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Abstract

Techniques for fast, non-destructive characterization of the microstructure of
materials using synchrotron X-ray radiation have in recent years become an im-
portant tool in materials science. The non-destructive nature of the techniques
allows for time-resolved characterization of three-dimensional microstructures,
i.e. direct probing of the evolution of speci�c microstructural features.

Synchrotron X-ray radiation techniques have in the present work been em-
ployed for experimental characterization of microstructural evolution in individ-
ual grains during isothermal annealing: For a study of individual grains during
recrystallization, where the recrystallization kinetics of individual grains and
the temperature dependence of the recrystallization rate is examined, and for
a study of grain structure and grain growth, where growth predictions are put
forth in terms of the grain size and topology of individual grains, and compared
to the observed growth of a small number of grains.

A phase-�eld model has been developed and implemented e�ciently for par-
allel execution on computer clusters for simulation of a third annealing phe-
nomenon: Coupled grain growth and coarsening in polycrystalline, dual-phase
materials, under phase ratio conserving conditions. This is used to investigate
the microstructural evolution in a 50/50 volume ratio material and in a 40/60
volume ratio material by large-scale three-dimensional simulations, in both liq-
uid/liquid and polycrystalline/polycrystalline states. These are used to make
general predictions of the coarsening kinetics of polycrystalline, dual-phase ma-
terials, speci�cally the coarsening mechanism, steady state distributions of grain
size and topology, and interface morphology.
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Resum�e

3D unders�gelser af individuelle korns v�kst kinetik

Teknikker til hurtig, ikke-destruktiv karakterisering af materialers mikrostruk-
tur ved hj�lp af synkrotron R•ontgen str�aling er i de senere �ar blevet et vigtigt
v�rkt�j til materialeforskning. Disse teknikkers ikke-destruktive natur tillader
tidsopl�st karakterisering af tre-dimensionelle mikrostrukturer, dvs. direkte un-
ders�gelser afspeci�kke mikrostrukturelle elementers tidsudvikling.

Synkrotron R•ontgen str�alingsteknikker er i dette Ph.D. projekt belevet an-
vendt til eksperimentel karakterisering af individuelle korns mikrostrukturelle
udvikling under isoterm varmebehandling: Til en unders�gelse af rekrystallisa-
tion, hvor individuelle korns rekrystallisationskinetik og rekrystallisationsrates
temperaturafh�ngighed blev unders�gt, og til en unders�gelse af kornstruktur
og kornv�kst, hvor v�kstforudsigelser blev beregnet ud fra individuelle korns
st�rrelser og topologi. Disse forudsigelser blev sammenlignet med v�kst ob-
serveret i et lille antal korn.

En phase-�eld model blev udviklet og implementeret til e�ektiv afvikling p�a
computer klynger til simulation af et tredie varmebehandlingsf�nomen: Koblet
kornv�kst og coarsening (da: forgrovning) i polykrystallinske, to-fase materi-
aler, under forhold der bevarer fasernes rumfang. Denne blev anvendt til un-
ders�gelser af den mikrostrukturelle udvikling i materialer med fase forholdene
50/50 og 40/60 vha. tre-dimensionelle simulationer af materialer i b�ade 
y-
dende/
ydende og polykrystallinsk/polykrystallinsk tilstande. Disse blev brugt
til at fremf�re generelle forudsigelser om polykrystallinske to-fase materialers
v�kst kinetik, mere speci�kt v�kst mekanismen, fordelinger af kornst�rrelser
og topologi under dynamisk ligev�gt, og fasegr�nsemorfologi.
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Chapter 1

Introduction

The microstructure of materials is known to a�ect a wide range of their prop-
erties: Strength, toughness, resistance to corrosion and fatigue, electric and
magnetic susceptibility, to name a few. An understanding of the relationship
between processing techniques and the resulting microstructure is therefore im-
portant for the development and understanding of materials with properties
that are tailored towards speci�c purposes.

Knowledge of the true three-dimensional microstructure is recognized as impor-
tant, as e.g. size and morphology of individual microstructural features may
not be deduced from two-dimensional cross sections with stereological meth-
ods without introducing assumptions [1]. Three-dimensional characterization of
bulk materials has historically been di�cult, since most materials of interest are
opaque to visible light. Serial sectioning provides a means of three-dimensional
characterization through a series of two-dimensional characterizations: Layers
of material is successively removed, followed by characterizations of the newly
formed surfaces using whichever characterization technique is most appropriate
for the problem at hand, such as e.g. optical microscopy or scanning electron
microscopy (SEM), which may also be combined with electron back scatter
di�raction (EBSD) microscopy. Serial sectioning has been automated with fo-
cused ion beam (FIB) microscopes [2] and with robotic setups, e.g. [3], and may
thus characterize three-dimensional microstructures fast, and with high spatial
resolution, but the techniques are inherently destructive.
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Non-destructive three-dimensional characterization may be accomplished by
neutron scattering experiments at a purpose-built nuclear reactor, or a spal-
lation neutron source. Neutron scattering e.g. provides unique possibilities for
characterization of magnetic [4], and biological [5] materials, but for microstruc-
tural investigations that require � m spatial resolutions, X-ray photons produced
at a modern synchrotron light source may be a more appropriate tool [6]: The

ux of X-ray photons can be orders of magnitude higher than the corresponding

ux of neutrons, resulting in signi�cantly faster characterization. Hard X-rays,
here meaning photon energiesE & 50 keV, has appreciable penetration depths
(e.g. 5 mm in steel, and considerably more in lighter materials [7]), and may
therefore be employed to characterize the microstructure of samples of dimen-
sions that are orders of magnitude larger than the typical size of microstructural
features, which are typically measured in units of� m. The introduction of the
dedicated three-dimensional X-ray di�raction (3DXRD) microscope at the Eu-
ropean Synchrotron Radiation Facility (ESRF) as a joint venture with Ris�
National Laboratory in 2000 [8] provided a novel method for characterization of
microstructural features of polycrystalline materials with � m resolution using
synchrotron X-ray radiation. Since then, a number of X-ray techniques have
been developed. Some of these methods provide direct insight into the mor-
phology of individual microstructural features, while others must be coupled
with tomographic reconstruction methods [9] to extract this knowledge.

The strength of non-destructive characterization is that it allows for the direct
investigation of microstructural evolution. This is best appreciated in contrast
with destructive characterization: Using destructive techniques, the usual exper-
imental approach would be to prepare a number of samples identically, inducing
varying degrees of microstructural evolution, and characterizing the samples.
This means that insight into microstructural evolution must be inferred by com-
paring and contrasting characterizations of di�erent samples, and so continuity
is lost: When a microstructural feature of interest has been observed, no obser-
vations of how and from what that feature evolved may have been performed,
and observations of how that feature would continue to evolve during continued
microstructural evolution are likewise impossible. With non-destructive charac-
terization techniques, the evolution of microstructural features of interest may
be directly probed. If the data acquisition is su�ciently fast compared to the
evolution of the microstructural features of interest, it may even be possible, i.e.
if the experimental setup allows, to observe the evolutionin situ .

Theoretical predictions of microstructural evolution is done with models, which
are usually designed to reproduce certain experimentally observed behaviours.
Models of the evolution of complex microstructures can only in the simplest
cases be treated analytically. In general, the models must be solved iteratively
by a computer. Simulations of three-dimensional microstructural evolution on
mm length scales, and time scales su�cient for considerable microstructural
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evolution are computationally intensive. However, models where interactions
between simulated microstructural elements are localized to some degree may
be executed e�ciently in parallel on computer clusters. As the computational
power of computer clusters continue to increase, so does the feasible length
and time scales of simulations, and in recent years, results from large-scale
simulations of microstructural evolution on the mesoscale have become possible
[7].

Non-destructive three-dimensional characterization of microstructures using syn-
chrotron radiation, and large-scale simulations of microstructural evolution may
each provide important insight in their own right. A combination of the two
approaches, however, provide unique opportunities [7]: As the non-destructive
nature of the techniques allows for characterization of the same sample at vary-
ing degrees of microstructural evolution, these experimental techniques may be
used to generate initial conditions for large-scale simulations of microstructural
evolution, and by comparison of simulated and experimentally determined mi-
crostructural evolution, the validity of the employed model may be gauged.
Such a comparison also conceivably allows for tuning of those model parame-
ters that are not directly related to measurable quantities, thereby increasing
the correspondence between simulation output and the experimental character-
ization in an iterative manner. Furthermore, hypotheses regarding the physical
mechanisms responsible for microstructural evolution may be examined, as these
mechanism may often be included in models as seen �t, their relative importance
varied, and simulation output compared to experimental characterizations. If
the model is found to reproduce experimentally observed microstructural evo-
lution with a high degree of �delity, simulations may be used as guidance for
future experiments.

1.1 Overview of this text

This text presents experimental synchrotron X-ray radiation methods for three-
dimensional microstructural characterization. These are employed to study the
evolution of individual grains during isothermal annealing due to di�erent driv-
ing forces: During recrystallization, where new, almost defect-free grains nu-
cleate and grow in a deformed matrix, driven by the energy stored plastically
in the matrix during deformation [10], and during grain growth, where a fully
recrystallized microstructure evolves by grain boundary migration to decrease
the total interfacial area, driven by the energy stored in the grain boundaries
[11].

Two experimental synchrotron X-ray methods were also employed to charac-
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terize the microstructural evolution of a dual-phase steel during isothermal an-
nealing with conserved phase ratio. This microstructural evolution may be
described as a combination of grain growth, i.e. migration of grain boundaries
separating grains of same phase, and coarsening, which here is taken to be the
reduction of interphase interfacial area through long-range di�usion of mass.
This combination is sometimes referred to ascoupled grain growth and coars-
ening in the literature, and this nomenclature shall be kept. The experimental
characterizations were to be coupled to large-scale three-dimensional phase-�eld
simulations of microstructural evolution, but this coupling could unfortunately
not be achieved, as segmentation and reconstruction of the experimental data
from one of the methods could not be accomplished satisfactorily. This is ex-
plained in further detail in chapter 5. The phase-�eld model was developed,
implemented, and tested during the failed attempts at segmentation and re-
construction, and was found to reproduce the intended physical behaviour. It
has therefore been employed to make more general predictions about coupled
grain growth and coarsening in dual-phase materials with conserved phase ra-
tios, without experimental veri�cation.

This text is organized as follows:

Chapter 2 Synchrotron X-ray radiation for characterization of micro-
structure contains descriptions of four synchrotron radiation methods em-
ployed during this Ph.D. project, including sketches of the underlying physics.
It is important to note that these methods have merely been employed, but not
subjects of original research.They are presented here for completeness.

Chapter 3 Recrystallization kinetics in cold-rolled aluminium presents
a time resolvedin situ study of the recrystallization kinetics of individual grains
in cold-rolled aluminium and the temperature dependence of the recrystalliza-
tion rate of these by synchrotron X-ray radiation. The non-destructive nature
of the characterization technique is crucial for examining the deviations from
mean behaviour of individual grains, and for determining activation energies for
recrystallization of individual grains. A simple model of recrystallization of a
single grain is employed to support a hypothesis of the in
uence of the deformed
microstructure on the observed recrystallization kinetics.

Chapter 4 Grain topology and grain growth in � titanium presents
the application of a synchrotron X-ray radiation method to characterization of
the grain structure of a titanium alloy. Growth predictions are put forth by
application of the three-dimensional Von Neumann-Mullins equation presented
by MacPherson and Srolovitz in 2007 [12], and these predictions are examined
statistically in terms of topology and grain size. Grain growth was induced
through an annealing step, and the grain structure characterized a second time.
The observed growth of a small number of individual grains is compared to the
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theoretically predicted growth rate.

Chapter 5 Coupled grain growth and coarsening of dual-phase ma-
terials presents a phase-�eld model of coupled grain growth and coarsening in
polycrystalline dual-phase materials with conserved phase fractions, along with
details of the computer implementation. Results from four simulations with
"arti�cial" initial conditions are presented: Two 50/50 volume ratio, and two
40/60 volume ratio simulations, one of each being in a liquid/liquid state, and
the other of each being in a polycrystalline/polycrystalline state. The topology
and morphology of the simulation output is examined.

It is on the work detailed in chapter 5 that the main emphasis of this text is
placed.



6 Introduction



Chapter 2

Synchrotron X-ray radiation
for characterization of

microstructure

A beam of X-rays from an insertion device at a synchrotron light source is
with good approximation a cone with a very low angular divergence, typically
< 0:1 mrad. The distance between the source (insertion device) and the sample
stage may be very long,> 50 m, and the 
ux vastly higher than that which
may be produced by current laboratory sources [13]. The X-ray energy may
be varied substantially: At the materials science beamline ID11 at the Euro-
pean Synchrotron Radiation Facility (ESRF), the energy may be varied between
29 keV and 140 keV as of November 2011 [14], corresponding to wavelengths
between 0:43 �A and 0:09 �A. This combination of a small beam size and the
signi�cant penetration power of the high energy, high 
ux X-rays makes this
radiation well suited for several X-ray techniques for fast, non-destructive char-
acterization of bulk microstructures.

A vast number of di�erent X-ray methods and algorithms to extract microstruc-
tural information from the acquired data exist, and the development of new, as
well as improvement on existing, techniques and algorithms are very active ar-
eas of research. This is not the focus of the present work. Rather, four known
techniques have been employed for microstructural characterization of di�erent
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Figure 2.1: A schematic of the common experimental setups for microstruc-
tural characterization with hard X-rays employed in present work. The beam is
directed along the x-axis. The sample-detector distanced may be varied.

systems. These will be described in the rest of this chapter. Complete treat-
ments of the techniques and the underlying physics are impossible in the scope
of this text. The reader is referred to [13] for a general introductory treatment of
X-ray physics including synchrotron radiation, and to [15] for a comprehensive
treatment of X-ray di�raction.

The four employed techniques have similar experimental setups: A sample is
illuminated with hard X-rays, and two-dimensional images of the resulting in-
tensity distribution are acquired with an area detector placed downstream from
the sample and centered on the beam. A sketch of the common setup is shown in
�gure 2.1, where the coordinate system is indicated. The sample is then rotated
a �xed angle about the vertical ! -axis, and another image is acquired (or alter-
natively, the image may be acquired during the rotation), and this is repeated for
the desired angular range. The main di�erence between the experimental setups
are the sample-detector distances. The images (or projections), are then used
to reconstruct the microstructural features of interest in the sample through
tomographic reconstruction algorithms for three of the four techniques. The
current bottleneck for these methods is the spatial resolution of the detectors,
which is around � 0:5 � m [8].

The methods employed may be divided into two classes: Phase methods (note
that "phase" is in reference to the phase of the X-ray wave) of section 2.1, which
are sensitive to variations in electron density, and Bragg di�raction methods of
section 2.2, which are sensitive to the crystallographic orientations in the sample.
The two classes thus exploit di�erent physical properties of the interaction of
X-rays with matter. The application of these techniques to speci�c physical
systems and results thereof are presented in the following chapters of this work.
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Note that the time dependence of the X-ray wave function is unimportant for
the present applications, and so will be suppressed in the following.

2.1 Phase methods

A propagating X-ray wave in the absence of Bragg di�raction may experience
attenuation, phase shifts and refractions. These phenomena are conveniently
described in terms of the complex refractive indexn, which for X-rays are con-
ventionally written as

n = 1 � � + i� (2.1)

and n = 1 only in vacuum. The refractive index decrement � may be expressed
as [16]

� =
r 0N� 2

2�
� 1:3 � 10� 6�� 2 (2.2)

where r 0 is the classical electron radius,N the electron density, and � is the
X-ray wavelength, which in the approximate expression must be speci�ed in�A,
and � is the density of the material speci�ed in g=cm3. This gives values of
� � 10� 6 � 10� 5 for typical materials, so the real part of n is always less than,
but close to unity.

As a beam travels between domains of di�erent refractive index, an angular
deviation may occur, as described e.g. by Snell's law [17]. The refractive angular
deviations in going from vacuum into a material at non-grazing conditions are
typically of the order of � [18], and the angular deviations experienced while
travelling through a sample are typically even lower. All angular deviations
will therefore be assumed su�ciently small so as to be unimportant during
propagation through a sample. This assumption is argued to be justi�ed up to
sample sizes of� 1 cm with X-ray wave lengths of 1 �A and a detector resolution
of 1 � m in [18].

With the assumption of straight propagation through the sample, the X-ray
wave exiting the sample in the planex = x1 may be related to the X-ray wave
entering the sample in the planex = x0 by projection along the x-axis through
the complex refractive index of the sample [17]

uout (r ) = uin (r ) exp (i � 0) exp (� i �( r )) exp (� B (r )) (2.3)

where r � (y; z), k � 2�=� is the wave number of the X-ray wave in vacuum,
and

� 0 �
Z x 1

x 0

kdx = k(x1 � x0) (2.4a)
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�( r ) � k
Z x 1

x 0

� (x; r )dx (2.4b)

B (r ) � k
Z x 1

x 0

� (x; r )dx (2.4c)

are non-negative quantities. � 0 represents the phase shift the X-ray beam would
have acquired by propagation in vacuum, � represents the deviation from the
vacuum phase shift experienced by propagation through the sample, andB
represents the attenuation of the beam. This linear relation is conveniently
described in terms of a transmission functionT, and so

uout (r ) = T(r ) uin (r ) (2.5)

An absorption projection, as is routinely performed for medical diagnostics,
is determined by placing an area detector on thex = x1 plane (or as close as
possible, i.e. minimizing the sample-detector distanced). The detected intensity
is given by the squared modulus of equation (2.3) (we will for brevity ignore
physical constants of proportionality)

I d=0 (r ) = juout (r )j2 = juin (r )j2 jT(r )j2 = juin (r )j2 exp
�

� 2B (r )
�

(2.6)

whereby all information about the phase shift �( r ) is seen to be lost. Absorption
imaging may be adequate for many applications, e.g. where there is substantial
di�erence in the absorption between the domains sought visualized. For e.g.
weakly absorbing materials, and in biological systems where the deposition of a
large dose of X-ray energy is unwanted, phase based methods may be used to
advantage [19], and may also provide better resolution [18].

The phase information may be retrieved by letting the transmitted X-ray wave
interfere with a reference wave in a Bonse-Hart type interferometer setup [19, 20]
before acquiring projections of the intensity of the superposition of the two
waves. The required experimental setup is however not trivial, and is susceptible
to errors introduced by instabilities in the setup.

The present approaches instead rely on free space propagation of the trans-
mitted beam. Assuming the sample dimensions are small compared to the
sample-detector distanced, the wave in this plane, ud(r ) is given by the Fresnel
di�raction approximation integral [17]

ud(r ) = �
i

�d
exp

�
i
2�
�

d
� Z

uout (r 0) exp
�

i
�
�d

jr � r 0j2
�

dr 0 (2.7)

where the integration is performed over thex-plane. The approximation of the
integrand is valid for those point pairs where [18]

�
4�

jr � r 0j4 � d3 (2.8)
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As the integration of equation (2.7) is performed over all r 0, this criterion is
not trivially ful�lled for all points, but by inspection of the integrand it is
seen that the exponential function 
uctuates rapidly when the magnitude of its
argument "becomes large", thus largely cancelling out the contributions where
the requirement (2.8) is invalid.

This observation also gives insight into the e�ect of varying the sample-detector
distance d, since d scales the argument of the exponential function: The wave
in the detector plane ud(r 0) at some point r 0 will be dominated by the values
of the wave transmitted through the sample, uout (r ), in an area centered on
r = r 0. Increasing d increases this area. A wave front transmitted through the
sample at r 0 will thus experience interference with wave fronts transmitted at
points increasingly distant from r 0 as a function ofd. Thus a projection through
a plate with an image de�ned by variations in the refractive index decrement
� becomes increasingly "blurry" with increasing d, and the image ultimately
becomes unrecognizable from the projection, which is illustrated e.g. in �gure 1
in [21]. This prompts the de�nition of two regimes: The direct imaging regime,
where d is "small" and the image is recognizable from the projection, and the
holographic regime, where d is "large", and the image becomes unrecognizable
from the projection. The holographic regime is named as such, as projections
acquired in this regime are described by the principle of in-line holography [22].

It is seen that the Fresnel integral (2.7) is in the form of a convolution, and so
in Fourier space will take the form of a simple product of the respective Fourier
transforms of the two factors [23]. Taking FT f�g to be the Fourier transform
from r to the conjugate variable f of spatial frequencies, we have

FT f udg(f ) = FT f uout g(f )FT f Fdg(f ) (2.9)

where Fd is the integrand of equation (2.7) excludinguout , known as the prop-
agator, the Fourier transform of which is given simply by [21]

FT f Fdg(f ) = exp
�

i
2�
�

d
�

exp
�
� i��d f 2�

(2.10)

which together conveniently expresses the Fourier transform of the X-ray wave
in the detector plane.

2.1.1 Edge enhanced tomography

Restricting attention to the near-�eld where we can take �d to be small com-
pared to f 2, i.e. the frequency of spatial features of interest, the second ex-
ponential function of equation (2.10) is Taylor expanded to �rst order in its
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argument, whereby equation (2.9) becomes

FT f udg(f ) = FT f uout g(f ) exp
�

i
2�
�

d
�

�
1 � i��d f 2�

(2.11)

� f 2 is recognized as the Fourier transform of the Laplacian operatorr 2
r in

r . Inserting equation (2.3), assuming the variation of uin (r ) to be negligible,
neglecting terms of second order in �(r ) and B (r ), and assuming that the sample
is weakly or homogeneously absorbing, the term withr 2

r B (r ) is neglected, and
so we may write

I d(r ) = I d=0 (r )

�
�
�
�1 +

�d
4�

r 2
r �( r )

�
�
�
�

2

(2.12)

which allows a physical interpretation of the detected intensity (for a more
rigorous derivation of this, see e.g. [24]). So a necessary condition for the
detected intensity to vary from that found by an absorption projection is that
the Laplacian in the detector plane of the projection of the phase shift is non-
zero. It also shows that the variation of the detected intensity from that detected
by absorption tomography increases with sample-detector distanced within the
stated assumptions.

With images acquired at many di�erent equally spaced sample rotation angles,
e.g. 720 images and so �! = 0 :5� , and a sample distanced > 0, a "qualitative"
tomographic reconstruction of r 2� [24, 25] may be produced, where the bounda-
ries between microstructural domains are visualized. For some applications this
is su�cient, i.e. visualizations of cracks, inclusions, etc., and was the approach
taken in the present work to visualize the grain structure of titanium through a
second phase precipitated preferentially on the grain boundaries, as will be elab-
orated upon in chapter 4. A cross section of the reconstructed microstructure
is shown in �gure 2.2. The raw data contain ring artifacts, and the decorated
grain boundaries are di�cult to see with the naked eye, but this was corrected
with an image �lter algorithm, which will be sketched in chapter 4. Acquiring
an additional set of images at a distanced � 0 allows for a fully quantitative
tomographic reconstruction algorithm [24, 26] to be employed as needed.

2.1.2 Holotomography

An alternative method to edge contrast tomography is a�orded by holotomo-
graphy. The experimental setup is essentially the same, but holotomography
employs projections from additional distances, typically a total of four. This
makes a quantitative phase reconstruction possible, and for holotomography to
resolve smaller di�erences in refractive index decrement� than edge contrast
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Figure 2.2: A cross section of a reconstruction of the grain structure of tita-
nium visualized through a second phase precipitated preferentially on the matrix
phase grain boundaries using edge contrast tomography.



14 Synchrotron X-ray radiation for characterization of microstructure

tomography, at the cost of longer scan times. A second bene�t is a better reso-
lution of di�erent spatial frequencies: Quoting [27] "the need for data recorded at
several distances is made clear by the Talbot e�ect: a periodic phase object with
period a produces no contrast at distancespa2=� , � being the wavelength andp
an integer." , meaning that some spatial frequencies will not cause contrast at
any given sample-detector distance.

In the original implementation presented in [18, 27], there are three conceptual
steps to be taken before a three-dimensional reconstruction has been determined
from the acquired data:

1. An initial estimate of the projections of the refractive index decrement
� is constructed using theparaboloid method devised for high resolution
transmission electron microscopy (HRTEM) [28], where the perturbation
stemming from interference between multiple di�racted waves is neglected.

2. This estimate is re�ned by an iterative method, e.g. a non-linear least
squares method, to include the neglected perturbation, until the desired
degree of self-consistency has been achieved.

3. Finally, the three-dimensional reconstruction is put together from these
projections by the �ltered back projection method [9].

The paraboloid method will be sketched, rather than presented in full detail,
which may be found in [18]. The Fourier spectrum of the detected intensity is
given as an autocorrelation

FT f I dg(f ) =
Z

FT f udg(p + f )FT f u�
dg(p)dp (2.13)

Consider for simplicity an incoming plane wave of unit intensity sojuin (r )j2 = 1,
so this equation by insertion of (2.9) becomes

FT f I dn g(f ) = exp
�
� i��d n f 2�

�
Z

FT f Tg(p + f )FT f T � g(p) exp (� 2��d n f � p) dp (2.14)

here the subscriptn has been added to the sample-detector distanced to indicate
that there are several, and � denotes complex conjugation. The real space
transmission function is now written as a sum of the mean value� , and the

uctuations around the mean  (r ), so

T(r ) � � +  (r ) , FT f Tg(f ) = �� D (f ) + FT f  g(f ) (2.15)
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whereFT f  g(0) = 0 by de�nition, and � D is the Dirac delta distribution. The
phase of the transmission function may be chosen arbitrarily since it does not
alter the detected intensity, as is easily seen from equation (2.14), and so is
chosen so� is real. In Fourier space� corresponds to a direct beam, the phase
of which is unaltered by the transmission as compared to a beam travelling in
vacuum, and  corresponds to Fresnel di�racted parts of the wave. Insertion,
straight forward integration over the Dirac delta distribution, and rewriting
gives

exp(i��d n f 2)FT f I dn g(f ) = � 2� D (f ) + � FT f  g(f )

+ exp(2�i�d n f 2)� FT f  � g(� f ) + I NL (f ) (2.16)

where the non-linear term is

I NL (f ) �
Z

exp(� 2�i�d n p � f )FT f  g(p + f )FT f  � g(p)dp (2.17)

The �rst term on the right hand side of equation (2.16) is related to the direct
beam. The second and third are due to interactions between the direct beam
and Fresnel di�racted waves, and the fourth term to non-linear interactions
between di�erent Fresnel di�racted waves. Summing the equation over theN
available distances gives

NX

n =1

exp(i��d n f 2)FT f I dn g(f ) = N� 2� D (f ) + N� FT f  g(f )

+ � FT f  � g(� f )
NX

n =1

exp(2�i�d n f 2) +
NX

n =1

I NL (f ) (2.18)

The strength of employing images acquired at multiple distances now become
more apparent: Summing over the exponentials in the third and fourth terms
in the right hand side of equation (2.18) decreases the relative importance of
the third and fourth terms for f 6= 0.

Assuming the last term to be negligible, equation (2.18) and its complex conju-
gate for f 6= 0 where � D (f ) = 0 may be used to isolate the product � FT f  g(f ).

To separate the contributions from the average and the 
uctuations about ave-
rage, equation (2.18) is evaluated in the limit f ! 0. For mathematical con-
sistency, the limits of the terms without Dirac delta distributions are taken
to be limf ! 0 X (f ) =

R
X (f )� D (f )df , where the integration is over a domain

containing the origin. Doing so gives

NX

n =1

FT f I dn g(0) = N� 2 +
1
� 2

Z
j� FT f  g(p)j2 dp

| {z }
lim f ! 0 I NL

(2.19)
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where 1=� 2 has been taken out of theI NL term to show the explicit dependence
on the known product � FT f  g(f ). This equation can be rewritten in the form
of a quadratic equation to determine� 2, assuming that the largest-� solution is
the applicable one, which thereby completes the estimation of the transmission
function T. Note that I NL was neglected while determining� FT f  g(f ) for
f 6= 0, and retained for determining � 2 for f = 0.

The estimated transmission function may in certain cases be su�cient, i.e. weak
objects or a very large numberN of di�erent distances employed, but in gen-
eral, corrections are applied to increase the quality of the reconstruction. The
simplest way to do so is to use an iterative method:

I NL is estimated from its de�nition (2.17) using the transmission function just
determined and the experimentally determined images, and this is used to de-
termine a new estimate of� FT f  g(f ) and � 2 by repeating the steps described
above. Alternatively, to increase convergence, the new estimate of� FT f  g(f )
may be determined as a weighted superposition of the old and the new esti-
mates. This procedure may then be repeated until self-consistency is reached,
meaning an optimal solution has been determined. Alternatively, a less intu-
itive but more computationally e�cient non-linear least-squares method may
be employed [29]. Computational e�ciency is desirable, as these steps must be
performed for every set of images acquired at a given sample rotation, e.g. 720
times.

With all transmission functions determined, the three-dimensional reconstruc-
tion may be performed by any standard tomographic reconstruction method, in
this case usually a �ltered back projection [9].

The fundamentals of edge enhanced tomography and holotomography have been
sketched. A comparison between cross sections of three-dimensional reconstruc-
tions of the same sample of duplex steel 2205 is found in �gure 2.3, published in
[30], clearly shows the bene�ts of employing holotomography rather than edge
enhanced tomography in this case, which is due to the signi�cant absorption,
and small density di�erence between the phases of this alloy.

2.2 Bragg di�raction methods

An X-ray wave interacting with an electron density experiences scattering. This
scattering is taken to be Thomson, i.e. elastic, scattering, but a momentum
transfer between the X-ray wave and the electron density may occur, even when
no energy is exchanged. An incoming X-ray photon of wave vectork may after
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Figure 2.3: Three cross sections of reconstructions of the same sample of duplex
steel 2205 in the as-cast condition, courtesy of Dr. Wolfgang Ludwig, ESRF.
Left: Absorption tomography, only the largest voids are visible. Middle: Edge
enhanced tomography. All voids are visible, but the phases are not easily dis-
tinguished. Right: Holotomography. Both voids and phases are clearly visible.
Published in [30].

a scattering event have the wave vectork0, which prompts the de�nition of
the scattering vector Q = k � k0, where elastic scattering requiresjk j = jk0j.
The scattered wave incident on a detector is the sum of contributions from
all illuminated volumes containing electron density, but waves taking di�erent
paths will have di�erent phases. This is illustrated on �gure 2.4. Coherent
waves scattering at the point of origin and r by the scattering vector Q will be
out of phase by the amountQ � r . Adding the in�nitesimal contributions from
scattering on the electron density distribution � gives the Fourier transform

f (Q) =
Z

� (r ) exp(iQ � r )dr (2.20)

which is termed the scattering length of the electron density� . In particular, if
� is the electron density of an atom, equation (2.20) is the atomic form factor.
This gives a good description of the magnitude of the scattering with scattering
vector Q when the X-ray energy is far removed from absorption edge energies
[13, 15].

Scattering on multiple atoms at locations r n is with good approximation de-
scribable as a sum of atomic form factors and phase shifts

F (Q) =
X

n

f n (Q) exp(iQ � r n ) (2.21)

This is since the perturbations to the spatial distribution of the electron density
of an atom when forming part of a molecule or crystal are largely con�ned to
the highest energy orbitals as compared to a free atom.
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Figure 2.4: Scattering from electron density. Recreated after [13]. A coherent
wave of wave vectork is elastically scattered at the origin, and at the point r
into direction k0. The waves are in-phase until the waves reach the points 0
and p1 respectively. The waves reaching a detector will be out of phase by the
longer distance traversed by the bottom wave,jp1 � r j + jr � p2j, which may be
conveniently written as k � r � k0 � r = Q � r .

For crystalline materials, it is possible to de�ne a unit cell containing one or
more atoms, from which the whole crystallite may be constructed by spatial
translations of the lattice vectors

R m � n1a1 + n2a2 + n3a3 (2.22)

where n1; n2 and n3 are integers anda1; a2 and a3 are basis vectors chosen as
convenient. This allows for a decomposition of the scattering length into the
product of a sum over the unit cell (�rst factor), and a sum over the lattice
(second factor)

Fcrystal (Q) =
X

n

f n (Q) exp(iQ � r n )
X

m

exp(iQ � R m ) (2.23)

The lattice sum will largely cancel, becoming appreciable only when the argu-
ment is an integer multiple of 2� for all m, so

�
�
�
�
�

X

m

exp(iQ � R m )

�
�
�
�
�

=
�

� 1
N

for
Q � R m 6= 2 �n
Q � R m = 2 �n

(2.24)

where N is the number of unit cells in the crystallite, which relates the scat-
tered intensity to the volume of the scattering crystallite. The reciprocal lattice
vectors

G hkl � ha�
1 + ka�

2 + la�
3 (2.25)

where h, k and l are integers are introduced to ful�ll this requirement for scat-
tering. Note that the notation f�g � is chosen for historical reasons, and does not



2.2 Bragg di�raction methods 19

mean complex conjugation in the present context, but are simply to di�erentiate
the real space lattice vectors of equation (2.22) from the reciprocal space lattice
vectors of equation (2.25). The reciprocal lattice basis vectors are de�ned from
the real space basis vectors as

a�
1 = 2 �

a2 � a3

a1 � (a2 � a3)
a�

2 = 2 �
a3 � a1

a1 � (a2 � a3)
a�

3 = 2 �
a1 � a2

a1 � (a2 � a3)
(2.26)

and it may be shown that G hlk is perpendicular to the crystallographic plane
with Miller index ( h; k; l ). A necessary condition for constructive interference
of scattering may thus be imposed on the scattering vector

Q = G hkl (2.27)

which is known as the Laue condition. This may be shown to be equivalent to
the more familiar Bragg condition [13], where scattering is taken to occur on
atomic planes

n� = 2dhkl sin � hkl (2.28)

where � hkl is half the angle between the incoming and the scattered beams (k
and k0), and dhkl is the distance between planes of Miller index (h; k; l ), which
for the important special case of cubic unit cells aredhkl = a=

p
h2 + k2 + l2,

a being the lattice parameter. This means that appreciable scattering occurs
only at a number of discrete angles to the incoming beam. The cones that the
scattered intensity is con�ned to are known as Debye-Scherrer cones, and their
intersection with an area detector as in the case for the common setup shown
on �gure 2.1 are known as Debye-Scherrer rings.

The Laue, or equivalently, Bragg condition is necessary but not su�cient for
appreciable scattering, as the unit cell sum (�rst factor) of equation (2.23) may
vanish, which is termed systematic extinction. E.g. for the case of an FCC
crystal which is relevant to present work, the unit cell structure factor is [13]

Fhkl =
�

4f (Q)
0

when
h, k and l are of same parity
otherwise

(2.29)

where f (Q) is the atomic form factor of the element in question, and so there
will be no appreciable scattering caused when the indices of the scattering plane
(h; k; l ) are of mixed parity. The Laue (or Bragg) condition and the condition
that no systematic extinction be present are known collectively as the di�raction
condition.

The scattered intensity from a crystallite in di�raction condition will constitute
sharp peaks. A quantitative interpretation of the total intensity of such a peak
for an experimental setup like that shown in �gure 2.1 is presented in [15]:

I crystal = I 0

�
d!
dt

� � 1 � 3r 2
0 jFhkl j2

v2 Phkl LVcrystal (2.30)
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where I o is the incoming X-ray intensity, v is the volume of the unit cell, and
Vcrystal is the volume of the di�racting crystallite. The factor Phkl is known as
the polarization factor, which for a synchrotron light source where the polariza-
tion is in the horizontal plane, is given by Phkl = cos2 � , where � is the angle
between the incoming beam and the di�racted beam in the horizontal plane.
For high energy X-rays, the di�raction angles are typically su�ciently small
that we may take Phkl = 1.

The factor L of equation (2.30) is known as the Lorentz factor, and is given by
the geometry of the setup. Equation (2.30) is derived as a volume integral in
reciprocal space soL contains a factor related to the magnitude of a reciprocal
space volume element. The Lorentz factor also relates the time a given crystallite
remains in di�raction condition to the position of the di�raction spot on the
Debye-Scherrer ring. This is sought illustrated in �gure 2.5: The reciprocal
lattice vectors G hkl of some family of lattice planes (h; k; l ) point to the surface
of a sphere. The points where di�raction may occur are dependent on the
incoming X-ray wave vector k and G hkl and trace a circle on the surface of the
sphere. As the sample is rotated about the vertical! -axis, the reciprocal lattice
vectors may cross this circle, and di�raction will occur. A reciprocal lattice
vector pointing close to the pole will spend more time in di�raction condition
than one near the equator as it moves slower. It may be shown geometrically,
using that the angles 2� are small for hard X-rays, that this factor with good
approximation is given by [8]

L =
1

sin 2� hkl jsin � j
(2.31)

where� is the angle in the detector-plane to the positivez-axis, as is indicated on
�gure 2.6, and the �rst factor is related to the reciprocal space volume element.

For a powder sample, the result for the intensity scattered to any point on a
Debye-Scherrer ring is written as [15]

I powder = I 0t
� 3r 2

0

v2

mhkl jFhkl j2 Phkl

4 sin� hkl
Vgauge (2.32)

where t is the exposure time,mhkl is the multiplicity of the hkl re
ection, and
Vgauge is the illuminated volume of the powder sample. A powder sample may
be regarded as being composed of a large number of small crystallites of random
orientation, while a su�ciently deformed metal may be regarded as a "textured
powder", meaning that it is composed of a large number of small crystallites
of orientations statistically given by the texture of the material. The powder
di�raction equation will be employed in chapter 3 for a deformed material, where
this will be argued in more detail.
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Figure 2.5: Di�raction in reciprocal space. The surface of the sphere is the
possible end points for a given set of reciprocal lattice vectorsG hkl = Q =
k � k0, with one speci�c indicated. The blue circle represents the points where
di�raction may occur, and so G hkl is depicted as being in di�raction condition.

2.2.1 Three-Dimensional X-ray Di�raction (3DXRD)

The principles behind 3DXRD are readily understood by the physics presented
in previous chapter, however 3DXRD has proved a versatile tool, and the
speci�cs are too numerous to �t in the scope of this text. Quoting [31]: "the
3DXRD concept has developed over time so that it now comprises a set of meth-
ods optimized for spatial, angular, or time resolution". Present text will focus
on a setup used for anin situ study of recrystallization kinetics of individual
grains as described in chapter 3 focussing on time resolution. See e.g. [8] for an
introduction to other approaches.

A 3DXRD experimental setup is shown in �gure 2.6. A typical sample-detector
distance for this setup is d � 20 cm or more. Using hard X-rays, i.e. "small"
2� values cf. equation (2.28), this means that multiple Debye-Scherrer rings
may be monitored simultaneously, while there are few overlapping di�raction
spots, so contributions to the di�raction pattern from individual grains may be
isolated, provided the sample dimensions are "reasonable". For lightly absorbing
materials such as aluminium where the penetrative depth of hard X-rays are
several cm, the need for few overlapping di�raction spots is the factor restricting
the sample size. Large rotation steps �! � 0:25� � 1� are employed when high
precision orientations of individual grains are not required, which results in
fast scan times. The angular! window may be restricted as appropriate for
the symmetry of the lattice in question without loss of information. Sample
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Figure 2.6: A 3DXRD setup for in situ experimental studies involving annealing.
Modi�ed from [32].

diameters of d � 0:5 mm may be scanned with exposure times of aboutt � 2 s
with current FReLoN cameras. A beam stop that absorbs the direct beam
after passage through the sample is inserted to spare the FReLoN camera the
high intensity beam, and to reduce contributions to the detected intensity from
scattering on air.

The technique has the inherent advantage that the distance between sample and
detector allows for additional equipment to be �tted for true in situ studies, e.g.
a furnace as on �gure 2.6 or a stress rig.

The positions of di�raction spots in (2 �; �; ! ) and their intensities may be used
as input for an indexing algorithm, e.g. GrainSpotter [33], which can determine
center-of-mass positions to within 5� m (detector limited) [31] and orientations
of individual grains. However, the detector distance makes extraction of high
resolution morphological information di�cult, since the di�raction spots are
isolated to a few detector pixels. Approximations may be constructed by e.g.
Laguerre tessellations using the determined volumes and center-of-mass [34], or
morphological information may be acquired using e.g. a line focus beam setup
[35], but this increases acquisition time considerably.

2.2.2 Di�raction Contrast Tomography (DCT)

An alternative approach which allows for extraction of morphological data is
provided by DCT. The sample-detector distance of a few mm is used, and slits
de�ne the beam tightly around the sample. A sketch of the principle is seen in
�gure 2.7: As a grain enters di�raction condition, an extinction spot appears in
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Figure 2.7: Illustration of the principle of DCT. Courtesy of Dr. Wolfgang
Ludwig, ESRF. Three individual grains are shown in di�raction condition si-
multaneously.

the direct beam area where intensity is being scattered at some 2� angle to the
direction of the direct beam, and a di�raction spot appears outside the direct
beam area. Both the extinction spot and di�raction spot may be considered
projections through the di�racting grain, and thus carries information about
the morphological shape of the grain.

In the original implementation, only the extinction spots were used for recon-
struction [36]. This was later re�ned so both extinction spots and di�raction
spots were employed [37]. In the present implementation, which is the one fo-
cussed on in present text, only the di�raction spots are used [38], as this has
been found to lead to increased accuracy.

Data acquisition proceeds over the full range of sample rotations 0� � ! < 360�

in small rotation steps, typically � ! � 0:1� , which increases the accuracy of the
determination of the crystallographic orientation, and decreases the amount of
overlap between di�raction spots stemming from scattering from di�erent grains.
Each individual grain will typically display on the order of 20 � 30 di�raction
spots [37] during a full rotation, which for bulk samples results in a very large
number of di�raction spots that must be indexed in order to trace them to the
di�racting grain. The current methodology is to look for Friedel pairs: Using
that a di�raction spot from a lattice plane ( h; k; l ) at ! = ! 0 will also have
a di�raction spot from the lattice plane ( � h; � k; � l ) at ! = ! 0 + 180� . In a
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coordinate system where the sample is kept �xed and the beam and detector are
rotated about the sample center, these Friedel pairs may be pictured as being
projected in directions k0 and � k0, thus straight lines connecting them will pass
through the di�racting grain. Matching up many Friedel pairs makes it possible
to trace (index) the di�raction spots to individual grains by a combination of
�nding the lines that are close to intersecting at a point (not exactly, due to
experimental uncertainty), and comparing with the known possible 2� angles,
assuming the crystallography of the sample is known. The large number of
di�raction spots allows for the discarding of overlapping di�raction spots, with
only a small loss of morphological information.

When the di�raction spots are indexed, a varying number of discrete projec-
tions through each individual grain have been determined. These are then used
as input for a tomographic reconstruction on a grain by grain basis using an
algebraic reconstruction technique (ART) [9], where the problem is cast as a
system of linear equations, which may be solved by matrix inversion or more
conventionally by an iterative relaxation method. ART has for the present case
been found to give results superior to those of a �ltered back projection due to
the low number of projections.

Finally, since the grains have been reconstructed individually, the reconstruction
will show regions of overlapping grains and voids due to experimental error and
uncertainty, the low number of projections and the poor contrast on the edges
of the di�racting grains. A space-�lling grain structure is then constructed by
assuming the errors are distributed evenly and performing a simple expansion
or contraction of the grains until all voxels of the reconstruction are occupied
once. This has been shown to give good results by comparison to a grain map of
titanium produced by the edge contrast method described in section 2.1.1 [38].



Chapter 3

Recrystallization kinetics in
cold-rolled aluminium

As a metal or alloy is plastically deformed, some small portion of the work,
around 1% [10], is retained in the material as crystal defects. The presence
of crystal defects, dislocations in particular, increases the stored energy of the
material, and therefore also the free energy, and so may provide the driving
force for recrystallization, which is the thermally activated process by which
new grains nucleate, and grow, until the deformed matrix has been replaced by
a polycrystalline microstructure.

Recrystallization kinetics has historically been studied with destructive char-
acterization techniques, such as hardness tests or optical microscopy of cross
sections of a series of partly recrystallized samples to e.g. determine the re-
crystallized fraction as a function of annealing time and temperature. Average
growth rates may be determined with e.g. the Cahn-Hagel [39] or extended
Cahn-Hagel methods [40]. See [10] for a comprehensive review of experimental
methods.

These experimental methods have been successful in determining the mean ki-
netics of recrystallization. The results thereof were sought described by the
analytical theory by Johnson and Mehl [41], Avrami [42] and Kolmogorov [43],
known collectively as JMAK theory, which was originally developed as a model
for phase transformations, but shown to apply equally well to recrystallization.
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In JMAK theory, grains are assumed to nucleate at random sites, and grow at
constant and equal radial rates until impinging on other recrystallizing grains.
The theory has been extended several times, most notably by Vandermeer and
Rath [44], which included an orientation dependence in the growth rate. How-
ever, the growth rate of individual grains was still assumed to be constant for
grains of a given orientation, and no direct experimental evidence disproving
this assumption could be produced.

The introduction of 3DXRD as presented in section 2.2.1 provided a means of
non-destructive in situ characterization of the recrystallization kinetics of large
numbers of individual grains, which showed that the recrystallization kinetics
would vary substantially between grains [45, 46]. Later experiments also showed
that the recrystallization of individual grains occur in a complex manner [47].

The remainder of this chapter describes an experimental investigation of the re-
crystallization of individual grains in 50% cold-rolled aluminium AA1050 using
3DXRD. Recrystallization kinetics in the same alloy has previously been inves-
tigated in [46] for 244 individual grains, but for a deformation of 90% cold-
rolling, and at comparable strain (42% cold-rolling), but for a single grain in
[47]. The emphasis of the present study is on the relation between growth rate
and annealing temperature which is quanti�ed using grain-averaged activation
energies. The concept of grain-averaged activation energies is introduced in sec-
tion 3.1, and the experimental details and data analysis is presented in sections
3.2 and 3.3. Results are presented and discussed in section 3.4, which includes
the introduction of a simple cellular automaton model to explain the observed
recrystallization kinetics. Finally, the conclusions drawn will be emphasized in
section 6.1.

3.1 Grain-averaged activation energies

As a recrystallizing grain grows into the deformed matrix, it does so through
grain boundary migration. There is a large body of experimental evidence sup-
porting that the velocity of a grain boundary during migration may be written
as the product of a mobility M and the driving pressure for grain boundary
migration P [48]

v = MP (3.1)

Note that this driving pressure may be found equivalently in the literature as
a driving force. The driving pressure for grain boundary migration is taken
to be the possibility for a reduction of the stored energy caused by the high
density of dislocations introduced during deformation, and so is taken to strictly
be a function of the local microstructure close to the grain boundary. The
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grain boundary mobility M has been shown to approximately follow a modi�ed
Arrhenius equation [49]

M /
1

RT
exp

�
�

Q
RT

�
(3.2)

where R is the universal gas constant,T the absolute temperature andQ the
activation energy of the migration of the grain boundary in question. The
combination of equations (3.1) and (3.2) may thus be written as

v = m0 exp
�

�
Q

RT

�
P (3.3)

where the preexponential dependence onRT has been expressed by the mobility
m0. If radial growth rates v1 and v2 are determined at temperaturesT1 and T2,
we may use equation (3.3) to determine an activation energy as
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provided that the local microstructure has not changed signi�cantly between
measurements, and that the magnitude of the di�erence ofT1 and T2 is small
so the variation in m0 due to temperature is negligible.

This activation energy is termed a grain-averaged activation energy, because
when it is measured for an individual grain it expresses the mean of the acti-
vation energies of the boundaries of the grain weighted by the respective areas
of the boundaries. Bulk activation energies for recrystallization, like those de-
termined calorimetrically and presented in e.g. [50] may then be determined
by taking the mean of a representative set of grain-averaged activation energies.
Grain-averaged activation energies were introduced in [51] for a study of 8 grains
recrystallizing in copper, where they were denotedapparent activation energies.

3.2 Experimental details

A sheet of commercially pure aluminium AA1050 was chosen for the investiga-
tion, and cold-rolled 50%. That speci�c alloy was chosen as it had been the
subject of previous 3DXRD investigations after 90% cold-rolling, and since the
Zener pinning force [52] for the impurities in the alloy have been estimated to be
a factor � 10 lower than the driving pressure for comparably strained (42% cold-
rolled) samples [47], so observed complex recrystallization kinetics was argued
not to be attributed to pinning and depinning of boundaries [47].



28 Recrystallization kinetics in cold-rolled aluminium

Three cubic samples of approximate side lengths (850� m � 850� m � 2000� m)
were cut from the middle of the sheet. As it is well known that scratches and
notches caused by mechanical cutting supplies preferred nucleation sites along
the surface of the samples, these were removed by electropolishing.

A number of larger cubic samples were cut from the same deformed material, to
roughly determine the recrystallized fraction as a function of annealing time, by
a series of Vickers hardness tests. It was concluded that annealing for 120 min
at a temperature of 310� C would result in a recrystallized fraction of � 20%,
and this result was used to guide thein situ 3DXRD experiment.

The experiment was conducted at the extended ID11 beamline at the European
Synchrotron Radiation Facility (ESRF) in Grenoble, France, with the standard
3DXRD setup, as may be seen in �gure 2.6 in section 2.2.1, with a "hot �nger"
type furnace with an X-ray transparent enclosure that could be sealed airtight
mounted on the rotation stage. A sample was mounted in the furnace, and
the enclosure �lled with argon. A beam of hard (65 keV) X-rays was de�ned
in the vertical direction by slits distanced h0 = 400 � m from each other. The
beam was wider in the horizontal direction than the samples, meaning that the
beam illuminated a gauge volume ofVgauge = 400 � m � 850 � m � 850 � m.
It was estimated that this setup sets a detection limit on the size of grains of
d � 5 � m, and so the early stages of nucleation could not be observed with the
present setup.

The furnace temperature was set toT1 = 310� C, and data collection began.
The sample was rotated around the vertical! -axis from ! = � 15� to ! = 15 �

in individual rotations of � ! = 0 :5� , which would last 2 s each. During each
individual rotation, an image of the di�racted beam was collected with a 14-bit
FReLoN camera located a distance ofd = 23 cm from the sample. Including read
out times for the camera and moving the rotation stage back to! = � 15� after
all 60 images comprising a full rotation have been acquired, the time between
images at same! was 3:2 min.

After image acquisition at temperature T1 = 310� C for a duration of 120 min,
the furnace temperature was swiftly changed. For two of the samples the tem-
perature was changed toT2 = 325� C, and for the last sample to T2 = 320� C.
The temperature changes occured over a timet . 2 min.

Image acquisition now proceeded for a duration of 90 min, before the tempe-
rature was again lowered toT1 = 310� C, and data acquisition continued for
an additional 90 min. It was found that the recrystallization kinetics was do-
minated by impingement after the temperature decrease, so that data was not
included in further analysis.
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To ensure the quality of the acquired images, these were examined for signs of
detector saturation during the experiment. If an image was found to be substan-
tially saturated, the beam attenuation was increased to allow for detection of the
increasingly intense di�raction spots corresponding to the increasing volumes of
the growing grains.

This experimental setup does not allow for easy detection of grains that are
impinging on the sample surface, but grains recrystallizing outside the gauge
volume were identi�ed by periodically increasing the vertical distance between
the slits from h0 = 400 � m to h1 = 500 � m for a full rotation set of 60 images.
Grains growing outside the gauge volume were revealed as the intensity of their
di�raction spots would increase abruptly on increasing the slit separation to
h1 = 500 � m, and again fall abruptly when the slit separation was lowered back
to h0 = 400 � m, as the intensity of the di�raction spots are proportional to the
illuminated volume of the grain. This procedure is explained and an example is
shown in [32].

3.3 Data correction and analysis

The raw di�raction images must be corrected for four factors before analysis:

1. Dark current: This is an e�ect of thermal excitations in the FReLoN cam-
era, and so is a function of exposure time. The dark current is determined
by acquiring images with the X-ray shutter closed.

2. Synchrotron current: The incoming X-ray intensity is proportional to the
current in the synchrotron ring, which varies during experiments.

3. Beam attenuation: The attenuator at ID11 is a piece of aluminium of
stepped thickness, which may be introduced in the beam path. Thus, the
X-ray intensity arriving at the sample is proportional to the transmission
through the chosen thickness of the attenuator.

4. Spatial distortion: This is speci�c to the camera, and was corrected for
with the FIT2D program [53].

At early times the di�racted intensity will be slowly varying pro�les along the
Debye-Scherrer rings, which are consequences of the texture of the deformed
microstructure. An example of this is shown in �gure 3.1a. As recrystallization
progresses, the deformed microstructure is gradually replaced by sharp di�rac-
tion spots each of which may be traced back to an individual grain. This is
shown in �gure 3.1b.
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Figure 3.1: Debye-Scherrer rings from recrystallizing aluminium AA1050. a:
Early time (low recrystallized fraction), the di�racted intensity is mainly from
the deformed microstructure. b: Later time (higher recrystallized fraction), the
di�racted intensity now shows both the remaining deformed microstructure and
recrystallizing grains seen as sharp spots. The round smeared-out artifact near
the center of both images is due to scattering from the glass enclosure of the
furnace.

The "background" caused by the remaining deformed microstructure in partly
recrystallized samples must be determined and subtracted from the images be-
fore the intensity di�racted by a recrystallizing grain may be used to determine
the volume of that grain. First, a polar transformation of the images was per-
formed using FIT2D [53] to transform the Debye-Scherrer rings to lines. This
operation is not trivial, as the beam center and camera center will not coincide
with mathematical precision, and the camera may be slightly rotated about
several axes, which must be corrected for during transformation. The polar
transformed Debye-Scherrer rings were then summed over their width in 2� , i.e.
the radial direction in the original images, to give one-dimensional pro�les. A
mathematical method to determine this background assuming it to be slowly
varying, using only that speci�c pro�le was attempted, but found to be unreli-
able at early times when the intensity di�racted by the recrystallizing grains was
of the same order as the intensity from the deformed matrix. Instead, the inten-
sity from the deformed matrix was estimated as the mean of the two! -adjacent
pro�les. This has two consequences: Firstly, that the images corresponding to
! = � 15� and ! = 15 � can only be used for background determination, as
they do not have two neighboring images. Secondly, that di�raction spots in
! -adjacent images must be su�ciently far removed in � , the polar coordinate
in the original images, so the estimated background does not contain intensity



3.3 Data correction and analysis 31

di�racted from a recrystallizing grain. This is believed to be a reliable method,
since the deformation texture at 50% cold-rolling is known to be relatively weak,
and thus the pro�les are slowly varying in ! .

The intensity of a di�raction spot I grain could then be determined as the sum
over the range of the pro�le where the di�raction spot was localized. It was
attempted to �t a pseudo-Voigt pro�le to the peaks, rather than simple sum-
mation, but it was found to be unreliable, likely due to the low resolution of
the far-�eld detector employed, thus not supplying a su�cient number of data
points for reliable �tting.

The volume of the di�racting grain was determined by �rst noting that the
integrated intensity of the Debye-Scherrer rings before recrystallization starts
is equal to that produced by a non-textured powder, since a texture simply
redistributes the intensity in � and ! . So de�ning I powder as the mean of the
integrated intensity from images taken over the full 360� range before recrystal-
lization starts, we can combine equations (2.30) and (2.32) to get

Vgrain =
d!
dt

t
2

mhkl cos� hkl jsin � j
I grain

I powder
Vgauge (3.5)

whered!=dt is the angular velocity of the sample rotation, t is the exposure time
of the "powder" images, and mhkl is the multiplicity of the hkl re
ection. This
method has the added feature that there is no dependence on the structure
factor of the hkl re
ection. However, due to this, it may not be employed
for normalization of re
ections on degenerate Debye-Scherrer rings, i.e. where
multiple Debye-Scherrer rings coincide.

So, all di�raction spots in the six inner-most Debye-Scherrer rings were con-
verted to volumes of the grain responsible for di�raction if

1. No other di�raction spots were overlapping in the image in question.

2. The background could be reliably determined, i.e. no other di�raction
spots were found close in� in the ! -adjacent pro�les.

3. The di�racting grain was found to be contained completely in the gauge
volume.

4. The FReLoN camera did not saturate during the acquisition of that di�rac-
tion spot.

The di�raction spots were then indexed, i.e. were traced back to the unique
grain responsible for the di�raction using the open source program GrainSpotter
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[33]. The di�raction spots remaining in the analysis was traced to a total of
1406 unique grains. This allowed the volume of the same grain determined from
di�erent di�raction spots to be compared. A generally good correspondence
was found by visual inspection. Discrepancies seemed to be mainly due to the
background estimation.

3.4 Experimental results

3.4.1 Recrystallization kinetics of individual grains

The equivalent sphere diameter of the 1406 recrystallizing grains were examined
as a function of annealing time. The diameters of di�erent grains are found to
increase at di�erent rates, and the diameter of individual grains are found to
increase at rates that vary in time. This was previously found to be the case
for the same material cold-rolled to 90% reduction [46], and so is not a result
of the larger strain. Many grains are found to display recrystallizaton kinetics
that is approximately piecewise linear at times with constant temperature at
the current time resolution. The dataset is too extensive to be visualized in
fullness, so the evolution of the volume (left) and diameter (right) of six grains
is shown in �gure 3.2. The gap in data points occuring around t = 160 min
is due to an increase of the! window to a full rotation. Using GrainSpotter,
this additional information could have been used to give good estimates of the
centers of mass of the individual grains, and thus to estimate the degree of
impingement of individual grains. This, however, was not undertaken due to
time constraints.

Impingement is assumed to be responsible for most of the slow down of the
kinetics at late times, as may be seen for grains 2-5. This is most often observed
as a gradual, rather than abrupt slow down, and is assumed to be due to an
increasing fraction of impinged surface area of the recrystallizing grains, and to
the lower rate of recrystallization often observed when the recrystallized fraction
is � 1.

Kinetic speed ups at constant temperature are also observed. The most notable
examples for the grains shown in �gure 3.2 is listed in table 3.1. These changes
in growth rate are to some extent observed for� 1=3 of the recrystallizing grains
in this analysis. Pinning and depinning of boundaries is an unlikely cause cf.
[47] as noted in section 3.2, and it is therefore assumed to be a consequence of
the structure of the deformed matrix, which for cold-rolled aluminium is of the
"cell block" type [54, 55], where mosaic cells are grouped together, separated
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Figure 3.2: The evolution of the volume (left) and diameter (right) of 6 in-
dividual grains during recrystallization. The dashed line indicates where the
temperature was raised fromT1 to T2. For grains 2-5 the temperature was
raised to T2 = 325� C, and for grains 1 and 6 to T2 = 320� C. The "missing"
data points after time t = 160 min are due to ! range being increased to the full
360� so additional spatial information could be extracted using GrainSpotter
[33] (see text).

Grain number
2 3 5 6

Time of speed
up (min)

160 141 138 195

Growth rate
before speed up

(� m=min)
0.10 0.50 0.42 0.24

Growth rate
after speed up

(� m=min)
0.54 0.71 0.62 0.40

Table 3.1: Quanti�cation of selected kinetic speed ups at constant temperature
for the recrystallizing grains shown in �gure 3.2. Growth rate is de�ned as
change in diameter per time. Note that the speed up for grain 2 is not typical
for the data set, as it was the largest observed during the analysis.
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Figure 3.3: Transmission electron micrograph of the microstructure of 50% cold-
rolled aluminium AA1050 courtesy of Dr. Xiaoxu Huang, Ris� DTU.

by high angle boundaries, with cell blocks of typical size� 4 � m for 50% cold-
rolling. An example of this microstructure is shown in �gure 3.3, where the cell
blocks may seen to be aligned at approximately 45� to the rolling direction.

After a recrystallizing grain has reached a diameter ofd & 4 � m, it will therefore
have grain boundaries to multiple cell blocks of di�erent orientations. Reiterat-
ing, the presently employed 3DXRD setup is estimated to have a lower detection
limit of grains of diameter d � 5 � m, so grains recrystallizing in a single cell
block are not reliably detectable with the present method. The boundary mi-
gration rate detected with the present method is, like as was stated for the
grain-averaged activation energies, a mean of the boundary migration rates of
the individual boundaries weighted by the area of that boundary. Should a
boundary migrate into a cell block where the boundary has a di�erent mobility
on the scale of the time resolution, then this may manifest itself as an abrupt
change in recrystallization rate of the grain in question.

3.4.2 Cellular automaton model of recrystallization in alu-
minium

To investigate e�ects of the cell block microstructure on the recrystallization
kinetics of an individual grain, a simple cellular automaton model was imple-
mented. A three-dimensional array,P, representing the microstructure was set
up. The array elements Pijk could represent either deformed microstructure,
or recrystallizing grain. The value of array elements that represented deformed
matrix are referred to as a "switching probability", since the system was iter-
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Figure 3.4: Simulated recrystallized grain diameter as a function of time. Each
curve represents the output of a simulation, i.e. an individual recrystallizing
grain. The cell block switching probabilities were chosen pseudorandomly from
the discrete distribution (3.7).

ated forward in time by switching an array element Pijk from representing the
deformed matrix, to representing the recrystallizing grain, if

1
6

N ijk Pijk > R (3.6)

where N ijk is the number of nearest neighbor array elements of array element
Pijk which represents the grain, rather than the deformed microstructure, and
0 � R � 1 is a pseudorandom number. This conditional switching is done for all
elements ofP representing deformed matrix in each time step. The switching
probability may therefore be thought of as being proportional to the mobility
of the grain boundary through that particular part of the deformed matrix. For
these simulations, a single array element near the center ofP would be switched
to represent the nucleus of the recrystallizing grain "by hand" before iteration
began.

Using switching probabilities that are equal for all elements ofP, and using
switching probabilities that are completely random was found to lead to approx-
imately spherical growth, and so diameter vs. time curves that were straight
lines with very good approximation.

To simulate the cell block structure of cold-rolled aluminium, the elements of
P was subdivided into a number of cubes of equal size representing cell blocks.
All elements of a given cube were then assigned the same switching probabil-
ity, which was chosen from some distribution. A nucleus was generated, and
iteration began.

Six examples of simulated recrystallized grain diameters as functions of time
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is shown in �gure 3.4. For these examples, the switching probabilities of all
elementsPijk within a cube was chosen from the discrete distribution

Pijk =

8
<

:

0.01
for

0 � R � 1
3

0.04 1
3 < R � 2

3
0.16 2

3 < R � 1
(3.7)

and 0 � R � 1 chosen pseudorandomly.

Several di�erent kinds of distributions, both discrete and continuous, were ex-
amined, and were found to give similar results as long as the assigned cell block
switching probabilities varied su�ciently about the mean.

The resulting simulated grain sizes may in most cases be described as piece-
wise linear, or with changes in growth rate occuring over a short time span,
which would appear piecewise linear with a poorer sampling rate. Changes in
radial growth rates are observed for many simulations when the diameter of the
grain is less than about 4 cell block diameters, after which the growth rate of
most simulations tend towards the same value related to the average boundary
mobility of the setup.

This simple model is a gross simpli�cation of recrystallization in cold-rolled
aluminium, e.g. the boundary mobilities of the cell blocks are taken to be un-
correlated spatially, and the orientation of the recrystallizing grain is not taken
to be of signi�cance. However, as the simple model predicts recrystallization
rates that qualitatively resemble the observed growth rates, it is taken as sup-
porting evidence that the recrystallization kinetics in cold-rolled aluminium is
strongly a�ected by the cell block structure of the deformation microstructure.

3.4.3 Measurements of grain-averaged activation energies

The determination of grain-averaged activation energies with equation (3.4) was
achieved by least squares �tting straight lines to a number of di�raction spots
before and after the temperature increase fromT1 to T2. This was done under
visual inspection, and the speci�c number of di�raction spots used was selected
individually both before and after the temperature increase, and for each series
of di�raction spots, to give the best �t in each case. All di�raction spots would
be excluded from further analysis if it was found that the grain responsible for
di�raction had not grown above the detection limit ( d � 5 � m) at the time of the
temperature increase or if the data was too noisy for a linear �t to at least three
di�raction spots both before and after the temperature increase. The reason for
using series of di�raction spots rather than grain diameters was to reduce the
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Grain number
1 2 3 4 5 6

Q (kJ=mol) 0 98 182 199 279 547

Table 3.2: Grain-averaged activation energies of the six recrystallizing grains
shown in �gure 3.2.

uncertainty caused by the noise from the background, which the grain-averaged
activation energies were found to be sensitive to.

These selection criteria are strict and excludes about 44% of the individual
grains, but was not found to introduce signi�cant bias, except that grains nucle-
ated at late times (close to or after the time of the temperature increase) could
not be included in the analysis.

Di�raction spots from a total of 793 individual grains were used to determine
grain-averaged activation energies in the three samples. The grain-averaged en-
ergies of the 6 recrystallizing grains shown in �gure 3.2 are reported in table
3.2, while the distribution of grain-averaged activation energies of the 793 in-
dividual grains may be seen in �gure 3.5. Comparing table 3.2 to �gure 3.2
documents that the six speci�c grains show the breadth of the distribution of
grain-averaged activation energies. The mean of the grain-averaged activation
energies is found to behQi = 187 kJ=mol (indicated by the dashed line in �gure
3.5), which is in excellent agreement with the activation energy presented for
impurity-controlled recrystallization of aluminium in [50].

The activation energy for boundary migration of well-de�ned boundaries as a
function of misorientation is presented in [48] and the references therein for
various metal and alloys. The misorientation causes an approximate factor� 2
variation in activation energy, but this is for migration of large, almost 
at boun-
daries of well-de�ned misorientation, and even so would only imply variations of
a factor of � 2 in grain-averaged activation energies, which is signi�cantly less
than what is displayed in �gure 3.5. This is an indication that the boundary
migration during recrystallization occurs in a more complicated manner. The
same conclusion was recently drawn [56] for examinations of recrystallization
of individual grains in 96% cold-rolled nickel with a series of EBSD mappings
following ex situ annealing steps. Stepwise and protruded boundary migration
was observed with a time resolution that was comparable to the time resolution
of the present 3DXRD investigation. It was argued that this more complicated
boundary migration was due to atomic rearrangements occuring in the deformed
matrix prior to migration of the grain boundary. This is an interesting propo-
sition, which may explain present �ndings, but could not, however, be further
examined with the 3DXRD data at hand.



38 Recrystallization kinetics in cold-rolled aluminium

Figure 3.5: The distribution of grain-averaged activation energies of 793 individ-
ual grains recrystallizing in 50% cold-rolled aluminium. The standard deviation
is found to be � = 82:9 kJ=mol. The color of the bars indicate the con�dence
intervals.

The grains displaying very low grain-averaged activation energies, here taken to
be Q < 10 kJ=mol, and exempli�ed by grain 1 of �gure 3.2 are rare, in that
they account for a total of less than 1% of the individual grains in the data
sets, but are of particular interest, as the observed recrystallization rate im-
plies that the boundary mobility is not a thermally activated process. Similar
results were found in [57] through molecular dynamics simulations, where an in-
verse relationship between some boundary mobilities and temperature for some
temperature ranges were found. This type of non-activated boundary migra-
tion was substantiated by other molecular dynamics simulations [58, 59] where
di�usion-less boundary migration was observed. These �ndings might explain
the present observations of very low grain-averaged activation energies, however
the molecular dynamics investigation employed an arti�cial driving pressure,
and simulated migration of boundaries of well-de�ned misorientations, which
may not be applicable to present studies of recrystallization. An alternative,
simpler explanation may be that a thermally activated increase in boundary
migration rate was counterbalanced by a lower driving force for recrystalliza-
tion, which may occur if the boundary migrates into volumes of lower dislocation
density around the time of the temperature increase.
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3.5 Outlook

The present investigation could have been further supported if time had permit-
ted the analysis of the additional data (mentioned in section 3.4.1) to estimate
the degree of impingement of individual grains on other grains and the sample
surface.

Investigations into recrystallization kinetics of individual grains may be carried
further with the experimental method described in this chapter by reducing
the window of the angular rotation, thereby increasing the time resolution, at
the price of a lowered statistical basis. Mapping of the deformed microstucture
local to a recrystallizing grain, and comparing to the growth kinetics of that
grain would seem to be the next conceptual step to be taken, but the 3DXRD
method is not able to do so, and to the best knowledge of this author, no other
experimental method is able to do so presently. It is possible that insight may
be gained with the novel technique three-dimensional orientation mapping in
the TEM (3D-OMiTEM) [60], however the limitation on the thickness of the
sample is prohibitive to the study of bulk recrystallization, and so such a study
would likely have to focus on recrystallization in nanocrystalline materials.

An interesting theoretical undertaking would be to attempt to incorporate a
broad distribution of grain-averaged activation energies into an analytical theory
such as JMAK, and compare to experiments.
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Chapter 4

Grain topology and grain
growth in � titanium

After recrystallization, the microstructure of a metal is polycrystalline, and so
characterized as being composed of grains, which are regions of low dislocation
density and almost constant crystallographic orientation, delineated by grain
boundaries. The grains form an irregular, space-�lling network known as the
grain structure.

The presence of the grain boundaries raise the free energy of the material above
that which would be found in a single crystal, and so may provide a driving force
for microstructural evolution: When thermally activated, the grain boundaries
will migrate to reduce the total grain boundary energy. This process is known
as grain growth, and is a competitive growth process, as an increase in the size
of one grain must be counterbalanced by a decrease of the size of one or more
other grains to maintain the space-�lling nature of the grain structure. As grain
growth progresses, the number of grains in the system will decrease, thereby
increasing the mean grain size of the material.

Although grain boundaries were likely the �rst microstructural feature discov-
ered [48], not much progress in understanding was achieved before a seminal
lecture was delivered by Smith [61] in 1948, where connections between grain
boundary energies and the geometry of the grain structure, in particular the di-
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hedral angle at a triple junction, were made. These considerations were carried
further by Von Neumann in 1952 [62], working on two-dimensional soap froths,
which may be taken as an approximation of a grain structure with isotropic
grain boundary energies and faces of constant curvature. Von Neumanns result
was rederived for an idealized grain structure by Mullins in 1956 [63], where the
curvature need not be constant across grain faces:

For a grain structure with isotropic grain boundary energy per area 
 , and
mobility M , the rate of the local boundary migration by capillarity is taken to
be the following well-known relation for migration of curved grain boundaries
[48]

v = � M
 � (4.1)

where � is the signed local curvature, i.e. the signed inverse radius of curvature,
so j� j = 1=R. The local dihedral angles are �xed at 120� due to the isotropy
of the grain boundary energy. Together, these assumptions lead to the Von
Neumann-Mullins law, relating the rate of change of the areaA of a given grain
to its number of facesn [63]:

dA
dt

= � 2�M

�

1 �
n
6

�
(4.2)

This simple expression is remarkable, as the number of faces is a purely topo-
logical quantity. Grains with more than six sides grow, grains with six sides do
not grow, and grains with fewer than six sides shrink. This may be understood
intuitively by considering that a grain with six sides may ful�ll the requirement
of dihedral angles of 120� while having faces with vanishing curvature. Grains
with more than six faces will have convex faces which cf. equation (4.1) will
migrate away from the grain center, thus increasing the area of the grain, and
vice versa for grains with fewer than six faces.

Generalization of this result to three dimensions proved di�cult, but was achieved
in 2007 by MacPherson and Srolovitz [12]. The equivalent to equation (4.2) for
the rate of change of a grains volumeV may be written as

dV
dt

= � 2�M


 

L (D ) �
1
6

nX

i =1

ei (D )

!

(4.3)

whereD is a grain (mathematically, a bounded domain),L is the mean width, a
measure of the size of the grain, andei is the length of the i th triple line. The de-
pendence on the morphology of the grainD is explicit in equation (4.3) to show
that the pure dependence on topological quantities is broken in transitioning
from two dimensions to three dimensions.

The mean width L is equal to twice the mean caliper diameter of the grain if
the grain is convex. For any polyhedron, such as a closed, triangulated surface
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which may be produced by e.g. the marching cubes algorithm [64], which is
relevant for the present work, the mean width may be written as (supplementary
information of [12])

L =
1

2�

X

8i

� i � i (4.4)

� i is the length of edgei , and � i is the exterior angle at edgei , i.e. the angles
between the two polygons sharing edgei measured outside the surface. Further-
more, the exterior angle must be taken positive for convex segments and negative
for concave segments. The mean width of any polygonized surface is guaranteed
to converge to the mean width of the smooth object, as the polygonized mesh
becomes �ner [12].

The three-dimensional Von Neumann-Mullins law, equation (4.2), does not read-
ily provide analytical insight. If the problem is approached by considering a
three-dimensional ensemble of grains averaged over their topological class, ana-
lytical expressions for the growth rate of these averages may be derived [65, 66].
These agree on the number of faces below which grains tend to shrink, and
above which grains tend to grow ofF � 13:4. Simulations with the Surface
Evolver method [67], which simulated microstructural evolution due to boun-
dary migration by capillarity, placed the number of faces higher, F � 15 [68].

In the following, these assertions will be examined by characterizations of the
grain structure of a titanium alloy with edge enhanced tomography. The ex-
perimental details and segmentation procedure is explained in section 4.1. A
smoothing procedure was applied to the grain structure prior to analysis, which
is detailed in section 4.2. Growth predictions are determined by application
of the three dimensional Von Neumann-Mullins law, and compared to a recent
experimental investigation with the same focus by Rowenhorstet al. [69] in
section 4.3. Grain growth was induced, and a second characterization is em-
ployed to experimentally investigate the validity of the growth predictions of
the three-dimensional Von Neumann-Mullins law, which is presented in section
4.4.

4.1 Data acquisition and segmentation

Edge enhanced tomography was employed to characterize a sample of� tita-
nium, Ti-21S from TIMET (datasheet is available online [70]) at the beamline
ID19 at the European Synchrotron Radiation Facility (ESRF). Contrast was
produced by preferentially precipitated � phase on the grain boundaries. The
as-received sample was annealed for 2 hours at 725� C and air-cooled to cause�
phase precipitation. An example of a cross section of the resulting data may be
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seen in �gure 2.2 in section 2.1.1, where it is seen that the� phase precipitates
preferentially, but not solely, on the grain boundaries, and some grain boun-
daries are decorated more than others. Segmentation of the tomographically
reconstructed volume into a quantitative, computer readable form is therefore
not completely trivial. The raw data was initially processed by an image �lter
algorithm by Dr. A. Lyckegaard, Ris� DTU as detailed in [71], which corrects
for ring artifacts, and enhances contrast at grain boundaries. Following this,
segmentation was accomplished with the following steps:

1. The �ltered volume was thresholded to a binary volume. The binary
volume showed the grain structure, but not all grain boundaries were
continuous, and precipitated � phase in bulk grains was common.

2. The � phase precipitated inside bulk grains was cleaned manually.

3. The cleaned volume was transformed with a Euclidian distance transform
algorithm, resulting in a gray scale image where the intensity of each voxel
gave its proximity to the nearest grain boundary voxel.

4. The distance transformed volume was processed with a topological water-
shed algorithm [72]. This algorithm may be thought of as tracing "ridges"
in the distance transformed volume, i.e. locates discontinuities in the gra-
dient, and so �lled in the missing sections of grain boundary. The output
was a continuous grain boundary "skeleton".

5. The grain boundary "skeleton" was visually compared to the �ltered vol-
ume. Oversegmented grains, i.e. single grains that had mistakenly been
subdivided by the algorithm, were merged, and the missing grain boun-
daries of undersegmented grains were manually de�ned.

A cross section of the raw images with the grain boundary "skeleton" overlaid,
as was used for visual inspection of quality in step 5 of above list is shown in
�gure 4.1.

The data thus segmented contained 1073 grains, of which 556 are bulk grains,
i.e. do not touch the sample edges. This is shown in �gure 4.2. Topological
quantities such as number of faces may be readily determined, and grain sizes
may be determined with high precision from the voxelized data. For application
of the three-dimensional Von Neumann-Mullins law (4.3), where morphology
is important, a smoothing procedure is �rst applied, which is detailed in next
section.
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Figure 4.1: A cross section of the �ltered tomographic reconstruction of the
grain structure of � titanium with the grain boundary "skeleton" overlaid. Red
represents the grain boundaries stemming from the watershed algorithm, green
represents the grain boundaries that have been manually de�ned.



46 Grain topology and grain growth in � titanium

Figure 4.2: The grain structure of � titanium in the �rst data set. Left: All
1073 segmented grains. Right: The 556 bulk grains. The volume between the
rings is a volume successfully segmented in the second data set, shown here for
future reference. A smoothing procedure has been applied prior to visualization.
Its details and parameters are given in section 4.2.
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4.2 Iterative smoothing of the grain structure

The voxelized grain structure was triangulated on a grain by grain basis with
a simpli�ed marching cubes algorithm, which guaranteed that triangle vertices
on grain faces were paired, and thus created a space-�lling grain structure of
triangulated grains. The vertices of each grain were divided in two classes:
Face vertices, and triple line vertices, and these were treated di�erently during
iterative smoothing:

The face vertices were moved to reduce an approximation to the Laplacianr 2

at that point: Vertex i at position v i is iterated by [73]

v t +1
i = v t

i + �
X �

v t
j � v t

i

�
(4.5)

� is a small relaxation parameter, and the sum is performed over all vertices
that the i th vertex is connected to by triangle edges.

The triple line vertices were �rst sorted according to which triple line they belong
to. A cubic spline curve with �tting parameter 0 � p � 1 was �tted to these
points, using the Matlab function "csaps" from the Spline toolbox. A value of
p = 0 gives a curve that is the least squares �tted straight line approximation,
while p = 1 gives a smooth curve that passes through all points used for the
�tting. For iterative smoothing, this should be chosen so p . 1. The triple line
vertices were smoothed by

v t +1
i = v t

i + w
�
St

i � v t
i

�
(4.6)

where St
i is the point on the spline curve with the shortest distance to the i th

vertex, and w is a relaxation parameter akin to � from equation (4.5).

This smoothing operation, given the relaxation parameters are chosen su�-
ciently small to ensure numeric stability, preserves the space-�lling nature of
the grain structure. An example of a grain at various degrees of smoothing
is shown in �gure 4.3. 70 smoothing iterations have been applied to the grain
structure for the analysis in the present work. This degree of smoothing is shown
in the rightmost part of �gure 4.3. This two step approach was taken mainly to
preserve the sharp nature and length of the triple junction lines.

A smoothing process inevitably introduces a degree of arbitrariness into the
grain structure, but it was found that the smoothing applied to the grain shown
in �gure 4.3 caused a mean displacement of the vertices of onlyhD i � 0:67 � m.
The evaluation of the three-dimensional Von Neumann-Mullins equation (4.2)
requires the determination of two terms. The e�ect of smoothing on these terms
is shown in �gure 4.4, where it is seen that although the e�ect of smoothing is
substantial on both terms, it largely cancels when the di�erence is determined.
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Figure 4.3: A grain with 12 faces at three stages of smoothing. The parameters
were chosen as� = 0 :04, p = 0 :999, and w = 0 :05. Top left: 0 iterations.
Top right: 10 iterations. Bottom: 70 iterations. The smoothing slows down
considerably as the grain becomes smoother due to the nature of the algorithm.

Figure 4.4: An illustration of the e�ect of smoothing the grain structure on the
terms of the three-dimensional Von Neumann-Mullins law (4.2) for the grain
shown in various stages of smoothing in �gure 4.3.
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Figure 4.5: Left: Grain size distribution. Right: Distribution of faces. Data is
from present work with 556 bulk grains, and from Rowenhorstet al. [69] with
2098 grains.

4.3 Grain structure and growth predictions

The grain size and face distributions for the 556 bulk grains of the �rst data set
are shown in �gure 4.5. Results for comparison from 2098 grains in� titanium
produced by serial sectioning, published in [69] show a good correspondence,
thus validating the experimental procedure. The mean grain size was found to
be hdi � 37:2 � m. The mean number of faces in the present work is found to be
hF i � 13:1, while it was hF i � 13:7 in [69]. The relationship between grain size
and number of faces is shown in �gure 4.6, the mean of which shows a roughly
linear relationship, but with considerable variation about the mean.

4.3.1 Growth predictions

The predicted normalized growth rate G is de�ned from equation (4.3) as

G �
1

2�M

dV
dt

= �
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6

nX
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ei (D )

!

(4.7)

and has been determined for the 556 individual bulk grains. This is shown in
�gure 4.7, along with the two terms necessary to determine this. Note that
"normalized" in this context means that the G is normalized to the product
M
 , so the right-hand side is independent of the materials parameters.

Focussing on the left side of �gure 4.7, a linear interpolation between the two
closest mean value data points was used to determine where the sign change of
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Figure 4.6: Grain size vs. faces. Left: From present work. Blue markers
represent individual grains. Black dots represent average for the topological
class. The black line is the least squares �t given byR=hRi = 0 :071F + 0 :078.
Right: From Rowenhorst et al. [69], where the mean grain radius is reported as
hRi = 19:5 � m.

Figure 4.7: Mean width L (D ), edge length
P

� (D )=6 and predicted normalized
growth rate G for 566 individual grains in the present work. Left: As a function
of number of grain faces. Right: As a function of normalized grain radius.
Individual points are shown as dots, while mean values are shown as diamonds.
Solid lines are least-squares �tted polynomials. Blue: Mean width. Fitting line
is 2:38d + 3 :27. Red: Total edge length. Fitting curve is 0:017d2 + 1 :14d + 6 :15.
Black: Predicted normalized growth rate. Fitting curve is 0:017d2 + (1 :14 �
2:38)d + (6 :15� 3:27).
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the predicted growth rate G occur. This is found to be F � 15:65. The value
of F � 15:65 is consistent with the value reported by Rowenhorstet al. [69]
(F � 15:5).

The curve for G in the left part of �gure 4.7 is seen to 
atten signi�cantly
towards the left for F � 10. Approximative theoretical results by Glicksman
[66] �nds a minimal rate of shrinkage at F = 6. Such a minimal rate of shrinkage
is not clearly observed whenG is shown as a function of the number of faces,
but the relative occurrence of grains with few faces is low, cf. �gure 4.5, and so
the statistics too poor for de�nitive conclusions to be drawn.

Turning attention to the right side of �gure 4.7, the sign change of the normalized
predicted growth rate is found by linear interpolation of two nearest data points
to be at R � 1:35hRi . It also shows a minimal shrinkage rate occurring for a
relative grain size of R � 0:7hRi , which due to the relationship between grain
size and number of faces shown in �gure 4.6 hints that such a minimal growth
rate might also be found forG as a function of the number of faces, had data for
a higher number of individual grains been available. Interestingly, the variation
in mean width and total edge length (note that total edge length is divided by 6
for easy comparison with mean widths) seems to be more conveniently described
by the grain size, rather than number of faces. The morphology of the grains is
such, that the mean width as a function of grain size falls on a straight line with
good approximation, while the total edge length is approximately parabolic. The
average values of the mean width and total edge length have been �tted with
polynomials, and this is also shown in �gure 4.7 (right), along with the �tting
curves (parameters in �gure text), where it is seen that the polynomials give an
excellent �t. The �tting curve of the predicted normalized growth rate G predict
the sign change to occur atR = 1 :3hRi , and the predicted normalized growth
rate appears to be (keeping in mind that this is an extrapolation) increasing with
grain size for large grain sizes, as was found by Glicksman [66] to be the case
for growth rate of grains with many faces. No underlying topological and/or
morphological explanation for this observation will be o�ered. The roughly
approximate linear relationship between number of grain faces and grain sizes,
�gure 4.6 puts a minimal growth rate at hF i � 9 but this must be taken as a
hypothesis, due to the many averagings and two polynomial �ttings employed.
However, that the mean width with good approximation is given by a straight
line is interesting: Such a scaling is expected as a simple size e�ect, cf. equation
(4.4), but the grains considered here are of many di�erent topological classes,
thus it seems that this grain structure is such that the topological class of the
grains do not a�ect the average mean width much.

The growth predictions put forth by Rowenhorst et al. are presented in terms of
a slightly di�erent quantity called normalized integral mean curvature G which
is dimensionless. The mathematical correspondence is 2�G=V 1=3 = G, where V
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Figure 4.8: Normalized predicted growth rates. Left: From the present work.
Solid lines are least-squares �tted polynomials. Red: Mean width 2� L (D )=V1=3,
�tting line is 0 :0006F +18:50. Blue: Edge length 2�

P
� (D )=6V 1=3, �tting curve

is � 0:0085F 2 + 0 :8693F + 7 :0. Black: Normalized integral mean curvature
G = 2 �G=V 1=3, �tting curve is � 0:0085F 2 + (0 :8693� 0:0006)F + (7 :0� 18:50).
Right: From Rowenhorst et al. [69]. Blue points: G determined with the same
method as in present work. Black points: G determined with a variation of the
method employed in present work. This is argued to result in higher �delity
than the method employed in present work.

is the volume of the grain in question. The correspondence is shown in �gure
4.8, with the results from present work left and the results from Rowenhorst
et al, [69] right. This normalization results in average quantities that are very
well described in terms of the number of grain faces. The method employed to
determined mean widths and edge lengths in the present work corresponds to
the blue points on the the right of �gure 4.8, but inspection shows that the values
of the normalized integral mean curvature G for the present work correspond
better to the black points on the right of �gure 4.8. Rowenhorst et al. argues
that the method employed to determine the integral mean curvatureG shown as
the black points give more accurate results than the one employed to determine
the blue points. That the results from the present work correspond better to
the black points is assumed to be the result of the smoothing scheme employed
in the present work, which seems to preserve the sharp nature of the triple
junctions better than the scheme employed by Rowenhorstet al. The good �t
of the straight line to the mean width L (D ) in �gure 4.7 (right, blue line), as
well as the extrapolated mean width of vanishing grainL (D ) � 0 is taken to be
evidence that the smoothing procedure does not show dependence on the grain
size for the grain sizes investigated in the present work. The "
atness" of the
�tting line corresponding to mean width L (D ) in �gure 4.8 (left, blue) is taken
as a consequence of this as well.
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4.4 Grain growth of 31 individual grains

After the characterization resulting in the data set investigated in previous sec-
tions, a second characterization was performed: The sample was annealed for
2 hours at 860� C as both solution treatment and to induce grain growth. The
recommended solution time and temperature is 3� 30 min at 816� 843� C [70],
and so the � precipitates are assumed to dissolve fast compared to the grain
growth of the � phase. The sample was water quenched, and annealed for 11
hours at 730� C to again allow � phase precipitation, before the sample was
characterized again. The quality of this second raw data set, however, was sig-
ni�cantly poorer than the �rst, due to a higher fraction of � phase precipitation
in bulk grains. The segmentation procedure thus became very time consuming,
and only 150 contiguous voxel layers (105� m) of the sample was successfully
segmented. Note that the poor quality of the raw data of the second data set
increased the segmentation time, but is not believed to have lowered the �delity
of the segmented volume.

Examinations of the second data set reveals that approximately 7=8 of the grains
in the �rst data set have been eliminated, corresponding to an increase in the
mean grain size by a factor of� 2, and so signi�cant grain growth has occurred.

As the crystallographic orientation of the grains are not determined with the de-
scribed experimental method, there is no simple, direct way of determining the
correspondence between grains in the two data sets. An identi�cation has been
performed by Dr. I. M. McKenna, Northwestern University. The procedure is
described in detail in [74]. The procedure consisted of determining the center of
mass of all grains in the segmented part of the second data set, and projecting
them into the �rst data set. If the projected point was in the bulk of a grain
in the �rst data set, the grains were assumed to be identical. This is believed
to give good results when the growth is not highly directional, and the growth
has been su�ciently small. This procedure identi�ed 31 individual grains com-
pletely contained in the segmented volumes of the two data sets. These are
shown in �gure 4.9 at the two stages of grain growth. It is important to note
that a signi�cant bias has been introduced: Grains that have been eliminated
during the grain growth has not been identi�ed, and grains that are large com-
pared to the segmented volume of the second data set are underrepresented, as
their large sizes make it improbable that they are completely contained in the
small segmented volume of the second data set. The 31 grains therefore do not
constitute a representative set, and strongly favor small grains.

The observed grain sizes, and number of faces of the 31 grains before and after
grain growth is shown in �gure 4.10. Shrinkage is observed for grains 1-25, no
appreciable size change for grains 26 and 27, and slight growth is observed for
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Figure 4.9: Top view of the 31 grains in� titanium contained in the segmented
volume as they are located in the sample. Top: First data set (before grain
growth). Bottom: Second data set (after grain growth).
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Figure 4.10: Normalized grain size (top) and number of faces (bottom). The
normalizing grain size is the mean grain size of the �rst data set. Blue bars:
Time 1 (before grain growth). Green bars: Time 2 (after grain growth). Grains
are sorted so the largest measured net growth is rightmost. The dash-dotted
line in the bottom �gure marks the number of faces above which a grain on
average is predicted to grow,F = 15:65. All 31 grains are smaller than the
predicted size necessary for growth,R = 1 :3hRi . Negative, approximately zero,
and positive net growth rates are grouped by vertical lines.

grains 28-31. All grains are observed to lose at least one face, except grains
13 and 27 for which the number of faces is unchanged, and grains 23, 26 and
29 which gain a single face. Note that all grains are of a smaller size than is
predicted to cause growth on averageR � 1:35hRi , while grains 1, 2, 4, 5, 12,
15, 21, 30 and 31 have more faces than that the number that is predicted to
cause growth on averageF � 15:65.

The normalized predicted growth rate G as de�ned in equation (4.7) gives pre-
dictions for the growth of individual grains. The quantity G is de�ned as a
time derivative, and is therefore subject to change on the time scale of grain
boundary migration in the system. Such variations will not be captured by the
two acquired data sets, so only the sign of the normalized predicted growth rate
will be considered. The observed relative change in volume �V=V is shown
alongsideG in �gure 4.11.
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Figure 4.11: Comparison between the observed relative change in volume (blue
bars, left axis), and the normalized predicted growth rate G (green bars, right
axis) of the 31 individual grains. Negative, approximately zero, and positive net
growth rates are grouped by vertical lines as in �gure 4.10.
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The grains which are observed to undergo negative growth, are found to mainly
have normalized predicted growth rates that are also negative, however, 5 are
seen to be positive. To investigate this discrepancy, the normalized predicted
growth rates are determined for these grains in the second data set, i.e. after
grain growth. These are all negative. The observed negative net growth rate of
these grains may thus in some cases be explained by these grains undergoing a
topological and/or morphological change during growth, which changes the sign
of the growth rate, so that an initially growing grain begins shrinking. Such
topological and/or morphological changes causing a transition from positive to
negative growth rate must occur with some frequency during grain growth, as
a necessity for competitive growth.

The two grains with an observed net growth rate of approximately zero, grains
26-27, show a predicted negative growth rate, and this is also the case when
G is determined for the grains after the grain growth. It seems unlikely that
a topological and/or morphological change should occur twice, i.e. that an
negative growth rate becomes positive, and then again negative, resulting in a
net growth rate of zero. The two grains with the lowest positive net growth rate,
grains 28-29, are likewise seen to have a predicted negative growth rate in both
data sets. The two grains with the highest positive net growth rate observed,
grains 30-31, both have a positive predicted growth rate.

In total, the sign of the growth of 22 grains is correctly predicted by the three-
dimensional Von Neumann-Mullins equation (4.3). The growth of 5 additional
grains may arguably have been predicted correctly, but this cannot be investi-
gated further without a higher time resolution. This gives between 71� 87%
correct predictions. When considering the problem at hand, and the experi-
mental method employed for this study, the discrepancy between experimental
observations and theoretical growth predictions are not surprising, mainly due
to two factors: Firstly, the considerable grain growth occurring between ex-
perimental characterizations (mean grain size increasing a factor of� 2). The
three-dimensional Von Neumann-Mullins equations (4.3) is a di�erential quan-
tity, and thus the growth predictions should ideally be compared to experimental
characterizations with a very �ne time resolution to examine the validity of the
predictions. Secondly, the three-dimensional Von Neumann-Mullins equation
(4.3) is derived for a three-dimensional in�nite soap froth, meaning that surface
e�ects are neglected, and isotropy is assumed, which is never realized for met-
als. Although a correlation between predicted and observed growth has been
observed, further studies should be performed. Finally,� phase precipitates
slow to dissolve during the solution treatment would a�ect the grain boundary
migration. The � phase precipitates are assumed to not interfere signi�cantly
with the grain growth, mainly due to the temperature and length of the com-
bined solution treatment and grain growth (2 hours at 860� C, compared to a
recommended solution treatment of 3-30 min at 816� 843� C), but this may also
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have a�ected the grain growth.

4.5 Outlook

It has been shown that edge enhanced tomography may provide three-dimensional
data sets of high �delity. The method described should therefore be applied
to larger samples, so the application of the three-dimensional Von Neumann-
Mullins equation (4.3) could be done with a better statistical basis. In particu-
lar, additional statistics on grains with a low number of faces would reveal if a
minimal growth rate could be observed for a topological class of grains, which is
hinted at by the normalized growth rate G in �gure 4.7. The simple polynomial
forms of the average mean width and edge length are intriguing, and it would be
interesting to seek an explanation related to the geometry of the grain structure.

The experimental method applied for characterization of grain structure is not
sensitive to crystallographic orientation, and so the relationship between grains
at di�erent stages of grain growth must be inferred, which is a weakness of
the technique. Application of a di�erent technique, e.g. di�raction contrast
tomography (DCT) from section 2.2.2, would allow direct investigations into
grain growth with a good time resolution, at the price of a poorer resolution
of the grain boundaries, which could however be applied to a larger class of
materials, because it does not require precipitation of a second phase on the
grain boundaries. Alternatively, a 3DXRD scan could be employed to determine
crystallography and center of mass of the grains using e.g. GrainSpotter [33],
which gives center of mass positions accurate to about 5� m. These could then
be mapped into the grain structure determined by edge enhanced tomography
to positively identify the grains through their crystallographic orientation. By
3DXRD, it would be possible to follow the grain sizes during growth in situ ,
with detailed morphological information determined at the beginning and end
by edge enhanced tomography.



Chapter 5

Coupled grain growth and
coarsening of dual-phase

materials

As stated in the introduction, the original intention was to study coupled grain
growth and coarsening by a combination of experimentally characterized mi-
crostructures and large-scale phase-�eld simulations. The chosen material was
duplex steel 2205, which is an austenitic/ferritic alloy. The characterization was
attempted by a combination of two techniques:

Holotomography, as is described in section 2.1.2, was employed to produce a
high-resolution map of the phase structure. Other well-known methods, e.g.
absorption tomography, could not be employed, as there is only a slight dif-
ference between the magnitudes of the X-ray attenuation in the two phases.
A proof-of-concept holotomographic reconstruction of a sample of this speci�c
alloy, and comparisons to reconstructions produced by other methods has been
published in [30], and was shown in �gure 2.3. The holotomographic reconstruc-
tion was of good quality. A cross section of the reconstruction is shown in �gure
5.1 (right).

Di�raction Contrast Tomography (DCT) as is described in section 2.2.2 was em-
ployed in order to generate a grain map including crystallographic information.
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Figure 5.1: Cross sections of tentative reconstructions of duplex steel 2205,
courtesy of Dr. Wolfgang Ludwig, ESRF. Left: DCT reconstruction of austenite
grains. Right: Holotomographic reconstruction. Lighter domains are austenitic.

DCT is in principle su�cient to fully characterize the grain and phase structure
of the stainless steel, but there are two main points to using both techniques:
First, that holotomography gives a higher resolution, space-�lling phase map,
which may be used to assist in the dilation procedure, which as is mentioned
in section 2.2.2 is necessary to ensure that grain maps produced by DCT are
space-�lling. Second, that the phase map may supply information to the DCT
reconstruction algorithm about phase and spatial position of grains that may
not have otherwise been found by the algorithm.

The experimental characterization failed, as the DCT reconstruction algorithm
was unable to properly segment smaller austenite grains. This is believed to be
due to residual stresses between the austenitic and ferritic phases which would
tend to blur the di�racted images, thus reducing contrast. An example of a DCT
reconstruction alongside a holotomographic reconstruction is found in �gure 5.1,
which clearly shows austenitic domains in the holotomographic reconstruction
that the DCT reconstruction algorithm has not been able to �nd.

The DCT reconstruction algorithm is a sophisticated piece of software, that is
under continual development. Extending the algorithm to better accommodate
reconstruction of duplex steel 2205 was unfortunately deemed outside the scope
of current Ph.D. project, and so experimentally determined initial conditions,
and reconstructions of microstructures characterized after annealing could not
be acquired. Focus was therefore shifted to simulations of coupled grain growth
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and coarsening from "arti�cial" initial conditions.

In the following, the phase-�eld method will be sketched brie
y in section 5.1
for readers unfamiliar with the method. The method will be discussed and
compared to other well-known modelling frameworks in section 5.2, and applied
to the speci�c case of coupled grain growth and coarsening in polycrystalline
dual-phase materials in section 5.3. The mathematical details of the model
employed is found in section 5.3. Details regarding numeric implementation
of the solver is found in section 5.4, and �nally simulations are presented and
quanti�ed in section 5.5.

5.1 Phase-�eld modelling of microstructural evo-
lution

In recent years phase-�eld modelling has emerged as one of the preferred meso-
scale modelling methods in materials science. That the method has been used
to simulate phenomena as diverse as grain growth, both isotropic, e.g. [75{77]
and anisotropic, e.g. [78, 79], solidi�cation, e.g. [80{82], Ostwald ripening, e.g.
[83], crack propagation, e.g. [84], domain coarsening in dual-phase structures,
e.g. [85], and many more, is a testament to its unique versatility.

The phase-�eld framework has been largely developed in a series of papers by
Cahn, Hilliard and Allen [86{88]. This development predates the widespread
access to computer power that is taken for granted today, and so was applied
only to systems where insight could be gained analytically. The practical ap-
plicability of the phase-�eld method has increased enormously with computing
power, but is still based on the original derivation. Several reviews and texts
providing comprehensive introductions to the method with varying focus have
been published, see e.g. [82, 89{91], however, citing [91]"An exhaustive review
of the �eld is nearly impossible due to the broad range of applications."

5.1.1 Phase-�eld variables

An idea central to the method is to describe all microstructural features of
interest by phase-�eld variables. The phase-�eld variables are de�ned in the
entire system, and are required to be smooth in space and time (the dependence
on space and time will be suppressed for brevity in the following). Interfaces
are then represented by a smooth variation between some equilibrium values in
one or more phase-�eld variables. The method therefore belongs to the class
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called di�use interface methods, as all interfaces in the system take on a width
that is non-zero and speci�c to the type of interface.

Di�use interface theory may be traced back to the early work on gas/liquid
interfaces by Van der Waals, see e.g. [92], in which the density of the 
uid
was taken to vary smoothly across interfaces, and the work of Landau [93] on
second-order phase transitions. The phase-�eld method may be viewed as a
continuation of this work.

Speci�c examples of phase-�eld variables are e.g. one representing a molar frac-
tion of some chemical constituent in a system with several chemically distinct
phases, or one representing the solid/liquid state in a solidi�cation problem. A
molar fraction has an intuitive physical interpretation, and equilibrium values
given by the problem, but a solid/liquid state is more ambiguous. Its equi-
librium values may be set arbitrarily, but are usually taken to be 0 and 1 in
the literature. Domains where the phase-�eld variable attains values� 0 could
then be interpreted as the system being completely liquid in those domains, and
values � 1 as the system being completely solid. Domains containing values in
between are considered interfacial regions.

5.1.2 Free energy of a system with interfaces

Since the phase-�eld variables are taken to describe all microstructural features
of interest, i.e. de�nes the state of the system everywhere, it must be possible
to express the Gibbs free energyF as a functional of these (F could also be
taken as the Helmholtz free energy, if more applicable to the problem at hand).

For a system de�ned by N phase-�eld variables, � 1; � 2 � � � � N , the free energy is
�rst taken to be a functional of a local free energy, f , which in turn is taken to
be a function of all phase-�eld variables and their gradients up to second order

F =
Z



f

�
� 1; � � � ; � N ; r � 1; � � � ; r � N ; r 2� 1; � � � ; r 2� N

�
dr (5.1)

Here 
 denotes the entire system volume. So the local free energy is assumed to
only be a function of the local microstructural con�guration and its immediate
surroundings.

Taking f to be a smooth function, it may be Taylor expanded aboutf 0, termed
the bulk free energy, which is the local free energy of a homogeneous microstruc-
ture, i.e. a system with no gradients, and is an inherently non-linear quantity.
The expanded expression is truncated, and a series of symmetry considerations
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then lead to the simpli�ed expression [86]

F =
Z




 

f 0 (� 1; � � � ; � N ) +
NX

i =1

� i

2
jr � i j

2

!

dr (5.2)

The constants � i are called gradient energy coe�cients. They may be viewed as
"energy penalties" associated with interfaces, and should therefore be taken non-
negative, to ensure positive interfacial energies. The magnitude of the gradient
energy coe�cients are related to the width of the interface in question: "small"
gradient energy coe�cients result in numerically "large" gradients, i.e. narrow
interfaces, and vice versa.

The bulk free energy,f 0, should have a number of minima de�ning the position
in phase-�eld space of the equilibria of the system, i.e. minimas should be
placed at positions in phase-�eld space corresponding to the microstructural
con�gurations that are in equilibrium far from interfaces. For a solidi�cation
problem where the solid/liquid state of the system is expressed by a single phase-
�eld variable � , f 0(� ) could be a simple double-well function with minima placed
at � = 0 (liquid) and � = 1 (solid).

The interfacial energy � which expresses the excess free energy associated with
having interfaces in the system may be determined as [86]
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where � f is de�ned as the di�erence between the bulk free energy,f 0, and the
free energy found by the common tangent plane approximation. The interfacial
energy is thus composed of contributions from both � f and from gradients in
the phase-�eld variables.

5.1.3 Governing equations

If the free energy functional F , equation (5.2), is not at a minimum, the ex-
cess free energy will provide a driving force for microstructural evolution. Be-
fore proceeding, a distinction must be made between phase-�eld variables that
are conserved, e.g. a molar fraction of a constituent, and those that are non-
conserved, e.g. solid/liquid state in a solidifying system. For clarity, conserved
variables are designatedCi , while non-conserved variables are designated� i , so

@
@t

Z



Ci dr = 0 (5.4)

@
@t

Z



� i dr 6= 0 (5.5)
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The requirement (5.4) assumes conservative boundary conditions, e.g. periodic
or re
ective. If non-conservative boundary conditions were used, the right-
hand side should be replaced by the 
ux into the volume 
 at the boundary
@
. The conserved phase-�eld variables are required to ful�ll (5.4), while the
non-conserved variables areallowed to ful�ll (5.5), as a given subset of initial
conditions may cause any or all� i to be conserved.

The minima of the free energy functional, and so the equilibrium microstruc-
tural con�gurations, are characterized by a vanishing functional derivative with
respect to all phase-�eld variables [23]

�F
�C i

=
�F
�� j

= 0 for all i and j (5.6)

The functional derivative may be thought of as a generalized gradient: Where
the gradient of a scalar function of several variables points in the direction
of steepest increase, the functional derivative of a scalar functional gives the
"direction" in function space that the functions should be changed to increase
the functional most steeply. This is the justi�cation for assuming that the non-
conserved phase-�eld variables evolve in time according to [88]

@�i
@t

= � L i
�F
�� i

= � L i

�
@f0
@�i

� r � � i r � i

�
(5.7)

The � i of this equation is the gradient energy coe�cient of the phase-�eld vari-
able in question, and the L i are mobilities. This equation is known as the
Allen-Cahn equation or the Time-Dependent Ginzburg-Landau equation, and
is a second-order in space, �rst order in time partial di�erential equation.

The conserved phase-�eld variables are governed by the Fick's �rst law di�usion
equation. The 
ux of the i th conserved phase-�eld variablej i , is taken to be
given by

j i = � M i r
�F
�C i

(5.8)

Here M i is a mobility. The intuitive understanding of this equation is that the
negative variational derivative expresses the "direction" the phase-�eld variable
should be changed to lower the free energy of the system, while the spatial
derivative gives the direction of the 
ow, so that density will 
ow from domains
where it causes excess free energy, to domains where it causes less excess free
energy.

Conservation is guaranteed by subjecting the 
ux to the continuity equation

@Ci
@t

= �r � j i = r � M i r
�F
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= r � M i r
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� r � � i r Ci
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This equation is known as the Cahn-Hilliard equation [86], which is a fourth
order in space, �rst order in time partial di�erential equation.

In the Allen-Cahn and Cahn-Hilliard equations, (5.7) and (5.9), the mobilities
L i and M i and the gradient energy coe�cients � i need not be constant, al-
though they are taken as such in the present work. See e.g. [90] for a review of
approaches.

5.2 Discussion of the method

The phase-�eld framework has been sketched. It is a method rooted in ther-
modynamics, where the time evolution of a system withN conserved - and
M non-conserved phase-�eld variables in general is accomplished by solvingN
fourth order in space, �rst order in time, and M second order in space, �rst
order in time partial di�erential equations, that are coupled through the non-
linear bulk free energy, f 0. Therefore, solution of the system of equations may
be performed using standard numeric methods for non-linear partial di�eren-
tial equations as may be found in e.g. [94], while analysis of simple cases, e.g.
planar boundaries, may be performed with approximate methods known from
e.g. boundary layer theory in 
uid dynamics, as may be found in e.g. [95].
The method is completely deterministic (unless stochastic e�ects are deliber-
ately added), in contrast to Monte-Carlo Potts methods for microstructural
evolution, as presented in e.g. [96].

The most immediate advantage of using the phase-�eld method to model mi-
crostructural evolution is inherent in the di�use interfaces: The lack of a need
for front tracking. Consider, as an example, a physical system where particles
in a liquid matrix are undergoing Ostwald ripening. This could be analyzed by
solving a di�usion equation subject to boundary conditions on the surfaces of the
particles. The surfaces, however, are not �xed in time, as matter is transported
from regions of larger mean curvature to regions of smaller mean curvature.
This type of problem, where boundary conditions must be imposed on moving
boundaries, is known as a Stefan problem, and is considerably more di�cult
to solve than when all boundaries are stationary [97]. No such considerations
are necessary within the phase-�eld framework, as all interfaces are handled
implicitly by solving the governing equations (5.7) and (5.9). Here, boundary
conditions need only be imposed on the external boundaries of the system.

The width of the di�use interfaces are a possible concern: The widths of physical
interfaces between microstructural features, e.g. grain boundaries, are usually
measured in �A or nm. In phase-�eld simulations of complex microstructures,
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this width must currently be taken signi�cantly higher, on the order of � m, to
allow numeric resolution of the interfaces on a computational grid. This has
been shown to not necessarily be a problem by Fanet al. using a phase-�eld
model of grain growth. Quoting [98]: if there are enough grid points to resolve
a di�use boundary, the migration velocity of a di�use grain boundary is exactly
the same as that of a sharp grain boundary, even for a very small grain whose
size is comparable to the grain boundary width.The su�cient number of grid
points through the interface is there found to be 7, but the su�cient width
of the interfaces should be investigated in any new phase-�eld model prior to
large-scale simulations, to ensure that the simulated microstructural evolution
is not a consequence of the numeric resolution.

As a modelling framework, the phase-�eld method has similarities to the level
set method, see [99, 100] for reviews, in that microstructural features there
are also represented by smooth functions, known as level set functions, and
that microstructural evolution is simulated by solving �rst order in time par-
tial di�erential equations. The level set functions only represent features with
fronts: They are positive inside the feature in question, negative outside, and
the interface is taken to be where the level set function vanishes. Microstruc-
tural evolution is simulated by subjecting the level set functions to a continuity
equation, where a front velocity is supplied which may depend on the front ori-
entation and may be coupled to external physics. It is known that the accuracy
of the solution is dependent on the initial choice of pro�le. This e�ect is so
important that it has led to the notion of reinitialization , where the interface
contour is periodically determined, so the level set pro�le may be reset to one
bene�cial for numerical accuracy. This increases programming complexity and
reduces execution speed when done frequently, a problem which is not present in
the phase-�eld framework. Even if reinitialization is not required, the interfaces
must oftentimes be continually tracked. In e.g. [101] the level set method is
applied to growth of faceted crystals, front tracking is employed to halt growth
when crystal interfaces come into contact.

When developing a phase-�eld model, the main di�culty is in determining a
bulk free energy function, f 0 of equation (5.2), to capture the physics of the
problem. In the literature, there are two main branches in how to approach this
problem: The bulk free energy function may be supplied by a thermodynam-
ics database or chosen phenomenologically, with the vast majority of publicized
models favoring the latter. Using a thermodynamic database, e.g. [90] pro-
vides a measure of con�dence in the simulation output, at the cost of reduced
transparency. The phenomenological models are usually constructed as Landau
polynomials [93]. Correspondence to physical systems is then sought by tun-
ing model parameters until the model output reproduces physically measurable
quantities, e.g. equilibrium triple junction angles, boundary migration rates,
etc. with a top-down approach.
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5.3 Phase-�eld model for simulation of coupled
grain growth and coarsening in dual-phase
materials

The phase-�eld model employed is presented in detail in this section. The
model was used to simulate grain growth and coarsening in systems where the
two phases were taken to be identical in the sense that all materials parameters
were equal for the two phases, which are distinguished by a chemical di�erence.
All grain boundary mobilities and grain boundary energies were taken equal and
isotropic. The model will, however, be presented in more generality, and the
choice of parameters leading to the speci�c case used for simulation in present
work will be noted.

5.3.1 Phase-�eld variables

We consider a dual-phase material where the phases are denoted� and � . The
� phase is taken to be subdivided intoN � grains, each having a unique crys-
tallographic orientation, and � phase likewise subdivided intoN � grains. A
non-conserved phase-�eld variable is assigned to represent each unique crystal-
lographic orientation. The � phase grains are thus described byN � phase-�eld
variables which are denoted� 1; � 2; : : : ; � N � , while the � phase grains are de-
scribed by N � phase-�eld variables, denoted� 1; � 2; : : : ; � N � .

The chemical composition of the system is taken to be de�ned by a single con-
served phase-�eld variable, C, which may be interpreted as a molar fraction.
If the model is to be applied to many-component alloys,C should represent
the slowest di�using element, under assumption that the di�usion kinetics is
dominated by this constituent. The equilibrium composition in the two phases
are taken to be given byC� and C� , where we takeC� < C � by de�nition.

Altogether, N � + N � + 1 phase-�eld variables are used to describe the micro-
structure. The N � + N � degenerate equilibria in phase-�eld variable space, as
will be made to correspond to minima of the bulk free energyf 0, are taken to
be given by

� i = 1, � j 6= i = 0, � k = 0, C = C� (5.10a)

� l = 1, � m 6= l = 0, � n = 0, C = C� (5.10b)

where i = 1 ; 2; � � � ; N � , k = 1 ; 2; � � � ; N � , l = 1 ; 2; � � � ; N � and n = 1 ; 2; � � � ; N � .
Thus equilibria will be placed where a single� phase-�eld variable has the value
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Figure 5.2: Four planar grain boundaries at equilibrium. Left: Qualitative
cross section. Right: Equilibrium phase-�eld pro�les in the model presented in
present chapter. The composition pro�le clearly shows segregation at the grain
boundaries. This will be covered in section 5.3.8.1.

1, C = C� , and all other phase-�eld variables have the value 0, and vice versa
for � . In other words, the equilibria are to be placed so free energy is minimized
if spatial domains are occupied by only one� grain given that the composition
is C = C� , or equivalently one � grain if the composition is C = C� .

An illustration of a system with two � grains and two � grains is shown in �gure
5.2.

5.3.2 Bulk free energy function f 0

The free energy of the system (5.2) may be written as

F =
Z
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as all grain boundary energies of the same type (��; �� and �� ) are considered
equal, the gradient energy coe�cients has been taken outside the summations in
the more general equation (5.2). Note that there is no gradient energy coe�cient
associated with the compositional variableC. This does not mean that the
compositional pro�le across an interphase boundary will be sharp. Coupling
between the compositional variableC, and the other phase-�eld variables in the
system will be introduced in this section. Without a gradient energy coe�cient
in C, the Cahn-Hilliard equation governing the time evolution of this conserved
phase-�eld variable, equation (5.9), reduce to a �rst order in time, second order
in space partial di�erential equation, which improves the numerical stability
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of the system. The price, however, is that it becomes more di�cult (but not
impossible) to tune the �� boundary energies, which will be elaborated on
brie
y later in this section.

The bulk free energy,f 0, is in present work chosen as a phenomenological quan-
tity, a Landau polynomial of fourth order in � i , � i and C. It is de�ned as

f 0 = f C +
N�X

i =1

f C� +
N�X

i =1

f C� +
N�X

i =1 ;j 6= i
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N�X
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N�X

i =1

N�X

j =1

f �� (5.12)

De�ning Cm = 1
2 (C� + C� ), the 6 functions in the bulk free energy are de�ned

as
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A; B; D � ; D � ; 
 � ; 
 � ; � � ; � � ; � �� ; � �� and � �� are positive parameters, many of
which will be �xed due to thermodynamic concerns in section 5.3.5, as the
wanted positions of the minima, (5.10) have not yet been enforced. Note that
� �� , � �� and � �� should not be confused with the gradient energy coe�cients
� � and � � .

The 6 terms of the bulk free energy (5.12) have speci�c functions. As implied by
the subscripts, f C� and f C� creates coupling between the compositional phase-
�eld variable C and � and � type phase-�eld variables respectively. Coupling
between� type phase-�elds is introduced by f �� and by f �� for � type phase-
�elds, while coupling between � and � type phase-�elds is introduced by f �� .
These a�ect the respective boundary widths and boundary energies, and so
f �� may be used to gain some control over the energy and width of the��
boundary, which due to the lack of a gradient energy coe�cient related to C
would otherwise not have been possible. Exactly how much control this gives has
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not been quanti�ed, as it has not been important in the present work. All the
terms containing products of squares may be intuitively understood as raising
the free energy when both terms are non-zero: e.g.f �� will reduce overlap
between� type phase-�eld variables, as having two� type phase-�elds be non-
zero at any point in space will raise the local free energy. The functionf C as
well as the fourth order terms in f C� and f C� are introduced to ensure enough
mathematical degrees of freedom to allow the parameters to be set in a way
which ensures thermodynamic consistency.

5.3.3 Governing equations

All grain boundary mobilities and the di�usional mobility are considered con-
stant and isotropic. With these assumptions the model parameters may be taken
outside the di�erential operator r so the time evolution of the compositional
phase-�eld variable C governed by the Cahn-Hilliard equation (5.9) simplify to

@C
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= M r 2 @f0
@C

(5.14a)

and the Allen-Cahn equation (5.7) governing the� and � type phase-�eld vari-
ables simplify to
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Here M is the di�usional mobility, while L � and L � are grain boundary mo-
bilities. Thus, the Laplacian r 2 is the only spatial di�erential operator in the
partial di�erential equations governing the time evolution of the simulations.

5.3.4 Normalization of governing equations

The governing equations as presented in equations (5.14) contain degrees of
freedom which are mathematically super
uous. A partial normalization of the
governing equations can be performed by normalizing space and time by de�ning
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and writing the governing equations in terms of these primed variables. This is
mathematically equivalent to setting L � = � � = 1 in the governing equations
(5.14b), which can therefore be done with no loss of generality. Thus, this
method is chosen, rather than the introduction of the primed variables above.

5.3.5 Conditions for thermodynamic equilibrium

The minimas of the bulk free energyf 0 are to be placed according to equations
(5.10), which is achieved by �xing the values of some model parameters. First
requiring the bulk free energy to have extrema at these positions in phase-�eld
space is done by requiring
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which gives the four requirements
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whereX � C� � C� has been de�ned. Requiring that these extrema are minima
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along with the usual common tangent assumption across an interphase boundary
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Figure 5.3: A planar �� grain boundary. Left: Using the bulk free energy
function by Chen and Fan presented in [102{105]. Right: Using the bulk free
energy function from present work.

gives two additional requirements of positivity


 � > 0 (5.16a)


 � > 0 (5.16b)

5.3.6 Comparison to Chen and Fan model

The employed model is derived from that presented by Chen and Fan in [102{
105], which was used to investigate the topological evolution of coupled grain
growth and coarsening in two dimensions. That model seems to be an extension
of the model presented in [83], which was used to simulate Ostwald ripening.

The model employed in present work uses a bulk free energy functionf 0 that
di�ers from that by Chen and Fan. Two new terms, f �� and f �� , equations
(5.13d) and (5.13e) have been added. This is done to be able to vary the width of
the �� and �� boundaries, and allows for determination of asymptotic solutions
of planar boundary pro�les, as shown in section 5.3.7.

Examinations of intraphase boundaries using the model of Chen and Fan reveals
that the phase-�elds representing crystallographic orientation couple rather weak-
ly to the composition, resulting in crystallographic interfaces that are signi�-
cantly wider than the compositional interface. This is shown in the left side of
�gure 5.3. These di�ering interface widths may be unwanted, as they may result
in e.g. two grains of the same phase interacting through an intermediate grain
of the other phase. The reason for this behaviour is revealed by examination
of the terms responsible for coupling between crystallographic phase-�elds and
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composition. In the notation of present work, the equivalent of equation (5.13b)
in the work by Chen and Fan is

f C� = �

 �

2
(C � C� ) � 2

i +
� �

4
� 4

i (Chen & Fan)

It is seen that C expanded aroundC = C� does not have a linear term: An�
type phase-�eld variable forming an interface with a � type phase-�eld variable
tapers o� towards 0 as C approachesC = C� . However, whenC � C� the local
excess free energy will be a product of two small factors squared and thus not
signi�cant enough to couple strongly. Vice versa for � .

This coupling has been strengthened in the bulk free energy function in current
work by using the coupling term (5.13b):

f C� =

 �

2

�
(C � C� )2 � (C � C� )2

�
� 2

i +
� �

4
� 4

i (this author)

which is seen to always have a term linear inC, which strengthens the coupling
considerably, as is shown in the right side of �gure 5.3.

5.3.7 Asymptotic solutions and width of planar interfaces

The equations governing the time evolution of the phase-�eld variables (5.14a),
(5.14b) and (5.14c) have been investigated analytically for the simple cases of a
planar (�� , �� , or �� ) boundary. Exact solutions have not been determined,
and it is doubtful if these can be expressed in terms of well-known functions, but
sets of approximate solutions forming planar interfaces have been determined.
Details may be found in appendix A.1.

It was found that choosing D � = D � , and thus 
 � = 
 � ensures that all planar
interfaces in the system attain same width, and allows asymptotic solutions to
planar grain boundaries to be determined: Choosing

� �� = � �� = � �� = 3X 2
 � �
16X 2
 2

�

3BX 2 + 12D � X 2 � 4A
(5.17)

ensures that the asymptotic solutions are in good correspondence to numeric
solutions where the phase-�eld variables are� 1. This in turn allows the width
of the interfaces to be expressed as

W =
8

p
�

where � = � �� � X 2
 � (5.18)

with the interface width de�ned as the length between where the � and/or
� type phase-�eld variable forming the planar interface attains values of 0:98.
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Note that this de�nition of interface width is arbitrary. The model parameters
mentioned in this section were set as prescribed here, to allow for comparisons
between simulation output and numeric solutions.

5.3.8 Model parameters for large-scale simulations

The computational requirements for large-scale three-dimensional simulations
prohibit a real parameter study. Therefore, the model parameters not yet �xed
were chosen with a degree of arbitrariness. These were chosen as

C� = 0 :1; C� = 0 :9; A = 5 ; B = 4 :5; D � = 6 ; M = 1 ; L � = 1 (5.19)

and so the remaining parameters are �xed due to the normalization of section
5.3.4, to ensure correspondence between numeric and asymptotic solutions, sec-
tion 5.3.7, and by the requirement of thermodynamic consistency, section 5.3.5.

Numeric determination of the boundary energies of the three types of planar
boundaries, as given by equation (5.3) gives the following energetic ratios

R� =
� ��

� ��
= R� =

� ��

� ��
� 0:8 (5.20)

which according to the analysis by Cahn [106] means that the three types of
triple junctions ( ���; ���; ���; and ��� ) are stable with equilibrium triple
junction angles of

120:0� ; 120:0� ; 120:0� for ��� and ��� (5.21a)

113:6� ; 113:6� ; 132:8� for ��� and ��� (5.21b)

where the larger angle in (5.21b) is the angle between the two interphase boun-
daries. Also, according to [106], no quadrijunctions may be stable. These as-
sertions have been con�rmed by inspection of output from simulations. The
interface widths are cf. appendix A.1 found to be equal toW � 6:95.

5.3.8.1 Boundary segregation

Segregation of solute to�� interfaces and away from�� interfaces is an un-
avoidable phenomenon in the present model, as was also found in [102]. As
impurity drag is known to a�ect boundary migration rates, see e.g. [48], it has
been investigated in some detail here, as impurity drag was not the focus of this
study.
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Examining the asymptotic solution for the compositional pro�le at an e.g. ��
boundary, equation (A.4) reveals that 
 � = 0 is a necessary criteria for a 
at
compositional pro�le, and this is forbidden by the criteria for thermodynamic
consistency (5.16). In other words,
 � = 0 would decouple the compositional
phase-�eld variable from the � type phase-�eld variables, and lead to simulated
behaviour that would not re
ect the physical problem in question.

A reductio ad absurdum treatment to show that boundary segregation is un-
avoidable in current model which does not rely on approximate solutions requires
solving the Cahn-Hilliard equation (5.14a) in its time independent form, across
an e.g. �� interface (phase-�eld variables � 1 and � 2), while requiring that
C = C� everywhere:

0 = r 2 @f0
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�
�
�
C = C �

) r 2
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� 2
i

!

= 0

which due to the boundary conditions valid for a planar �� -interface

lim
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� 1 = 0 ; lim
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� 2 = 1

give the requirement

1 �
2X

i =1

� 2
i = 0

which, when imposed on the two equations governing� 1 and � 2, equation
(5.14b) in their time invariant form leads to

r 2� 1 = r 2� 2 = 0

and as this is incompatible with solutions with interfaces, it is concluded that
boundary segregation is an inherent feature of this model.

As the model is too complicated to readily give analytical insight into solute
segregation to moving boundaries, this has been examined numerically with
simulations using the solver also employed for large-scale simulations. A two-
dimensional simulation where a round� grain was embedded in another� grain
was set up on a grid of 5122 points and a grid spacing of � h = 2=3. The round
grain was represented by the phase-�eld variable� 1, and the embedding grain
by � 2. The composition was set toC = C� everywhere, periodic boundary
conditions were imposed, and the simulation was executed until the round grain
had been eliminated.

The position of the interface and the radial interface pro�le as a function of time
is shown in �gure 5.4 for various times. It is seen that the round grain retains
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Figure 5.4: Two-dimensional simulation of a round� grain embedded in an�
grain. Left: Position of the interface at times (outermost to innermost) t =
50:000; t = 500:000; t = 1 :000:000; and t = 1 :440:000. Right: Radial pro�les
of the phase-�eld variable representing the round grain (broken lines), and the
composition pro�le, C (full lines), at the times corresponding to left �gure. The
pro�les of the surrounding grain are not shown.

its shape while shrinking, and that pro�les of both � 1 and C largely retain their
shape.

The area of the round grain vs. time is shown in �gure 5.5. The evolution of the
area is found to be given by a straight line with very good approximation, except
at times very close to the elimination of the grain. When close to elimination,
the grain area vs. time is observed to speed up, rather than slow down, which
supports that it is not an e�ect of impurity drag. It has been found by inspection
of simulation output to be due to the grain radius becoming too small to support
local equilibrium phase-�eld variable pro�les, rather than an e�ect of boundary
segregation. The departure from linearity is found to occur at a grain size of
d � 8, which is less than the width (cf. section 5.3.8) needed to support two
interfaces, d � 8 < 2W � 13:90.

This implies that the grain boundary velocity is proportional to the radius of
curvature of the grain, � = 1=R, whereR is the radius of the grain, and sov / � ,
as is known for grain growth in pure materials [11, 48]. Thus, it is concluded
that boundary segregation at most a�ects the grain boundary migration rate by
introducing a new, e�ective grain boundary migration rate in the present model
with the chosen parameters at the radii of curvature the model in its current
setup can simulate accurately.
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Figure 5.5: Area of a round� grain embedded in an� grain as function of time.
Left: For all simulation times. Right: Zoom in on late times. Time is here o�set
by 144.000. Black line shows simulation output, red line is a least squares �tted
straight line. A departure from the straight line is at a grain size of d � 8.

5.4 Implementation

Details regarding the implementation of the solver used for large-scale simula-
tions is found in this section. Systems of partial di�erential equations can be
solved easily by simple numeric methods, but e�cient solution of large-scale
problems requires both careful optimization and choice of methods and algo-
rithms.

For present work, a numeric solver has been implemented in High Performance
Fortran (HPF) [107], which is an extension of Fortran 90. The code was parallel-
lized for execution on computer clusters using the MPI-2.0 [108] speci�cations.
Both HPF and MPI-2.0 are de facto standards in high-performance comput-
ing, and have both commercial and open source implementations. Furthermore,
MPI-2.0 gives a high degree of 
exibility, as correctly written code may be ex-
ecuted e�ciently on distributed memory clusters which may be composed of
shared memory machines that need not be homogeneous.

5.4.1 Discretization of space and time

Numeric solution of partial di�erential equations on computers requires dis-
cretization of the continuous governing equations. The Laplacian is in current
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Figure 5.6: Equilibrium shape of a� grain embedded in an� grain for di�erent
grid spacings. Green curve: �h = 2, red curve: � h = 1, blue curve: � h = 2=3,
black curve: � h = 1=2.

implementation discretized on a regular grid by the �nite di�erence stencil

r 2x i �
1

� h2

X

j 2 n:n:

(x j � x i ) (5.22)

where � h is the grid spacing, and the sum extends over the nearest neighbor
grid points, and so has six terms for a three-dimensional grid. The grid spac-
ing is of particular importance: too large a grid spacing will introduce grid
oriented anisotropy, as the interfaces then become non-smooth. On the other
hand, too small a grid spacing will increase the computational time, as this is
proportional to the number of grid points in the computational domain. The
e�ect of changing the grid spacing has been illustrated by determining the two-
dimensional equilibrium shape of a� phase grain embedded in an� phase grain
for various grid spacings in �gure 5.6. It is seen that the grain attains the round
shape expected for an isotropic boundary energy at grid spacings �h = 2=3
and � h = 1=2. The grid spacing was thus set to � h = 2=3 for all large-scale
simulations.

This choice of grid spacing results in pro�les with 12 grid points through planar
interfaces, with equation (5.18) as the de�nition of interface width, as shown for
an �� interface on �gure 5.7. If the width of an interface was instead de�ned
as the width of the region where phase-�eld variables attain values between 0.1
and 0.9, the presently chosen grid spacing results in 7 points through planar
interfaces.



5.4 Implementation 79

Figure 5.7: Planar �� interface with grid point positions shown. Dashed lines
marks the interface.

Time stepping is done by the forward Euler method, where

@x
@t

�
�
�
�
t = t 0

�
x(t0 + � t) � x(t0)

� t
(5.23)

where � t is the time step, which was set to � t = 0 :01 for the large-scale sim-
ulations. This value was found to not introduce signi�cant numeric errors by
comparing output from simulations with this time step to output from simula-
tions with shorter time steps.

The chosen numeric scheme has thus transformed the system of coupled partial
di�erential equations into a system of algebraic equations with an explicit time
stepping method. Methods based on discrete Fourier transforms may be found in
the literature, e.g. [109], which allows for longer time steps to be taken over the
methods presented here. When these simple schemes were still chosen for present
problem, there were two reasons: First, for ease of writing parallellized code to
be executed on computer clusters. Fourier methods are generally non-local,
and although parallellized Fourier methods exist (e.g. the open source FFTW
library [110]), the e�ciency drops due to communication overhead. Second, to
be able to easily accommodate non-periodic boundary conditions.

5.4.2 Sparse matrix data structure for � and � type phase-
�eld variables

The main computational problems when performing simulations with many
phase-�eld variables are the high computer memory requirements and compu-
tational time necessary for large-scale simulations. Both the memory required,
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and the duration of the calculation will increase linearly with the number of
phase-�eld variables. Consider a simulation on a grid of 5123 grid points. Hold-
ing a single phase-�eld variable in memory with an array of 8 byte 
oating point
variables requires 1 GB of RAM, thus to simulate 1000 unique grain orientations
with the present model would require � 1 TB of memory, rendering large-scale
simulations impossible, even on modern hardware.

Various approaches to extend the possible scale of phase-�eld simulations with
many phase-�eld variables representing unique crystallographic orientations may
be found in the literature, but all begin from the observation that only a few
phase-�eld variables are appreciably di�erent from 0 at any point in space, e.g.
for the present model, a phase-�eld variable of� or � type has appreciable
values only in and near the domain containing the grain represented by that
phase-�eld variable, i.e. grain bulk and boundary.

A scheme for simulating grain growth using a �xed number of phase-�eld vari-
ables to represent the grain orientation were presented in [75] for two-dimensional
simulations. Several di�erent grain orientations were represented in a single
phase-�eld variable. This introduces the problem that growth may now proceed
by coalescence, rather than by boundary migration, i.e. grain orientations rep-
resented by the same phase-�eld variable may come into contact. It was found
that setting the required �xed number of phase-�eld variables to p & 36. It was
later argued that p & 100 is required [76]. There, an adaptive redistribution of
the non-zero volumes of a �xed number of phase-�eld variables were introduced,
i.e. assigning one of two grains about to coalesce to another phase-�eld variable.
A number of p & 20 was found to limit coalescence. This was in two-dimensions
still, so in three dimensions the number must be expected to be substantially
higher, to allow for a higher number of grain neighbors in three dimensions.

A bounding box algorithm was proposed in [111] to accommodate an in principle
in�nite number of phase-�eld variables during grain growth. The position of the
appreciably non-zero regions (� � , for some suitable value of� ) of a phase-�eld
variable were tracked, and a box were de�ned containing those values, one for
each phase-�eld variable. This algorithm e�ectively provides a means to avoid
storing and solving for the domains of the phase-�eld variables where the values
were close to 0.

For the present work, a sparse data structure for the� and � type phase-�eld
variables was implemented, following [112]. A data type,grid entry, containing
an integer identi�er I , a real value V , and a pointer to a grid entry was in-
troduced. Here, I distinguishes between di�erent phase-�eld variables with the
convention that I < 0 is an � type phase-�eld variable, and I � 0 is � type.
The pointer allows the grid entrys to form a singly linked list, so entries may
be added and removed on-the-
y as needed.
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Figure 5.8: Sketch of the sparse matrix data structure for a single grid point,
pijk . Two phase-�eld variables are non-zero at the grid point, both of � type:
� 1 = 0 :75 and � 2 = 0 :25.

A three-dimensional grid of pointers to grid entrys was set up to represent the
computational grid. This is sketched for a single point in the computational
grid in �gure 5.8. A grid of integers, num entries was introduced to hold the
length of the list at each grid point.

A small cut o� value � was introduced, and entries were inserted into or removed
from the structure at each time step, according to the entries found at the nearest
neighbor grid points:

� An entry with I = i and V < � is removed from a grid point, if no nearest
neighbor grid point has an entry with I = i and V � � .

� An entry with I = i and V = 0 is added to a grid point, if the grid point
does not already have an entry with I = i and a nearest neighbor grid
point has an entry with I = i and V � � .

This is depicted qualitatively in �gure 5.9 for a grain boundary during migration.
The cut o� value was set to � = 0 :0001 for the large-scale simulations. This
value was shown in [112] to result in negligible di�erences between simulations
with and without sparse data structures, which was con�rmed for the present
model by comparing output from simulations with varying cut o� values.

This approach allows for an unlimited number of � and � type phase-�eld vari-
ables. The memory required scales with the interfacial area in the system, as
does the computational time needed for an Euler time step. The method can
furthermore be easily extended to include, e.g. anisotropic e�ects.

When the cut o� value � is increased, the simulations show lower boundary
migration rates, and a degree of grid oriented anisotropy as unwanted artifacts
of the numeric scheme. The anisotropy would likely be decreased if the criteria
for adding and removing entries were not based on nearest neighbor grid points,
but on both nearest- and next-nearest neighbor points. The choice to not do so
was to increase the e�ciency of the parallellization, which is elaborated upon in
section 5.4.4.
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Figure 5.9: A qualitative sketch of the sparse matrix data structure, and the
update algorithm in the case of a migrating grain boundary. The grain boundary
has migrated towards the right since last update, and the sparse matrix data
structure is shown before, and after the update algorithm has been executed.
Ticks show the location of the discrete grid points. Boxes represent sparse
matrix entries, where the color signify the identi�er, I , i.e. which phase-�eld
variable the entry represents. The red arrow points to an entry which is removed
when the update algorithm is executed, as the value of the entry of the same
identi�er at the right neighboring grid point has fallen below � . The blue arrow
points to an entry that is introduced, since the value of the entry of the same
identi�er at the left neighboring grid point has risen above � .
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Figure 5.10: Sketch of periodic and re
ective boundary conditions on a one-
dimensional chain with N = 5 grid points in the computational domain. Grey
grid points are the two grid points introduced to accommodate boundary con-
ditions. Blue arrows correspond to periodic boundary conditions, red arrows
correspond to re
ective boundary conditions.

5.4.3 Discretization of boundary conditions

When discretizing the system of partial di�erential equations, the conditions
imposed by the physics of the problem on the external boundaries of the com-
putational domain must also be discretized. The choice of �nite di�erence stencil
described in section 5.4.1 requires nearest neighbor information to determine the
Laplacian, thus for the grid points on the edges, i.e. those grid points lacking
one or more nearest neighbors in the grid, information must be supplied by the
boundary conditions. To be able to treat all grid points in a uniform man-
ner, the grid was extended by one grid point on all sides, so introducing a new
boundary that is not part of the computational domain. This new boundary
must be assigned values consistent with the boundary conditions before each
determination of the Laplacian. In the present work, only periodic boundary
conditions are applied. Re
ective boundary conditions have also been imple-
mented in the solver for use with experimentally characterized microstructures,
and so is presented here for completeness.

For a one-dimensional chain ofN + 2 grid points, p0; p1; � � � ; pN ; pN +1 , where
the �rst and last points in the chain are introduced to deal with the boundary
conditions, and so is outside the computational domain, the boundary conditions
are

p0 = pN and pN +1 = p1 (Periodic) (5.24a)

p0 = p2 and pN +1 = pN � 1 (Re
ective) (5.24b)

and these generalize easily to higher dimensions. Periodic boundary conditions
are intuitively understood as the two ends of the chain of grid points being linked
together. This is sketched with the blue arrows in �gure 5.10. Periodic boundary
conditions are useful for problems displaying periodicity (which must be rare in
microstructural studies), or when boundary e�ects are unwanted. In the latter
case, the features investigated must be considerably smaller than the simulation
domain, so these features do not interact with themselves across the boundary.
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Figure 5.11: Sketch of how a chainp with N = 5 grid points in the computational
domain may be split into subdomainsq and r with S = 3 and T = 2 grid points
in their respective computational domains. The blue line shows where chainp
is split, grey dots show grid points the values of which are given by external
boundary conditions, blue dots are grid points the values of which must be
transferred from the other subdomain as indicated by the red arrows.

Re
ective boundary conditions are sketched with the red arrows in �gure 5.10.
These prohibit 
ux across boundaries by ensuring that the derivative vanishes
on the boundaries.

5.4.4 Parallellization

A grid based problem may be parallellized by splitting the computational do-
main into a number of subdomains, and solving in each subdomain as mutually
independent processes, which may be distributed amongst e.g. nodes in a com-
pute cluster. With MPI this conceptually works by letting each node included
in the execution run identical, but independent instances of the program. Each
node is issued a unique ID at run-time, which may be used to identify that node
and its position in the computational domain.

Splitting in subdomains introduces a boundary along the subdomain edges, on
which the conditions are dependent on the values of the edge grid points of the
subdomain it neighbors. Cf. earlier this section, the subdomains were extended
by a grid point in all directions to accommodate both external boundary con-
ditions and subdomain boundary conditions. A one-dimensional chain may be
split into two subdomains as

p0; p1; � � � ; pN +1 , q0; q1; � � � ; qS+1 and r 0; r 1; � � � ; rT +1 where S + T = N

If we take q1 to correspond to p1 and r T to correspond to pN , i.e. placing
the subdomain boundary betweenqS and r 1 we get the subdomain boundary
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Figure 5.12: Examples of how a computational domain may be divided into
three di�erent virtual topologies with P = 8 subdomains, with one subdomain
highlighted. (Pi ; Pj ; Pk ) = (8 ; 1; 1), (4; 2; 1) and (2; 2; 2) for 1D, 2D and 3D
respectively.

condition

qS+1 = r 1 and r 0 = qS (5.25)

while the conditions on q0 and r T +1 are given by whichever external boundary
conditions are imposed. An example withN = 5, S = 3 and T = 2 is shown
in �gure 5.11. It is a necessity that a node at any given time step has both
received and sent subdomain boundary conditions from and to its neighbors
before iteration, to ensure that all grid points are in a state corresponding to
the same simulation time.

5.4.4.1 Domain decomposition

MPI-2.0 provides a set of highly optimized methods for exchanging data between
nodes in a cluster, the speed of which scales roughly with the amount of data
sent and received, with only a small overhead related to the setting up of the
data transfer. When transferring data between nodes, the communication is best
performed in as few operations as possible, e.g. transferringN array elements
should be done in one operation rather than inN separate operations, motivated
by the overhead. If this is done, the overhead is of no practical importance when
using modern hardware, see e.g. [108, 113].

Part of optimizing the parallellization is thus to minimize the area of the subdo-
main boundaries, and so the amount of data which must be transferred. A cubic
computational domain of N 3 grid points may be divided into a regular grid of
P subdomains in several di�erent manners, which is commonly referred to as
decomposition. A speci�c division is termed a virtual topology, and shall be de-
noted (Pi ; Pj ; Pk ), where Pi is the number of subdomains in the �rst dimension,
etc., and Pi Pj Pk = P by de�nition.

Di�erent virtual topologies of same number of subdomains may di�er in total
subdomain area. Consider a subdomain in one-, two- and three-dimensional
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Nearest
neighbors

Virtual
topology

Subdomain
area

Optimal
range

1D 2 (P; 1; 1) 2N 2 P < 4
2D 4 (

p
P ;

p
P ; 1) 4N 2=

p
P 4 � P < 12

3D 6 ( 3
p

P ; 3
p

P ; 3
p

P) 6N 2=P2=3 P � 12

Table 5.1: Optimal choice of virtual topology for a grid of N 3 points as function
of number of nodesP. This may be derived simply by considering the number
of grid points on the subdomain boundaries.

virtual topologies, as shown in �gure 5.4.4.1. For a system with periodic boun-
dary conditions, or a subdomain not forming part of an external boundary, the
optimal virtual topologies, and the number of grid points in the subdomain area
are listed in table 5.1.

For large-scale simulations, whereP � 12 it is thus an advantage to use a three-
dimensional virtual topology, although it increases the programming complexity.
The solver has been written to allow for the computational domain to be de-
composed in arbitrary virtual topologies.

The possibility of using three-dimensional virtual topologies is the motivation
for choosing both �nite di�erence stencil and the criteria for adding and remov-
ing entries in the sparse matrix data structure to only use information from
nearest neighbor grid points, as described in sections 5.4.1 and 5.4.2: In the
current implementation, a subdomain communicates with its six nearest neigh-
bors. Were information from second nearest neighbors also needed, this number
would rise to 18, and again to 26 if third nearest neighbor information was
needed. This would likely decrease the performance of the parallellization only
slightly, since the number of grid points which must be shared with second and
third nearest neighbors is low, but would be a programming challenge, with few
obvious bene�ts for motivation.

5.4.4.2 Interlaced communication

The most easily manageable mode of internode communication using MPI is
blocking communication. When node A is to send data to be received by node
B, then node A must be issued ablocking sendcommand at some time, while
node B must be issued ablocking receivecommand at some time. The node
issued its command �rst will halt execution and wait until the other node has
been issued its conjugate command, hence the termblocking, which thus ensures
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Figure 5.13: One-dimensional virtual topologies (6; 1; 1), illustrating sequen-
tial and interlaced communication. Numbers on the arrows designate in which
sequential step the transfer will occur.

synchronization.

Consider a one-dimensional virtual topology, (P; 1; 1) with periodic boundary
conditions for illustrative purposes. All subdomains must send some data to one
nearest neighbor prior to iteration (for real simulations each node must obviously
send data to two nodes), so node (i; 1; 1) must send to node (i + 1 ; 1; 1), etc. A
simple albeit ine�cient way to achieve this, is to issue following commands to
all nodes

1. Receive data from one neighbor.

2. Send data to other neighbor.

except for e.g. node (1; 1; 1), for which the order is reversed. This will have the
e�ect that node (1 ; 1; 1) will send data to node (2; 1; 1), while all other nodes
wait. Then node (2; 1; 1) sends to node (3; 1; 1), and so forth, until �nally node
(P; 1; 1) sends to node (1; 1; 1). This is illustrated as sequential communication
in �gure 5.13. The data transfer is thus performed in P sequential transfers.

This communication may be performed more e�ectively, providedP is even. Let
i designate the position of a given node in the virtual topology (i; 1; 1). Issuing
the following commands

1. Receive data from neighbor ifi is odd. Send data to neighbor ifi is even.

2. Send data to neighbor ifi is odd. Receive data from neighbor ifi is even.

which means that while node (1; 1; 1) is transferring data to node (2; 1; 1), node
(3; 1; 1) will be transferring to node (4; 1; 1), etc. This requires only two se-
quential transfers independently of P, and thus cuts down on the time spent



88 Coupled grain growth and coarsening of dual-phase materials

on internodal communication when P > 2, while for P = 2 the communication
time should be comparable to that taken by sequential communication. Inter-
laced communication was therefore implemented in the solver. IfP is odd, the
data transfer may be accomplished in 3 sequential steps rather than 2.

5.4.5 Comments on sparse data structure and boundary
conditions

Straightforwardly implementing a solver of the kind described in present text,
where the main loop is

1. Send and receive boundary conditions.

2. Add and remove entries into sparse data structure.

3. Iterate forward in time.

will result in the simulation output varying slightly with the virtual topology.
More speci�cally, small numeric di�erences between output from simulations of
di�erent virtual topology are found to be related to interfaces crossing subdo-
main boundaries.

Careful consideration reveals that this is related to the removal of entries in
the subdomain boundary area. Consider an entry with indexI = i and value
V < � , with no nearest neighbors ofI = i and V � � , thus an entry which is to
be removed when the algorithm to do so has been executed cf. section 5.4.2. If
this entry is on the subdomain boundary, it will be copied to another node as a
subdomain boundary condition, necessary for adding and removing entries from
the sparse data structure. As that is done, the original entry will be removed
prior to iteration, but unless the subdomain boundary conditions are updated,
the entry will remain in the subdomain boundary conditions, and thus be used
in the determination of the Laplacian, which would not have happened had the
solver not been parallellized. This issue is illustrated in �gure 5.14.

The solver therefore transfers boundary conditions twice, �rst for the algorithm
to add and remove entries into the sparse data structure, and a second time
before iteration, ensuring that simulation output is independent of the chosen
virtual topology. Adding entries into the sparse data structure does not intro-
duce comparable numeric problems, as these entries are initialized to a value of
V = 0.
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Figure 5.14: Illustration of the issue related to the sparse data structure and
parallellization of section 5.4.5. An interface is passing though the subdomain
boundary from node q to node r . The value of the phase-�eld variable at grid
points qN and r 1 are both below � , and so the entry at qN should be removed
when updating the sparse data structure. First, the subdomain boundary con-
ditions are transferred, copying the values atqN and r 1 to r 0 and qN +1 respec-
tively. Second, the sparse matrix data structure is update, which removes the
entry at qN . However, this entry has been transferred tor 0, and if not removed
before iteration forward in time will a�ect the determination of the Laplacian
at grid point r 1 compared to simulations which are not parallellized.
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5.5 Simulations of coupled grain growth and coars-
ening in dual-phase materials

The solver was compiled using the Intel Fortran compiler, and executed on the
Thyra cluster, located at Ris� DTU. Thyra is a 128 node cluster running CentOS
5.4 linux, each node containing two dual-core AMD Opteron 2218 CPUs running
at 2.6 GHz, and so is will appear as a 512 node cluster to a user. Communication
was enabled by OpenMPI over a high-speed In�niBand interconnect.

The Intel Fortran compiler allows for certain high-level optimizations that are
incompatible with CPUs from other vendors. However, tests of execution speed
showed that the Intel compiler performed en par with the Pathscale compiler
also available on Thyra, so the Intel compiler was chosen, as the solver had been
developed using this.

The solver has been implemented in a manner such that iteration may be halted,
and restarted later without any loss of information, so execution has been per-
formed on a varying number of nodes, but at most 216, i.e. 54 physical nodes
� 2 CPUs per node� 2 cores per CPU.

5.5.1 Initial conditions for simulations

A Voronoi tessellation with periodic boundaries was generated on a grid of 5123

points as a rough approximation of a grain structure. This resulted in the
grid being subdivided into 8331 Voronoi cells. A number of Voronoi cells were
chosen without spatial correlation, and the volume of this subset determined,
repeating the selection process until volume ratios of 50/50 and 40/60 were
reached. The subset will be referred to as the� subset, while the remaining
Voronoi cells will be referred to as the� subset. For the 50/50 volume ratio
con�guration, the � and � subsets consisted ofN � = 4189 and N � = 4142
Voronoi cells, respectively, while for the 40/60 volume ratio set these numbers
were N � = 3335 and N � = 4996.

These two con�gurations were used to generate four sets of initial conditions:

1. A 50/50 volume ratio microstructure where both phases were polycryst-
alline (which will sometimes be denoted 50PC)

2. A 50/50 volume ratio microstructure where both phases were liquid (50L)
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3. A 40/60 volume ratio microstructure where both phases were polycryst-
alline (40PC)

4. A 40/60 volume ratio microstructure where both phases were liquid (50L)

The two liquid sets of initial conditions were employed mainly to be able to
compare and contrast simulation output to that of the polycrystalline simula-
tions.

For the two sets of polycrystalline initial conditions (50PC and 40PC), each
Voronoi cell in the � subset were made to correspond to a unique� grain
orientation by letting

� i (r ) =
�

1
0

for
r 2 V �

i
r =2 V �

i
and i = 1 ; 2; � � � ; N � (5.26)

where V �
i designates the grid points belonging to thei th Voronoi cell in the �

subset. Vice versa for� .

For the liquid sets of initial conditions (50L and 40L), all Voronoi cells in the �
subset were made to correspond to the same, single� orientation by letting

� 1(r ) =
�

1
0

for
r 2 V �

r =2 V � and i = 1 ; 2; � � � ; N � (5.27)

where V � is the union of all V �
i Voronoi cells.

For all four sets the initial composition was set to

C(r ) =
�

C�

C�
for

r 2 V �

r =2 V � and i = 1 ; 2; � � � ; N � (5.28)

Cross sections of the four sets of initial conditions are found in �gure 5.15, which
shows how the same Voronoi tessellation has been used to generate all initial
conditions.

The reason for referring to the liquid sets of initial conditions as such, is that
this setup does not allow for�� and �� boundaries to form, meaning that any
two � regions coming in contact with each other will coalesce, rather than form
a boundary, and vice versa for� . Note that the model employed is signi�cantly
more complicated than those usually employed to study liquid/liquid systems,
e.g. [85]. Current model is employed for two reasons: Firstly that a solver
has been implemented, and secondly to ease comparisons between liquid and
polycrystalline simulations, since �� boundary width and energy is equal when
using the same model and parameters for all simulations.
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Figure 5.15: Cross sections of the four sets of initial conditions. Red:� phase,
blue: � phase. Black marks�� and �� boundaries. � is minority phase for
the 40/60 volume ratio initial conditions. Top left: 50/50 volume ratio liquid
(50L), top right: 40/60 volume ratio liquid (40L), bottom left: 50/50 volume
ratio polycrystalline (50PC), bottom right: 40/60 volume ratio polycrystalline
(40PC).
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5.5.2 Qualitative characterization

All four sets of initial conditions have been iterated up to a simulation time of
t = 300:000, and output has been generated at intervals of �t = 1000. An initial
transient up to t = 10:000 will be omitted in the following. The �rst part of this
transient is related to setting up of local equilibrium phase-�eld variable pro�les.
The second, longer, part is for the polycrystalline simulations (50PC and 40PC)
found to be related to movement of triple junctions and migration of boundaries
to achieve the local equilibrium triple junction angles stated in equation (5.21b).
For the liquid simulations (50L and 40L) it is found to be related to a smoothing
out of the non-smooth curvature at the triple junctions of Voronoi cells. For all
sets of initial conditions, this transient is thus an uninteresting consequence of
the initial conditions.

Visualization of output from large-scale simulations is di�cult, so several di�er-
ent visualization types have been employed to allow qualitative insight into the
simulated microstructure and its evolution. For all types, the microstructure is
displayed at simulation times t = 10:000, t = 50:000 andt = 300:000. The time
t = 50:000 is chosen, as it will be argued that the microstructural evolution
becomes topologically self-similar around this time.

Cross sections of the microstructure of the two liquid simulations are shown
in �gure 5.16. These are simply cross sections of the compositional phase-
�eld variable C. Equivalent cross sections of the grain structure of the two
polycrystalline simulations are shown in �gure 5.17. These are the same cross
sections which were used to visualize the initial conditions in �gure 5.15 to
allow for some measure of comparison between initial conditions and simulation
output. The grain structure of the polycrystalline simulations show ��� and
��� triple junctions at all times.

The intraphase interfaces of the polycrystalline simulations are found to have
de�nite curvature, meaning that these boundaries do not form a minimal surface,
as is known to be the case for soap froths [114], which are often used as simple
model systems for polycrystalline materials. The interphase interfaces of larger
grains at late times sometimes exhibit peculiar "sinusoidal-like" shapes, which
will be explained in section 5.5.8. The�� and �� grain boundaries do not
display such large variations in curvature.

The interphase interface of the two liquid simulations are shown in �gure 5.18,
which is the C = 0 :5 isolevel. These show 1/8 of the computational domain,
i.e. they are created from a 2563 box out of the total 5123 grid points, to show
more detail. Same box of 2563 grid points are used to show the grain structure
of the polycrystalline simulations in �gure 5.19.
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Figure 5.16: Cross sections of the compositional phase-�eld variableC of the
two liquid simulations, where C� = 0 :1 and C� = 0 :9 are the bulk equilibrium
composition in � and � phase respectively. Left: 50/50 volume ratio. Right:
40/60 volume ratio. Top to bottom: Times t = 10:000, t = 50:000 and t =
300:000.
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Figure 5.17: Cross sections of the grain structure of the two polycrystalline
simulations. � phase grains are red,� phase grains are blue. Left: 50/50
volume ratio. Right: 40/60 volume ratio. Top to bottom: Times t = 10:000,
t = 50:000 andt = 300:000.



96 Coupled grain growth and coarsening of dual-phase materials

Figure 5.18: The interphase interface of the two liquid simulations (1=8 of the
computational domain). Left: 50/50 volume ratio. Right: 40/60 volume ratio.
Top to bottom: Times t = 10:000, t = 50:000 andt = 300:000.
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Figure 5.19: Grain structure of the two polycrystalline simulations (1=8 of the
computational domain) with grains touching top and/or right side of box re-
moved. � grains are red, � grains are blue. Left: 50/50 volume ratio. Right:
40/60 volume ratio. Top to bottom: Times t = 10:000, t = 50:000 and
t = 300:000.
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All simulated microstructures are found to be bicontinuous or nearly bicontin-
uous at all simulated times after the initial transient up to time t = 10:000.
Bicontinuity is the property de�ned as the two phases being completely inter-
connected, i.e. that any two points within the volume of either phase may
be connected by a curve which is wholly contained in said volume. By nearly
bicontinuous is meant that bicontinuity may be lost brie
y when small grains
break o� from the structure, but this is not a common phenomenon, and bicon-
tinuity is reestablished fast as the small grain is eliminated by di�usion. This
mainly occurs with grains the size of which is on the order of or less than the
size required to sustain local equilibrium interface pro�les. In [85] it was found
through simulations resembling those of the liquid microstructures in present
work, that structures at signi�cantly lower phase fractions (down to at least
36%) were bicontinuous.

5.5.3 Characteristic length scales

Quantifying the magnitude of simulated microstructural evolution is di�cult to
do in terms of simulation time, as this may be normalized as seen �t, and param-
eters in a phenomenological model will typically be di�cult to �t to measurable
quantities for comparisons to experimental data. Comparisons may instead be
conveniently performed through characteristic length scales.

It is well-known that the time dependence of characteristic length scales of a
wide variety of physical systems during growth may be described by power law
relationships:

� n � � n
0 = kt (5.29)

Here � is the characteristic length scale at timet, � 0 is the characteristic length
scale at time t = 0, while n and k are positive constants. The characteristic
length scales in physical systems described by this law thus increases smoothly,
but slows down at "late" times. See e.g. [115] for a more comprehensive treat-
ment. In the limit where � n � � n

0 this relationship becomes scale invariant,
which is usually taken as a necessary (but not su�cient) condition for (asymp-
totically) self-similar microstructural evolution.

This relation has been found to hold for the mean grain size during normal grain
growth in pure systems with n = 2, e.g. [116, 117], for mean radius of particles
undergoing Ostwald ripening in dilute systems (LSW theory) [118, 119], and for
systems with a higher fraction of coarsening particles, e.g. [120, 121] withn = 3.
A growth exponent of n = 3 is generally observed in many structures late-stage
coarsening through bulk di�usion [115], and n = 3 has also been found for mean
grain size during grain growth with solute drag, e.g. [122]. The exponent of the
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Data set
Simulation time (units of 1.000)
0 10 50 300

50PC
N �

N �

�

4.189
4.142
8.331

3.426
3.405
6.831

1.320
1.353
2.673

270
263
533

40PC
N �

N �

�

3.335
4.996
8.331

2.789
4.011
6.800

1.187
1.460
2.647

269
247
516

Table 5.2: The number of� and � grains and their sum at signi�cant simulation
times for the two polycrystalline simulations.

characteristic length scale is therefore often taken to be related to the physical
mechanism controlling the growth.

For the polycrystalline simulations, the simplest characteristic measure is the
time evolution of the number of grains in the system. This is shown in table 5.2
for the simulation times taken to be of special signi�cance.

The number of grains may be used to de�ne three characteristic length scales,
since the mean grain volume can be determined from the number of grains
through hVG i = V=N, where V and N may be the system volume and number
of all grains, � volume and number of � grains, or � volume and number of �
grains. A length scale may then be determined from the mean grain volume
as e.g.

D
~R
E

= 3
p

3hVG i =4� . This is, however, not the true mean grain radius,
and so this characteristic length will not be used for the present investigation.
Two other characteristic length scales are chosen: The mean grain radius,hRi ,
as applicable to the two polycrystalline simulations (50PC and 40PC), and the
system areaV per interphase surface areaS, so SV = V=S, which is applicable
to all four simulations, and provides a direct means of comparison.

Here, and in the remainder of this chapter, a grains volume was determined by
counting the number of grid points where the corresponding� or � type phase-
�eld variable attained a higher value than all other � and � type phase-�eld
variables. The grain radius was then determined from this volume by the usual
relation R = 3

p
3V=4� .

Surfaces were extracted with an implementation of the standard marching cubes
algorithm [64] on the phase-�eld variable in question. The implementation used
linear interpolation to determine the location of the vertices. Surface areas were
determined by summing the areas of the triangle faces output by the marching
cubes algorithm. When speaking of�� surfaces, the compositional phase-�eld
variable C was polygonized with a threshold of (C� + C� )=2 = 0:5, i.e. the
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Figure 5.20: Time evolution of characteristic length scales. Left: Mean grain
radii. Top to bottom: � (majority) phase of the 40/60 simulation, mean of both
phases of the 50/50 simulation, mean of both phases of the 40/60 simulation, and
� (minority) phase of the 40/60 simulation. Right: System volume per surface
area, SV . Top to bottom: 40/60 liquid, 50/50 liquid, 40/60 polycrystalline and
50/50 polycrystalline. Both characteristic length scales become consistent with
power law growth with a growth exponent of n = 3 after t � 50:000. Before this
time, the �ts are poor.

interphase surface was taken to be given by theC = 0 :5 isosurface.

Examinations of both hRi and SV vs. time has revealed the time dependence
to be consistent with a power law of the form of equation (5.29) with n = 3
after a simulation time of t � 50:000. The time evolution of the speci�c length
scales are shown in �gure 5.20 along with �tting curves of the form (5.29) with
n = 3. It is seen that although the presence of the grain boundaries in the
polycrystalline simulations seem to retard the evolution of the characteristic
length scale as compared to the liquid simulations, they do not seem to a�ect
the growth exponent signi�cantly.

This kinetic exponent is clearly indicative of bulk di�usion controlled microstruc-
tural evolution in the cases of the two liquid simulations, as no other mechanisms
are present in the model. This is also believed to be the controlling mechanism
in the two polycrystalline simulations. As mentioned above, a growth expo-
nent of n = 3 is also observed in systems undergoing grain growth with solute
drag. However, it is argued in [122] that this is due to a non-linear relationship
between grain boundary velocity and driving force caused by the impurity con-
centration on the grain boundaries, which is not observed for the present model
cf. section 5.3.8.1.

The left part of �gure 5.20 reveals that the mean grain radius of the � (minority)
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Figure 5.21: Normalized grain size distribution. Left: for 40/60 volume ratio
polycrystalline simulation. Time t = 0 show the size distribution of the initial
conditions. Right: Steady state grain size distributions. Black and green curves
are for 50/50 and 40/60 volume ratio simulations respectively when grains of
both phases are considered as a whole. Red and blue curves are for� (minority)
and � (majority) phase grains of the 40/60 volume ratio simulation respectively.
Data marked with diamonds are from Rowenhorst et al. [123] for particles
coarsening in high volume fraction solid/liquid mixtures with 52% and 78%
volume fractions. Size distributions are generated from 1818 individual particles
for the 52% volume fraction experiment, and from 1138 individual particles for
the 78% volume fraction experiment.

phase increases more slowly than the mean grain radius of the� (majority) phase
for the polycrystalline simulation with the 40/60 volume ratio. This observation
lends further credibility to the assumption that bulk di�usion is the mechanism
controlling growth, when the distance necessary for growth by bulk di�usion is
considered: Mass transport between two� regions by bulk di�usion through an
intermediate � region in this case occurs over a distance,d� , proportional to
the characteristic length scale of the� phase, and equivalently for bulk di�usion
through a � region

d� /
V�

S
= 0 :4SV and d� /

V�

S
= 0 :6SV

Here V� = 0 :4V and V� = 0 :6V are the conserved volumes of� and � phase,
and S is the interphase surface area. Thus, the smaller separation between�
(majority) phase regions enables these to grow faster than� regions.
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5.5.4 Grain size distributions

Examination of normalized grain size distributions reveal that there is little
variation for times t � 50:000, as may be seen in the left part of �gure 5.21, where
the grain size distributions are extracted from the 40/60 volume ratio simulation.
Equivalent distributions extracted from to 50/50 volume ratio simulations are
qualitatively identical.

The grain size distributions taken at t � 50:000 are therefore assumed to be
steady state distributions for these simulations. They are shown for both poly-
crystalline simulations in the right side of �gure 5.21. These are generated by
taking the mean of the normalized grain size distributions from time t = 50:000
to t = 300:000 in increments of 50:000 to gain better statistics. Note that the
mean grain size used for normalization is the mean grain size of the species
considered, i.e. the� grain size distribution is normalized to the mean size of
the � grains, etc.

It is interesting to note that the distribution for the 40/60 volume ratio sim-
ulation and the distribution for the 50/50 volume ratio simulation are nearly
identical when normalized by their respective mean grain sizes (the distribu-
tion for the 40/60 volume ratio simulation is only slightly wider). It is also
interesting to note that the distribution of � (minority) grain sizes and the dis-
tribution of � (majority) grain sizes in the 40/60 volume ratio simulation are
also near-identical when normalized by their mean size, i.e. the� distribution
is normalized by the mean grain size of� grains, and vice versa. In this case,
the � grains, having a lower mean grain size cf. �gure 5.20 (left), will contribute
preferentially to the lower-than-average part of the total grain size distribution,
while the � grains conversely contribute preferentially to the larger-than-average
part.

The steady state grain size distributions are found to be highly symmetrical
about their average. Comparing these distributions to those found in the lit-
erature, it is found that these symmetrical distributions do not resemble the
"log-normal-like" distributions that are usually observed both experimentally
and during simulations of single-phase materials, an example of which is shown
in �gure 4.5. There is a clearer resemblance to those distributions observed
during Ostwald ripening in high-volume fraction mixtures, which also tend to
display this symmetry. Experimental data for solid tin-rich particles of 52% and
78% volume percent coarsening in a liquid lead-tin matrix published in [123] is
shown alongside the simulation output, and seen to be similar to these. This
hints that the growth kinetics of individual grains is also dominated by bulk
di�usion. This is likely explainable by considering a curved �� or �� grain
boundary as may be seen in the cross sections of �gure 5.17. Such a boundary
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Figure 5.22: Temporal evolution of the mean number of faces for all grains,hF i .
Full lines are for the 50/50 volume ratio simulation, while dashed lines are for
the 40/60 volume ratio simulation. Black: Mean number of faces. Blue: Mean
number of intraphase faces. Red: Mean number of interphase faces.

is connected to other boundaries at its triple junctions, so moving the boundary
in question also entails moving these boundaries to some extent, and a number
of these will likely be �� boundaries, which are therefore dependent on bulk
di�usion for their movement.

5.5.5 Distributions of grain faces

The number of faces of individual grains and the distribution of these has been
a long-standing area of study in grain growth, due to their correlation to the
growth kinetics of individual grains, as brie
y discussed in chapter 4.

Figure 5.22 show the time evolution of the mean number of faces for both
50/50 and 40/60 volume ratio simulations. It is seen that the evolution is
virtually identical when grains of both phases are considered as a whole. Both
simulations tend to favor interphase faces slightly,hFinter i � 7:8 to intraphase
faces,hFintra i � 6:3, and these values are nearly constant after a short initial
transient.

The mean number of faces for the 40/60 volume ratio simulation is examined
in more detail in �gure 5.23. It is seen that the � (minority) phase grains
on average form fewer faces than the� (majority) grains, and the di�erence
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Figure 5.23: Temporal evolution of the mean number of faces,hF i for the 40/60
volume ratio simulation. Solid black line: Mean number of faces for� (majority)
phase grains. Dashed black line: Mean number of faces for� (minority) phase
grains. Solid blue and dashed blue: Mean number of faces for� (majority)
phase grains that are shared with grains of same - and other phase, respectively.
Solid red and dashed red: Mean number of faces for� (minority) phase grains
that are shared with grains of same - and other phase, respectively.

between these numbers increases over time. As both phases have a near constant
average number of faces shared with neighbors of the same phase, this increasing
di�erence is only related to the creation and elimination of interphase faces.

It may seem paradoxical that the � (minority) phase grains will form less faces
shared with � (majority) phase grains over time, while � (majority) phase grains
will form more faces shared with� (minority) phase grains. This is resolved by
considering that the mean grain size is increasing slower for the� (minority)
phase grains than for the� (majority) phase grains, cf. section 5.5.3. As the
volumes of the two phases are conserved, this means that� (minority) phase
grains are eliminated at a slower rate than� (majority) phase grains. Thus, the
trend is for the � (minority) phase grains to evolve to be both smaller than, and
to have fewer faces than the� grains, but to become relatively more numerous
than these, i.e. the ratio of number of � grains to number of � grains increases
above 40/60 with time, as is evident in table 5.2.

As for the grain size distributions, it is found that a distribution of the number of
faces that is approximately time invariant occurs after a time t � 50:000, which
is illustrated in �gure 5.24 (left) for the 40/60 volume ratio simulation. The
time invariant distributions are shown in �gure 5.24 (right), where it is seen



5.5 Simulations of coupled grain growth and coarsening in dual-phase
materials 105

Figure 5.24: Distributions of the number of faces of individual grains. Left:
Distribution of faces at various times for the 40/60 polycrystalline simulation.
Right: Time invariant distributions of faces. Black and blue lines are steady
state distributions for the 50/50 volume ratio and the 40/60 volume ratio simu-
lations respectively, where grains of both phases are considered as a whole. Red
and green curves are the distributions of number of faces of individual� (mi-
nority) grain, and � (majority) grains respectively, for the 40/60 volume ratio
simulation at time t = 300:000. The distribution of faces for 2098 individual
grains by Rowenhorst et al. [69] is shown for comparison. This is the same
distribution as was shown in �gure 4.5.
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Figure 5.25: Normalized grain size as function of number of grain faces. Left:
For all grains and both polycrystalline simulations. Black is 50/50 volume ratio,
green is 40/60 volume ratio. Mean values are marked with diamonds. Right:
Red is � (minority) phase grains, blue is � (majority) phase grains for the 40/60
volume ratio simulation. The corresponding distribution into topological class
are shown in �gure 5.24. The mean grain size used for normalization is for all
grains.

that the 50/50 and 40/60 volume ratio simulations result in identical steady
state distributions, which appear "log-normal-like", which may be seen by the
reasonably good correspondence with experimental data by Rowenhorstet al.
[69] for 2098 individual grains of a single-phase� titanium, as was also shown
in �gure 4.5. Also shown on �gure 5.24 are the distribution of the number of
faces for grains of the two phases individually, normalized to the total number
of grains in the simulation. These two distributions are qualitatively similar
to the distribution of all grains, but quantitatively di�erent: The � (minority)
phase grains on average have less faces than the� (majority) phase grains, and
the � (minority) phase distribution is skewed towards the side of fewer faces
compared to the � phase distribution.

Finally, the relationship between the size of a grain, and its topological class is
shown in �gure 5.25 for the simulation time t = 300:000 (see table 5.2 for the
statistical basis). When all grains are considered as a whole (left �gure), the
relationship seems qualitatively similar to the equivalent result from a single-
phase grain structure, see �gure 4.6 or [69]. The mean grain sizes are identical,
hR50PC i = hR40PC i = 36:1, so the shown results for the two simulations may be
quantitatively compared. Only the 40/60 volume ratio simulation have grains
with facesF � 30, and these grains are large,R � 1:5hRi , but at most one grain
is in each of these topological classes, and so these do not contribute signi�cantly
to the mean grain size. The right side of �gure 5.25 show the same relationship
for the two phases of the 40/60 volume ratio simulation, and it is seen that the
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grains with faces F � 30 are � (majority) phase grains, and so their sizes are
likely a simple consequence of the larger� domains. Comparing the � and �
phases of the 40/60 volume ratio simulation, it is interesting to note that the
mean grain size in a given topological class are fairly similar. For a low number
of facesF < 14 the � (minority) phase grains are larger on average than the�
(majority) phase grains, but the magnitude of the di�erence is fairly small. It
thus seems like the relationship between grain size and faces is almost the same
for the grains of the two phases, but as the distributions of topological class are
di�erent for the grains of the two phases, �gure 5.24 (right), a lower mean grain
size results for the� (minority) grains than for the � (majority) grains.

5.5.6 Characterization of interphase topology

The topology of the interphase surfaces will be quanti�ed through its genus.
This is a quantity that expressed the "interconnectedness" of a surface, in that
it for a closed or periodic surface is equal to the number of cuts that may
be made through the surface without thereby creating two disjoint objects, or
alternatively the genus of a surface may be thought of as the number of holes
in that surface. By these simple de�nitions, the genus is scale invariant, and
equal for two homeomorphic surfaces, i.e. for two surfaces that may be made
to coincide by continuous stretching and bending.

The genus may be determined as an integral over the Gaussian curvatureK of
the surfaceS, through the Gauss-Bonnet theorem, see for example [124].

g = 1 �
1

4�

Z

S
KdS (5.30)

The Gaussian curvature is a quantity that will be used for morphological char-
acterization, so the method by which it is determined is described in detail
in section 5.5.7. The genus evolves through topological events. The coming-
together of regions raises the genus, while the pinching-o� of necking regions
lowers the genus [85, 125].

The evolution of the genus has been examined as a function of the characteristic
length to enable direct comparisons between the four simulations. By log-log
plotting and least squares �tting straight lines as shown in �gure 5.26 (left), it
is found that the genus with good approximation scales as

g / S� 3
V / t � 1 (5.31)

Speci�c values � � 3 for the exponent onSV is found in the �gure caption. The
genus is thus found to scale with approximately the same temporal exponent
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Figure 5.26: Genus vs. characteristic length. Left: Top to bottom: 50/50 vol-
ume ratio polycrystalline simulation, 40/60 volume ratio polycrystalline simula-
tion, 50/50 liquid/liquid simulation, 40/60 liquid/liquid simulation. The slope
of the �tting lines are given by (again top to bottom) a = � 2:92; a = � 2:96; a =
2:76 and a = � 2:88. Markers signify the time t = 50:000. Right: The genus
per system volume scaled by the cube of the characteristic length,S3

V g=V vs.
characteristic length. Markers signify the time t = 50:000.

as the characteristic length, which must be taken to be a necessary criterium
for topologically self-similar evolution, as this implies that the genus scales such
that the genus in a unit of characteristic volume S3

V g is approximately constant.
This quantity is found in the right side of �gure 5.26. Comparing to the results
in [85] (�gure 8) it is found that there is quantitative agreement with the genus of
the liquid simulations of present work. The polycrystalline simulations display
a lower genus per speci�c volume than the liquid simulations, but the scaling
with characteristic length is roughly equal. The presence of grain boundaries
therefore seem to result in phase structures that are less topologically complex.

5.5.7 Characterization of interphase morphology

The morphology of surfaces is customarily quanti�ed through their curvature.
The curvature � associated with a point on a surface is a function of the chosen
direction in the normal plane, i.e. standing on a surface, one may see di�erent
curvatures depending on which direction one is facing.

The principal curvatures, � 1 and � 2, are de�ned as the extrema of the curvature
as a function of the angle� in the normal plane. The presently chosen de�nition
is � 1 � max(� (� )) and � 2 � min( � (� )), and so � 1 � � 2.
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The principal curvatures are the quantities of primary interest in this section.
However, the direct determination of these is di�cult. From the principal cur-
vatures, two other types of curvature may be de�ned (or vice versa), which are
of physical interest in their own right, but also allow for easy determination of
the principal curvatures. Mean curvature, H , is de�ned as

H �
� 1 + � 2

2
(5.32)

and the Gaussian curvature,K , which in section 5.5.6 was used to determine
the topological quantity genus, is de�ned as

K � � 1� 2 (5.33)

Combining these, the principal curvatures may be expressed as

� 1 = H +
p

H 2 � K (5.34a)

� 2 = H �
p

H 2 � K (5.34b)

Prior to determining H and K for any surface contained in a phase-�eld vari-
able, this phase-�eld variable is smoothed with a 53 grid point mean �lter that
respects the periodic boundary conditions, and the surface is extracted through
the marching cubes algorithm, as described in section 5.5.3. The speci�c method
chosen for determining H and K on the resulting polygonized surface is de-
scribed in [126]:

For each vertex of the polygonized surface,Vi , for i = 1 ; 2; � � � ; NV , whereNV is
the total number of vertices, both mean curvature, H i and Gaussian curvature,
K i and the quantity mixed area, A i

M are determined. A i
M is a measure of

the amount of surface area "which belongs to" the vertexVi . Thus the mixed
area is necessary for numeric integration of quantities de�ned on a per vertex
basis, such as for determining the genus via equation (5.30). FromH i and K i ,
the principal curvatures at vertex Vi , � i

1 and � i
2 are determined trivially from

equations (5.34).

Note that while mathematically H 2 � K for any smooth surface by de�nition,
this may not always be the case whenH and K are determined numerically,
therefore care must be taken whereH 2 � K , i.e. 
at or spherical-like surface
patches where� 1 � � 2. For the present analysis, it was found that the total
mixed area of vertices for whichH 2 < K were always less than 2% for the
two polycrystalline simulations, and always less than 1% for the two liquid
simulations, owing to the smoother nature of these surfaces. It was found by
visual examination of surfaces extracted at various times from the four data
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Figure 5.27: Interphase surfaces of the two 40/60 volume ratio simulations at
time t = 300:000 colored according to curvature (1=8 of the computational do-
main). Left: Polycrystalline. Right: Liquid. Top: Mean curvature H . Bottom:
Gaussian curvatureK .

sets that the o�ending vertices were not spatially correlated. Furthermore, as
distributions of principal curvature are of interest, and will be presented in next
section, these o�ending surface patches were examined statistically. It was found
that inclusion of these surface patches by settingH 2

i � K i = 0, thus � i
1 = � i

2 = H i

did not a�ect distributions of the principal curvatures signi�cantly, and so the
author concluded that these surface patches could be excluded from further
analysis without thereby introducing signi�cant bias.

Examples of surfaces colored according to their mean curvature and Gaussian
curvature is found in �gure 5.27. The polycrystalline simulation show curvature
on the grain faces, but the largest magnitudes of both kinds of curvature are
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found in the triple junction grooves. It must be noted that the curvature in
the triple junction grooves to some extent is a function of the numeric grid size,
and so can not be taken to have physical signi�cance. It is seen that both mean
curvature and Gaussian curvature is non-constant across grain faces. This will
be discussed in section 5.5.8.

5.5.7.1 Interfacial shape distributions

A convenient way to visualize the statistical distribution of principal curvatures
are through interfacial shape distributions (ISD) [85]. Given a set of princi-
pal curvatures, � 1 and � 2, an ISD represents the probability distribution of
any randomly chosen surface patch having principal curvatures� 1 and � 2. In
other words, an ISD may be thought of as containing the "building blocks" for
constructing a surface.

As the principal curvatures determined in the previously described manner are
necessarily discrete, constructing an ISD requires binning. In practice, this is
done by de�ning a grid of bins P(i; j ), with centers (k i

1; k j
2), and a spacing

between nearest neighbor bin centers of �� . The value of a given bin is then
set to the sum of all mixed areas for which the principal curvatures are closer
to the given bin center than any other, and the ISD is normalized, i.e.

P(i; j ) = c
X

n

An
M for all n where

�
k i

1 � � �= 2 � � n
1 < k i

1 + � �= 2
k j

2 � � �= 2 � � n
2 < k j

2 + � �= 2
(5.35)

where c is a normalization constant de�ned as

c =
1

� � 2
P

ij P(i; j )
(5.36)

which ensures that numeric integration over all � 1 and � 2 gives one.

The ISDs may be divided into �ve regions by considering the sign and magnitude
of the curvatures. These regions are indicated on �gure 5.28, and the curvature
characteristics are summed up in table 5.3. Region 5 contains no density by
the de�nition � 1 � � 2, and is therefore excluded in the following. Region 1
contains convex surface patches, i.e. surface patches that curve away from the
surface normal. Region 2-3 contains hyperbolic surface patches, i.e. saddle-like
patches. Region 4 contains concave surface patches, i.e. surface patches that
curve towards the surface normal. The surface normal is required to point out
of � (minority) regions in present work. The line demarking regions 2 and 3
(marked in red on �gure 5.28) is the line of vanishing mean curvature,H = 0,
(� 1 = � � 2) and so all curvature of a minimal surface would be expected to
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Figure 5.28: Sketch of the �ve regions of an interfacial shape distribution. The
curvature characteristics of these may be found in table 5.3.

Region 1 Region 2 Region 3 Region 4
H H < 0 H < 0 H > 0 H > 0
K K > 0 K < 0 K < 0 K > 0

� 1; � 2 � 2 < � 1 < 0
� 1 > 0 > � 2

� 1 < � � 2

� 1 > 0 > � 2

� 1 > � � 2
� 1 > � 2 > 0

Type Convex Hyperbolic Hyperbolic Concave

Table 5.3: Curvature characteristics of the �ve regions of an interfacial shape
distribution. A sketch of these is seen in �gure 5.28.

reside on this line. The iso-H surface patches are parallel to this, with positive
towards the right. The line � 1 = � 2 contains spherical-like surface patches.

A necessary condition for morphologically self-similar microstructural evolution
is that the ISDs should become invariant under correct scaling of the axes. As
the curvature of the surface is de�ned as the inverse of the radius of curva-
ture, � = 1=R, "correct scaling" must mean scaling by the characteristic length
scale,SV . An example of the evolution of ISDs of the liquid 50/50 volume ra-
tio simulation is shown in �gure 5.29 with both unnormalized and normalized
axes, and it shows that the scaling is reasonable, as the ISD is found to extend
approximately the same distance along theH = 0 line at all the times shown.

Examination of the time evolution of the axes normalized ISDs reveals that
the trend is for curvature to change is a manner such that the average mean
curvature remains approximately constant, as may be seen in �gure 5.29. That
is, the ISDs appears increasingly "squeezed" along the direction of the� 1 = � 2

line about the line of average mean curvatureH = hH i . It is found that the
average mean curvatures are approximately constant in time. These are found
to be hHSV i � 0:0 for the 50/50 volume ratio simulations, and hHSV i � 0:3
for 40/60 volume ratio simulations.
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Figure 5.29: ISDs for the 50/50 volume ratio liquid simulation. From top to
bottom: times t = 10:000, t = 50:000 and t = 300:000. Left side shows ISDs
with unnormalized axes, (� 1; � 2), right side shows ISDs with normalized axes,
(� 1Sv ; � 2SV ).
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Figure 5.30: The con�guration of the self-similar ISDs. Top left: 50/50 volume
ratio liquid simulation. Top right: 40/60 volume ratio liquid simulation. Bottom
left: 50/50 volume ratio polycrystalline simulation. Bottom right: 40/60 volume
ratio polycrystalline simulation.
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By examination of simulation output it is found that the ISDs tend to steady
state con�gurations for all four simulations at late times under correct scaling.
The self-similar ISDs are shown in �gure 5.30. These are generated from data
at time t = 300:000. The self-similar ISDs for the liquid simulations are in good
correspondence to those presented in [85].

There is a high degree of symmetry about theH = 0 line for both 50/50 volume
ratio simulations. This is expected: All materials parameters are the same for
the two phases, which are present in equal amounts, so the direction of the
surface normal can be set arbitrarily. However, changing the direction of the
surface normal changes the sign of the mean curvature, wherefore symmetry
about H = 0 is required. A similar symmetry about hHSV i � 0:3 is not
observed for the 40/60 volume ratio simulations.

The self-similar ISDs of the liquid simulations are in good agreement with those
presented in [85]. The ISDs of the polycrystalline simulations in �gure 5.29
resemble their respective counterparts from the liquid simulations in that their
width in the � 1 = � 2 directon are similar. They are, however, more "com-
pressed" towards the point of origin, meaning that the normalized principal
curvatures are numerically lower, i.e. the interfaces are 
atter, than for the
liquid simulations. This will be discussed in section 5.5.8. The axes normal-
ized polycrystalline ISDs display smeared-out low-density "tails" on and near
the axes. This is due to surface patches in the triple junction grooves: These
have numerically low curvature along the direction of the triple junction, and
numerically large curvature orthogonal to this direction, and so either � 1 � 0 or
� 2 � 0. These cannot be taken as physical quantities, since the magnitude of the
curvatures in the triple junction grooves are a function of the lattice parameter
of the computational grid, as previously mentioned.

5.5.8 Discussion of interphase interface morphology

Grain faces in isotropic single-phase grain growth simulations may with approx-
imation be taken as lying on the surface of a sphere. The surface patches are
thus of near-constant mean and Gaussian curvatures. Inspection of the curva-
tures on �gure 5.27 show that this is not the case for the simulations in the
present work, as the magnitude of both curvatures varies across grain faces, and
spherical-like surface patches would appear on the self-similar ISDs, �gure 5.30,
as density close to the� 1 = � 2 line. In comparing the self-similar ISDs of the
liquid simulations to those of the polycrystalline simulations, it is seen that there
is an increased density there, but it is not total. Furthermore, investigation of
the cross sections of the grain structure of the polycrystalline simulations, 5.17,
at late times reveal that while the interphase interfaces are observed to often
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Figure 5.31: Five cross sections of simulation data illustrating the formation of
a non-spherical interphase interface in the 40/60 volume ratio polycrystalline
simulation. Red: � (minority) phase. Blue: � (majority) phase. a: t = 172:000.
b: t = 230:000. c: t = 255:000. d: t = 268:000. e: t = 300:000.

have varying curvatures, the intraphase interfaces appear more as would be ex-
pected from single-phase grain growth. All triple junction dihedral angles are
found to be approximately at their local equilibrium values, as given by (5.21).
Deviations from spherical-like interphase interfaces raise the free energy of the
system, thus there is a driving force for non-spherical-like interphase faces to
evolve to a spherical-like morphology. However, if the magnitude of the cur-
vature di�erence of the spherical-like and non-spherical-like interfaces are low,
the driving force will be weak. Additionally, the movement of the interphase
interface is dependent on bulk di�usion of mass, and so the migration of the
boundary will be slow if the distance required for di�usion to or from the boun-
dary is large. The triple junctions of the non-spherical-like face may also not
move easily, since their movement in general is dependent on bulk di�usion of
mass, in order to preserve equilibrium triple junction angles and low curvatures
on the neighboring grain faces. By visual inspection of the simulation data
it is found that these non-spherical-like boundaries have a tendency to evolve
towards spherical-like, but that this may require long times.

Attention will now be switched to the generation of these non-spherical-like in-
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terfaces. They are observed to be transient phenomena, albeit slowly so. To
maintain the observed morphological self-similarity, these interface morpholo-
gies must thus be formed with regularity. Such an interface morphology could
conceivably be reached by rotation of one or more of the triple junctions of a
spherical-like face, but this is not supported by the simulation data. Rather,
it is found that these interfaces occur through grain growth, as shown in �gure
5.31: Grain 2 grows at the expense of grains 3 and 4. When grains 3 and 4 are
eliminated, a non-spherical interphase interface has been formed, the shape of
which is largely given by the shapes of the interfaces of the two grains that were
eliminated. This interface then goes to reduce its mean curvature slowly.

The numerically lower principal curvatures of the polycrystalline simulations,
as compared to the liquid simulations (the "compression" towards the point
of origin) seems to be a simple combination of the need for sustaining equi-
librium triple junction angles at all the edges of a given grain face, while the
curvatures on the face, and the triple junctions are smooth. If the principal
curvatures on the grain face somewhere are numerically "large" and� 1 � � � 2,
so that a strongly "saddle-like" morphology results, it seems that smooth curves
along the grain edges are impossible, however the author is currently unable to
substantiate this assertion further.

5.6 Outlook

The limiting factor for the work presented in this chapter has been the lack
of experimental data. Acquisition and segmentation of data sets before and
after an annealing stage is the �rst priority, as the direction of the research and
development of the phase-�eld model would be determined by this data.

First, examination of triple junction angles in the experimental data would allow
determination of grain boundary energies. If su�cient variation were found
in the triple junction angles, anisotropic interface energies would be sought
incorporated into the model.

Large-scale simulations would then be carried out, and the output compared
to the microstructure characterized after the annealing step. This would help
estimate the ratio between grain boundary mobilities and the di�usive mobil-
ity. If the experimental data showed signs of signi�cantly enhanced di�usion at
grain boundaries, this would be sought incorporated into the phase-�eld model.
Simulations would then be performed again, in an e�ort to maximize the corre-
spondence between the simulation output and the experimentally characterized
microstructure.
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Chapter 6

Conclusions

Synchrotron X-ray radiation for non-destructive microstructural characteriza-
tion has become an invaluable tool for the study of kinetic phenomena in three-
dimensional, bulk microstructures in recent years. The strength of these meth-
ods is the novel possibility to directly probe the evolution of speci�c microstruc-
tural features, rather than having to infer kinetics from destructive characteriza-
tions of di�erent microstructures. In recent years, large-scale three-dimensional
simulations of microstructural evolution have become possible, due to the in-
crease in computer power available, a�ording alternative insight into the evolu-
tion of speci�c microstructural features. The three main parts of this work has
focused on microstructural evolution during annealing. First, experimentally
during recrystallization, where the driving force is the energy stored plastically
in the deformed matrix. Second, experimentally during grain growth, where the
driving force is the energy stored in the grain boundaries. Third, by simula-
tion during coupled grain growth and coarsening in dual-phase materials under
phase ratio conserving conditions, where the driving force is the energy asso-
ciated with the grain boundaries between grains of the same phase, and the
energy associated with the interfaces between the two phases. In the following,
the conclusions of these three main parts are drawn.
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6.1 Recrystallization kinetics in cold-rolled alu-
minium

3DXRD has been employed to study the recrystallization kinetics and grain-
averaged activation energy of a large number of individual grains during recrys-
tallization in 50% cold-rolled aluminium.

The recrystallization kinetics of 1406 individual grains were examined. The
recrystallization kinetics of individual grains was found to deviate signi�cantly
from mean kinetics. The diameters of the recrystallizing grains could in many
cases be described as piecewise linear, and an explanation related to the cell
block microstructure of cold-rolled aluminium was proposed.

Grain-averaged activation energies for recrystallization were determined for 793
individual grains, and forms a wide distribution, the mean of which was found to
correspond well with values for the activation energy of recrystallization found
in the literature. This distribution is signi�cantly wider than is predicted by
experimental observations of migration of large boundaries of well-de�ned mis-
orientation [48], which is taken as evidence that recrystallization occurs in a
more complicated manner.

6.2 Grain topology and grain growth in � tita-
nium

Edge enhanced tomography has been employed to visualize the grain structure of
a sample of Ti-21S� titanium with high resolution before and after undergoing
grain growth.

A static analysis of 556 bulk grains of the �rst data set predicted the sign of
the growth rate to change at an average number of grain faces ofF = 15:65 by
an application of the three-dimensional Von Neumann-Mullins equation, which
was in good agreement with experimental results by Rowenhorstet al. [69]. The
predicted rate of shrinkage for grains with few faces,F � 10 seemed to tend to
a constant value. As a minimal rate of shrinkage was predicted by Glicksman to
occur at F = 6 [66], better statistics might have shown the present results to be
compatible with that assertion. The sign change of the predicted growth rate is
found to be at a grain size ofR = 1 :3hRi , while a minimal rate of shrinkage is
found to occur for grains of sizeR = 0 :7hRi .
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The growth of 31 grains were investigated. The sign of the growth of 22 grains
seems to be correctly predicted by the three-dimensional Von Neumann-Mullins
equation (4.3). Furthermore, the growth of 5 additional grains may arguably
have been predicted correctly, to a total maximum of 71� 87% correct predic-
tions. The growth of four grains were predicted incorrectly. It must be kept
in mind, that there has been considerable growth between the two characteri-
zations, that the three-dimensional Von Neumann-Mullins equation is derived
under assumption of isotropy, and neglects surface e�ects.

6.3 Coupled grain growth and coarsening of dual-
phase materials

Three-dimensional phase-�eld simulations of the microstructural evolution in
dual-phase materials with conserved phase ratio have been performed. Four
sets of initial conditions were employed: liquid/liquid and polycrystalline/poly-
crystalline in 50/50 and 40/60 volume ratio.

The characteristic length scales were found to be compatible with power-law
growth with an exponent of 3, which is argued to be indicative of bulk di�usion
limited growth.

For the 40/60 volume ratio polycrystalline simulation, the mean grain size in-
creased at a slower rate for the minority phase than for the majority phase,
which is argued to be due to the larger distance mass must be transported dif-
fusively between minority regions than between majority regions. It was found
that the minority phase grains tended to form less faces than the majority phase
grains over time.

Topologically self similar evolution was found to set in after a transient caused
by the initial conditions. Steady state grain size distributions were found to
be approximately consistent with size distributions of solid particles of high
volume fraction in a liquid matrix e.g. determined experimentally by Rowen-
horst et al. [123]. These were identical for the 50/50 and the 40/60 volume
ratio simulations when all grains were considered collectively, and the distribu-
tions of minority and majority phases in the 40/60 volume ratio simulation were
found to be identical when normalized by their respective mean grain sizes. The
grains in both simulations during self similar evolution favored interphase faces,
hFinter i � 7:8 and hFintra i � 6:3. No qualitative di�erence between the distri-
bution of number of faces for the 50/50 and the 40/60 volume ratio simulations
was found when all grains were considered collectively. This distribution was
found to be consistent with experimental data by Rowenhorst et al. [69] for
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single-phase grain topology. The genus of the interphase interface was found
to evolve with the same growth exponent with good approximation for both
liquid/liquid and polycrystalline/polycrystalline simulations, but the genus of
the latter was found to be lower, meaning that the interphase surface of the
polycrystalline/polycrystalline simulations were less topologically complex than
for the liquid/liquid simulations.

Morphologically self similar evolution was found to set in at a later time than
the topologically self similar evolution. The morphology was quanti�ed with
interfacial shape distributions (ISDs). The self similar ISDs for the polycryst-
alline/polycrystalline simulations were found to appear "squeezed" towards the
direction of vanishing principal curvatures. The self similar ISDs of the poly-
crystalline/polycrystalline simulations as compared to the self similar ISDs of
the liquid/liquid simulations thus showed an increased, but not total preference
for spherical-like surface patches. That the preference is not total is argued to
be due to the dependence of the movement of interphase surface patches on bulk
di�usion of mass, and the need for preservation of local equilibrium triple junc-
tion angles. Non-spherical-like surface patches are observed to be a transient,
but long-lived phenomenon which occurs as a result of migration of intraphase
interfaces.



References

[1] R.T. DeHo�. Quantitative serial sectioning analysis - preview. Journal of
Microscopy - Oxford, 131:259{263, 1983.

[2] C.A. Volkert and A.M. Minor. Focused ion beam microscopy and micro-
machining. MRS Bulletin, 32(5):389{395, 2007.

[3] J.E. Spowart. Automated serial sectioning for 3-D analysis of microstruc-
tures. Scripta Materialia , 55(1):5 { 10, 2006.

[4] T. Chatterji. Neutron Scattering from Magnetic Materials. 1st Edition.
Elsevier Science, 2005.

[5] J. Fitter, T. Gutberlet, and J. Katsaras. Neutron Scattering In Biology:
Techniques And Applications. 1st Edition. Springer, 2006.

[6] H.F. Poulsen. 3DXRD microscopy - a comparison with neutron di�raction.
Applied Physics A - Materials Science & Processing, 74(Part 2, S):S1673{
S1675, 2002.

[7] K. Thornton and H.F. Poulsen. Three-dimensional materials science: An
intersection of three-dimensional reconstructions and simulations. MRS
Bulletin , 33(6):587{595, 2008.

[8] H.F. Poulsen. Three-Dimensional X-ray Di�raction Microscopy: Mapping
Polycrystals and their Dynamics. 1st Edition. Springer, 2004.

[9] G.T. Herman. Fundamentals of Computerized Tomography. 2nd Edition.
Springer, 2009.

[10] F. J. Humphreys and M. Hatherly. Recrystallization and Related Anneal-
ing Phenomena. 2nd Edition. Elsevier, 2004.



124 References

[11] H.V. Atkinson. Theories of normal grain-growth in pure single-phase sys-
tems. Acta Metallurgica, 36(3):469{491, 1988.

[12] R.D. MacPherson and D.J. Srolovitz. The von Neumann relation gen-
eralized to coarsening of three-dimensional microstructures. Nature,
446(7139):1053{1055, 2007.

[13] J. Als-Nielsen and D. McMorrow. Elements of Modern X-Ray Physics.
1st Edition. John Wiley & Sons, Ltd., 2001.

[14] ID11. ID11 - Materials Science Beamline { ESRF.
http://www.esrf.eu/UsersAndScience/Experiments/
StructMaterials/ID11/ , 2011.

[15] B. E. Warren. X-ray Di�raction. Reprint of 1st Edition. Dover Publica-
tions, Inc., New York, 1990.

[16] A. Guinier. X-Ray Di�raction in Crystals, Imperfect Crystals and Amor-
phous Bodies. 1st Edition. W.H. Freeman and Company, 1963.

[17] B.E.A. Saleh and M.C. Teich. Fundamentals of Photonics. 1st Edition.
John Wiley & Sons, Inc., 1991.

[18] P. Cloetens.Contribution to Phase Contrast Imaging, Reconstruction and
Tomography with Hard Synchrotron Radiation. Ph.D. thesis, Vrije Uni-
versiteit Brussel, 1999.

[19] A. Momose, T. Takeda, Y. Itai, and K. Hirano. Phase-contrast X-ray com-
puted tomography for observing biological soft tissues.Nature Medicine,
2(4):473{475, 1996.

[20] U. Bonse and M. Hart. An X-ray interferometer. Applied Physics Letters,
6(8):155{&, 1965.

[21] S.C. Mayo, P.R. Miller, S.W. Wilkins, T.J. Davis, D. Gao, T.E. Gureyev,
D. Paganin, D.J. Parry, A. Pogany, and A.W. Stevenson. Quantitative
X-ray projection microscopy: phase-contrast and multi-spectral imaging.
Journal Of Microscopy - Oxford, 207(Part 2):79{96, 2002.

[22] D. Gabor. A new microscopic principle.Nature, 161(4098):777{778, 1948.

[23] G.B. Arfken and H.J. Weber. Mathematical Methods for Physicists. 5th
Edition . Academic Press, 2000.

[24] A.V. Bronnikov. Theory of quantitative phase-contrast computed tomog-
raphy. Journal of the Optical Society of America A - Optics Image Science
and Vision, 19(3):472{480, 2002.

http://www.esrf.eu/UsersAndScience/Experiments/StructMaterials/ID11/
http://www.esrf.eu/UsersAndScience/Experiments/StructMaterials/ID11/


125

[25] M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen,
A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Boehler, D. Meis-
ter, M. Lange, and R. Abela. Trends in synchrotron-based tomographic
imaging: the SLS experience. In U. Bonse, editor,Developments in X-
Ray Tomography V, volume 6318 ofProceedings Of The Society Of Photo-
Optical Instrumentation Engineers (SPIE) , pages U199{U212, 2006.

[26] A.V. Bronnikov. Phase-contrast CT: Fundamental theorem and fast image
reconstruction algorithms. In U. Bonse, editor, Developments in X-Ray
Tomography V, volume 6318 ofProceedings of the Society of Photo-Optical
Instrumentation Engineers (SPIE) , page Q3180, 2006.

[27] P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt,
J.P. Guigay, and M. Schlenker. Holotomography: Quantitative phase
tomography with micrometer resolution using hard synchrotron radiation
X-rays. Applied Physics Letters, 75(19):2912{2914, 1999.

[28] M.O. de Beeck, D. Van Dyck, and W. Coene. Wave function reconstruc-
tion in HRTEM: The parabola method. Ultramicroscopy, 64(1-4):167{183,
1996.

[29] J. Earl and E.J. Kirkland. Improved high resolution image processing of
bright �eld electron micrographs: I. Theory. Ultramicroscopy, 15(3):151
{ 172, 1984.

[30] W. Ludwig, A. King, P. Reischig, M. Herbig, E.M. Lauridsen, S. Schmidt,
H. Proudhon, S. Forest, P. Cloetens, S.R. du Roscoat, J.Y. Bu�ere, T.J.
Marrow, and H.F. Poulsen. New opportunities for 3D materials science of
polycrystalline materials at the micrometre lengthscale by combined use of
X-ray di�raction and X-ray imaging. Materials Science and Engineering
A - Structural Materials Properties, Microstructure and Processing, 524(1-
2):69{76, 2009.

[31] H.F. Poulsen, D. Juul Jensen, and G.B.M. Vaughan. Three-dimensional
X-ray di�raction microscopy using high-energy X-rays. MRS Bulletin,
29(3):166{169, 2004.

[32] E.M. Lauridsen. The 3D X-Ray Di�raction Microscope and its Application
to the Study of Recrystallization Kinetics. Ph.D. thesis, Ris� National
Laboratory, 2001.

[33] S. Schmidt. Grainspotter v. 0.82.
http://sourceforge.net/apps/trac/fable/wiki/grainspotter ,
2010.

[34] A. Lyckegaard, E.M. Lauridsen, W. Ludwig, R.W. Fonda, and H.F.
Poulsen. On the use of Laguerre tessellations for representations of 3D

http://sourceforge.net/apps/trac/fable/wiki/grainspotter


126 References

grain structures. Advanced Engineering Materials, 13(3, SI):165{170,
2011.

[35] H.F. Poulsen and X. Fu. Generation of grain maps by an algebraic recon-
struction technique. Journal of Applied Crystallography, 36(4):1062{1068,
2003.

[36] W. Ludwig, S. Schmidt, E.M. Lauridsen, and H.F. Poulsen. X-ray di�rac-
tion contrast tomography: a novel technique for three-dimensional grain
mapping of polycrystals. I. Direct beam case. Journal Of Applied Crys-
tallography, 41(Part 2):302{309, 2008.

[37] G. Johnson, A. King, M.G. Honnicke, J. Marrow, and W. Ludwig. X-ray
di�raction contrast tomography: a novel technique for three-dimensional
grain mapping of polycrystals. II. The combined case.Journal Of Applied
Crystallography, 41(Part 2):310{318, 2008.

[38] W. Ludwig, P. Reischig, A. King, M. Herbig, E.M. Lauridsen, G. John-
son, T.J. Marrow, and J.Y. Bu�ere. Three-dimensional grain mapping
by X-ray di�raction contrast tomography and the use of Friedel pairs in
di�raction data analysis. Review Of Scienti�c Instruments, 80(3), 2009.

[39] J.W. Cahn and W.G Hagel. Divergent pearlite in a manganese eutectoid
steel. Acta Metallurgica, 11(6):561 { 574, 1963.

[40] D. Juul Jensen. Growth of nuclei with di�erent crystallographic ori-
entations during recrystallization. Scripta Metallurgica et Materialia ,
27(5):533 { 538, 1992.

[41] W.A. Johnson and R.F. Mehl. Reaction kinetics in processes of nucle-
ation and growth. Transactions of the American Institute of Mining and
Metallurgical Engineers (Trans AIME) , 135:416{442, 1939.

[42] M. Avrami. Kinetics of phase change I - General theory. Journal of
Chemical Physics, 7(12):1103{1112, 1939.

[43] A.N. Kolmogorov. Selected Works of A.N. Kolmogorov: Probability The-
ory and Mathematical Statistics, Volume 2. 1st Edition. Springer, 1992.

[44] R.A. Vandermeer and B.B. Rath. Microstructural modeling of recrystal-
lization in deformed iron single-crystals. Metallurgical Transactions A -
Physical Metallurgy and Materials Science, 20(10):1933{1942, 1989.

[45] E.M. Lauridsen, D. Juul Jensen, H.F. Poulsen, and U. Lienert. Kinetics of
individual grains during recrystallization. Scripta Materialia , 43(9):561{
566, 2000.



127

[46] E.M. Lauridsen, H.F. Poulsen, S.F. Nielsen, and D. Juul Jensen. Recrys-
tallization kinetics of individual bulk grains in 90% cold-rolled aluminium.
Acta Materialia , 51:4423{4435, 2003.

[47] S. Schmidt, S.F. Nielsen, C. Gundlach, L. Margulies, X. Huang, and D.
Juul Jensen. Watching the growth of bulk grains during recrystallization
of deformed metals.Science, 305(5681):229{232, 2004.

[48] G. Gottstein and L.S. Shvindlerman. Grain Boundary Migration in Met-
als. 1st Edition. CRC Press, 1999.

[49] D.A. Porter and K.E. Easterling. Phase Transformation in Metals and
Alloys. 2nd Edition. CRC Press, 2004.

[50] R.A. Vandermeer. Kinetic aspects of nucleation and growth in recrys-
tallization. In N. Hansen, X. Huang, D. Juul Jensen, E.M. Lauridsen,
T. Le�ers, W. Pantleon, T.J. Sabin, and J.A. Wert, editors, 21st Ris�
International Symposium on Materials Science, pages 179{200, 2000.

[51] R.A. Vandermeer, E.M. Lauridsen, and D. Juul Jensen. Growth rate
distribution during recrystallization of copper. In B. Bacroix, J.H. Driver,
R. LeGall, C. Maurice, R. Penelle, H. Regle, and L. Tabourot, editors,2nd
Joint International Conference on Recrystallization and Grain Growth,
pages 467{470, 2004.

[52] C. Zener quoted by C.S. Smith. Grains, phases, and interfaces - an in-
terpretation of microstructure. Transactions of the American Institute of
Mining and Metallurgical Engineers (Trans AIME) , 175:15{51, 1948.

[53] A. Hammersley. FIT2D.
http://www.esrf.eu/computing/scientific/FIT2D , 2011.

[54] N. Hansen. New discoveries in deformed metals.Metallurgical Transac-
tions A, 32(12):2917{2935, 2001.

[55] D.A. Hughes and N. Hansen.ASM Handbook, Volume 9, Metallography
and Microstructures, chapter Plastic Deformation Structures, pages 192{
206. ASM International, 2004.

[56] Y.B. Zhang, A. Godfrey, Q. Liu, W. Liu, and D. Juul Jensen. Analysis
of the growth of individual grains during recrystallization in pure nickel.
Acta Materialia , 57:2631{2639, 2009.

[57] D.L. Olmsted, E.A. Holm, and S.M. Foiles. Survey of computed grain
boundary properties in face-centered cubic metals-II: Grain boundary mo-
bility. Acta Materialia , 57(13):3704{3713, 2009.

http://www.esrf.eu/computing/scientific/FIT2D


128 References

[58] J.W. Cahn, Y. Mishin, and A. Suzuki. Coupling grain boundary motion
to shear deformation. Acta Materialia , 54(19):4953{4975, 2006.

[59] J.W. Cahn, Y. Mishin, and A. Suzuki. Duality of dislocation content of
grain boundaries. Philosophical Magazine A, 86(25):3965{3980, 2006.

[60] H.H. Liu, S. Schmidt, H.F. Poulsen, A. Godfrey, Z.Q. Liu, J.A. Sharon,
and X. Huang. Three-dimensional orientation mapping in the transmission
electron microscope.Science, 332(6031):833{834, 2011.

[61] C.S. Smith. Grains, phases, and interfaces - an interpretation of micro-
structure. Transactions of the American Institute of Mining and Metal-
lurgical Engineers (Trans AIME) , 175:15{51, 1948.

[62] J. Von Neumann. Metal Interfaces, pages 108{111. American Society for
Metals, 1952.

[63] W.W. Mullins. Two-dimensional motion of idealized grain boundaries.
Journal of Applied Physics, 27(8):900{904, 1956.

[64] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. SIGGRAPH Computer Graphics, 21:163{
169, 1987.

[65] S. Hilgenfeldt, A.M. Kraynik, S.A. Koehler, and H.A. Stone. An accurate
von Neumann's law for three-dimensional foams.Physical Review Letters,
86(12):2685{2688, 2001.

[66] M.E. Glicksman. Analysis of 3-D network structures. Philosophical Mag-
azine, 85(1):3{31, 2005.

[67] K. Brakke. The Surface Evolver. Experimental Mathematics, 1:141{165,
1992.

[68] F. Wakai, N. Enomoto, and H. Ogawa. Three-dimensional microstruc-
tural evolution in ideal grain growth - general statistics. Acta Materialia ,
48(6):1297{1311, 2000.

[69] D.J. Rowenhorst, A.C. Lewis, and G. Spanos. Three-dimensional analysis
of grain topology and interface curvature in a beta-titanium alloy. Acta
Materialia , 58(16):5511{5519, 2010.

[70] TIMET. TIMETAL 21S data sheet.
http://www.timet.com/pdfs/21s.pdf , 2000.

[71] A. Lyckegaard. Development of tomographic reconstruction methods in
materials science with focus on advanced scanning methods. Ph.D. thesis,
Ris� DTU, 2011.

http://www.timet.com/pdfs/21s.pdf


129

[72] M. Couprie and G. Bertrand. Topological grayscale watershed transforma-
tion. In R.A. Melter, A.Y. Wu, and L.J. Latecki, editors, Vision Geometry
VI , volume 3168 ofProceedings of the Society of Photo-Optical Instumen-
tation Engineers (SPIE), pages 136{146, 1997.

[73] Z. Wu and J.M. Sullivan. Multiple material marching Cubes algorithm.
International Journal For Numerical Methods In Engineering , 58(2):189{
207, 2003.

[74] I. M. McKenna. Three-Dimensional Anisotropic and Isotropic Grain
Growth Simulations with Comparisons to Experiment. Ph.D. thesis,
Northwestern University, 2010.

[75] L.-Q. Chen and W. Yang. Computer simulation of the domain dynamics of
a quenched system with a large number of nonconserved order parameters:
The grain-growth kinetics. Physical Review B, 50(21):15752{15756, 1994.

[76] C.E. Krill and L.-Q. Chen. Computer simulation of 3-D grain growth
using a phase-�eld model. Acta Materialia , 50(12):3057{3073, 2002.

[77] S.G. Kim, D.I. Kim, W.T. Kim, and Y.B. Park. Computer simulations
of two-dimensional and three-dimensional ideal grain growth. Physical
Review E, 74(6):061605, 2006.

[78] A. Kazaryan, Y. Wang, S.A. Dregia, and B.R. Patton. Generalized phase-
�eld model for computer simulation of grain growth in anisotropic systems.
Physical Review B, 61(21):14275{14278, 2000.

[79] N. Moelans, B. Blanpain, and P. Wollants. Quantitative phase-�eld
approach for simulating grain growth in anisotropic systems with arbi-
trary inclination and misorientation dependence. Physical Review Letters,
101(2):025502, 2008.

[80] R. Kobayashi. A numerical approach to three-dimensional dendritic so-
lidi�cation. Experimental Mathematics, 3:59{81, 1994.

[81] A. Karma and W.-J. Rappel. Phase-�eld method for computationally e�-
cient modeling of solidi�cation with arbitrary interface kinetics. Physical
Review E, 53(4):R3017{R3020, 1996.

[82] W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma. Phase-
�eld simulation of solidi�cation. Annual Review of Materials Research,
32:163{194, 2002.

[83] D. Fan, L.-Q. Chen, S.P. Chen, and P.W. Voorhees. Phase �eld formula-
tions for modeling the Ostwald ripening in two-phase systems.Computa-
tional Materials Science, 9(3-4):329{336, 1998.



130 References

[84] I.S. Aranson, V.A. Kalatsky, and V.M. Vinokur. Continuum �eld descrip-
tion of crack propagation. Physical Review Letters, 85(1):118{121, 2000.

[85] Y. Kwon, K. Thornton, and P.W. Voorhees. Morphology and topology in
coarsening of domains via non-conserved and conserved dynamics.Philo-
sophical Magazine, 90(5):317{335, 2010.

[86] J.W. Cahn and J.E. Hilliard. Free energy of a nonuniform system. I.
interfacial free energy. Journal of Chemical Physics, 28(2):258{267, 1958.

[87] J.W. Cahn. On spinodal decomposition in cubic crystals.Acta Metallur-
gica, 10(3):179{183, 1962.

[88] S.M. Allen and J.W. Cahn. A microscopic theory for antiphase boun-
dary motion and its application to antiphase domain coarsening. Acta
Metallurgica, 27:1085{1095, 1979.

[89] L.-Q. Chen and Y.Z. Wang. The continuum �eld approach to modeling
microstructural evolution. JOM - Journal Of The Minerals Metals &
Materials Society, 48(12):13{18, 1996.

[90] N. Moelans, B. Blanpain, and P. Wollants. An introtroduction to phase-
�eld modeling of microstructure evolution. Computer Coupling of Phase
Diagrams and Thermochemistry, 32:268{294, 2008.

[91] I. Steinbach. Phase-�eld models in materials science.Modelling and Sim-
ulation in Materials Science and Engineering, 17(7):073001, 2009.

[92] J.D. van der Waals. The equation of state for gases and liquids. Reprinted
from Nobel lecture, December, 1910.Journal of Supercritical Fluids, 55(2,
SI):403{414, 2010.

[93] L.D. Landau and E.M. Lifshitz. Statistical Physics, Part 1, Volume 5. 3rd
Edition . Pergamon Press, 1994.

[94] W.F. Ames. Numerical Methods for Partial Di�erential Equations. 3rd
Edition . Academic Press, 1992.

[95] A.W. Bush. Perturbation Methods for Engineers and Scientists. 1st Edi-
tion. CRC Press, 1992.

[96] E.A. Holm and C.C. Battaile. The computer simulation of microstructural
evolution. JOM - Journal of the Minerals Metals & Materials Society,
53(9):20{23, 2001.

[97] L.I. Rubinstein. The Stefan Problem, Translations of Mathematical Mono-
graphs, Vol. 27. 1st Edition. American Mathematical Society, 1971.



131

[98] D. Fan, L.-Q Chen, and S.P. Chen. E�ect of grain boundary width on
grain growth in a di�use-interface �eld model. Materials Science and
Engineering A, 238:78{84, 1997.

[99] S.J. Osher and R.P. Fedkiw. Level set methods: An overview and some
recent results. Journal of Computational Physics, 169(2):463{502, 2001.

[100] S.J. Osher and R.P. Fedkiw. Level Set Methods and Dynamic Implicit
Surfaces. 1st Edition. Springer, 2002.

[101] G. Russo and P. Smereka. A level set method for the evolution of faceted
crystals. SIAM Journal on Scienti�c Computing (SCIC) , 2000:2073{2095,
2000.

[102] L.-Q. Chen and D. Fan. Computer simulation model for coupled grain
growth and Ostwald ripening - application to Al2O3-ZrO2 two-phase sys-
tems. Journal of the American Ceramical Society, 79(5):1163{1168, 1996.

[103] D. Fan and L.-Q. Chen. Di�usion-controlled grain growth in two-phase
solids. Acta Materialia , 45(8):3297{3310, 1997.

[104] D. Fan and L.-Q. Chen. Topological evolution during coupled grain growth
and Ostwald ripening in volume-conserved 2-D two-phase polycrystals.
Acta Materialia , 45(10):4145{4154, 1997.

[105] D. Fan and L.-Q. Chen. Grain growth and microstructural evolution in a
two-dimensional two-phase solid containing only quadrijunctions.Scripta
Materialia , 37(2):233{238, 1997.

[106] J.W. Cahn. Stability, microstructural evolution, grain-growth, and coars-
ening in a 2-dimensional 2-phase microstructure. Acta Metallurgica et
Materialia , 39(10):2189{2199, 1991.

[107] High Performance Fortran Forum. High Performance Fortran.
http://hpff.rice.edu/index.htm , 2011.

[108] MPI Forum. Message Passing Interface Forum.
http://www.mpi-forum.org/index.html , 2011.

[109] L.-Q. Chen and J. Shen. Applications of semi-implicit Fourier-spectral
method to phase �eld equations. Computer Physics Communications,
108(2-3):147{158, 1998.

[110] M. Frigo and S.G. Johnson. FFTW. http://www.fftw.org , 2011.

[111] L. Vanherpe, N. Moelans, B. Blanpain, and S. Vandewalle. Bounding box
algorithm for three-dimensional phase-�eld simulations of microstructural
evolution in polycrystalline materials. Physical Review E, 76(5):056702{
1{11, 2007.

http://hpff.rice.edu/index.htm
http://www.mpi-forum.org/index.html
http://www.fftw.org


132 References

[112] J. Gruber, N. Ma, Y. Wang, A.D. Rollett, and G.S. Rohrer. Sparse data
structure and algorithm for the phase �eld method. Modelling and Simu-
lation in Materials Science and Engineering, 14(7):1189{1195, 2006.

[113] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced Features of
the Message-Passing Interface. 1st Edition.MIT Press, 1999.

[114] C. Isenberg. The Science of Soap Films and Soap Bubbles. 2nd Edition.
Dover Publications, 1992.

[115] L. Ratke and P.W. Voorhees.Growth and Coarsening, Ripening in Mate-
rial Processing. 1st Edition. Springer, 2002.

[116] J.E. Burke and D. Turnbull. Recrystallization and grain growth. Progress
in Metal Physics, 3:220{292, 1952.

[117] R.A. Vandermeer and H. Hu. On the grain growth exponent of pure iron.
Acta Metallurgica et Materialia , 42(9):3071{3075, 1994.

[118] I.M. Lifshitz and V.V. Slyozov. The kinetics of precipitation from su-
persaturated solid solutions. Journal of Physics and Chemistry of Solids,
19(1-2):35 { 50, 1961.

[119] C. Wagner. Theorie der Alterung von Niederschlagen durch Uml•osen
(Ostwald-reifung). Zeitschrift F•ur Elektrochemie , 65(7-8):581{591, 1961.

[120] N. Akaiwa and P.W. Voorhees. Late-stage phase separation: Dynamics,
spatial correlations, and structure functions. Physical Review E, 49:3860{
3880, 1994.

[121] S. Hardy and P.W. Voorhees. Ostwald ripening in a system with a high
volume fraction of coarsening phase.Metallurgical and Materials Trans-
actions A, 19:2713{2721, 1988. 10.1007/BF02645806.

[122] J.W. Martin, R.D. Doherty, and B. Cantor. Stability of Microstructure in
Metallic Systems. 2nd Edition. Cambridge University Press, 1997.

[123] D.J. Rowenhorst, J.P. Kuang, K. Thornton, and P.W. Voorhees. Three-
dimensional analysis of particle coarsening in high volume fraction solid-
liquid mixtures. Acta Materialia , 54(8):2027{2039, 2006.

[124] E.W. Weisstein. "Gauss-Bonnet Formula" from MathWorld - A Wolfram
Web Resource.
http://mathworld.wolfram.com/Gauss-BonnetFormula.html , 2011.

[125] L.K. Aagesen, A.E. Johnson, J.L. Fife, P.W. Voorhees, M.J. Miksis, S.O.
Poulsen, E.M. Lauridsen, F. Marone, and M. Stampanoni. Universality
and self-similarity in pinch-o� of rods by bulk di�usion. Nature Physics,
6(10):796{800, 2010.

http://mathworld.wolfram.com/Gauss-BonnetFormula.html


133

[126] N. Meyer, M. Desbrun, P. Schroder, and A.H. Barr. Discrete di�erential-
geometry operators for triangulated 2-manifolds. In H.C. Hege and
K. Polthier, editors, Visualization and Mathematics III , pages 35{57, 2003.
3rd International Workshop on Visualization and Mathematics, Berlin,
Germany, May 22-25, 2002.



134 References



Appendix A

A.1 Asymptotic solutions for planar grain boun-
daries

We consider two phase-�eld variables, � + and � � , which may be any com-
bination of � and � type phase-�eld variables. Introducing the constraint
� + + � � = 1 leads to the approximate solutions to the equations (5.14b) and
(5.14c) to be given by the functions

� � =
1
2

�
1 � tanh

� p
�

x
2

��
(A.1)

where the quantity � may vary with the interface type in question, and is de�ned
as

� =

8
<

:

� �� � X 2
 � for ��
� �� � X 2
 � for ��
� �� � X 2
 � for �� if and only if D � = D �

(A.2)

For the �� interface, the requirement of D � = D � is equivalent to requiring

 � = 
 � cf. the de�ning equation (5.16), and so either may be used in� .

The above solutions are dependent on speci�c composition pro�les,C, which
are not consistent with the full steady state equation governingC, equation



136

(5.14a), however, they become solutions to �rst order inC � C� and C � C� ,
with the choice

� �� = � �� = � �� = 3X 2
 � �
16X 2
 2

�

3BX 2 + 12D � X 2 � 4A
(A.3)

where it is again necessary to chooseD � = D � and so 
 � = 
 � cf. equation
(A.1)

The approximated equilibrium compositional pro�les through an �� - or a ��
interface are given by

�C =
2X
 �

3BX 2 � 4A + 12D � X 2 sech2
� p

�
x
2

�
(A.4)

where �C is de�ned as
�C =

�
C � C� for ��
�C� � C for ��

(A.5)

� is de�ned as in equation (A.1). For the �� interface, the approximated pro�le
is found to be a poor approximation to that found by numeric solution. This
is since approximations by expansion inC fails due to the large magnitude
of the change in composition across an interphase interface, and so it is not
shown. Numeric solutions are shown alongside the approximate solutions in
�gure A.1 Inspection reveals that the approximated solutions may accurately
predict the width of all planar grain boundaries, as the approximated solutions
follow the numeric solutions closely where the phase-�eld variable� � 1. The
analytical expressions for�� - and �� interfaces show better correspondence to
the numeric solutions than the analytical expression for the�� interface. This is
again due to the large magnitude of the change in composition occurring across
the interphase boundary, which invalidates the �rst-order in C expansion that
equation (A.1) solves. This in turn invalidates the assumption of � + + � � = 1,
as can clearly be seen at the crossing� + = � � .

If we take for the interface width the somewhat arbitrary distance between the
points where the � and/or � -type phase-�eld variables forming the interface
attain values of � � � 0:98, then we get the simple expression for the boundary
width

W =
8

p
�

(A.6)

which is valid for all planar grain boundaries in the system, provided we have
chosenD � = D � , since � will then have the same value for all interface types.
Other de�nitions of the interface width would change the constant of propor-
tionality in equation (A.6), however the speci�c values the phase-�eld vari-
ables should attain should be su�ciently close to 1 for correspondence between
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Figure A.1: Numerically determined equilibrium planar grain boundary pro�les
and approximate analytical solutions. Black lines are composition,C, blue lines
are � and � -type phase-�eld variables. Red dash-dotted lines are approximate
analytical solutions. Interface widths according to equation (A.6) are indicated
by vertical lines. The remaining model parameters are chosen according to sec-
tion 5.3.8. Left: �� interface. Right: �� interface. Here, the approximate
solution for the composition, C, is not shown, as it is found to be a poor ap-
proximation.

asymptotic and numeric solutions to be guaranteed. The interface width for the
illustration of the correspondence between asymptotic solutions and numeric
solutions in �gure A.1 is W � 6:95, and the interface is indicated by vertical
lines.
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Appendix B

Papers

B.1 In situ measurements of growth rates and
grain-averaged activation energies of indi-
vidual grains during recrystallization of 50%
cold-rolled aluminium
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B.3 Towards a phase �eld model of the microstruc-
tural evolution of duplex steel with experi-
mental veri�cation

The oral presentation of this paper was awarded the "Young Scientist Prize"
at Rex&GG IV - 4th International Conference on Recrystallization and Grain
Growth, 4-9 July, 2010, She�eld, UK.

Important errata:

Equation (16) and the preceding text states that the time evolution of the mean
grain size follows a parabolic power law at early times. This is shown in �gure
2. While this is true at the earliest time, it has later been found that a cubic
power law describes this evolution better, in agreement with the �ndings for
three-dimensional simulations of chapter 5 of the present work. The parabolic
power law approximated the early time behaviour of the cubic power law well,
which led to the premature conclusion stated in this paper.
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B.5 Pinch-o� of rods by bulk di�usion
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