely

sampled. The medially implied surface is the fine and smooth mesh obtained by in-

terpolating the set of surface points generated from the cones of all the atoms. The

medially implied surface for a tube model of a rectum is shown in Fig. 4.

In Section 2.1, we highlight a geometric operator that is useful for detecting models

with self-intersecting surfaces and interpolating between atoms in the medial axis. In

Section 2.2, we describe a geometric measure, which we call curviness, that is useful in

avoiding wavy medial axes.

2.1 Geometry on tubular models

Consider the medial atom cone to be composed of a set of spokes U extending from

the tip to the base. These spokes are parameterized by the arc angle φ ∈ [0, 2π) on

the circumference of the base made with respect to a zero point on the circumference.

Define the 1D radial shape operator for a tube as

Srad(φ) = − projU

(
∂U(φ)
∂s

)
, (1)

where projU is projection along the spoke vector U , U is the corresponding unit spoke

vector and s is an arc-length parametrization of the medial curve. Note that Srad and r
are also functions of u but we will ignore this for brevity. The derivative may be written

in the form

∂U(φ)
∂s

= a ·U− κrad · γ′(s), (2)
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where κrad is the principal radial curvature. Thus Srad(φ) = κrad(φ).
An important use of this shape operator is in detecting models that are illegal, i.e.,

some of the spokes are crossing each other and the surface has folded onto itself. Da-

mon [19] shows us that spokes will cross each other if and only if r×κrad > 1. Unlike

Damon’s shape operator, our shape operator is a function of the angle φ. However, it

suffices to evaluate this for the angle corresponding to the direction of the curve normal.

The model is illegal if ∃ u s.t. r × Srad >= 1. This condition can be relaxed as a

penalty more suitable for an optimizer, which expects a continuous objective function,

that is the p-norm of the individual measurements max(0, r×Srad−β) along the tube

for a certain threshold β ∈ [0, 1). Experimentally, we have seen that p = 6 − 8 and a

threshold of 0.8 − 0.9 produces good results. Larger values of p are sometimes useful

when we wish to make the aggregate measure more sensitive to local problems.

The Srad operator can also be used to interpolate between two consecutive atoms

on the same medial manifold. Han et al. [20] have used this operator to interpolate

atoms in 2D medial manifolds. We have adapted the interpolation method to generate

interpolated atoms for tubes. An important use is in interpolating atoms to improve

correspondence between models.

2.2 Geometric Penalty - Curviness

A wavy medial sheet results in crooked-looking models. It also necessitates the use

of significantly more samples in the computation of the illegality penalty. Penalizing

fitted m-reps according to an aggregate measure of curviness can alleviate these prob-

lems. Apart from being anatomically improbable, there is nothing wrong with crooked-

looking models. We define curviness by the p-norm of the total curvature over the entire

length of the medial curve.

C =

⎛⎝ 1
n− 1

n−1∫
0

T pdu

⎞⎠1/p

, (3)

where the total curvature T is related to the geometric curvature κ and the geometric

torsion τ of the interpolated medial axis γ(u) by T =
√
κ2 + τ2. Different values of

p between 2 and 10 are appropriate depending upon how much we need to emphasize

individual sharp bends. However, larger values of p create steeper gradients that may

not be good in an optimizer.

The curviness measure is rotation and translation invariant. Dividing by the arc

length or the average inter-atom distance makes it scale-invariant too.

3 Shape Space and Statistics

A tube atom m can be represented by the tuple M = 〈P, Û0, θ, r〉. A tube consisting

of n atoms can be represented by n such tuples concatenated together. Here the cone

vertex P belongs to the group R
3, the cone axis Û0 is a point on the two dimensional

sphere S2, the half cone angle θ ranges from 0 to π and is related to the group RP
1, and
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the cone length r belongs to R
+. All of the groups are Lie groups and except for R

3,

they are not Euclidean manifolds. A Lie group has a differentiable group operator, an

inverse element and the identity element. Using the group operators and by the action

of the inverse on an element of the group on the element itself, we obtain the identity

element. The other things needed are a distance metric in this space and the ability to

project back and forth between this shape space and a tangent plane. Several of the

results presented in this section are similar to those worked out by Fletcher et al. [16]

for slabular m-reps.

The path with the shortest distance between two points in a manifold is known as

the geodesic between them. The length of this path is called the geodesic distance. If we

have a suitable mapping between the manifold and a tangent space, then this mapping

can be used to measure the geodesic distance on the tangent plane. The map that takes

us from the manifold to the tangent space is called as the Logarithmic chart and the

reverse map is known as the Exponential chart. The maps of the individual components

are given by the following equations. The map for the atom is simply the direct product

of these maps. The maps for the position are identity functions and that for the radius

are logarithm and exponential functions. In the following equations, θ ∈ (0, π), U =
〈u1, u2, u3〉 ∈ S

2 and U′ = 〈u′1, u′2〉 ∈ T(0,0,1)S
2.

Log(θ) = tan
(
θ − π

2

)
, (4)

Exp(θ′) = tan−1(θ) +
π

2
, (5)

Log(U) =
(
u1

α

sinα
, u2

α

sinα

)
, (6)

Exp(U′) =
(
u′1

sin |u′|
|u′| , u′2

sin |u′|
|u′| , cos |u′|

)
, (7)

(8)

where α = cos−1(u3) and |u′| =
√
u′21 + u′22 . All the above maps are taken centered

at the identity element. The identity element for the group R
3 is 0, for R

+ it is 1 and for

S2 it is the point (0, 0, 1). For the group of θ, the identity element is π/2. To obtain the

chart for a tangent plane centered at a point m different from the identity element, we

need to apply the inverse of that point to the element in order to move the tangent plane

to the identity element. We use Logm and Expm as the notation in this case.

To make the units of all the components commensurate in the Log map, we multiply

the unitless quantities with the mean radius taken over all the corresponding atoms in

the population. The geodesic distance is then defined as the norm of the difference of

these normalized atoms projected into the tangent space.

We define the Fréchet mean μ of a set of atoms as the one that minimizes the sum

of squared geodesic distances from all the corresponding atoms from the population.

μ = argmin
m∈M

∑
i

|Logm(mi)|2. (9)

We then compute the Log map of all these atoms and project them on the tangent

plane centered on the mean. We do PCA on these projected atoms and keep the first
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few modes that represent more than 90% of the total variation. Fig. 2 shows the shape

variation along the first mode of variation of the rectum from our study.

4 Quasi-tubes

In this section, we show how we model the deviations from a tube to a quasi-tube.

Several objects in the real world can be modeled as deviations from a tubular struc-

ture. Take the head and neck for example. Start with a cylinder, make the cylinder bulge

out in certain regions to produce features such as the nose and the lips, and make it cave

in to produce the eye sockets and other cavities. Sections of the colon, blood vessels,

the bronchial tree and many other organs in the body can be thought of as quasi-tubes.

A tube atom is represented by a cone of spokes. All of the spoke ends lie in a single

plane, α, forming a cross-section of the tube. Our approach is to change the cross-

section in this plane. This can be accomplished by inclining each spoke in the plane

between it and the axis in such a way that the tips of all the spokes continue to lie in

the plane α. Changing the cross-sectional shape in this way makes the computation of

the shape operator in the circumferential direction straightforward and the component

along the axis is still given by the 1D shape operator defined by equation 1 as U is a

function of the spoke angle φ.

The above method results in varying length spokes in an atom. Therefore the struc-

ture is no longer Blum medial but skeletal. Damon’s proofs concerning the use of the

shape operator Srad in illegality measurements are valid for skeletal structures too.

The change in the length of the spokes is represented as a multiplicative parameter

that belongs to the group R
+. The Log and Exp maps for this parameter have the same

form as that for the radius r.

The segmentation step is divided into two scales. At the large scale, a mean of each

quasi-tube atom across all population samples is used. This gives a large scale model

with each cross-section having a different shape. In the small scale, the individual quasi-

tube atoms are allowed to vary to allow for small changes in each cross-sectional shape.

5 Training and Segmentation

We have discussed how we geometrically and statistically model tubes and quasi-tubes.

We now discuss their training and the appearance model we use.

To fit quasi-tube models to training cases and derive a probability distribution on

that object we follow the general approach described in Merck [21]. Expert outlines

designating the target object in several 3D images are converted into binary images.

An initial model that somewhat resembles the object is created. Sometimes landmarks

are added to initialize our models. The parameters for these models are then varied

inside an optimizer. The objective function is set to a sum of a combination of image

match and geometric penalty terms. The image match we use is the average of the sum

of squared distances between a point on the object’s surface and the closest point on

the expertly outlined object. In certain places such as the crest, the reverse distance is

used as the original distance is artificially low. When landmarks are used, the distance
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between them and the corresponding positions on the model are taken into account.

The geometric penalty terms consist of a combination of the irregularity, Srad and the

curviness penalties mentioned in Sections 2, 2.1 and 2.2 respectively. The weights for

the geometric penalties are relaxed proportionally to the quality of the fit of the model.

We then compute the statistical shape model from all the models in the population.

The log map of the atoms is computed. The spoke deviations are represented as a multi-

plicative parameter that belongs to the group R
+. The Log map of the deviations is the

Log map for the group R
+ as described in Section 3. We then compute the mean across

the entire population to give us the mean shape. The atoms are projected at the tangent

plane centered on the mean. The statistical shape model is computed as described in

Section 3 except that the spoke deviations are only used in the computation of the mean

and not in the computation of the modes of variation of the shape. These comprise the

large scale shape variation. The spokes are allowed to vary in the smaller scale. This

separation of variation at two different scales gives more stable statistics.

At segmentation time, the appearance model we use has been developed by Broad-

hurst [17] and Stough [18]. The object’s surface is divided into several regions. An in-

tensity histogram for each region is computed and converted into quantile distributions.

The distribution of these quantile functions is then analyzed with the help of Principal

Component Analysis (PCA). As tubes can be arbitrarily cut-off, we optionally allow for

the ends of the tubes to not contribute to these appearance models.

During segmentation, we use the method of posterior optimization where the statis-

tical shape model gives the prior and the appearance model gives the likelihood.

6 Application and Results

Segmenting rectums from 3D CT scans is important for adaptive radiotherapy treat-

ment for prostate cancer. It is important for the patient’s health and quality of life that

the rectum does not receive too much radiation. The rectum changes shape a lot from

day to day due to the presence of gas and faeces pushing the abutting prostate around.

The presence of gas also creates a large variation in the intensity distributions and ne-

cessitates special handling of the interior intensity distributions in the rectum.

In our experiment the data comes from different days of several patients. For each

patient, the statistical shape model is built with the help of data from just that patient.

The study is done in a leave-one-out manner, i.e., we build the statistical shape model

for each day of a patient by using data from the other days. This is clinically not possible

but it suffices for the purposes of our study. In the availability of more training data, one

can incorporate cross-patient statistics to get over this limitation.

We obtained 3D CT images with a resolution of 0.98 × 0.98 × 3 mm3 of 5 pa-

tients with 13–18 images for each patient for a total of 79 images. We then trained

quasi-tubular medial models on manual segmentations of rectums from this data. For

our training, we used a hierarchical training process where we first fit a coarsely sam-

pled tubular medial model to the data. We then allowed the individual spokes to vary,

generating quasi-tubular models. After this we subdivided the model by generating in-

terpolated atoms halfway between previously existing atoms and then refined this finely
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Fig. 9. Each row shows the outline (white

or black) of our segmentation on two dif-

ferent axial slices of the same image. Note

the poor contrast in the slices in the right

column. The slices on the right are inferior

with respect to those on the left. The first

three rows are typical results and the last

row is one of the better segmentations.

sampled model to fit the binary image better. Further subdivision yielded only marginal

improvement.

The quantitative results of our training process are shown in Fig. 6. The median

average surface distances for the coarse tube, coarse quasi-tube and the fine quasi-tube
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Fig. 10. Quasi-tubular medial models (in white) fit to a section of the head and neck

skin surface (left) and the pharynx (right) vs. the manually segmented structures (in

translucent blue)

models are 1.58, 0.84 and 0.54 mm with standard deviations of 0.70, 0.62 and 0.09
mm. We can conclude that we can model rectums fairly well and in cases where the

tube model is lacking, the quasi-tubular model does a much better job.

In Fig. 7, we show the cumulative shape variation captured by the first few eigen-

modes for a quasi-tubular model trained over the data of one of the patients. In about 7
modes, we can effectively capture most of the shape variation. In Fig. 2, we show the

variation of the rectum along the first principal direction, which resembles anatomical

shape changes due to filling of gas.

During segmentation, we used a similar hierarchical approach. The model was first

initialized semi-automatically. We then segmented the model in the shape space of the

coarse models. The result was then used to drive the segmentation in the shape space of

the finely sampled trained medial models. In Fig. 8, we show the segmentation results

versus the quality of fine training fits for all the patients. The median of the segmentation

results is 1.53 mm. The segmentation results for a few of these is shown in Fig. 9. Notice

the complete lack of contrast in some of the inferior slices.

We have also fit quasi-tubular models to various structures of the head and neck.

In Fig. 10, we show quasi-tubular models fit to sections of the skin surface and the

pharynx. The expertly contoured outline is shown in translucent blue. The average sur-

face distance for the fitted models of the skin surface, common carotid artery, internal

jugular vein and the pharynx are 1.22, 0.8, 1.3 and 1.13 voxels.

7 Conclusion

We have developed a new method for modeling populations of nearly tubular objects as

a tubular medial model with deviations from the perfect tubularity described by local

changes and demonstrated the same over real world rectum data. We have seen that

this representation is also effective for elongated objects with distinctly noncircular but

slowly varying cross-sections.

Further, we show how we can study population variations by doing statistics in the

non-linear space in which these quasi-tubular medial models lie. We also discuss the

radial shape operator that is needed for studying medial geometry on these models.

The rectum is a challenging organ due to immensely varying shape and poor image

contrast. Several structures in the head and neck – skin surface, pharynx, jugular veins
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and carotid arteries – provide difficult modeling challenges. We have shown that our

models can be trained to within sub-voxel accuracy and give reasonable segmentations.
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Abstract. We present a generative approach for joint 3D segmentation
of patient-specific MR scans across different modalities or time points.
The latent anatomy, in the form of spatial parameters, is inferred si-
multaneously with the evolution of the segmentations. The individual
segmentation of each scan supports the segmentation of the group by
sharing common information. The joint segmentation problem is solved
via a statistically driven level-set framework. We illustrate the method
on an example application of multimodal and longitudinal brain tumor
segmentation, reporting promising segmentation results.

Key words: patient-specific latent anatomy, spatial parameters, tumor
segmentation, level-set framework

1 Introduction

Modeling patient-specific anatomy is essential in longitudinal studies and pathol-
ogy detection. We present a generative approach for joint segmentation of MR
scans of a specific subject, where the latent anatomy, in the form of spatial
parameters is inferred concurrently with the segmentation. While the method-
ology can be applied to a variety of applications, here we focus on segmentation
of pathological tissues. Specifically, we demonstrate our algorithm on a problem
of multimodal segmentation of brain tumors in longitudinal studies. Patient-
specific datasets acquired through different modalities at a particular time point
are segmented simultaneously, yet individually, based on the specific parameters
of their intensity distributions. The spatial parameters that are shared among
the scans facilitate the segmentation of the group.

While probabilistic atlases are commonly used as priors for segmentation of
MR scans of normal tissues or structures [1, 8, 20–22, 31] the standard methods
fail to handle pathologies or to detect subtle anatomical deformation, for exam-
ple, due to aging. A few methods generate patient-specific atlases by iteratively
refining the normal template model [13, 17, 24]. Other methods detect tumors
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from differences in images acquired at different time points [26, 29]. Both ap-
proaches rely heavily on priors such as tumor shape, intensities, growth and ex-
pected evolution [5, 13, 16, 17, 24, 26, 29, 34]. Discriminative approaches [4, 9–11,
25, 32, 33] segment lesions by constructing feature distributions that characterize
healthy subjects, so that the pathology can be specified as outliers. However, the
variability of normal brain scans and the effects some tumors have on their sur-
rounding healthy tissues lead to a high false positive detection rate. Moreover,
mild anomalies can be wrongly classified as normal.

Here we propose and demonstrate a fully automatic groupwise segmentation
method. No prior knowledge or external information is required but a couple of
mouse clicks at approximately the center and the boundary of a single tumor
slice (out of the few dozen volumes to segment) that are used to initialize the
segmentations of the images acquired at the first time point. All model param-
eters, spatial and intensity, are inferred from the patient scans alone. Tumor
segmentations at a given time point are used to initialize the segmentations at
the next time point for scans of corresponding modalities. The output of the
algorithm consist of individual segmentations for each modality and time point.
This is in contrast to many discriminative methods, e.g., [32], that use multi-
modal datasets for multivariate feature extraction, assuming spatial coherence
of the tumor outlines in different image modalities. Here we relax this assump-
tion and search for systematic, structural differences of the visible tumor volume
acquired by different imaging protocols.

Our latent anatomy segmentation model is based on probabilistic principles
but is solved using partial differential equations (PDEs) and energy minimization
criteria. We describe a statistically-driven level-set algorithm that expresses seg-
mentation uncertainty via the logistic function of the associated level-set values,
similar to [23]. We relate the image likelihood term to the region based constraint
that relaxes the piecewise smoothness assumption of [18], in the spirit of [3, 19,
35]. We also draw the connection between a Markov random field (MRF) prior
on the individual segmentations and two continuous-form energy terms: the com-
monly used smoothness constraint, originally proposed in [12] and the spatial
constraint, associated with the latent anatomy parameters. We developed this
approach in [27] and validated the algorithm on joint segmentation of cortical
and subcortical structures in a population. Here we investigate its application
to a patient-specific tumor data set.

The paper is organized as follows. Section 2 defines the problem of latent-
anatomy segmentation. In Section 3 we derive our level-set framework for fitting
the probabilistic model to the image data. The alternating minimization al-
gorithm is presented in Section 4. Section 5 reports the experimental results
followed by a discussion in Section 6.

2 Problem definition and probabilistic model

This section summarizes the formulation of [27] for the joint segmentation of N
aligned images. The images can, for example, represent N scans of a specific
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Joint Segmentation using Patient specific Latent Anatomy Model 3

patient acquired via different imaging protocols. Our objective is to segment
a particular region of interest, a brain lesion for example, that may appear
slightly differently across the images. Let In:Ω → R+, be a gray level image
with V voxels, defined on Ω ⊂ R3 and let Γn: Ω → {0, 1} be the unknown
segmentation of the image In, n = 1, . . . , N . We assume that each segmentation
Γn is generated iid from a probability distribution p(Γ ; θΓ ) where θΓ is the set of
the unknown spatial parameters. We also assume that Γn generates the observed
image In, independently of all other image-segmentation pairs, with probability
p(In|Γn; θI,n) where θI,n are the parameters corresponding to image In. Since
the images are acquired by different imaging protocols we assign a different set
of intensity parameters to each of them.

Let {I1 . . . IN} be the given set of aligned images that form the observed vari-
able in our problem and let Γ = {Γ1, . . . , ΓN} be the corresponding unknown
segmentations. The joint distribution p(I1 . . . IN , Γ1 . . . ΓN ; Θ) is governed by
the composite set of parameters Θ = {θΓ , θI,1 . . . θI,N}. Our goal is to estimate
the segmentations Γ . This, however, cannot be accomplished in a straightfor-
ward manner since the model parameters are also unknown. We therefore jointly
optimize Γ and Θ:

{Θ̂, Γ̂} = arg max
{Θ,Γ}

log p(I1 . . . IN , Γ1 . . . ΓN ;Θ) (1)

= arg max
{Θ,Γ}

N∑
n=1

[log p(In| Γn; θI,n) + log p(Γn; θΓ )] . (2)

We alternate between estimating the maximum a posteriori (MAP) segmenta-
tions and updating the model parameters. For a given setting of the model pa-
rameters Θ̂, Eq. (2) implies that the segmentations can be estimated by solving
N separate MAP problems:

Γ̂n = arg max
Γn

[log p(In| Γn; θI,n) + log p(Γn; θΓ )] . (3)

We then fix Γ̂ and estimate the model parameters Θ = {θΓ , θI,1, . . . θI,N} by
solving two ML problems:

θ̂I,n = arg max
θI,n

log p(In; Γn, θI,n), (4)

θ̂Γ = arg max
θΓ

N∑
n=1

log p(Γn; θΓ ). (5)

3 Probabilistic view of the level-set framework

Now we draw the connection between the probabilistic model presented above
and a level-set framework for segmentation. Let φn:Ω → R be the level-set
function associated with image In. The zero level Cn = {x ∈ Ω| φn(x) = 0}
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defines the interface that partitions the image space of In into two disjoint regions
ω and Ω \ω. Similar to [20, 23] we define the level-set function φn using the log-
odds formulation instead of the conventional signed distance function:

φn(x) , ε logit(p) = ε log
p(x ∈ w)

1− p(x ∈ ω)
= ε log

p(x ∈ ω)
p(x ∈ Ω \ ω)

, (6)

where p(x ∈ ω) can be viewed as the probability that the voxel in location x
belongs to the foreground region. The constant ε determines the scaling of the
level-set function φn with respect to the ratio of the probabilities. The inverse
of the logit function for ε = 1 is the logistic function:

Hε(φn) =
1
2

(
1 + tanh

(
φn

2ε

))
=

1
1 + e−φn/ε

. (7)

Note, that Hε(φn) is similar, though not identical, to the regularized Heaviside
function introduced by Chan and Vese [3]. We use this form of Heaviside function
and its derivative with respect to φ in the proposed level-set formulation. To
simplify the notation, we omit the subscript ε in the rest of the paper.

3.1 Cost functional for segmentation

The joint estimation problem of the hidden variables Γ , or φn (using the level-
set notation) and the unknown model parameters Θ can be solved as an energy
minimization problem, where

E(φn) = − log p(In| Γn; θI,n)− log p(Γn; θΓ ).

As in [27], we establish the correspondence between the log probability and
the level-set energy terms. Let EI(φn, Θ) denote the term corresponding to the
image likelihood in Eq. (3). Then

EI(φn, Θ) = −
∫

Ω

[log pin(In; θI,n)H(φn(x)) (8)

+ log pout(In; θI,n) (1−H(φn(x)))] dx,

where, pin and pout denote the probability distributions of the foreground and
background intensities of a particular image In, respectively. If we use, for ex-
ample, Gaussian densities for pin and pout we get the familiar minimal variance
term [3, 19, 35]. Here, we use a Gaussian mixture to model the background, as
described later in the paper.

Let us now consider the prior probability p(Γn; θΓ ) in Eq. (2) and its corre-
sponding energy terms. Specifically, we construct an MRF prior for segmenta-
tions:

log p(Γn; θΓ ) =
V∑

v=1

[Γ v
n log(θv

Γ ) + (1− Γ v
n ) log(1− θv

Γ )] (9)

−
V∑

v=1

f(Γ v
n , ΓN (v)

n )− log Z(θΓ ),
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where Z(θΓ ) is the partition function and N (v) is the set of the closest neighbors
of voxel v. The function

f(Γ v
n , ΓN (v)

n ) =
∑

v′∈N (v)

w(v,v′)(Γ v
n − Γ v′

n )2,

accounts for the interactions between neighboring voxels. It can be configured, by
setting the values of w(v,v′), to act as a finite difference operator approximating
the gradient of Γn at the voxel v [15]. This approximation allows us to represent
the discrete term

∑V
v=1 f(Γ v

n , Γ
N (v)
n ) as an approximation of the continuous term

ELEN(φn) =
∫

Ω

|∇H(φn(x))|dx, (10)

which is the commonly used length term. Note that if we omit the pairwise term
in Eq. (9), the prior on segmentations p(Γn|θΓ ) reduces to a Bernoulli distribu-
tion, where the parameters θΓ represent the probability map for the structure
of interest. The introduction of the pairwise clique potentials complicates the
model but encourages smoother labeling configurations.

We define the spatial energy term ES based on the singleton term in Eq. (9).
Using the level-set formulation we obtain:

ES(φn, Θ) = −
∫

Ω

[log θΓ (x)H(φn(x)) + log(1− θΓ (x)) (1−H(φn(x)))] dx.

(11)
Note, that ignoring the partition function in the equations that follow Eq. (9)
has no effect on the estimation of Eq. (3), but it changes Eq. (5) to be maximum
pseudo likelihood [2], rather than maximum likelihood.

We construct the cost functional for φ1 . . . φN and the parameters Θ by
combing Eq. (8), (10) and (11):

E(φ1 . . . φN , Θ) = γELEN + βEI + αES (12)

where α = 1 − β − γ. As in [28], we adaptively tune the weights such that
the contributions of the energy terms ELEN, EI and ES to the overall cost are
balanced.

4 Gradient descent and parameter estimation

We optimize Eq. (12) by a set of alternating steps. For fixed model parameters
Θ, the evolution of each level-set function φn is determined by the following
gradient descent equation:

φn(x, t + ∆t) = φn(x, t) +
∂φn

∂t
∆t, (13)

where ∂φn

∂t is obtained from the first variation of E(φn, Θ). Using the Euler-
Lagrange equations we get:

∂φn

∂t
= δ(φn)

{
γ div (

∇φn

|∇φn| ) + β [log pin(In(x); θI,n)− log pout(In(x); θI,n)]

+ α [log θΓ − log(1− θΓ )]} , (14)
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where δ(φn) is the derivative of H(φn) with respect to φn:

δε(φn) =
1
2ε

sech(
φn

2ε
) =

1
ε cosh(φn

ε )
.

For fixed segmentations φn, the model parameters are recovered by differentiat-
ing the cost functional in Eq. (12) with respect to each parameter.

4.1 Intensity parameters

We assume that the intensities of the structure of interest are drawn from a
normal distribution, i.e., pin(In; θI,n) = N (In; µn, σ2

n). The intensities of the
background tissues are modeled as a K-Gaussian mixture:

pout(In; θI,n) = GMM(µ1
n · · ·µK

n , σ1
n · · ·σK

n , λ1
n · · ·λK

n ),

where λk
n is the mixing proportion of component k in the mixture. We estimate

the Gaussian mixture model parameters using the expectation maximization
(EM) method [6].

4.2 Spatial parameters

We estimate the spatial function θΓ (x), which represents a dynamically evolving
latent atlas, by optimizing the sum of the energy terms that depend on θΓ :

θ̂Γ =arg max
θΓ

N∑
n=1

∫

Ω

[H̃(φn(x)) log(θΓ (x)) + (1− H̃(φn(x))) log(1− θΓ (x))]dx,

yielding

θ̂Γ (x) =
1
N

N∑
n=1

H̃(φn(x)). (15)

4.3 Algorithm

We summarize the proposed latent-anatomy segmentation algorithm assuming
the following setup. The input consist of N aligned volumes {Iτ,m}, where Iτ,m

is a volume acquired at time τ and modality m.

Initialization The user selects one of the volumes acquired at the first time
point and identifies a single sagittal, axial or coronal slice where the tumor or the
structure of interest is clearly seen. The user marks with a couple of mouse clicks
the approximate location of the tumor center and one of its boundary points.
This input determines a sphere that is used to initialize the segmentations of all
the volumes acquired at the first time point. We denote their number by M1.
In our implementation M1 identical level-set functions that are defined by the
signed distance function of this sphere are used for initialization.
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Fig. 1. Axial slice of the tumor volumes and the automatic 3D segmentations (red
outlines) across 6 modalities and 10 time points. Not all the modalities were acquired
at each time point.
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8 T. Riklin Raviv et al.

1. Set τ = 1. Note that τ is the index of the actual time in which the scans
were acquired. It should not be confused with t in Eq. (13) that denotes the
number of gradient descent iterations.

2. Calculate the background and foreground intensity parameters, for each of
the volumes acquired at time τ based on the current estimates of their cor-
responding level-set functions φn, according to subsection 4.1.

3. Calculate the latent anatomy parameters θΓ based on the current estimate
of the level-set functions φn, corresponding to the image volumes acquired
at time τ (Eq. (15)).

4. Use Eq. (14) (gradient descent) to evolve the level-set functions associated
with the volumes acquired at time τ based on the current estimates of the
respective intensity parameters θI and the spatial parameters θΓ .

5. Repeat steps 2-4 until convergence.
6. Use the final state of the level-set functions φn associated with the volumes

acquired by modality m at time τ to initialize the corresponding level-set
associated with the volumes acquired at time τ + 1. Set τ : = τ + 1

7. Repeat steps 2-6 sequentially, for all the time points.

5 Experimental Results

We applied the proposed method to a set of 44 image volumes of a patient with
histologically confirmed low-grade glioma, acquired at 10 different time points at
the German Cancer Research Center (Heidelberg, Germany) using 1.5T Siemens
Magnetom and 3T Siemens TRIO MR scanners. The volumes were acquired via
six imaging protocols: T1, T2, FLAIR, DTI, and contrast-enhanced T1 sequences
(T1gd). We note that not all acquisition modalities were used at each time point,
as illustrated in Fig. 1. We aligned the images using the MedINRIA registration
software [30]. We calculated fractional anisotropy (FA) and apparent diffusion
coefficient (ADC) maps from the diffusion tensor images (DTI) using the same
software. To enable quantitative evaluation, three manual segmentations of three
orthogonal slices that pass through the center of the tumor were provided for
each volume.

Fig. 1 presents axial slices of the available image volumes together with the
boundaries of the automatic 3D segmentation. Fig. 2 shows the manual segmen-
tations for three lateral slices through the tumor, together with the automatic
segmentation.

Table 1 provides quantitative evaluation of the overlap between the auto-
matic and the manual segmentations as measured by the Dice coefficients [7].
We compared the automatic segmentations with the corresponding triplets of
manually segmented slices. The first number in each cell in Table 1 reports the
mean and the standard deviation of these nine Dice scores. The second num-
ber in each cell in Table 1 reports the mean and the standard deviation of the
Dice scores obtained by comparing one of the manual segmentations with the
other two in the three slices. We marked with asterisks cells that show similar
Dice scores. The overall average Dice score for the automatic segmentation is
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Joint Segmentation using Patient specific Latent Anatomy Model 9

Time of T1 T1gd T2 Flair DA ADC
acquisition

Nov. 2005 .71±.11* .49±.14* .87±.01 .91±.03 .84±.02 .73±.08
.80±.07 .52±.15 .95±.01 .94±.02 .94±.01 .91±.07

March 2006 .78±.04 .77±.09* .93±.02* .84±.02
.92±.02 .85±.06 .95±.02 .96±.01

Sep. 2006 .87±.03* .85±.08* .84±.02 .94±.01* .88±.03 .81±.04
.90±.04 .82±.12 .95±.02 .94±.02 .94±.02 .93±.03

Dec. 2006 .87±.02 .89±.03* .93±.01 .86±.02
.91±.03 .90±.04 .95±.01 .94±.01

March 2007 .84±.02 .82±.11* .93±.02* .84±.02
.91±.04 .87±.11 .94±.03 .94±.01

June 2007 .81±.09* .85±.09* .93±.02*
.86±.11 .81±.11 .93±.03

Sep. 2007 .87±.04 .84±.08* .87±.02 .86±.03 .87±.02
.92±.03 .86±.07 .94±.02 .93±.01 .94±.02

Jan. 2008 .88±.02* .89±.02* .91±.03* .83±.04
.90±.01 .90±.02 .91±.01 .94±.02

July 2008 .87±.03 .85±.02 .91±.03 .86±.03
.93±.02 .93±.02 .94±.01 .94±.02

Oct. 2008 .88±.03 .85±.03 .91±.03* .84±.04
.93±.03 .93±.01 .94±.01 .93±.02

Table 1. Dice coefficients for 44 volumes in the study. The first number in each cell
reports the mean and the standard deviation of the Dice scores of the automatic seg-
mentation with respect to three manual segmentations. The second number in each cell
reports the mean and the standard of the Dice scores calculated between one of the
manual segmentations and the average of the other two (see text for detail). Automatic
segmentations that did not differ significantly from the manual ones are marked by the
asterisk.

above 0.85 while the average Dice scores obtained for the manual segmentations
is 0.91. The top plot in Fig. 3 presents the average Dice score over all modali-
ties at a given time point obtained by our method (red) and the Dice scores of
the multivariate tissue classification [32] (green). The plot shows that the Dices
scores obtained via the latent anatomy method are consistently higher. The bot-
tom plot in Fig. 3 compares the overlap among the manual segmentations for
each individual modality (‘intra-modal’) with the overlap among the manual
segmentations for all the modalities together (‘inter-modal’). We define overlap
as the mean Dice score among the three manual segmentations, as described
above. This plot suggests that even the manual segmentations vary significantly
across modalities for the same time point, justifying our approach of generating
separate tumor segmentation for each volume.

Probabilistic Models For Medical Image Analysis 2009

252

pohl
Rectangle



10 T. Riklin Raviv et al.

T1 T2 DTI-FA φn

Fig. 2. Manual segmentations (red, green, blue) and automatic segmentation (black)
for lateral T1, T2 and DTI-FA images acquired at the same time point. The forth
image show the corresponding section of the average of the associated 3D level-set
functions. The black line indicates the zero level. Gray dashed lines indicate the tumor
boundaries of all the modalities available for that time point.
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Fig. 3. Top: A comparison of the average Dice scores of the proposed latent anatomy
method (red) and the Dice scores of the multivariate EM for lesion segmentation of [32]
(green). Note that the segmentation results obtained by the proposed latent anatomy
method are consistently better. Bottom: comparison of the correspondence between
the manual segmentations for each individual modality (red) with the correspondence
between the manual segmentations for all the modalities together (green). Correspon-
dence, here, is defined as the mean Dice score between the three manual segmentations
(see text for detail).
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6 Discussion and future directions

We presented a statistically driven level-set approach for joint segmentation of
subject-specific MR scans. The latent patient anatomy, which is represented by
a set of spatial parameters is inferred from the data simultaneously with the
segmentation through an alternating minimization procedure. Segmentation of
each of the channels, or modalities, is therefore supported by the common in-
formation shared by the group. The method is demonstrated by addressing the
problem of multi-modal brain tumor segmentation across 5 − 10 time points.
Promising segmentation results were obtained. An on-going research is now con-
ducted to construct a functional model of the tumor growth based on the image
sequences [14] that will used to predict the evolution of the tumor outlines.
Acknowledgments. This work was supported in part by the Leopoldina Fellowship
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Abstract. In this paper, we investigated the reconstruction accuracy and 
information uncertainty in multi-fiber estimation to better understand the trade-
off between scanning time and angular precision in High Angular Resolution 
Diffusion Imaging (HARDI). Reconstruction accuracy was measured using the 
Kullback-Leibler divergence (sKL) on the orientation density functions (ODFs) 
first in simulations with varying b-values and variable additive Rician noise. 
ODFs were computed analytically from tensor distribution functions (TDFs) 
which model the HARDI signal at each point as a unit-mass probability density 
on the 6D manifold of symmetric positive definite tensors. Reconstruction 
accuracy rapidly increased with additional gradients at lower SNR. The 
information uncertainty was quantified by the Exponential Isotropy (EI), a 
TDF-derived measure of fiber integrity that exploits the full multidirectional 
HARDI signal. Simulations and empirical results both found that information 
uncertainty decreased as angular resolution increased, and plateaued at around 
70~80 gradients. Furthermore, in high magnetic field (7 Tesla) HARDI, the 
reconstruction accuracy and information uncertainty index decreased at higher 
b-values. 

Keywords: High Angular Resolution Diffusion Imaging, Tensor Distribution 
Function, multi-fiber reconstruction, Kullback-Leibler divergence, Exponential 
Isotropy 

1   Introduction 

Diffusion weighted MR imaging is a powerful tool to study water diffusion in tissue, 
providing vital information on white matter microstructure, such as fiber connectivity 
and composition in the healthy and diseased brain. To date, most diffusion imaging 
studies (especially in clinical applications) still employ the diffusion tensor imaging 
(DTI) model [1], which describes the anisotropy of water diffusion in tissues by 
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estimating, from a set of K diffusion-sensitized images, the 3x3 diffusion tensor (the 
covariance matrix of a 3-dimensional Gaussian distribution). Each voxel’s signal 
intensity in the k-th image is attenuated, by water diffusion, according to the Stejskal-
Tanner equation [2]: Sk = S0 exp [-bgk

TDgk], where S0 is the non-diffusion weighted 
signal intensity, D is the 3x3 diffusion tensor, gk is the direction of the diffusion 
gradient and b is Le Bihan’s factor containing information on the pulse sequence, 
gradient strength, and physical constants. Although 7 gradients are mathematically 
sufficient to determine the diffusion tensor, MRI protocols with higher angular and 
radial resolutions, such as the high-angular resolution diffusion imaging (HARDI) or 
diffusion spectrum imaging (DSI) techniques, can resolve more complex diffusion 
geometries that a single-tensor model, as employed in standard DTI, fails to capture, 
e.g., fiber crossings and intermixing of tracts.  

Recent technical advances have made HARDI more practical. A 14-minute scan 
can typically sample over 100 angles (with 2 mm voxels at 4 Tesla). HARDI’s 
improved signal-to-noise ratio may be used to reconstruct fiber pathways in the brain 
with extraordinary angular detail, identifying anatomical features, connections and 
disease biomarkers not seen with conventional MRI. If more angular detail is 
available, fiber orientation distribution functions (ODFs) may be reconstructed from 
the raw HARDI signal using the Q-ball imaging technique [3]. Deconvolution 
methods [4,5] have also been applied to HARDI signals, yielding mathematically rich 
models of fiber geometries as probabilistic mixtures of tensors [6], fields of von 
Mises-Fisher mixtures [7], or higher-order tensors (i.e., 3x3x…x3 tensors) [8,9]. 
Stochastic tractography [10, 11] can also exploit HARDI’s increased angular detail, 
and fluid registration methods have also been developed to align HARDI ODFs using 
specialized Riemannian metrics [12]. In most deconvolution-based methods, however, 
restrictive prior assumptions are typically imposed on the allowable fibers, e.g., all 
fiber tracts are considered to have the same anisotropy profile.   

A novel approach, the Tensor Distribution Function (TDF), was recently proposed 
by Leow et al. in [13] to model multidirectional diffusion at each point as a 
probabilistic mixture of all symmetric positive definite tensors. The TDF models the 
HARDI signal more flexibly, as a unit-mass probability density on the 6D manifold of 
symmetric positive definite tensors, yielding a TDF, or continuous mixture of tensors, 
at each point in the brain. From the TDF, one can derive analytic formulae for the 
orientation distribution function (ODF), tensor orientation density (TOD), and their 
corresponding anisotropy measures. Because this model can accurately resolve sharp 
signal peaks in angular space where fibers cross, we studied how many gradients are 
required in practice to compute accurate orientation density functions - as more 
gradients require longer scanning times. In this paper, we assessed how many 
diffusion-sensitized gradients were sufficient to (1) accurately resolve the diffusion 
profile, measured by the Kullback-Leibler divergence (sKL) and (2) achieve a 
satisfactory information uncertainty index, quantified by the exponential isotropy 
(EI), a TDF-derived measure of fiber integrity that exploits the full multidirectional 
HARDI signal. We used simulation data generated from two-fiber systems crossing at 
90 degrees with varying Rician noise, as well as 4T human HARDI94 data. 
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2   Methods 

2.1   Image acquisition  

Three datasets were used in this study. The first one was simulated: we created 
various models of two-fiber systems, crossing at 90 degrees with equal volume 
fractions (w1=w2=0.5). Here we chose �1=10x10-4 mm2s-1 and �2=2x10-4 mm2s-1 as the 
eigenvalues for each individual component tensor (with FA=0.77, typical for white 
matter in the brain) and we added Rician noise of different amplitudes (with signal-to-
noise ratio, SNR=5, 15, 25, and with a standard deviation of S(0)/SNR) to generate 
simulations using discrete mixtures of Gaussian distributions. The simulated data 
were sampled at 94 points evenly distributed on the hemisphere with an angular 
distribution computed from a partial differential equation (PDE) based on electrostatic 
repulsion [14]; we chose 94 as it was the same as the number of gradients used in the 
human 4T HARDI experiment, which was the source of the second dataset analyzed 
in this study.  

One young healthy human subject was scanned using a diffusion-sensitized MRI 
protocol on a Bruker Medspec 4 Tesla MRI scanner, with a transverse 
electromagnetic (TEM) headcoil. The timing and angular sampling of the diffusion 
sequence was optimized for SNR [14, 15]. The protocol used 94 diffusion-sensitized 
gradient directions, and 11 baseline scans with no diffusion sensitization (b-value: 
1159 s/mm2; TE/TR: 92.3/8250 ms; FOV=230x230; in-plane resolution: 
1.8mmx1.8mm; 55 x 2mm contiguous slices; acquisition time: 14.5 minutes).  

Finally, a third HARDI dataset came from a monkey scanned using diffusion 
imaging on a 7 Tesla MRI scanner at the Center for Magnetic Resonance Research, at 
the University of Minnesota, using 100 gradients and 3 different b-value settings 
(1000, 2000, 3000 s/mm2), TR/TE of 4600/65 ms, and an imaging matrix of 
128x128x50 with isotropic voxels of 1 mm3 (acquisition time: 23.5 minutes). 

2.2   Data Processing 

Several angular sampling schemes, with 20 to 94 directions, were sub-sampled from 
the original 94 angular locations to maximize a measure of the total angular energy. 
The angular distribution energy between point i and point j is denoted by Eij, and 
defined as the inverse sum of the squares of the least spherical distance between point 
i and point j and the squares of the least spherical distance between point i and point 
j’s antipodally symmetric point J (Eq. 1):  

 
 ����� � �	
��	� �� � �	
��	� ��                     (1) 

 
Here, i,j are two different points in the spherical surface, J is the antipodally 

symmetric point to j, and dist(i,j) is the least spherical distance between point i and 
point j (see Figure 1). The total angular distribution energy for one gradient subset 
with N diffusion-sensitized gradients was defined as the summation of angular 
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distribution energy between all points in all pairs, using geodesic distances on the 
sphere (Eq. 2):  

��� � � � �������	 � ���
���

�
���                    (2) 

We first chose one seed point from the original 94 points, which (without loss of 
generality) was chosen to be (1, 0, 0) in our study. We then found another 5 points 
from the remaining 93 points to maximize E (6), since 6 diffusion-sensitized gradients 
are the minimum required for tensor estimation (so long as a non-diffusion-sensitized 
reference signal is also collected). In this way, the first subset with 6 diffusion-
sensitized gradients was produced. After this initial subset, we artificially increased 
the angular sampling one gradient at a time, by maximizing E (N) (where N is the 
total number of diffusion sensitized gradients). 

 

 
 

Figure 1. (a) Spherical distribution of diffusion gradient encoding angles. Red points on the 
sphere indicate the spherical distribution of angles at which diffusion-sensitized gradient 
images were collected for the 105-gradient HARDI sequence, which consists of 94 diffusion-
sensitized gradients and 11 non-sensitized gradients. Each red dot in this figure represents one 
gradient direction, so there are 94 points in total on the unit sphere. In areas that appear to be 
relatively sparsely sampled, there is typically a sampled point on the opposite side of the 
sphere. Also, equidistribution problems sometimes lead to apparent clusters of points in some 
regions (see e.g., Friedman E. "Circles in Circles." http://www.stetson.edu/~efriedma/cirincir/), 
as the minimum point separation is only the same for all points for certain specific sample 
sizes. (b) Angular distribution energy calculation. In this figure, O is the original point, i, j 
represent two different points on the spherical surface, J is the antipodally symmetrical point to 
j. Based on Equation 1, the angular distribution energy between i and j is contributed based on 
the least spherical distance between point i and point j - denoted by dist(i,j) - and the least 
spherical distance between point i and point J - denoted by dist(i, J). dist(i,j) is illustrated by the 
red curve while dist(i,J) is represented by blue curve on the sphere on the right. 

 
Using these optimized subsets of angular points, we sub-sampled the original 

HARDI94 data, and applied the framework in [13] to all these sub-samples. We 
denote the space of symmetric positive definite 3x3 matrices by �. The probabilistic 
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ensemble of tensors, as represented by a tensor distribution function (TDF) P, is 
defined on the tensor space � that best explains the observed diffusion-weighted 
images (Eq. 3): 

��������� !"� � # $%�&'(�)*"�%"�+%,-./               (3) 
 
To solve for an optimal TDF P*, we use the multiple diffusion-sensitized gradient 

directions qi and arrive at P* using the least-squares principle (Eq. 4): 
 

$0 � 1234567 � �89:";� ) ��������� !";���;               (4) 
 
From the TDF, the orientation density function (ODF) may be analytically 

computed from Eq. 5. These ODFs were rendered using 642 points, determined using 
a seventh-order icosahedral approximation of the unit sphere. 
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To assess how accurately the diffusion profiles could be reconstructed from 

subsampled data based on different angular sampling schemes, the Kullback-Leibler 
(sKL) divergence, a commonly used measure from information theory, was used to 
measure the discrepancy between the reconstructed and ground truth ODFs. 
Reconstruction error was calculated from Eq. 6, in which p(x) is the ODF derived 
from the subsampled schemes with additive Rician noise of various amplitudes, while 
q(x) is the noise-free ODF derived from the ground truth data. 

 
GHIA� "� � �

� # JA>� KLMN7O�PO�Q � ">�KLM�NPO�7O�QR +>S           (6) 
 
We also computed another measure of fiber integrity proposed in the original TDF 

framework, the exponential isotropy (EI; Eq.7). Given any TDF P, EI quantifies the 
overall isotropy of diffusion at any given voxel, and highlights the gray matter instead 
of white matter as in FA (since gray matter voxels tend to have low anisotropy, or 
high isotropy, and thus high EI values). EI is defined as the exponential function of 
the Shannon Entropy, so EI can also be used to quantify the information uncertainty: 

 

TUV$%�W � XYZ�[[8[�\[�C87] � X�# ^,��8_^,�!,`-/̀             (7) 

3   Results and Discussion 

3.1 How reconstruction accuracy was affected by angular resolution in the 
presence of variable additive Rician Noise. 

Figure 2 shows several characteristic ways in which the additive Rician noise 
affected the reconstructed ODFs. The effects of image noise on the reconstructed 
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HARDI ODF included combinations of (1) local diffusion coefficient swelling, (2) 
incorrect rotations of the dominant fiber directions, and (3) mixing or omission of 
maximum diffusivity peaks in the radial fiber profile.  

 

 
Figure 2. Noise effects on the HARDI ODF. 

These glyphs show characteristic types of reconstruction errors that resulted from adding 
Rician noise to a simulated 2-fiber system, followed by deriving an ODF from the fitted tensor 
distribution function. (a) Ground truth ODF; (b) swelling of the local diffusion coefficient; (c) 
incorrect rotations of the dominant fiber directions (this is a rotation out of the plane of the 
page); (d) total omission of a dominant fiber direction; (e) mixing of the dominant directions. 
All these ODF are calculated based on Eq. 5 in the TDF framework without any regularization. 
Overall, the effect of noise on the HARDI ODF will most likely induce combinations of each of 
these types of distortion. 

Next we assessed how the angular resolution affects the HARDI ODF 
reconstruction. Figure 3 shows that, as expected, the higher the angular resolution, 
the more accurately the ODF can be recovered; even so, reconstruction errors vary 
from angular smearing and coalescing of the ODF peaks between 30 and 60 gradients 
to incorrect recovery of the dominant fiber direction at 20 gradients, which could be 
problematic for ODF-based tractography.  

 

 
Figure 3. Angular Resolution effects on the HARDI ODF 

This figure illustrates how angular resolution affects the HARDI ODF, which was calculated in 
the TDF framework based on Eq. 6, without any regularization. ODFs are reconstructed from 
sets of progressively more gradients, in directions that optimize the angular distribution energy 
(Eq. 3): the number on the upper left of each panel is the number of diffusion-sensitized 
gradients used to reconstruct the ODF. GT denotes ground truth. 
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In Figure 3, it is not immediately clear why the smaller number of gradient directions 
always coalesces the two peaks in the same direction (bottom-left to top-right); this 
most likely occurs because we use induction to define the gradient sets, so there 
cannot be perfect symmetry in the gradient set for all n, and some subsets will have a 
net excess of gradients in one quadrant (i.e., the point set will have a well-defined 
principal axis), which may lead the 2 dominant ODF peaks to coalescence into one in 
a specific quadrant, as the angular detail is reduced.  

To quantify the accuracy of ODF recovery at different SNR levels and at different 
angular resolutions, we calculated the reconstruction error, represented by the sKL 
divergence between the recovered and the ground truth signal. As expected, the sKL 
error decreased with increasing SNR, and when more scanning directions were used 
(Figure 4(a)). The reconstruction accuracy of a 90-direction low-SNR sequence was 
about the same as a 30-direction sequence with five times the SNR. Our simulation 
studies showed that when SNR is low, adding directions has greater benefit. 
Moreover, higher angular resolution is needed for low SNR sequences to achieve 
reconstruction accuracy comparable to those obtained with higher SNR.  

3.2 How the information uncertainty index was affected by the angular 
resolution 

Information uncertainty was quantified here by EI which is a measure of fiber 
integrity related to FA (but avoiding the limitations of the single-tensor model).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

   (a) sKL vs. Angular resolution                    (b) EI vs. Angular resolution 
Figure 4 Simulation Studies with different SNR level 

For each angular resolution scheme, 1000 simulations of two-tensor systems (equal volume 
fractions; 90º crossing) were computed with different SNR. (a) sKL divergence (reconstruction 
error) decreases with increasing SNR level, and with higher angular resolution sampling 
schemes. This means that the accuracy of the computed ODF improves as SNR increases and 
angular resolution increases. (b) EI decreases as the SNR level increases, and with more 
detailed angular sampling. In this figure, EI values have been normalized by the corresponding 
isotropic term, so that all EI values lie between 0 and 1 (which is the range for the more 
common anisotropy measure, FA). Also, EI tends to stabilize when the angular resolution 
reaches ~70 gradients. This is in line with the observation that standard FA measures are biased 
(too low) in regions where fibers mix or cross. 
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    Other common measures of HARDI diffusion would also be used, such as 
generalized FA or total diffusion, but here we used EI as it has a direct link to the 
information content of the signal as defined by information theory.  

As expected, EI decreased with increasing angular resolution. Simulation results 
show the EI stabilized by ~70 directions (Figure 4(b)). This is in line with the finding 
that fractional anisotropy, derived from DTI, is generally underestimated when fibers 
cross. Also, this result is consistent with Figure 3, which shows that HARDI70 has 
satisfying results when reconstructing a two-fiber system crossing at 90 degrees; these 
diagrams make it clearer why the isotropy falls (i.e., anisotropy rises) when the two 
fiber peaks no longer coalesce. 

 

        (a) EI vs. Angular Resolution                 (b) Paired t test result 
Figure 5. 4 Tesla Human HARDI results 

(a) EI vs. Angular Resolution in 4 T human HARDI94 data. We computed the average EI at 
different angular resolutions for one brain slice (the inset image is the corresponding T2-
weighted slice). All EI values were normalized with respect to an isotropic diffusion profile to 
ensure that the EI values are between 0 and 1. We chose the average EI value in the 
cerebrospinal fluid (CSF) as the normalization constant since CSF has the highest diffusion 
isotropy in the brain. (b) Paired t test results. In this simulation data, the probability exceeds the 
threshold (p=0.05) when N is increases from 70 to 80, while for the empirical data, the 
probability exceeds the threshold when N is increases from 80 to 90. This answers the question, 
“does adding 10 more gradients improve the information in the signal?” Although these 
thresholds are to some extent arbitrary, they show that the information content converges 
within the standard range of gradients used in a HARDI study (~100). 
 

Figure 5(a) shows how EI is affected by the angular resolution in the 4 Tesla 
human data. EI indicates the information uncertainty, so the smaller the EI value is, 
the less uncertainty there is in the multi-fiber estimation. The EI decrease with 
increasing angular resolution does slow down, but we did not find a plateau at around 
70 gradients in Fig. 5(a), as was seen in Figure 4(b). To better understand whether EI 
has converged, we performed a paired Student’s t test on the EI values, assessing the 
effect of adding additional gradients, in increments of 10, (e.g. 40 vs 30, 30 vs 20) at 
all voxels in the brain. If the t test result is significant (p<0.05) then this test confirms 
that adding 10 more gradients does indeed lead to lower EI (i.e., lower information 
uncertainty). When this t test is not significant, there is no evidence that adding 10 
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more gradients to the acquisition protocol is helpful, so the signal may be said to be 
saturated. The result of this test clearly depends on the number of voxels (here 1000 
for simulation and 3255 for the experiment), Even so, this is a reasonable and 
intuitive operational definition of saturation for practical purposes. We note that this 
test could be slightly improved by incorporating a multiple comparisons correction 
into the p-value, to control the false discovery rate, but we did not do so as the tests 
were intended as a heuristic to compare successive increments in gradient numbers.  

 
Figure 5(b) shows paired t test results assessing whether the EI significantly 

decreases when adding more gradients (i.e., EIN+10<EIN) for both simulations and the 
4-Tesla human data. In the simulation data, EI decreases as angular resolution 
increases; this progressive decrease is also statistically significant when initially 
adding batches of 10 additional gradients, then after 70 gradients are reached, the 
probability exceeds the threshold (p=0.05) and the information uncertainty no longer 
shows a stastistically significant improvement, consistent with Figure 4(b). Here, we 
may refer to this ceiling effect on EI, at 70, as the Statistical Saturation (SS) number 
(i.e., SS=70). We defined the meaning of this number to be that successively 
increasing the angular resolution always leads to statistically significant 
improvements in EI until the statistical saturation number of gradients is reached. This 
definition of incremental information gain clearly depends on the batch size (adding 
10 gradients each time). For our empirical HARDI data collected at 4-Tesla, this 
statistical saturation number was 80. As a qualification, we note that our simulation is 
based on only two fibers crossing at 90 degrees with equal weighting. In the more 
complex case of human brain data, the voxels in each slice have varying numbers of 
crossing fibers, varying numbers of detectable dominant fibers, and inevitably, a 
different weighting for each single component fiber within each voxel. Thus, for the 
experimental data, more gradient directions may be needed to cause statistical 
saturation in the EI (our information uncertainty index).   

3.3 How reconstruction accuracy was affected by multiple b values with Rician 
Noise. 

Similarly, reconstruction accuracy was assessed with simulations with b values 
varying from 1000 s/mm2 to 3000 s/mm2 - which would be within a typical range 
used in diffusion spectrum imaging (DSI) studies. Rician noise was added at a SNR of 
10, a level similar to real MRI images. From Figure 6a, we note that the sKL-
divergence (reconstruction error) increases with increasing b values, but it decreases 
with increasing angular resolution. The explanation for this is that S(q)/S(0)=exp(-
bqTDq), so the higher b-value is, the smaller the value of S(q)/S(0) will be. This value 
will therefore be more greatly affected by noise, if the noise characteristics are set 
independently of the b-values. So increasing the b-value leads to an increasing effect 
of noise in the final composite data, and thus higher reconstruction error. Even so, the 
additional b-value shells may be used to provide additional information on the 
diffusion propagator that would not be obtainable using only a single b-value. 
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(a) sKL vs. Angular resolution , as b is varied   (b) EI vs. Angular resolution, as b is varied 

Figure 6. Simulation Study using different b- value settings 
For each angular resolution scheme, 1000 simulations of two-tensor systems (equal volume 
fractions; 90º crossing) were computed with different b values (b=1000, 2000 and 3000 s/mm2).  
Rician noise was added at a SNR level of 10. (a) sKL divergence (reconstruction error) 
increases with increasing b values, while decreasing using higher angular sampling schemes. 
This means that the accuracy of the computed ODF improves as b value decreases and angular 
resolution increases. (b) The EI behaves in the same fashion as sKL in (a).  

3.4 How the information uncertainty index was affected by the b-values 

To investigate the effect of b-value settings at high magnetic field (7 Tesla), we 
analyzed a 100-direction 7 T monkey HARDI dataset, exactly as in Section 3.2.  
 

                                 (e) EI vs. Angular Resolution, as b is varied 
Figure 7. 7 Tesla HARDI scanning results 

In this figure, 100-direction 7 Tesla HARDI data from a monkey was analyzed using EI to 
measure the information uncertainty. Illustrative slices are shown from the (a) T2 reference 
image (b) DWI at b=1000 s/mm2 (c) DWI at b=2000 s/mm2 (d) DWI at b=3000 s/mm2, and (e) 
EI plot vs. Angular Resolution at the different b-values. As expected, higher b-value shells give 
noisier data. 
 
Figure 7 shows a T2 image and DWI images taken at three separate b-values. The 
plots show how EI was affected by the angular resolution at the three different b-
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value settings. EI was also affected by changing the angular resolution, at different b-
values. Visualizations in Figures 7(b)-(d) show that the diffusion weighted images at 
higher b-values are quite noisy, which may be due to the combination of the higher 
magnetic field and the higher b value (suppressing the diffusion-weighted signal 
relative to the noise). Here, the EI versus angular resolution plot, Figure 7(e), exhibits 
the same pattern as that seen in simulations (Figure 6(b)), suggesting that b-values 
higher than 2000 may be suboptimal when acquiring ultra-high magnetic field 
strength DWI images. 

4   Conclusion 

HARDI scanning allows better diffusion reconstruction than DTI, and provides new 
insight into fiber architecture and connectivity that cannot be achieved, even in 
principle, using a smaller number of diffusion-sensitized gradients. These advantages 
come at the expense of longer scanning times, but the trade-off may be worth it for 
studies assessing fiber connectivity and for fine-scale mapping of anatomy, and to 
avoid errors in routine clinical studies. We identified several types of ODF 
reconstruction errors that are typical when smaller numbers of gradients are used, and 
studied their asymptotics in optimized angular sets. To improve diffusion 
reconstruction accuracy and remove bias from the derived anisotropy measures, it is 
more effective to acquire additional angular samples than to repeatedly sample the 
same directions for purposes of signal averaging [16-18]. We found that, with a 
reasonable intuitive definition of saturation, the information uncertainty cannot be 
statistically improved when the number of diffusion-sensitized gradients exceeds 80. 
Also, from our preliminary study at 7 Tesla, the b-values should not be set too high, in 
order to obtain satisfactory EI values. Thus, our study may be of interest in designing 
future DTI and HARDI acquisition protocols for assessing fiber integrity in the living 
brain. 
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Abstract. This paper presents a stochastic tractography algorithm to
identify branching fibrous structures in 3-D images. Specifically, we employ
a Bayesian formulation that involves sequential importance resampling
of multiple fiber trajectories (particles). At each step, we sample local
orientation candidates from a discrete importance density that is esti-
mated by utilizing a nonlinear oriented filter. The weights of the particles
are subsequently obtained by using an observation density, which models
the intensity coherence along the particle segments of inferred widths,
and a prior density that enforces local smoothness of the trajectories.
At the same time, we successfully build multiple fiber trajectories along
all branches of a fiber by detecting dominant local fiber orientations via
the mean shift algorithm. The performance of the proposed method is
evaluated by tracking synthetic fibers at different noise levels as well as by
extracting selected free-running cardiac Purkinje fibers in structural mag-
netic resonance images. Our experiments show that the method achieves
a mean tracking error of about 4 voxels in the case of Purkinje fibers and
remains robust to moderate amount of noise.

1 Introduction

The development of robust processing methods to quantitatively characterize
fibrous structures constitutes an important yet challenging problem in medical
image analysis. Specifically, the extraction of complex fiber networks in intensity
data finds a wide range of applications in biological studies (see [1, 2] and
references therein). For instance, by extracting the anatomical topology of different
structures such as the human vasculature or pulmonary airways, one could
perform a quantitative assessment of various pathologies. Furthermore, advanced
simulations of arrhythmias could benefit from an electrophysiological model of
the heart with a realistic conduction system [3]. This would involve extracting
the Purkinje system, which is responsible for the propagation of the electrical
impulse initiating the contraction of the ventricular myocardium. Modern ex vivo
magnetic resonance imaging (MRI) techniques provide sufficient resolution to
identify the free-running Purkinje fibers, which activate endocardial structures
such as the papillary muscle. However, tracking these fibers in an automated
manner is difficult due to the presence of numerous bifurcations and image noise.
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From an image processing standpoint, a fibrous structure comprises a spatially
coherent appearance pattern that can be quantified via different feature-based
or model-based approaches. Typical examples reviewed in [4] include skeletons,
matched filters, region growing, active contours, and image Hessian-guided stream-
line tracking. However, most of these methods are deterministic in the sense
that the uncertainties associated with the resulting fibers are not inferred. In
addition, they do not usually incorporate a priori geometric knowledge. Similarly,
the majority of the existing tracking techniques on diffusion weighted imaging
(DWI) estimate fiber tracts to be proportional to principal diffusion directions [5].
However, despite their practicality for visualization, they also do not estimate
the aforementioned uncertainties, which are critical for eliminating anatomically
incorrect trajectories caused by local tracking errors and their accumulation.

These issues have inspired recent works [6–10], which aim at stochastically
tracking fibrous structures at the expense of increased computational complexity.
These methods choose the most probable fiber trajectory among multiple possible
trajectories that are generated by statistical sampling. For instance, [7] proposes
a bootstrap filtering scheme to track the cross-sections of non-branching cerebral
arteries. In order to extract non-branching vessels, [8] employs a particle filter-
ing formulation with a sophisticated observation density that requires several
parameters to be tuned, whereas [9] proposes a modified Bayesian formulation
that requires fewer particles. For the analysis of branching fibers, [6] and [10]
employ the k-means algorithm to cluster the trajectories of a particle filter to
segment coronary arteries and brain vasculature, respectively. However, the ex-
tracted vessel topology is limited since k-means requires the number of clusters
(branches) to be known beforehand. Moreover, there exist several works providing
different stochastic tracking approaches on DW images [11–14]. In particular, [12]
proposes a Bayesian formulation that draws samples from the posterior density,
whereas [14] employs sequential importance resampling to track white matter
fibers. [15] estimates complex fiber orientation distributions from high angular
resolution diffusion images and performs random walks to infer brain connectivity.

We believe that the efficiency of stochastic tractography methods can be sub-
stantially improved by developing 1) practical probabilistic models for sampling,
and 2) accurate clustering techniques for detecting bifurcations. We thereby
present such a stochastic approach to track branching fibrous structures in 3-D
images. Our contribution is to fuse the notions of filter-based local orientation
extraction and multimodal fiber orientation distributions into a particle filtering
formulation to infer the uncertainties of the fiber trajectories. Specifically, we
utilize a nonlinear pivoting filter that estimates a reliable discrete importance
density for sampling trajectories (particles). Furthermore, we use this density for
detecting bifurcations by clustering the local fiber orientations via spherical mean
shift. We recursively compute the weights of the particles using an observation
density that quantifies intensity coherence along the particle segments of inferred
widths and a prior density that enforces locally smooth trajectories. We evaluate
our tracking method on synthetic fibers at different signal-to-noise ratios (SNRs)
as well as on selected free-running cardiac Purkinje fibers in structural MRI.
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2 Preliminaries on Stochastic Tracking

Our tracking scheme follows a well-known particle filtering technique called
sequential importance resampling (SIR), which implements a recursive Bayesian
filter by Monte Carlo simulations [16,17]. In the SIR formulation, we represent
a fiber trajectory as a sequence of 3-D points (states) x0:T

.= {xt}T
t=0 in the

image domain Υ ⊂ R
3. Without loss of generality, we assume that the root

of the fiber of interest is determined, either by the user or through some prior
automatic detection. We define the observations as a sequence of image intensities
y1:T

.= {yt}T
t=1 = {I(xt)}T

t=1, where I(p)4 denotes the intensity value at voxel
p ∈ Υ . We further assume that 1) the states are modeled as a first-order Markov
process, 2) the observations are mutually independent, and 3) the observation at
time t only depends on the current state, i.e., p(yt|x0:t) = p(yt|xt).

The key idea in SIR is to represent the required posterior density p(x0:t|y1:t)
by a set of N weighted random samples {x(n)

0:t }N
n=1 and the associated weights

{w(n)
t }N

n=1, which are chosen using the principle of importance sampling. This
specifically involves defining an importance density q(·) from which the random
samples can be easily drawn. Accordingly, the weights measure the reliability of
the samples as w(n)

t ∝ p(x(n)
0:t |y1:t)/q(x

(n)
0:t |y1:t).

In a sequential setting, we consider N samples that represent p(x0:t−1|y1:t−1)
and then approximate p(x0:t|y1:t) with a new set of samples. Using Bayes’ rule,
a recursive formula for the posterior density can be written in terms of the
observation density p(yt|xt) and the prior density p(xt|xt−1) as

p(x0:t|y1:t) ∝ p(x0:t−1|y1:t−1)p(yt|xt)p(xt|xt−1). (1)

If the importance density satisfies q(x0:t|y1:t) = q(x0:t−1|y1:t−1)q(xt|xt−1, y1:t),
the formulation only requires a filtered estimate p(xt|y1:t) at each time step.
Consequently, we can recursively compute the weights as

w
(n)
t ∝ w

(n)
t−1

p(yt|x(n)
t )p(x(n)

t |x(n)
t−1)

q(x(n)
t |x(n)

t−1, y1:t)
. (2)

Then the posterior filtered density p(xt|y1:t) can be approximated as

p(xt|y1:t) ≈ p̂(xt|y1:t) =
N∑

n=1

w
(n)
t δ(xt − x

(n)
t ), (3)

where δ(·) denotes the Dirac delta function and the weights are normalized
such that

∑N
n=1 w

(n)
t = 1. As the number of samples N →∞, the approximate

posterior p̂(xt|y1:t) approaches the true posterior p(xt|y1:t).
It is also worth noting that during SIR, the distribution of the weights becomes

more skewed as t increases [16]. To avoid this degeneracy, a resampling procedure
4 When the point p lies outside the discrete grid, we compute the corresponding

intensity value by trilinear interpolation.
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is usually included at each step. More specifically, if the effective sample size
Neff

.= 1/∑N
n=1(w

(n)
t )2� is less than a fixed threshold τ , we resample N particles

from the discrete density p̂(xt|y1:t) and set w(n)
t = 1/N , ∀n. The reader is referred

to [16,17] for further details on sequential Monte Carlo methods.

3 Estimation of the Density Functions in SIR

This section explains the estimation of the importance, observation and prior
densities in the SIR formulation. These densities are primarily used to recursively
compute the importance weights of the particles. For the sake of clarity, we drop
the particle superscripts in the following discussions.

3.1 Importance Density

In the SIR formulation, modeling the importance density with the prior and
solely using the observation density to compute the weights from (2) constitute a
popular yet trivial choice. However, we believe that sampling from a density that
models local fiber structure is more appropriate for tracking purposes. We thereby
estimate the importance density q(xt|xt−1, y1:t) using a nonlinear pivoting filter,
which is a 3-D variant of the matched filter introduced in [18]. Its efficacy in
extracting local fiber orientations has been recently demonstrated in [19].

As depicted in Fig. 1(a), the pivoting filter is centered at a point of interest
x with a fixed backward point b and a pivoting forward point f located at a
distance l from x. The segments bx and xf define the main segments of the filter
and are designed to align with the fiber of interest. The purpose of the remaining
points {bk,fk}2K

k=1 is to fully encapsulate the fiber. Specifically, the points {bk}
(and {fk}) are placed by rotating the 2w-apart antipodal pair (bk, bk+K) (and
(fk,fk+K)) by an angular step α until one circular round is completed.

x

y-axis

x-axis
z-axis

�

b1 b2

f1 f2

b

f

b2K

f2K

w
l

(a)

q(x2|·)

q(x1|·)

�
(1)
2

�
(2)
2

�
(1)
1

x1

x1

x2

x2

(b)

Fig. 1. (a) 3-D pivoting filter with key parameters, (b) Discrete importance densities
estimated at two analysis points and the modes detected via spherical mean shift.

The operation of the filter can be summarized as follows: After fixing the
backward segment bx along the known portion of the fiber, the forward segment

Probabilistic Models For Medical Image Analysis 2009

271



xf is allowed to rotate for scanning multiple local orientations. Specifically,
consider a particular orientation s in S .= {s : 〈s,x− b〉 > 0, s ∈ S

2} such that
f = x + ls. For each pair of antipodes (bk, bk+K) and (fk,fk+K), we compute

hk(s; x,x− b, I) =

⎧⎨⎩1 if |I(b)−I(f)| ≤ min
j=k,k+K

{|I(b)−I(bj)|, |I(f)−I(f j)|}
0 otherwise.

(4)
In other words, the filter detects an oriented structure if the absolute value of
the intensity variation along the structure is less than the minimum absolute
intensity variation orthogonal to the structure. The expression in (4) can be
considered as a partial filter response for a fixed k ∈ {1, 2, . . . ,K}. The overall
filter response is subsequently computed by summing (4) over all pairs of antipodes
as h(s; x,x− b, I) =

∑K
k=1 hk(s; x,x− b, I).

In the sequential setting, having fixed the backward segment along the preced-
ing orientation, i.e., st−1

.= (xt−1 − xt−2)/l, the filter response at xt−1 gives a
coarse estimate of the probability of having a structure oriented along any s ∈ S.
This is further refined by using g(s; x,x−b, I) =

∫ 1

0
|I(x+λls)−I(x)|2dλ, which

quantifies the intensity coherence along the forward segment [4]. The importance
density is then estimated as

q(xt|xt−1, y1:t) ∝
(
h(st;xt−1, st−1, I)× exp(−g(st; xt−1, st−1, I))

)
. (5)

Given q(·), we can sequentially sample N local orientations {s(n)
t }N

n=1 that also
define the points {x(n)

t } given {x(n)
t−1}. The resulting discrete density can be

further used to detect branches via spherical clustering, as described in §4.

3.2 Observation Density

Given a current sample st (and xt), we obtain an estimate of the observation
density p(yt|xt). For this purpose, we assume that 1) the fiber portion along st

has the same width (diameter) as the preceding portion, and 2) the intensities of
the voxels in a neighborhood of xt, denoted by Ωxt , are also observed.

We first find the cylinder that optimally encapsulates the preceding fiber
portion and then use it to find the voxels around the segment lst = xt − xt−1.
Specifically, we encapsulate the fiber portion along st−1 with (oriented) cylinders
of height l and of different radii, and estimate the optimal radius re as

re = argmax
r∈R

1
2πlr

∫
F(r)

(
〈∇I(p),

−→
N (p)〉

)2

dp. (6)

Notice that the expression in (6) measures the alignment of the image gradients
with the normals at the cylindrical surface, where R denotes the set of radii, p
is a point on the lateral surface F(r) of the cylinder of radius r, ∇I(p) is the
image gradient and

−→
N (p) is the outward normal to the surface F(r) at point p.
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We subsequently use the inferred radius to form a cylinder (of radius re and
height l) oriented along st, define Ωxt

as the voxels inside this cylinder, and
compute the observation density as

p(yt|xt) ∝ exp
(
− (I(xt)− Īt;re)2

2σ2
t;re

)
. (7)

Here Īt;re and σt;re denote the mean and standard deviation of the intensities of
the voxels inside the cylinder, respectively.

3.3 Prior Density

In order to enforce a certain level of smoothness in the fiber trajectories, we choose
to model the prior density based on the von Mises-Fisher (vMF) distribution over
the 2-sphere [20]. It constitutes a unimodal parametric distribution for directional
data with the probability density function (pdf) of the form

pvMF(s; μ, κ) =
κ

4π sinhκ
exp(κ〈μ, s〉), (8)

where μ ∈ S
2 is the mean direction and κ > 0 is a parameter regulating the

concentration around the mean direction. In our experiments, we manually set
the value of κ and estimate the prior density as

p(xt|xt−1) ∝ pvMF(st; st−1, κ). (9)

4 Algorithm Overview and Implementation Details

Our method is initiated at two user-specified seed points {x0,x1}, which place
the backward segment bx of the filter along s1 = (x1 − x0)/l. We subsequently
estimate the width of this fiber segment from (6). In order to have a finite number
of search orientations, we discretize the unit sphere at 642 predefined vectors
obtained by a threefold tessellation of an icosahedron. Accordingly, at each step,
we form the set of candidate orientations St

.= {s : 〈s, st−1〉 > 0, s ∈ S
2}, estimate

the discrete importance density as described in §3.1, and use the resulting pdf to
analyze local fiber structure, i.e., to detect branches at the point of interest.

The rationale behind analyzing local fiber structure is that in the case of
branching fibers, one of the branches may cause the loss of the remaining ones
by attracting most of the particles. To avoid this problem, before sampling the
particles, we employ the mean shift (MS) algorithm [21], which automatically
detects the number and directions of the branches. Specifically, we utilize a
weighted spherical MS formulation with the Fisher kernel for clustering local
orientations using their importance density values as weights [19]. This scheme
converges to the modes {μ(c)

t }C
c=1 of the importance density q(xt|·) and the

resulting modes are identified as the directions of the branches rooted at xt.
Fig. 1(b) illustrates the operation of the filter and our branch detection strategy.
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Algorithm 1 SIR-based tractography in 3-D images

1. At the t-th step, given N = 1000 weighted particles {(x(n)
0:t−1, w

(n)
t−1)}N

n=1 and the
mean trajectory {x̄0:t−1}, consider st−1 = x̄t−1 − x̄t−2.

2. Place the pivoting filter such that b = x̄t−2 and x = x̄t−1.
3. Obtain the set St = {s : 〈s, st−1〉 > 0, s ∈ S

2}.
4. Estimate the discrete importance density q̂(xt|x̄t−1, y1:t) from (10) using (5).

5. Perform branch analysis by detecting the modes {μ(c)
t }C

c=1 of the importance density
q̂(xt|·) via spherical MS and check the number of branches C:
– If C > 1, stop tracking the “parent” fiber, go to step 9 and generate separate

SIR schemes for the branches.
– If C = 1, sample N points {x̃(n)

t } from the importance density.

6. For each x̃
(n)
t , compute the weight w

(n)
t from (2) using (5), (7), and (9) with κ = 3.

7. Calculate Neff as described in §2, set τ = 2N/3, and check Neff:

– If Neff ≥ τ , then for n = 1, 2, . . . , N , set x
(n)
t = x̃

(n)
t and update the n-th

trajectory as x
(n)
0:t .

– If Neff < τ , then for n = 1, 2, . . . , N , sample an index z(n) from the discrete

distribution of {w(n)
t }N

n=1, set x
(n)
t = x̃

z(n)
t , w

(n)
t = 1/N and update the n-th

trajectory as x
(n)
0:t .

8. Iterate between 1-8 by setting t = t + 1 until {w(n)
t } are small, a user-defined

stopping criterion is met and/or a branching point is detected.

9. Identify the MAP fiber (or branch) as x
(ζ)
0:t , where ζ = argmaxn=1,2,...,N w

(n)
t ,

i.e., the trajectory with the maximum importance weight.

It depicts the importance densities, where the probabilities of the vectors are
color-coded (blue∼low, red∼high), at two points as well as the resulting modes.

At this point, it is worth noting that the pivoting filter needs to be used
N times per iteration to estimate the importance density given N preceding
particles. This computational load can be reduced with the approximation

q(x(n)
t |x(n)

t−1, y1:t) ≈ q̂(x(n)
t |x̄t−1, y1:t), (10)

where x̄t−1 is the point reached along the mode of interest, i.e., μ
(c)
t−1 for some c.

After estimating the approximate importance density q̂(xt|·) at the t-th step and
clustering the local orientations, N = 1000 samples are drawn from this discrete
density if the number of the modes, denoted by C, is equal to 1. However, if
C > 1, the newly identified branches are treated as separate fibers to be tracked
via new SIR schemes. Finally, we compute the importance weight w(n)

t from (2)
using (5), (7), and (9) with κ = 3, and then eliminate the degeneracy described in
§2 using systematic resampling with τ = 2N/3. We repeat the same procedure by
shifting the filter according to the modes of the importance density, i.e., keeping
track of the “mean” trajectory {x̄0:t}, and generate N different trajectories
{x(n)

0:T }N
n=1 for each branch. The maximum a posteriori (MAP) estimate of the

true fiber/branch is identified as the trajectory with the maximal importance
weight. In summary, our tracking method proceeds as outlined in Algorithm 1.
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5 Method Validation

The performance of our method is evaluated via experiments on synthetic fibers
at different noise levels as well as on selected free-running cardiac Purkinje fibers
on structural MR images. In order to quantify the spatial tracking error, we
compute the symmetrized Chamfer distance (in voxels) between the true fiber
trajectory X t .= xt

0:T = {xt
i} and its MAP estimate X e .= xe

0:T ′ = {xe
j} as

ε(X t,X e) = [d(X t,X e) + d(X e,X t)]/2, where

d(X t,X e) = |X t|−1
∑

xt
i∈X t

min{‖xt
i − xe

j‖ : xe
j ∈ X e}. (11)

5.1 Experiments on Synthetic Fibers

In order to evaluate the performances of the fiber width estimator (6), orientation
detection and tracking methods as a function of image noise, we generate 120
synthetic fibers of radii rt ∈ {1, 2, 3} by fitting cubic splines through four randomly
selected points in a 80×80×80 lattice. In the case of branching fibers, bifurcations
are randomly selected on previously generated fibers to add further branches. The
centerlines of the resulting fibers constitute the true trajectories X t. The binary
images are then corrupted by Rician noise to obtain image data at five different
SNRs. We set the filter parameters {l, w, α} = {3, 2, 20◦} (or {4, 4, 20◦} depending
on the value of rt), the search radiiR = {1, 1.5, 2, . . . , 5}, and subsequently obtain
the width estimates {re

j} and the MAP trajectory X e of each fiber.
For performance evaluation, we compute the width estimation error rate

ξ(X t,X e) .= |X e|−1
∑

j |rt − re
j |/rt along with tracking error ε. In fact, the value

of the optimal radius re is also critical in order to obtain an accurate observation
density. Although a slight underestimation of the fiber width is tolerable unless
the resulting filter is totally “buried” into the fiber, it should be noted that
the more the fiber width is overestimated, the worse the observation density is
modeled. Therefore, we also compute the rate ξ+ of overestimating the fiber width.
Finally, in order to quantify the reliability of our orientation detection strategy at
different noise levels, we calculate the orientation detection error rates as follows:
In the analysis of non-branching fibers, this rate, denoted by γ1, is computed as
the ratio of the number of points (in X e) at which the MS locates more than one
mode over the total number of points, i.e., the cardinality of X e. However, in the
analysis of branching fibers, we solely focus on the identification of bifurcations.
Specifically, we place the filter at the bifurcations, which constitute the set of
points at which the MS locates two modes in the noise-free case, and compute
the rate γ2 of misidentified bifurcations at different SNRs.

Analysis of non-branching fibers: Table 1 shows the mean and the standard
deviation of the tracking error ε and the width estimation error rate ξ along
with the average values of the width overestimation rate ξ+ and the orientation
detection error rate γ1 over 60 non-branching fibers at different SNRs. The
symbol “∞” for SNR represents the noise-free case. First, we observe that the
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mean width estimation error rates are about 0.09 with ξmax = 0.36 for SNR > 5
dB. These results validate the accuracy of our flux-based estimator at moderate
amount of noise. Furthermore, we overestimate the true fiber widths at rates
(ξ+) less than 0.25 for SNR > 10 dB. In terms of tracking accuracy, we observe
that for SNR > 10 dB, the mean tracking errors are about 2.80 voxels with
εmin = 1.00 and εmax = 13.78. However, the performance starts degrading at
higher levels of noise, especially in the case of tracking fiber segments with high
curvature. Finally, for SNR > 5 dB, the average values of the rates of erroneously
detected orientations (γ1) are less than 0.07, which demonstrate the reliability of
our filter-based orientation detection strategy under noisy conditions.

Table 1. Experimental results on non-branching fibers

Error SNR (dB)

parameter ∞ 30 20 15 10 5

ξ 0.08±0.07 0.08±0.07 0.08±0.07 0.09±0.07 0.11±0.09 0.20±0.26

(ξmin, ξmax) (0,0.36) (0,0.36) (0,0.31) (0,0.31) (0,0.32) (0,1.42)

ξ+ 0.23 0.24 0.23 0.25 0.31 0.39

ε 2.39±1.21 2.82±2.11 3.20±2.39 2.68±1.32 3.96±2.70 5.18±3.83

(εmin, εmax) (0.87,6.35) (0.78,13.68) (0.65,13.78) (0.90,6.81) (1.00,11.94) (1.67,18.92)

γ1 0.04 0.04 0.04 0.05 0.07 0.17

Analysis of branching fibers: We further perform tracking experiments on
60 remaining branching fibers as well as focus on testing our orientation detection
strategy at the bifurcations. At this point, note that extracting such fibers in
noisy data may result in misleading tracking errors if a bifurcation point is
undetected. Therefore, we estimate the widths of the fibers and obtain their
MAP trajectories only in the noise-free case. Table 2(a) shows the mean and the
standard deviation of the width estimation error rate ξ and the tracking error ε
over 60 branching fibers. We observe that the mean tracking error is 4.81 voxels
with εmin = 2.46 and εmax = 8.21. Notice that the tracking performance is worse
than the one obtained for non-branching fibers by approximately 2.50 voxels.
This is mainly due to 1) a number of branches that are generated very close to
each other, and 2) differences between the coordinates of the actual bifurcations
and the detected ones. Furthermore, we overestimate the true fiber widths in only
18% of the fiber segments and achieve a width estimation error rate of 0.07±0.05
with ξmin = 0 and ξmax = 0.22. Finally, Table 2(b) shows the average rates of
misidentified bifurcations (γ2). Notice that for SNR > 10 dB, less than 20% of
the bifurcations are misidentified, but the error rate γ2 increases at lower SNRs.

Table 2. Experimental results on branching fibers

(a) Tracking and width estimation errors

ε (εmin, εmax) ξ (ξmin, ξmax)

4.81±1.42 (2.46,8.21) 0.07±0.05 (0,0.22)

(b) Bifurcation misidentification

SNR (dB) 30 20 15 10 5

γ2 0.10 0.15 0.18 0.25 0.33
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Fig. 2. (a) An MR image slice with manually extracted Purkinje fibers (red circles),
(b) Selected region of interests illustrating the trajectory of a branching Purkinje fiber.

5.2 Experiments on Cardiac Purkinje Fibers

We conduct additional tracking experiments on a structural MR image of a
healthy rabbit heart, which was acquired on an 11.7 T MR system at an in-
plane resolution of 26.5 μm × 26.5 μm and an out-of-plane resolution of 24.5
μm [3]. Denoising and rescaling steps are performed to obtain a 3-D image of
size 512×512×850 (Fig. 2(a)). Our method is tested on selected subvolumes that
contain 53 free-running Purkinje fibers. They are either non-branching fibers
running from one Purkinje-myocardial junction (PMJ) to another or branching
fibers with at least one Purkinje-Purkinje junction (PPJ), as depicted in Fig. 2(b).
In addition, we manually extract the centerlines X t of the true fibers and obtain
the MAP trajectories X e using the filter parameters {l, w, α} = {4, 4, 20◦}.

In our experiments, we obtain a tracking error of 3.93±3.15 voxels with
εmin = 0.78 and εmax = 19.74. Specifically, our method achieves such promising
results that 16 fibers are tracked with errors of less than 2 voxels, and 32 fibers
with errors of less than 4 voxels. In addition, all the bifurcations are correctly
detected along with the corresponding branch directions to be followed. However,
2 fibers are tracked with errors greater than 10 voxels and we observe that, in
those cases, tracking is affected by the presence of nearby fibers/cardiac wall.
Specifically, the pivoting filter fails at encapsulating the fibers of interest and this
causes an inaccurate estimation of the importance densities. Fig. 3 illustrates our
tracking results by showing the surface renderings (green) of selected subvolumes,
the seed points (black), and the resulting MAP trajectories (red) of the fibers.

6 Conclusions

The aim of this work is to stochastically track branching fibrous structures in 3-D
images. Specifically, we present an SIR-based tracking framework that employs
an oriented filter for the estimation of a practical discrete importance density.
We also describe a flux-based fiber width estimator to obtain an observation
density that models the intensity coherence in the fiber segment of interest.
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Fig. 3. Visualization of 6 free-running Purkinje fibers and their MAP trajectories (red).

Along with a prior density, which enforces locally smooth fiber trajectories, the
aforementioned densities are used to recursively compute the certainties of the
trajectories. Furthermore, in order to correctly analyze branching structures, we
sample trajectories along all branches by detecting dominant branch directions
via spherical mean shift. Comprehensive experiments in synthetic and real data
demonstrate that the proposed method achieves promising results in terms of
fiber width estimation and tracking accuracy at moderate amount of noise.
Nevertheless, tracking fibers in dense fibrous regions as well as fiber segments
with high curvature under noisy conditions may be problematic due to the (linear)
geometry of the filter. Therefore, as a future work, we will perform a sensitivity
analysis on the filter parameters and subsequently use the extracted free-running
Purkinje system in cardiac conduction simulations.
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Abstract. In multi-modal registration, similarity measures based on intensity

statistics are the current standard for aligning medical images acquired with dif-

ferent imaging systems. In fact, the statistical relationship relating the intensities

of two multi-modal images is constrained by the application, defined in terms

of anatomy and imaging modalities. In this paper, we present the benefits of ex-

ploiting application-specific prior information contained in one single pair of reg-

istered images. By varying the relative transformation parameters of registered

images around the ground truth position, we explore the manifold described by

their joint intensity distributions. An adapted measure is fitted using support vec-

tor regression on the training set formed by points on the manifold and their

respective geometric errors. Experiments are conducted on two different pairs of

modalities, MR-T1/MR-TOF and MR-T1/SPECT. We compare the results with

those obtained using mutual information and Kullback-Leibler distance. Exper-

imental results show that the proposed method presents a promising alternative

for multi-modal registration.

1 Introduction

Image registration is a crucial processing step in all image analysis tasks in which

information from various imaging sources needs to be combined. Establishing corre-

spondences between images acquired with different medical imaging modalities is a

challenging task known as multi-modal registration. Objective functions that evaluate

the quality of alignment, known as similarity measures, are optimized to identify the

geometric transformation that maps the coordinate system of one modality to the other

[8]. The choice of the appropriate measure is not straightforward, because it implicitly

models the relationship between the different images to register [4]. Classical mea-

sures such as sum of square differences (SSD) or correlation coefficient (CC) make

the assumption of a linear functional mapping between the intensities of the images to

align. But this hypothesis is far from being realistic according to the physics of different

� This research is partially funded by the Munich Center for Advanced Photonics and by the

Gefäßchirurgie Department, Klinikum Rechts der Isar, Germany
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imaging systems. Modeling the real relationship between different imaging modalities

is very difficult and this explains why statistical measures have become more and more

popular. Since its introduction by Viola and Wells [6] and Collignon et al [2], mutual

information remains the state of the art of multi-modal registration of medical images.

Even though the statistics relating intensities of two multi-modal images is modality-

specific, there were only few attempts to incorporate prior knowledge in such similar-

ity measures. Chung et al. [1] proposed to use as prior information a reference joint

probability distribution of registered images from different modalities. Images are then

aligned by minimizing the Kullback-Leibler distance between an observed and the ex-

pected joint histogram. Leventon et al. [3] compared two methods to model this refer-

ence histogram from a training set of registered images, namely a mixture of Gaussians

and Parzen windowing. The distance to this expected histogram is then estimated by us-

ing log likelihood. In these works however, the use of prior information remains limited

to one reference joint distribution.

Zhou et al.[7] propose an approach based on Adaboost to learn local similarity mea-

sures for anatomic landmarks detection in echocardiac images. It uses an atlas of the left

ventricle containing pairs of local patches with their relative displacements. In a mono-

modal scenario, the method shows that incorporating prior information can improve the

detection results. This approach requires however extensive initial supervision.

Joint histograms of multi-modal images warped with different relative transforma-

tions describe a manifold embedded in the joint distribution space. Our contribution is

to define a similarity measure relating the topology of such manifolds to the registration

error. This yields an application-specific similarity measure, which requires one single

pair of registered images as prior information. Using a set of relative transformations

between the two images, we generate a training set of data points from the correspond-

ing joint histograms and their associated geometric error values defined in section 2.

The similarity measure is then learned by performing a support vector regression on

this data.

The remainder of the paper is organized as follows: Section 2 presents our regres-

sion approach to define an application-specific similarity measure. Section 3 reports

experiments performed in two different and challenging applications in comparison to

classical methods such as mutual information and Kullback-Leibler distance. Results

show that our approach presents a promising alternative for multi-modal registration.

Section 4 concludes the paper and gives an outlook on future work.

2 Methods

2.1 Problem statement

The goal of multi-modal image registration is to identify the geometric transformation

that maps the coordinate system of one modality to the other. Let us consider two 2D

images defined on the domains Ω1 and Ω2 with intensity functions I1 : Ω1 ⊂ R2 → R
and I2 : Ω2 ⊂ R2 → R. The two dimensional case is discussed for better readability,

the extension to three dimensions being straightforward. The registration task can be

defined as a maximization problem, in which we want to estimate the best transforma-

tion T according to a chosen similarity measure S computed on the discrete overlap
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domain Ω = Ω1 ∩ T (Ω2):

T = argmax
T

SΩ(I1, T (I2)). (1)

The joint intensity distribution p(I1, I2) of both images can be evaluated by his-

togramming or parzen windowing. In most of statistical measures, the similarity SΩ is

a mapping from the joint distribution space J into R. While Mutual Information (MI)

gives a measure of the distance between the joint histogram of both images and what

it would be if their intensity distributions were independant, the Kullback-Leibler dis-

tance (KL) [1] evaluates the distance between an observed po and an expected pe joint

histogram:

MI(I1, I2) = D(p(I1, I2)||p(I1)p(I2)) (2)

KL(I1, I2) = D(po(I1, I2)||pe(I1, I2)), (3)

where D in its general form is defined on two histograms p and q as:

D(p||q) =
∑

x

p(x)log
(
p(x)
q(x)

)
. (4)

The statistical relationship relating the intensities of two different multi-modal im-

ages is constrained by the application. With “application”, we mean the combination

of the modalities to relate and the different tissues appearing in the imaged anatomy,

e.g. blood, bones or muscles. Joint histograms of images warped with different relative

transformations describe a manifold M embedded in J which is application-specific.

In [1], Chung et al. makes use of one expected joint histogram, corresponding to one

single reference point on such a manifold. The used Kullback-Leibler divergence is

however not adapted to its topology.

Instead, we propose to model an application-specific similarity Ψ taking into ac-

count how the topology ofM relates to the registration error. By using a set of relative

geometric transformations {Ti}i∈N
between a source and a target image, we sampleM

by the joint histograms JI1,Ti(I2). Each of these “points” is then associated to a geomet-

ric error derived from the corresponding transformation parameters, generating thereby

a set of data points. Finally, the similarity Ψ is defined by performing a regression on

these points. The following section presents how to generate data points to relate this

manifoldM to the geometric error.

2.2 Data points generation

Our objective is to model a similarity Ψ learned on the full manifoldM:

Ψ : M→ R, (5)

which has favorable characteristics for registration purposes, namely convexity, smooth-

ness and the ability to estimate the geometric error. To model an accurate mapping Ψ ,
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the manifold M must be sampled thoroughly as a function of the transformation T ,

whose space is parameterized as follows:

T (tx, ty, θ) where

⎧⎨⎩
tx ∈ [−M,+M ]
ty ∈ [−N,+N ]
θ ∈ [−φ,+φ]

(6)

By sampling the space of transformations, a set {Ti}1≤i≤Q ofQ transformations is gen-

erated. Then, by using a pair of registered images from different modalities, joint his-

tograms are computed according to these {Ti}1≤i≤Q. As illustrated by Fig. 1, each joint

histogram is then associated to a geometric error value. In medical image registration,

the target registration error (TRE) permits the evaluation of error in translation and ori-

entation between corresponding structures or organs appearing in both modalities. The

TRE is computed by comparing the positions of a set of points {pi, 1 ≤ i ≤ P} after

being mapped by the estimated transformation T and by the ground truth transform G:

E(T ) =
1
P

i=P∑
i=1

‖T (pi)−G(pi)‖ . (7)

This procedure permits us to generate following couples:{
(JI1,Ti(I2), E(Ti))

}
1≤i≤Q

, (8)

which we denote {(Ji, Ei)}1≤i≤Q for better readability.

Fig. 1. Our regression approach: learn a similarity Ψ mapping each point of the manifold

M (abtract representation on the left) to a value of the geometric error (on the right).

2.3 Fitting the similarity model through support vector regression

We propose to learn the similarity by approximating the function Ψ with the previously

generated data points. Since this function is a high dimensional non-linear mapping, we

use support vector regression for its ability of modeling complex non-linear functions.

We consider the problem of fitting a similarity function on the set of Q data points

{(Ji, Ei)}1≤i≤Q. The {Ji}, as discrete approximations of the joint intensity distribu-

tions, consist of B × B bins. They are linearized into a vector of dimensionality B2.

Let ϕ be a non-linear mapping fromM into a hidden feature space H with dimension-

ality dim(H) > B2 used to model non-linear relationships between joint histograms
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and their corresponding geometric error values. The mapping Ψ is modeled by the fol-

lowing function:

Ψ(J) = w · ϕ(J) + b, (9)

where w is a linear separator of dimensionality dim(H) and b a bias. The optimal

regression function is then given by the minimum of the following functional [5]:

1
2
‖w‖2 + C

Q∑
i=1

(
ξ+i + ξ−i

)
, (10)

where C controls the flexibility of the model. This functional aims at minimizing the

norm of w and the regression errors on the data points, characterized by the slack vari-

ables ξ+i and ξ−i . The optimal vector w0 can be written as a linear combination of the

training vectors in H with weights {αi}1≤i≤Q:

w0 =
Q∑

i=1

αi ϕ(Ji). (11)

The regression function becomes then:

Ψ(J) =
Q∑

i=1

αi ϕ(Ji) · ϕ(J) + b =
Q∑

i=1

αi K(Ji, J) + b, (12)

where K is the kernel associated to ϕ in H . To handle non-linear relations between

the manifold M and the TRE, K is chosen as a RBF kernel, giving thus the following

similarity model:

Ψ(J) =
Q∑

i=1

αi exp

(
− |Ji − J |2

σ2

)
+ b. (13)

3 Experiments and Results

Our regressed similarity measure is evaluated on two challenging applications for multi-

modal registration: rigid registration of MR-T1 and MR-TOF (Angiography) images of

the carotid artery, and of MR-T1 and SPECT images of the brain. In this paper, we

focus on 2D rigid-body experiments to prove the concept of our novel approach.

This permits in particular to show that the approach is not limited to pairs of images

with a tissue distribution similar to the image pair used for training. Indeed, in the

following experiments, a pair of corresponding images from a 3D dataset is used for

training. The obtained similarity measure is then evaluated on pairs of images taken

from the 3D datasets of the other patients. For statistical relevance, the pairs are chosen

randomly and the tests are repeated. It must be noted that the tissue distribution varies

depending on the randomly chosen slices, which can originate from the neck or from

the head.
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3.1 Experimental Setup

Our similarity measure will be compared to normalized mutual information (NMI) and

Kullback-Leibler distance (KL) in terms of success rate, accuracy and capture range.

We consider a registration experiment as successful when the final target registration

error is inferior to a given threshold te. In fact, this permits to quantify the ability of

an approach to converge in the neighborhood of the right solution. We then define the

accuracy as the mean target registration error on all registered images after the removal

of such outliers. Capture range is evaluated by assessing the success rate as function of

an increasing initial TRE. Knowing the ground truth position of each dataset, an initial

random perturbation is applied to each pair of images according to a given value of

TRE. Experiments are then repeated with an increasing initial target registration error.

The objective of our experiments is to highlight the benefits of a similarity measure

taking advantage of prior information. Since the convergence to the right solution de-

pends on the topography of the search space offered by a similarity measure, we use

a Downhill-Simplex optimizer, that does not require any gradient information. For fair

comparison, all measures have the same number of joint histogram bins (32 × 32) and

are tested in the same conditions.

In both experimental setups T1/TOF and T1/SPECT, a cross-validation of N tests

is performed on a set of P patients. A test consists of one regression step performed

on a random pair of slices from a given patient and one validation step consisting of

P − 1 evaluations performed on the other P − 1 patients. During the regression step,

our similarity measure and the expected joint histogram needed by KL are computed

on the same pair of images. During an evaluation, all measures are tested in the same

conditions on a random pair of slices taken from another patient with the same initial

perturbation. By using 10 initializations with an increasing TRE per evaluation, we

can investigate the ability of each measure to converge towards the right solution and

thereby assess their capture range.

The transformation space is sampled as follows: −40 ≤ tx ≤ +40 (in pixels),

−40 ≤ ty ≤ +40 and −40 ≤ θ ≤ +40 (in degrees) with a step of 4 for each param-

eter, generating thereby 9261 data points. For the choice of the hyperparameters σ and

C, a grid-search has been performed. All experiments are performed with the Spider

environment for MATLAB on an Intel Core 2 Duo CPU 2.40 GHz.

Fig. 2. From left to right: T1 and TOF MR Angiography of the neck of the same patient.

Then T1 and SPECT-Tc images of the brain of a healthy patient

MR-T1 and MR-TOF Angiography images: experiments are conducted on images

(refer to Fig. 2) taken from P = 8 patients (48 pairs of images) with different staging of
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atherosclerosis. Both sequences were consecutively acquired, patients were positioned

on a vacuum pillow and the acquisition was ECG gated to ensure perfect alignment.

Images have a resolution of 128x128 with a pixel size of 2.5mm x 2.5mm. The threshold

te is set to 1cm which corresponds to 4 pixels. A cross-validation of N = 32 tests has

been performed, which then corresponds to N × (P − 1) × 10 = 2240 registration

experiments.

MR-T1 and SPECT-Tc images: experiments are conducted on images (refer to Fig.2)

taken from P = 5 patients (73 pairs of images): a healthy patient, one with a glioma,

one with a carcinoma, one with a stroke and finally one with an encephalopathy. These

already registered datasets are taken from the publicly available Whole Brain Atlas

database. Images have a resolution of 128x128 with a pixel size of 1.67mm x 1.67mm.

The threshold te is set to 1cm which corresponds to 6 pixels. A cross-validation of

N = 40 tests has been performed, which then corresponds to N×(P −1)×10 = 1600
registration experiments.

3.2 Results

The objective of our experiments is to show the benefits of a similarity measure tak-

ing full advantage of prior information. As shown on Fig. 3, the optimal regression

model provides a smooth and convex search space, which is very close to the original

TRE surface to approximate. Moreover, the global optimum has been preserved at the

right position. In fact, smoothness and convexity are crucial characteristics to prevent

the optimizer of being stuck in a local optimum and to ensure its convergence to the

global one. The great advantage of our approach is its ability to model the convexity,

the smoothness and the capture range of the similarity measure. Indeed, its convexity

can be changed by choosing another function of the geometric error. The choice of hy-

perparameters C and σ influences the flexibility of the regression and thus the smooth-

ness of the resulting function. During the regression process, increasing the sampling

range of the transformation space permits to increase the capture range of the trained

similarity. A high capture range is crucial when no good initialization parameters are

available. Results presented in Fig. 3 shows the overall success rate and the final TRE

as functions of the initial TRE. While the success rate of other measures sinks with an

increasing initial TRE, our regressed similarity measure shows a good behaviour. This

highlights its greater capture range and this, for a better accuracy. In the T1-TOF exper-

iments, KL provided once a better accuracy for an initial TRE of 22.5 mm. This comes

from the fact that KL was only successful on three registration experiments: Ψ and MI

were actually better than KL in these specific experiments, but in the displayed results

their accuracy is averaged on many more experiments as they have much higher sucess

rates.

Our method was robust face to different tissue distributions, e.g. coming from pa-

tients affected by different kinds of disease or from different locations of the head that

were not learned during the regression phase. For example, while slices from the top of

the skull contain mostly skin, bone, cerebrospinal fluid, grey and white matter, slices in

the middle of the head also consists of muscles and eyes. This could suggest that the

manifold on which the similarity was learned is not strictly dependent on the anatomy.

This needs however to be extensively studied with further experimentations.
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Fig. 3. From top to bottom: Plot of the similarity Ψ (PSI) for variations in translation

in x and y between −20 and +20 pixels. Plot of the success rate (in percent) and final

TRE (mean and standard deviation in mm) according to an increasing initial TRE. Left

MR-SPECT, right T1-TOF

4 Discussion and Conclusion

In this work, we propose to take advantage of prior information, namely a registered

pair of images, in order to improve results in multi-modal registration. Our contribution

is to define, with a regression approach, a new similarity measure relating the mani-

fold described by joint histograms of two different modalities to the registration error.

Experiments conducted on MR-T1/MR-TOF and MR-T1/SPECT images show that the

presented method is a promising alternative for multi-modal registration. We empiri-

cally demonstrated that these manifolds are not dependant on the choice of the particu-

lar training pair within the dataset. This means that such an adapted application-specific

measure can be defined by using a single pair of manually registered images from the

specific application. Moreover, its robustness to different or new tissue distributions

suggests that such manifolds could be modality-specific. In future work, we will further

study their dependence to the variations of tissue distribution within the images.
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Abstract. Segmentation approaches based on sequential Monte Carlo
Methods deliver promising results for the localization and delineation of
anatomical structures in medical images. Also known as Shape Particle
Filters, they are used for the segmentation of human vertebræ, lungs and
hearts, and are especially well suited to cope with the high levels of noise
encountered in MR data and overlapping structures with ambiguous ap-
pearance in radiographs.
They require a region template of the appearance features which allow to
estimate the confidence in the hypotheses generated during the search.
Currently these templates are created manually, which introduces a bias,
and leads to particularly sub-optimal results in complex anatomy.
In this work we propose a Differential Evolution based Shape Particle
Filter segmentation scheme where the optimal distribution and number
of template regions is derived automatically from a set of training images.
The method adapts to complex data and finds consistent features in the
training examples. Experiments on two medical data sets (radiographs
of metacarpal bones and MRI slices of hearts) show that this yields
considerably higher accuracy with fewer outliers.

1 Introduction

Motivation Statistical methods such as sequential Monte Carlo Methods were
proposed for detection, segmentation [1, 2, 3, 4, 5] and tracking [6, 7, 8] of ob-
jects. A similar approach, called Shape Particle Filters was introduced in [2, 3]
for the segmentation of vertebræ, lungs and hearts. In Fig. 1 an illustration of
a Shape Particle Filter approach is depicted: Based on a global shape model
� This work has been supported by the Austrian National Bank Anniversary Fond

projects COBAQUO and BIOBONE.
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Fig. 1. Flowchart of a Shape Particle Filter. Landmarks are obtained from manually
annotated contours, forming the basis for the generated Shape Model. A region map
based on the shape models mean shape is generated that in turn is used to determine
image region features. Test images are then classified yielding probability maps that
are used in the final image segmentation step.

a class template or labeling map for the following feature extraction is defined
according to the respective medical object of interest (e.g. interior of the contour
and one or more regions within a certain border on the outside). The number
and location of these regions however is currently defined manually. Using these
regions and their corresponding distributions in the feature space particle fil-
tering approaches are used to estimate the most probable point in the shape
parameter space (corresponding to a segmentation of the image) for a given test
image. This is achieved by sampling from the image features according to shape
hypothesis and computing corresponding confidence values / posterior probabil-
ities. Estimating this posterior probabilities over the parameter space allows to
find values of maximum confidence, i.e. to optimize the fit of the model to the
object in the test image.

Particle Filters Particle filtering was introduced with the intention to imple-
ment recursive Bayesian filters [9]. It is also known as Sampling Importance
Resampling (SIR), Bayesian bootstrap filter or sequential Monte Carlo Methods.
In contrast to other filters that use Monte Carlo Methods to get estimates of the
mean and covariance of the posterior, particle filters approximate the complete
posterior. They aim to approximate posterior densities using swarms of points
(so called particles) in a sample space. A weight is assigned to each particle and
using a discrete distribution of the particles the posterior distribution can be
approximated. This results in particle probabilities which are proportional to
the particle weights. Several algorithms exist differing mainly in the way how
the particle swarms evolve and adapt to input data [10].

Contribution In this paper we propose an approach to automatically select the
subregions of the object required to compute the expected feature distributions
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(a) (b) (c) (d)

Fig. 2. Manually predefined region maps (a,c) with five regions and examples of au-
tomatically generated region maps (b,d) with 17 (8 inner and 9 outer) regions for the
metacarpal bones and the hearts.

and the confidences for each shape hypothesis. The automatic region map is
based on the shape of the objects to be classified. Two areas are defined, the
interior of the shape and to constrain the representation to a neighborhood of
the object a corridor on the outside of the shape. The subregions are estimated
for each of the two areas by clustering in feature space.

The optimal number and location of inner and outer regions (clusters) is
found by leave one out cross validation. A comparison of manually predefined
region maps and examples of automatically generated region maps for each of
the processed data sets is shown in Fig. 2. This has several advantages over the
manual choice of template regions: the main feature is a partitioning adapted to
complex but consistent anatomical structures, which hold information relevant
to the segmentation process, but cannot be determined optimally by manual
segmentation. It removes bias and finally it opens the possibility of autonomous
learning approaches, that do not require manual supervision on a training pop-
ulation.

We evaluate our method on radiographs of human metacarpal bones and
MRI slices of human hearts. The results show the drastically improved search
results compared to a manual region definition, with both higher accuracy and
a smaller number of outliers.

Paper Structure Sec. 2 gives a description of the fundamental methods of the
proposed approach, namely the concept of Shape Models 2.1, Differential Evolu-
tion 2.2 and the resulting Shape Particle Filter 2.3. Sec. 3 details the automatic
region estimation and the experiments and results are presented in Sec. 4 followed
by the conclusion and an outlook in Sec. 5.

2 Methods

Shape Particle Filters rely on a model of the objects’ shapes and a means of
estimating the posterior distribution of parameter estimates given an input im-
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age. These are estimated by means of an Markov Chain Monte Carlo (MCMC)
method, where Differential Evolution MCMC is used in this work.

2.1 Shape Models

Objects in images can be represented using statistical models of the objects’
shape. A Point Distribution Model (PDM) [11] constructs a shape model by
computing the significant eigenmodes of a shape population, e. g. assuming a
multivariate Gaussian distribution of the shape parameters.

These shapes consist of a set of n points or landmarks. The points can
have any dimension, but throughout this paper they are considered to be 2-
dimensional. Before modeling the non-rigid shape variation we normalize for
similarity transformations, i. e. translation, rotation and scaling (the pose). Thus
the parameters to define a unique shape in an image are shape and pose param-
eters.

Using this shape information the goal is to build models which provide the
abilities to represent shapes and to generalize to new shapes within the distri-
bution of the shapes in a predefined training set.

The first step to create a training set for shape model generation is to define
landmarks for several objects. To obtain landmarks for a shape usually a human
expert annotates several images containing the corresponding object. Landmarks
are derived from this manually annotated image contours by applying Minimum
Description Length (MDL) [12]. Then a vector vi for all i ∈ 1, ..., NS annotated
shapes for d-dimensional landmarks is defined as

vi = (d11 , ..., d1d
, d21 , ..., d2d

, ..., dn1 , ...dnd
) (1)

The training set is then aligned using Procrustes Analysis, which minimizes∑ |vi − v̄|2, where vi is the ith point position vector and v̄ is the mean of all
vectors.

To be able to generate new shapes out of the training set a parameterized
model v = M(b) of the distribution of the NS point position vectors vi is de-
fined. b is a vector containing the model parameters (Eq. 3). With the help of
this model it is possible to generate new shapes v and to estimate the distribu-
tion p(v) of these new vectors. The model is finally built by applying Principle
Component Analysis (PCA) to the data, yielding eigenvectors e1, . . . , ee with
e = min(nd,NS). Using e∗ < e eigenvectors (thereby neglecting the modes with
small variance, which are considered to model noise only) any shape v within
the subspace spanned by the training set can be represented by:

v ≈ v̄ + Fb (2)

where F = (e1, ..., ee∗) is the basis of the eigenspace and b is a vector of length
e∗ which defines the parameters for the deformable model [13]:

b = FT (v − v̄) (3)
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The resulting model F represents the shape variation of the modeled objects
utilizing a single parameter vector b. Each element of b controls one mode of
shape variation, with the first modes being responsible for the highest variation,
in descending order.

To ensure that the generated shapes are similar to those in the training set
the parameter vectors are always limited to the range ±3

√
λi, where λi is the

eigenvalue and also the variance of the ith parameter bi in the training set.
In addition to these modes the transformations translation, scaling and ro-

tation need to be taken into account. Therefore a new linear parameter vector
t = (sx, sy, tx, ty)T is introduced, controlling rotation θ, scaling s and translation
(tx, ty), with sx = s cos θ − 1 and sy = s sin θ.

Combining the parameter vector of the PCA b and the parameter vector for
translation, rotation and scaling t results in the combined parameter vector

c = (bT , tT ). (4)

2.2 Differential Evolution

We approach particle filtering using the DE-MCMC formulation introduced by
[14], that uses Differential Evolution (DE) [15] for the sampling step in sequential
Monte Carlo Methods. DE is a genetic algorithm and aims to optimize functions
based on populations in parameter space, which in our case is the subspace
(restricted to plausible models) of the model parameters c.

DE is a parallel direct search method that uses Nx d-dimensional parameter
vectors xi (i = 1, ..., Nx) (i.e. Nx d-dimensional Markov chains [14]) as members
of a population Xg for each generation g.

Starting with parameter vectors randomly drawn from the training distri-
bution at generation g = 1, during each generation (g + 1), Nx new parameter
vectors / shape hypotheses xh are then generated by adding the weighted dif-
ference vector between two population members to a third member

xh = x1 + γ(x2 − x3), (5)

where x1,x2,x3 are randomly selected without replacement from the population
Xg and γ is a constant factor weighting the differential variation x2 − x3 (γ =
0.85 in our experiments). If the confidence π(xh) in hypothesis xh is higher
than π(x1), xh replaces x1 in generation Xg+1, otherwise x1 ∈ Xg+1. After
I iterations ensuring convergence (200 in our experiments) the hypothesis /
population member x∗ with the highest confidence is considered to represent
the best solution.

To guarantee a detailed balance of proposal and acceptance with respect to
the fitness function π(.) Eq. 5 is modified to

xh = x1 + γ(x2 − x3) + k (6)

where k is drawn from the normal distribution k ∼ N(0,a) with variance a
small compared to the variance of population Xg [14].
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2.3 Shape Particle Filter

Shape Particle Filters as proposed in [2, 3] contain the following steps. First
the mean shape is derived from hand annotated training images. Then a region
map is manually defined on this mean shape, representing regions which are
presumed to be distinct and of significance to the segmentation process (see
below). An example of these manually defined regions can be seen in Fig. 2(a)
and 2(c). A small corridor (20 pixel for the metacarpal bones and 10 pixel for
the hearts) is created defining the region around the shape. This area outside
the shape contains information about surrounding neighboring structures that
is taken into account during classification.

Local image descriptors (e.g. gaussian derivative filters, Gabor filters [16])
are computed for all training images. The region map is warped back to each
training shape using Thin Plate Spline Warping (TPS) [17], so that for each
region a distribution of the corresponding descriptors/features can be estimated
by sampling. The shape model, the region map and the learnt feature descriptors
for the regions thus constitute the prior knowledge of Shape Particle Filters.

During search on a test image, a k-NN classifier is used to classify the image’s
pixels j ∈ 1 . . . NJ resulting in one region probability map P (j | l) per region l.
The actual segmentation step uses this probabilities to optimize a fitness function
encoding the belief in the segmentation corresponding to a given shape model
parameter vector.

This optimization is performed using particle filtering by importance resam-
pling processes [2, 3], estimating the posterior distribution of the shapes given
the image by means of the following fitness function (Eq. 7). Initially, a ran-
dom set of shapes, the particles, represented by shape parameter vectors ci are
generated according to the distribution of the prior shape model.

The region map is deformed according to the shape parameters and for each
region the cumulative probability is computed by summing up the probabilities
from the corresponding probability map.

By this, a weight can be applied to each particle considering their likelihood,

π(ci) =

∑L
l=1

∑n
j=1 P (j | l)
L

, (7)

where L is the number of regions, n is the number of pixels in the region map
and P (j | l) is the probability of pixel j belonging to region l. New particles are
generated from the current set of particles by weighting them with their likeli-
hood π(ci) and randomly sampling in parameter space around these particles
with probabilities proportional to the weights. While this importance resampling
process is repeated the initial sparse particles evolve into a distribution with high
density around the most likely shapes.
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(a) (b) (c) (d)

Fig. 3. Manually predefined and automatically generated region maps for the
metacarpal bones (a),(b) and the hearts (c),(d). The automatic results show how the
Gabor features are clustered into regions which are considerably different from the ones
chosen by humans.

3 Automatic region map generation

The manual definition of the region map represents the introduction of a strong
bias, as there is no guarantee that their definition is beneficial or at least suited to
the convergence and accuracy of the optimization scheme. In contrast to previous
approaches we thus propose a method which derived an optimal region map
directly from the training image data. It takes into account the discriminative
power of the computed image features and reflects their distribution in the region
map.

Similar to the approach in Sec. 2.3 an average feature vector fi (Gabor Jets)
is computed for each pixel i within the mean shape (as well as within a border
around the mean shape) from the corresponding features fn

i from each training
image n ∈ 1 . . . NS . The task is now to estimate a sensible partition, i. e. region
map, of the inner and outer/border of the mean shape such that the probabilities
P (j | l) of the image classification using this partition convey information which
makes the particle filter converge at a good segmentation. The number of regions
within the mean shape is denoted by Ninner and the number of regions within
the border by Nborder.

First the feature matrix Fn for each training image is extracted. Then the
mean feature matrix

F̄ =
∑N

n=1 Fn

NS
(8)

is calculated from the individual feature maps after they have been warped
onto the mean shape. The area inside the mean shape is clustered into Ninner

regions and the corridor is clustered into Nborder regions. The resulting region
map with L = Ninner + Nborder regions is for training the classifier and finally
for the segmentation step of the Shape Particle Filter.

To obtain the optimal number of regions leave one out cross validation
(LOOCV) is used. For each test shape all 100 possible region number combi-
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k-NN kd-tree+ k-NN linear SVM speed gain vs.
k-NN kd-tree+ k-NN

Metacarpal bones 641.4 363.8 70.5 9.1x 5.2x
Hearts 239.8 134.8 19.9 12.1x 6.8x

Table 1. Mean classification speed over 10 runs for one test image in seconds for the
k-NN, the kd-tree + k-NN and the linear SVM. In the rightmost column the speedup
achieved by using SVMs compared to the other classification algorithms is shown (SVM
times faster than k-NN and kd-tree + k-NN).

(a) (b)

Fig. 4. Example images of the metacarpal bones (a) and hearts (b) data set with both
ground truth and segmentation result. The objects were both automatically localized
in the image and delineated.

nations (Ninner ×Nborder where Ninner, Nborder ∈ 1, . . . , 10) are generated and
the segmentation results are computed. By comparing the segmentation results
for each region pair and selecting those with the minimal landmark error to
ground truth, the optimal number of regions for the region map is determined.
Examples of these automatic region maps and manual region maps are shown in
Fig. 3.

During the segmentation process the pixels of the target test image are clas-
sified using a linear Support Vector Machine (SVM [18, 19, 20, 21]), yielding
probabilities for each pixel for belonging to the L regions. By using linear SVMs
a major speed up compared to a simple k-Nearest Neighbors (k-NN) approach
as well as compared to k-NN in combination with a kd-tree [22] based distance
computation could be achieved (see Tab. 1).

4 Experiments

In this section the experimental setup and results, as well as a discussion of the
proposed results are presented.
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(a) metacarpal bones (b) hearts

Fig. 5. Visualization of the mean landmark error for all evaluated combinations of
region numbers over three LOOCV runs for the metacarpal bones (a) and the hearts
(b). As can be expected, using a too small number of regions results in poor results as
the resulting region probability estimates do not convey enough geometric information
for the optimization.

Setup Evaluation was performed on radiographs of metacarpal bones and on
MRI slices of the heart. The shapes in the data sets were annotated manually
forming the ground truth. For each data set and parameter combination 3NS

segmentation runs were performed, i.e. three full leave-one-out cross validations.
For the first experiment manually predefined region maps and for the second
automatically generated region maps were used as presented in Sec. 3. A SVM
with linear kernel was trained for the classification task. The decision for a
linear kernel was made to achieve a tradeoff between computational performance
and classification result quality. Furthermore the SVM was used to compute
probability estimates instead of definite class labels as required for the particle
filter segmentation. To eliminate all other factors, the identical optimization
scheme using Differential Evolution was used for both experiments, such that
the results illustrate the influence of manual vs. automatic region definition only.
For each resulting segmentation (see Sec. 2) the mean euclidean distance (mean
landmark error) to the ground truth was calculated.

The data sets used for evaluation were 1) 15 radiographs of human metacarpal
bones with the resolution of approximately 500 × 400 pixels each. 2) 14 short-
axis, end-diastolic cardiac MRI slices of the human heart with the resolution of
256 × 256 pixels with manually placed landmarks on the epicardial and endo-
cardial contours [23]. Example images for both data sets including ground truth
and exemplary segmentation results are shown in Fig. 4.

Results In the comparison of the results that were generated using the man-
ual and automatic region maps the main focus was on the landmark error. As
mentioned above the automatic region map leading to the minimal landmark
error was obtained using LOOCV over all region combinations. The resulting
mean landmark errors for all region pairs of the respective data set are visual-
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median mean std

Metacarpal bones manual 10.12 12.51 9.88
auto 4.96 7.21 6.92

Hearts manual 5.80 8.96 11.26
auto 4.36 5.10 3.59

Table 2. Resulting median, mean and standard deviation of the landmark error in
pixel for the metacarpal bones with 12 (5 inner, 7 border) regions and for the hearts
with 18 (9 inner, 9 border) regions in the auto region map (our approach) compared
to the results obtained using the manually defined region map. Note how the accuracy
of the resulting segmentation is considerably increased.

ized in Fig. 5. It can be observed that the results for the automatic regions show
that both the number and location of the manual regions are not sufficient to
capture the spacial feature distribution in the images. In fact for both data sets
good segmentation results were achieved with region combinations from 5 − 9
inner and border regions.

In Fig. 6 boxplots of the resulting landmark errors for all four distinctive runs
(manual vs. automatic region map each for the metacarpal bones and the hearts)
are shown. For the metacarpal bones a auto region map with 5 inner and 7 border
regions and for the hearts a region map with 9 inner and 9 border regions led
to the best segmentation results and therefore to the minimal landmark error.
Therefore the following key values in pixel for the different data sets could be
achieved: The median of the landmark error for the metacarpal bones could
be reduced from 10.12 to 4.96 and for the hearts from 5.8 to 4.36. The mean
landmark error did also decrease for the metacarpal bones from 12.51 to 7.21
and for the hearts from 8.96 to 5.10. The standard deviation of the landmark
error for the metacarpal bones was reduced from 9.88 to 6.92 and for the hearts
from 11.26 to 3.59. A summary of these values is shown in Table 2.

Discussion The quality of the generated results depends on four major factors
besides the used region map. These are the image quality of the used input data
(that in turn influences the extracted image features), overlaps of or no space be-
tween nearby similar structures, the accuracy of the manually annotated ground
truth as well as the accuracy of the used image classification scheme. Input
image quality is used as a collective term for the amount of noise, shadows of
overlapping anatomical structures or other distortions due to the image creation
process.

The approach using automatically generated region maps outperformed the
manually defined version especially on images with low input image quality. Due
to the better incorporation of the feature information of the structure and its
surroundings, the auto region maps lead to more precise classifications and there-
fore to more exact segmentation results. Furthermore the manual region maps
could not provide the necessary level of detail to cope with nearby or overlap-
ping similar structures because of the lack of distinctive regions in crucial image
areas. In particular this was observed on the metacarpal bones data set, where
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Fig. 6. Boxplots of the results for the image segmentation using manually and auto-
matically generated region maps for the metacarpal bones and the hearts data sets.
Using the automatic region estimation results in fewer outliers and higher accuracy,
displaying the effectiveness of the proposed approach.

the main problem arose at the distal bone region i.e. the joint area where ex-
treme narrow inter-bone spaces appeared. A selection of different image features
incorporating local structures or even automatically learned features for these
areas could lead to a better segmentation accuracy.

5 Conclusion

In this work we have shown that using manually defined region maps for shape
particle filtering introduces a bias which reduces segmentation accuracy consid-
erably. By using region maps which are automatically derived through clustering
in the feature space the optimal number and distribution of inner and outer re-
gions is found, leading to substantially increased accuracy, as shown on the two
medical data sets. Furthermore, the laborious estimation of a suitable manual
region map trough trial and error is eliminated, paving the way to rapid ap-
plication of Shape Particle Filters in clinical scenarios. Future work will focus
on the investigation of the optimal selection of feature types for specific target
objects. The method’s extension to 3D will allow to use its capability to localize
and segment anatomical structures to further modalities.
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Abstract. We present a nonparametric, probabilistic mixture model for
the supervised parcellation of images. The proposed model yields seg-
mentation algorithms conceptually similar to the recently developed la-
bel fusion methods, which register a new image with each training image
separately. Segmentation is achieved via the fusion of transferred man-
ual labels. We show that in our framework various settings of a model
parameter yield algorithms that use image intensity information differ-
ently in determining the weight of a training subject during fusion. One
particular setting computes a single, global weight per training subject,
whereas another setting uses locally varying weights when fusing the
training data. The proposed nonparametric parcellation approach capi-
talizes on recently developed fast and robust pairwise image alignment
tools. The use of multiple registrations allows the algorithm to be robust
to occasional registration failures. We report experiments on 39 volu-
metric brain MRI scans with expert manual labels for the white matter,
cerebral cortex, ventricles and subcortical structures. The results demon-
strate that the proposed nonparametric segmentation framework yields
significantly better segmentation than state-of-the-art algorithms.

1 Introduction

Supervised image parcellation (segmentation) tools traditionally use atlases,
which are parametric models that summarize the training data in a single coordi-
nate system [1–9]. Yet, recent work has shown that more accurate segmentation
can be achieved by utilizing the entire training data [10–16], by mapping each
training subject into the coordinates of the new image via a pairwise registration
algorithm. The transferred manual labels are then fused to generate a segmen-
tation of the new subject. There are at least two advantages of this approach:
(1) across-subject anatomical variability is better captured than in a parametric
model, and (2) multiple registrations improve robustness against occasional reg-
istration failures. The main drawback of the label fusion (multi-atlas) approach
is the computational burden introduced by the multiple registrations and the
manipulation of the entire training data.

Early label fusion methods proposed to transfer the manual labels to the
test image via nearest neighbor interpolation after pairwise registration [12, 14].
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Segmentation labels of the test image were then estimated via majority voting.
Empirical results suggested that errors in the manual labeling and in registra-
tion are averaged out during label fusion, resulting in accurate segmentation.
More recent work has shown that a weighted averaging strategy can be used to
improve segmentation quality [11]. The basic idea is that training subjects more
similar to the test subject should carry more weight during label fusion. The
practical advantages of various strategies based on this idea have lately been
demonstrated [11, 13, 16]. Some of these strategies use the whole image to deter-
mine a single, global weight for each training subject [11, 15, 16], whereas others
use local image intensities for locally adapting the weights [11, 13].

This paper presents a novel unified probabilistic model that enables local and
global weighting strategies within a label fusion-like segmentation framework. We
formulate segmentation using MAP, where a nonparametric approach is used to
estimate the joint density on the image intensities and segmentation labels of the
new subject. The proposed framework generalizes a model we recently presented
at MICCAI 2009 [16], which is based on the assumption that the test subject
is generated from a single, unknown training subject. That specific model leads
to a segmentation algorithm that assigns greater importance to the training
subjects that are globally more similar to the test subject and can be viewed as a
particular instantiation of the more general approach presented in this paper. In
addition, the proposed approach further enables two possible variants within the
same framework. First, we present a local mixture model that assumes each voxel
in the test image is generated from some training subject with a uniform prior,
independently of other voxels. This local model yields a pixel-wise weighting
strategy in segmentation. Second, we develop a semi-local mixture model that
relaxes the independence assumption of the local model with a Markov Random
Field prior. This model leads to a weighting strategy where intensity information
in a local neighborhood is pooled in a principled manner.

In related literature, soft weighting of training subjects was recently used
for shape regression [17], where the weights depended on the subjects’ age. The
proposed nonparametric parcellation framework is also parallel to STAPLE [18],
which fuses multiple segmentations of a single subject. In contrast, our frame-
work handles multiple subjects and accounts for inter-subject variability through
registration.

The paper is organized as follows. The next section presents the non-parametric
generative model for image segmentation. In section 3, we discuss three instan-
tiations of the framework. In section 4, we present inference algorithms for these
instantiations. We conclude with experiments in section 5. We report experi-
ments on 39 brain MRI scans that have corresponding manual labels, including
the cerebral cortex, white matter, and sub-cortical structures. Experimental re-
sults suggest that the proposed nonparametric parcellation framework achieves
better segmentation than the existing state-of-the-art algorithms.
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L i I i

Φ (x)i

L(x) I(x)

Fig. 1. Generative model for (L(x), I(x)) given
M(x) = i and (Li, Ii, Φi). Φi is the mapping from
the image coordinates to the template coordinates.
Squares indicate non-random parameters, while cir-
cles indicate random variables. Shaded variables are
assumed to be observed.

2 Theory

Let {Ii} be N training images with corresponding label maps {Li}, i = 1, . . . , N .
We assume the label maps take discrete values from 1 to L that indicate the label
identity at each spatial location. We treat these training images as spatially
continuous functions on R

3 by assuming a suitable interpolator. Let I : Ω �→ R

denote a new, previously unseen test image defined on a discrete gridΩ ⊂ R
3. Let

Φi : Ω �→ R
3 denote the spatial mapping (warp) from the test image coordinates

to the coordinates of the training image i. We assume that {Φi} have been pre-
computed using a pairwise registration procedure, such as the one described in
Section 4.1.

Our objective is to estimate the label map L̂ associated with the test image I.
One common formulation to compute L̂ is via MAP:

L̂ = argmax
L

p(L|I, {Li, Ii, Φi}) = argmax
L

p(L, I|{Li, Ii, Φi}), (1)

where p(L, I|{Li, Ii, Φi}) denotes the joint probability of the label map L and
image I given the training data.

Rather than using a parametric model for p(L, I|{Li, Ii, Φi}), we employ a
non-parametric estimator, which is an explicit function of the entire training
data, not a summary of it. Let M : Ω �→ {1, . . .N} denote an unknown (hidden)
random field that, for each voxel in test image I, specifies the training image Ii
that generated that voxel. Given M , the training data, and warps, and assuming
the factorization depicted in the graphical model of Fig. 1, we can construct the
conditional probability of generating the test image and label map:

p (L, I|M, {Li, Ii, Φi})
=
∏
x∈Ω

p (L (x) , I (x) |M (x) , {Li, Ii, Φi}) (2)

=
∏
x∈Ω

pM(x)

(
L (x) , I (x) |LM(x), IM(x), ΦM(x) (x)

)
(3)

=
∏
x∈Ω

pM(x)

(
L (x) |LM(x), ΦM(x) (x)

)
pM(x)

(
I (x) |IM(x), ΦM(x) (x)

)
, (4)

where pM(x)(L(x), I(x)|LM(x), IM(x), ΦM(x)(x)) is the conditional probability of
(L(x), I(x)) given that voxel x ∈ Ω of the test subject was generated from train-
ing subject M(x). Note that Eq. (4) assumes that (L(x), I(x)) are conditionally
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independent given the membership M(x), corresponding warp ΦM(x) and train-
ing data. Given a prior on M , we can view p(L, I|{Li, Ii, Φi}) as a mixture:

p(L, I|{Li, Ii, Φi}) =
∑
M

p(M)p (L, I|M, {Li, Ii, Φi}) , (5)

where
∑
M denotes the marginalization over the unknown random field M .

Substituting Eq. (4) into Eq. (5) yields:

L̂ = argmax
L

∑
M

p (M)
∏
x∈Ω

pM(x)

(
L (x) |LM(x), ΦM(x) (x)

)
× pM(x)

(
I (x) |IM(x), ΦM(x) (x)

)
. (6)

In the next section, we present instantiations of the individual terms in Eq. (6).

3 Model Instantiation

3.1 Image Likelihood

We adopt a Gaussian distribution with a stationary variance σ2 as the image
likelihood:

pi(I(x)|Ii, Φi(x)) =
1√

2πσ2
exp

[
− 1

2σ2
(I (x)− Ii (Φi (x)))2

]
. (7)

3.2 Label Likelihood

We use the distance transform representation to encode the label prior informa-
tion, cf. [19]. Let Dl

i denote the signed distance transform of label l in training
subject i, assumed to be positive inside the structure of interest. We define the
label likelihood as:

pi(L(x) = l|Li, Φi(x)) ∝ exp(ρDl
i(Φi(x))), (8)

where ρ > 0 is the slope constant and
∑L

l=1 pi(L(x) = l|Li, Φi(x)) = 1, where L
is the total number of labels including a background label. pi(L(x) = l|Li, Φi(x))
encodes the conditional probability of observing label l at voxel x ∈ Ω of the
test image, given that it was generated from training image i.

3.3 Membership Prior

The latent random field M : Ω �→ {1, . . . , N} encodes the local association be-
tween the test image and training data. We place a Markov Random Field (MRF)
prior on M :

p(M) =
1
Zβ

∏
x∈Ω

exp

⎛⎝β ∑
y∈Nx

δ(M(x),M(y))

⎞⎠ , (9)
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where β ≥ 0 is a scalar parameter, Nx is a spatial neighborhood of voxel x,
Zβ is the partition function that only depends on β, and δ(M(x),M(y)) = 1,
if M(x) = M(y) and zero otherwise. In our implementation, Nx includes the
immediate 8 neighbors of each voxel. Similar models have been used in the seg-
mentation literature, e.g. [5, 9], mainly as priors on label maps to encourage
spatially contiguous segmentations. In contrast, we use the MRF prior to pool
local intensity information in determining the association between the test sub-
ject and training data.

The parameter β influences the average size of the local patches of the test
subject that are generated from a particular training subject. In this work, we
consider three settings of the parameter β. For β = 0, the model effectively
assumes that each test image voxel is independently generated from a training
subject, drawn with a uniform prior. β → +∞ forces the membership of all
voxels to be the same and corresponds to assuming that the whole test subject
is generated from a single unknown training subject, drawn from a uniform prior.
A positive, finite β favors local patches of voxels to have the same membership.

The β → +∞ case reduces to a model similar to the one we presented
in [16], except now we make the simplifying assumption that the training data
is apriori mapped to the test subject’s coordinate frame as a preprocessing step.
Due to this simplification, the warp cost in registration plays no role in the
segmentation algorithms we present in this paper. Without this simplification,
however, inference for finite values of β becomes intractable. As demonstrated
in the next section, the resulting inference algorithms allow us to determine
the association between the training data and test subject using local intensity
information.

4 Algorithms

4.1 Efficient Pairwise Registration

To perform pairwise registration, we employ an efficient algorithm [20, 21] that
uses a one-parameter subgroup of diffeomorphisms, where a warp Φ is parame-
terized with a smooth, stationary velocity field v : R

3 �→ R
3 via an ODE [22]:

∂Φ(x,t)
∂t = v(Φ(x, t)) and initial condition Φ(x, 0) = x. The warp Φ(x) = exp(v)(x)

can be computed efficiently using scaling and squaring and inverted by using the
negative of the velocity field: Φ−1 = exp(−v) [22].

We impose an elastic-like regularization on the stationary velocity field:

p(Φ = exp(v)) =
1
Zλ

exp

⎡⎣−λ∑
y∈Ω

∑
j,k=1,2,3

( ∂2

∂x2
j

vk(x)
∣∣∣
x=y

)2

⎤⎦ , (10)

where λ > 0 is the warp stiffness parameter, Zλ is a partition function that de-
pends only on λ, and xj and vk denote the j’th and k’th component (dimension)
of position x and velocity v, respectively. A higher warp stiffness parameter λ
yields more rigid warps.
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To derive the registration objective function, we assume a simple additive
Gaussian noise model, consistent with the image likelihood term described in
Section 3.1. This model leads to the following optimization problem for register-
ing the i-th training image to the test subject:

v̂i = argmin
v

∑
y∈Ω

⎡⎣(I(y)− Ii(exp(v)(y)))2 + 2λσ2
∑

j,k=1,2,3

(
∂2

∂x2
j

vk(x)

∣∣∣
x=y

)2

⎤⎦ , (11)

where σ2 is the stationary image noise variance, and Φi � exp(v̂i). To solve
Eq. (11), we use the bidirectional log-domain Demons framework [20], which de-
couples the optimization of the first and second terms by introducing an auxil-
iary transformation. The update warp is first computed using the Gauss-Newton
method. The regularization is achieved by smoothing the updated warp field. It
can be shown that the smoothing kernel corresponding to Eq. (10) can be ap-
proximated with a Gaussian; K(x) ∝ exp(−α∑i=1,2,3 x

2
i ), where α = γ

8λσ2 and
γ > 0 controls the size of the Gauss-Newton step.

4.2 Segmentation Algorithms

Here, we present algorithms to solve the optimization problem of Eq. (6) for the
three cases of β in the model presented in Section 3.

4.3 Global Mixture

First, we consider β → +∞, which is equivalent to a global mixture model, where
the test subject is assumed to be generated from a single, unknown training
subject. In this case, the segmentation problem in Eq. (6) reduces to

L̂ = argmax
L

N∑
i=1

∏
x∈Ω

pi(L(x)|Li, Φi(x))pi(I(x)|Ii, Φi(x)). (12)

Eq. (12) cannot be solved in closed form. However, an efficient solution to this
MAP formulation can be obtained via Expectation Maximization (EM). Here,
we present a summary.

The E-step updates the posterior of the membership associated with each
training image:

m
(n)
i ∝

∏
x∈Ω

pi(I(x)|Ii, Φi(x))pi(L̂(n−1)(x)|Li, Φi(x)), (13)

where L̂(n−1)(x) is the segmentation estimate of the test image from the previous
iteration and

∑
i m

(n)
i = 1. The M-step updates the segmentation estimate:

L̂(n)(x) = argmax
l∈{1,...,L}

N∑
i=1

m
(n)
i log (pi(L(x) = l|Li, Φi(x))) . (14)
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The E-step in Eq. (13) determines a single membership index for the entire
training image, based on all the voxels. The M-step in Eq. (14) performs an
independent optimization at each voxel x ∈ Ω; it determines the mode of a
length-L vector, where L is the number of labels. The EM algorithm is initialized
with m

(1)
i ∝ ∏x∈Ω pi(I(x)|Ii, Φi(x)) and iterates between Equations (14) and

(13), until convergence.

4.4 Local Mixture: Independent Prior

The second case we consider is β = 0, which corresponds to assuming a voxel-
wise independent mixture model with a uniform prior on M :

p(M) =
1

N |Ω|
, (15)

where |Ω| is the cardinality of the image domain, i.e., the number of voxels. It
is easy to show that the segmentation problem reduces to

L̂(x) = argmax
l∈{1,...,L}

N∑
i=1

pi(L(x) = l|Li, Φi(x))pi(I(x)|Ii, Φi(x)), (16)

where the image and label likelihood terms in the summation can be computed
using Eqs. (7) and (8). The optimization problem can be solved by simply com-
paring L numbers at each voxel.

4.5 Semi-local mixture: MRF Prior

Finally, we consider a finite, positive β. This leads to an MRF prior, which
couples neighboring voxels and thus the exact marginalization of Eq. (6) becomes
computationally intractable. An efficient approximate solution can be obtained
using variational mean field [23]. The main idea of variational mean field is to
approximate the posterior distribution of the membership p(M |I, L, {Ii, Li, Φi}),
with a simple distribution q that is fully factorized:

q(M) =
∏
x∈Ω

qx(M(x)). (17)

The objective function of Eq. (6) can then be approximated by an easier-to-
optimize lower bound, which is a function of q. This approximate problem can
be solved via coordinate-ascent, where the segmentation L and approximate
posterior q are updated sequentially, by solving the optimization for each variable
while fixing the other. One particular formulation leads to a straightforward
update rule for L:

L̂(n)(x) = argmax
l∈{1,...L}

N∑
i=1

q(n−1)
x (M(x) = i) log pi(L(x) = l|Li, Φi(x)), (18)
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where q(n−1) is an estimate of the posterior at the (n− 1)’th iteration. Eq. (18)
is independent for each voxel and entails determining the mode of a length-L
vector. For a fixed segmentation estimate L̂(n)(x) the optimal q is the solution
of the following fixed-point equation:

q(n)
x (M(x)) ∝ pM(x)(I(x)|IM(x), ΦM(x)(x))

× pM(x)(L̂(n)(x)|LM(x), ΦM(x)(x)) exp

⎛⎝β ∑
y∈Nx

q(n)
y (M(x))

⎞⎠ , (19)

and
∑

i q
(n)
x (M(x) = i) = 1. We solve Eq. (19) iteratively. The variational mean

field algorithm alternates between Eqs. (19) and (18), until convergence.

5 Experiments

We validate the proposed framework on 39 T1-weighted brain MRI scans of di-
mensions 256 × 256 × 256, 1mm isotropic. Each MRI volume is an average of
3-4 scans and was gain-field corrected and skull-stripped. These volumes were
then manually delineated by an expert anatomist into left and right White Mat-
ter (WM), Cerebral Cortex (CT), Lateral Ventricle (LV), Hippocampus (HP),
Thalamus (TH), Caudate (CA), Putamen (PU), Pallidum (PA) and Amygdala
(AM). We use volume overlap with manual labels, as measured by the Dice
score [24], to quantify segmentation quality. The Dice score ranges from 0 to 1,
with higher values indicating improved segmentation.

5.1 Setting Parameters Through Training

The proposed nonparametric parcellation framework has two stages with several
input parameters. The registration stage has two independent parameters: γ that
controls the step size in the Gauss-Newton optimization and α that determines
the smoothness of the final warp. The segmentation stage has two additional
input parameters: σ2, which is the intensity variance of the image likelihood in
Eq. (7) and the slope ρ of the distance transform uses to compute the label prior
in Eq. (8). Furthermore, the semi-local model of Section 4.5 has a non-zero, finite
β parameter.

Nine subjects were used to determine the optimal values of these parameters.
First, 20 random pairs of these nine subjects were registered for a range of values
of γ and α. Registration quality was assessed by the amount of pairwise label
overlap and used to select the optimal (γ∗, α∗) pair.

We used the optimal (γ∗, α∗) pair to register all 72 ordered pairs of the nine
training subjects. We performed nine leave-one-out segmentations using both
the global and local models to determine the corresponding optimal pairs of σ2

and ρ. The optimal pair for the local model was then used to determine the
optimal value for β in the semi-local model. The optimal parameter values were
finally used to segment the remaining 30 subjects.
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Fig. 2. A typical segmentation obtained with the local mixture model.

5.2 Benchmarks

The first benchmark we consider is the whole-brain parcellation tool available
in the Freesurfer software package [25]. The Freesurfer parcellation tool uses a
unified registration-segmentation procedure that models across-scanner intensity
variation [2, 3]. We consider this as a state-of-the-art benchmark, since numerous
imaging studies across multiple centers have shown Freesurfer’s a robustness and
accuracy as a segmentation tool.

As a second benchmark, we use our implementation of the Label Fusion
algorithm [12, 14]. We employ the pairwise registrations obtained with (γ∗, α∗)
to transfer the labels of the training subjects via the trilinear interpolation of the
probability maps, obtained by assigning 1 to entries corresponding to the manual
labels and zero elsewhere. Segmentation is then computed through majority
voting at each voxel. We use trilinear interpolation instead of nearest neighbor
interpolation because we find that trilinear interpolation yields better results.

5.3 Results

We report test results for the 30 subjects not included in the group used for
setting the algorithm parameters γ, α, σ2, ρ, and β. For each test subject, we
treated the remaining subjects as training data in a cross-validation evaluation.

Fig. 2 illustrates a typical automatic segmentation result obtained with the
local mixture model and overlaid on the MRI volume. Fig. 3 shows box-plots
of Dice scores for the two benchmarks and the proposed non-parametric par-
cellation algorithms. Table 1 provides the mean Dice scores averaged over all
subjects and both hemispheres. Fig. 4 provides an overall comparison between
the average dice scores achieved by the algorithms.

On average, the local and semi-local mixture models yield better segmenta-
tions than the global mixture model, mainly due to the large improvement in the
white matter, cerebral cortex and lateral ventricles, the segmentation of which
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Fig. 3. Boxplots of Dice scores for Freesurfer (red), Label Fusion (yellow), the global
mixture model (green), the local mixture model (blue) and the semi-local mixture
model (purple). Top row is left hemisphere. Bottom row is right hemisphere. Medians
are indicated by horizontal bars. Boxes indicate the lower and upper quartiles and
vertical lines extend to 1.5 inter-quartile spacing. ‘+’s indicate outliers.
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Fig. 4. Average Dice scores for each algorithm (FS:
Freesurfer, LF: Label Fusion, Global: Global Mix-
ture, Local: Local Mixture, and Semi-Local: MRF-
based model). Error bars show standard error. Each
subject and ROI was treated as an independent sam-
ple with an equal weight.

clearly benefits from the additional use of local intensity information. A paired
t-test between the local and semi-local models reveals that a statistically signif-
icant improvement is achieved with the MRF model that pools local intensity
information. Yet, this improvement is overall quite modest: about 1% per ROI.

As discussed earlier, the global mixture model is similar to that of [16], except
that [16] incorporates registration into the model. Despite this, we find that both
algorithms achieve similar segmentation accuracy (results not shown).

A paired sample t-test implies that the difference in accuracy between the
proposed semi-local mixture model and Freesurfer is statistically significant (p <
0.05, Bonferroni corrected) for all ROIs, except the cerebral cortex and right
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Table 1. Comparison of average dice scores. Boldface font indicates best scores for
each structure. As a reference, the last row lists approximate average volumes.

WM CT LV HP TH CA PU PA AM

Freesurfer 0.92 0.85 0.87 0.84 0.88 0.85 0.85 0.80 0.75
Label Fusion 0.85 0.66 0.84 0.77 0.86 0.80 0.86 0.81 0.75

Global Mixture 0.88 0.77 0.87 0.83 0.90 0.84 0.89 0.83 0.81
Local Mixture 0.93 0.84 0.90 0.86 0.90 0.86 0.88 0.82 0.82

Semi-local Mixture 0.93 0.86 0.91 0.87 0.91 0.87 0.89 0.83 0.82

Volumes (×103mm3) 450 448 25 7 14 7 10 3 3

Table 2. Approximate average run-time to segment one test subject (in CPU hours).

Freesurfer Label Fusion Global Mixture Local Mixture Semi-local Mixture

10 24 32 24 40

Caudate, where the two methods yield comparable results. The same results are
obtained when comparing the local mixture model and Freesurfer.

Compared to the Label Fusion benchmark, the nonparametric parcellation
algorithms (global, local and semi-local) yield significantly better segmentation
(paired sample t-test, p < 0.05, Bonferroni corrected) in all regions, except
Pallidum and Putamen, where the improvement over Label Fusion does not
reach statistical significance. We note, however, that the results we report for our
Label Fusion implementation are lower than the ones reported in [12]. This might
be due to differences in the data and/or registration algorithm. Specifically,
normalized mutual information (NMI) was used as the registration cost function
in [12]. Entropy-based measures such as NMI are known to yield more robust
alignment results. We leave a careful analysis of this issue to future work.

Table 2 lists the average run-times for all five algorithms. The parametric
atlas-based Freesurfer algorithm is the fastest, mainly because it needs to com-
pute only a single registration. The remaining algorithms take up more than 20
hours of CPU time on a modern machine, most of which is dedicated to the
many registrations performed with the training data. The two iterative algo-
rithms that solve the global mixture and semi-local mixture models (EM and
variational mean field, respectively) require significantly longer run-times. The
local-mixture model, on the other hand, requires minimal computation time once
the registrations are complete, since it simply performs a voxelwise weighted av-
eraging. Its run-time is similar to that required by Label Fusion.

6 Conclusion

This paper presents a novel, nonparametric mixture model of images and label
maps, that yields accurate image segmentation algorithms. The resulting algo-
rithms are conceptually similar to recent label fusion (or multi-atlas) methods
that utilize the entire training data, rather than a summary of it, and register the
test subject to each training subject separately. Segmentation is then achieved
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by fusing the transferred manual labels. In the proposed framework, similarities
between the test image and training data determine how the transferred labels
are weighed during fusion. As we discuss in this paper, different settings of a
model parameter yields various weighting strategies. Our experiments suggests
that a semi-local strategy that is derived from an MRF model that encourages lo-
cal image patches to be associated with the same training data provides the best
segmentation results. We also show that a computationally less expensive local
strategy that treats each voxel independently leads to accurate segmentations
that are better than the current state-of-the-art.

We leave an investigation of various registration algorithms within the pro-
posed framework to future work. It is clear that alternative strategies can be
used to improve the alignment between the training data and test subject. For
example, one could use a richer representation of diffeomorphic warps, cf. [4],
or a more sophisticated registration cost function, cf. [12]. Since any multi-atlas
segmentation algorithm will be robust against occasional registration failures,
whether a better alignment algorithm will lead to more accurate segmentation
remains an open question.
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