Offshore Wind Farm Clusters - Towards new integrated Design Tool

Hasager, Charlotte Bay; Réthoré, Pierre-Elouan; Peña, Alfredo; Hansen, Kurt Schaldemose; Badger, Jake; Schepers, J.G.; Cantero, E.; Faiella, L.M.; Iuga, D.; Giebel, Gregor

Total number of authors:
23

Publication date:
2013

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
In EERA DTOC testing of existing wind farm wake models against four validation data test sets from large offshore wind farms is carried out. This includes Horns Rev-1 in the North Sea, Lillgrund in the Baltic Sea, Roedsand-2 in the Baltic Sea and from 10 large offshore wind farms in Northern European Seas using satellite remote sensing.

The project builds on already established design tools from the project partners and possibly third parties models. The wake models have been tested in two wake bench tests. Furthermore, the project focuses on grid integration and energy yield.

The presentations at the side-event will highlight the results of wake model tests on wake loss calculated by models: WAsP/Park, DWM & RDWM, FUGA, EllipSys LES, WRF with EWP(DTU), FarmFlow, Farm-Farm, LES AD/AL (ECN), CRES-Flow RANS AD and CRES-farm flowNS (CRES), RESWFYield WRF and Ainslie (RES), CFD OpenFoam RANS AD, WRF and SKIRON (CENER), VENTOS (UPORTO) and WRF (CIEMAT). The wake models include engineering models, linearized CFD, non-linear CFD models, and coupled meso- and micro-scale models.

The overall tool including energy yield and uncertainty will be presented and the electrical issues outlined. The project includes design tools for the analysis of variability and predictability of power feeding with wind farm clusters, for grid planning and for system services provided by clusters with grid code compliance, and electrical components. EERA DTOC will use future scenarios on offshore clusters relevant for developers and strategic planners to demonstrate the design tool.

The overall aim is to produce an efficient, easy to use and flexible tool - to facilitate the optimised design of individual and clusters of offshore wind farms.