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Summary

This thesis brings together the �elds of uid mechanics, as the study of uids
and ows, isogeometric analysis, as a numerical method to solve engineering
problems using computers, and shape optimization, as the art of �nding \best"
shapes of objects based on some notion of goodness. The ow problems consid-
ered in the thesis are governed by the 2-dimensional, steady-state, incompress-
ible Navier-Stokes equations at low to moderate Reynolds numbers. We use
isogeometric analysis both to solve the governing equations, and as framework
for the shape optimization procedure. Isogeometric analysis unites the power
to solve complex engineering problems from �nite element analysis (FEA) with
the ability to e�ectively represent complex shapes from computer aided design
(CAD). The methodology is appealing for ow modeling purposes also due to
the inherent high regularity of velocity and pressure approximations, and for
shape optimization purposes also due to its tight connection between the analy-
sis and geometry models. The thesis is initiated by short introductions to uid
mechanics, and to the building blocks of isogeometric analysis. As the �rst
contribution of the thesis, a detailed description is given of how isogeometric
analysis is applied to ow problems. We present several new discretizations
of the velocity and pressure spaces, we investigate these in terms of stability
and error convergence properties, and a benchmark ow problem is analyzed.
As the second contribution, we show how isogeometric analysis may serve as a
natural framework for shape optimization within uid mechanics. We construct
an e�cient regularization measure for avoiding inappropriate parametrizations
during optimization, and various numerical examples of shape optimization for
uids are considered, serving to demonstrate the robustness of the method. As
the third contribution, the methodology is extended to acoustics. We estab-
lish a coupled ow-acoustic model of sound propagation through ow in ducts
based on isogeometric analysis. Validations using known acoustic duct modes
demonstrate the powers of the methodology. Based on the model, we identify
distinct geometric e�ects that enhance the sensitivity of the acoustic signal to
the background ow. The thesis is concluded by suggestions for future studies
within the �eld.
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Resum�e (in Danish)

Denne afhandling omhandler uidmekanik, som er studiet af uider og v�ske-
str�mninger, isogeometrisk analyse, som er en numerisk metode til vha. com-
putere at l�se problemer indenfor ingeni�rvidenskaben, og formoptimering, som
er kunsten at �nde den \bedste" form af et objekt ud fra et givent m�al for
kvalitet. Str�mningsproblemerne, som behandles i denne afhandling, er styret af
den 2-dimensionale, station�re, inkompressible Navier-Stokes-ligning ved lave
til moderate Reynoldstal. Vi anvender isogeometrisk analyse b�ade til at l�se
de styrende ligninger og som fundament for formoptimeringen. Isogeometrisk
analyse kombinerer evnen til at analysere komplekse ingeni�rm�ssige proble-
mer fra �nite element-metoden (FEM) med evnen til p�a en e�ektiv m�ade at
repr�sentere komplekse former fra computer aided design (CAD). Metoden er
attraktiv indenfor modellering af v�skestr�mninger ogs�a pga. den indbyggede
regularitet af approksimationen af hastigheds- og trykfelterne, og ligeledes in-
denfor formoptimering ogs�a pga. den t�tte forbindelse mellem analysemod-
ellen og den geometriske model. Afhandlingen indledes med en kort introduk-
tion til uidmekanik og til den isogeometriske analyses grundelementer. Som
det f�rste bidrag gives en detaljeret beskrivelse af anvendelsen af isogeometrisk
analyse p�a str�mningsproblemer. Vi pr�sentere en r�kke nye diskretiseringer
af approksimationsrummene for hastighed- og trykfelterne, vi unders�ger disse
mht. stabilitet og fejl-konvergens, og vi analyserer et standard-problem inden-
for v�skestr�mninger. Som det andet bidrag vises det, hvorledes isogeometrisk
analyse kan anvendes som fundament for formoptimering indenfor uidmekanik.
Vi konstruere et e�ektivt m�al for regularisering, hvilket tjener til at undg�a
uhensigtsm�ssige parametriseringer under optimeringen, og for at demonstrere
metodens robusthed l�ser vi en r�kke numeriske eksempler p�a formoptimerings-
problemer for uider. Som det tredje bidrag udvides metoden til akustik. Vi
frems�tter en koblet model for lydudbredelsen i v�skestr�mninger gennem r�r
baseret p�a isogeometrisk analyse. Validering af metoden ud fra kendte akustiske
modes demonstrerer dens potentiale, og med udgangspunkt i modellen identi�-
ceres en tydelig geometrisk forst�rkning af sensitiviteten af det akustiske signal
overfor baggrunds-str�mningen. Afhandlingen afsluttes med forslag til frem-
tidige studier indenfor emnet.
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Chapter 1

Introduction

The subject of this thesis is isogeometric analysis and shape optimization in
uid mechanics. This chapter gives an account of its motivation, goals, and
outline.

1.1 Motivation

Fluid mechanics is the study of uids and ows, i.e., how gases and liquids
behave under the inuence of forces. The water running through the plumbing
pipes, and the air moving in the atmosphere, are just two out of numerous
examples we are all very familiar with. These phenomena are governed by
a set of coupled partial di�erential equations, and the solution of these often
rely on computer methods, see e.g. [Durran, 1999; Donea and Huerta, 2003;
Mohammadi and Pironneau, 2010]

Shape optimization is the art of determining the best shape of an object
in a given situation based on some notion of goodness. Examples of shape
optimization problems in uid mechanics are numerous, see e.g. [Mohammadi
and Pironneau, 2004]. They range from the design of microuidic protein-folding
devices [Ivorra et al., 2006], to the design of airplane wings [Painchaud-Oullet
et al., 2006], just to mention a few. Again, computer methods are most often
employed [Mohammadi and Pironneau, 2010]

Isogeometric analysis is a recently proposed computational method for solv-
ing engineering problems [Hughes et al., 2005; Cottrell et al., 2009]. The method
unites the powers of �nite element analysis (FEA) to solve partial di�erential
equations with the powers of computer aided design (CAD) to represent com-
plex shapes. As such, it provides a natural framework for both analysis and
shape optimization in uid mechanics.

In isogeometric analysis, the geometry representation builds on the method-
ologies from CAD, where B-splines and NURBS (Non-Uniform Rational B-
splines) are standard mathematical tools [Piegl and Tiller, 1995]. Complex
domains can be represented exactly, and this is particularly interesting for prob-
lems in uid mechanics, since curvature and cusps are critically important. In
isogeometric analysis, the analysis model used to solve the governing equations
is tightly connected to the geometric model, using the same type of basis func-
tions. This means that high degrees of continuity for the state variables may

1



2 CHAPTER 1. INTRODUCTION

be achieved as well. This is again of extreme importance in ow modeling.
Several studies have demonstrated the applicability of isogeometric analysis to
problems in uid mechanics, see e.g. [Bazilevs et al., 2006b; 2007a; Akkerman
et al., 2010; Bazilevs and Hughes, 2008; Bazilevs and Akkerman, 2010; Bazilevs
et al., 2010b; Akkerman et al., 2011; Hsu et al., 2011].

The mathematical structure of the geometry representation is �xed in isoge-
ometric analysis, and typically only a few design variables are needed to control
even quite complex shapes. This means that the geometry can be changed quite
easily, and usually without need for heavy re-meshing procedures. In addition,
the tight connection between geometry and analysis models alleviates the need
for communication between FEA models for the analysis and CAD models for
the geometry. All this make isogeometric analysis an ideal tool for shape opti-
mization. The applicability of isogeometric analysis to shape optimization has
been demonstrated in several studies, see e.g. [Wall et al., 2008; Cho and Ha,
2009; Qian, 2010; Nagy et al., 2011; Nguyen et al., 2011; Li and Qian, 2011;
Qian and Sigmund, 2011].

1.2 Goals

The aim of this thesis is to bring together the �elds of uid mechanics, shape
optimization, and isogeometric analysis: uid mechanics as the nature of the
problems considered, shape optimization as an extension, or add-on, to the ow
problems considered, and isogeometric analysis as the computational method.

We will �rstly study isogeometric analysis of ows. Here, we will investigate
various discretizations for the pressure and velocity �elds in the mixed formu-
lation of the Navier-Stokes equations that govern ow problems, and we will
compare these in terms of error convergence for a problem with a known solu-
tion, and apply them to a standard ow problem for benchmarking. Secondly,
we will study isogeometric shape optimization of ows. Here, we will inves-
tigate a new regularization technique to ensure good parametrizations during
the optimization, and we will demonstrate the power of the methodology by
applying it to various design problems. Thirdly, applications of isogeometric
analysis within ow acoustics will be studied. Here, we will set up a model
of sound propagation through ows in ducts with non-trivial geometry. The
model will be validated against known acoustic modes in ducts, and based on
the model, we will investigate the e�ects of the duct geometry and ow speed on
the sound signal. Finally, we will present some initial investigations of methods
for construction of domain parametrizations in isogeometric analysis, and pre-
liminary results for design of idealized airfoils using isogeometric analysis will
be presented.

The ow problems considered in the thesis are governed by the steady-state,
incompressible Navier-Stokes equations in the laminar regime, i.e., at low to
moderate Reynolds numbers. The sound signal in the coupled ow-acoustics
problems considered is governed by a linear, time-harmonic, background ow-
dependent acoustic equation in the low Mach number regime. As the aim of the
thesis is a proof-of-concept, rather than a construction of a full-blown modelling
and optimization framework, all studies are for simplicity conducted in two
spatial dimensions. For most cases, generalizations to three dimensions are
trivial in theory, but cumbersome to implement. We have developed a numerical
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framework for doing isogeometric analysis and shape optimization on problems
in uid mechanics. All routines are implemented in MATLAB R [http://www.
mathworks.com]. The optimization is based on SNOPT [Gill et al., 2008]. All
numerical results presented in the thesis are based on this framework.

1.3 Outline

The thesis is organized as follows: In Chapter 2, we introduce the fundamentals
of uid mechanics and the building blocks of isogeometric analysis. In Chapter
3, isogeometric analysis of ows are studied. In Chapter 4, we study isogeomet-
ric shape optimization of ows. In Chapter 5, isogeometric analysis of sound
propagation through ows are studied. In Chapter 6, we present brief studies
on parametrizations and on design of idealized airfoils, along with an outlook
on the subject. Finally, conclusions are summarized in Chapter 7.

http://www.mathworks.com
http://www.mathworks.com
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Chapter 2

Preliminaries

This chapter gives brief introductions to uid mechanics, and to B-splines and
NURBS (Non-Uniform Rational B-Splines) as the building blocks of isogeo-
metric analysis. The introductions are in no way exhaustive, and are merely
included to set the scene for the subsequent chapters.

2.1 Fluid Mechanics

Fluid mechanics is the study of uids and ows, i.e., how gases and liquids
behaves under the inuence of forces, be it the blood in our veins, the water in
our plumbing pipes, or the air in the atmosphere around us. These phenomena
are all governed by the same partial di�erential equations. In the following,
we give a short introduction to these, and refer the reader to, e.g., [Donea and
Huerta, 2003; Durran, 1999; Reddy and Gartling, 2001; Frisch, 1995; White,
1974] for further reading.

�N

�D




u velocity
p pressure
� density
� viscosity
f force

Figure 2.1: A uid contained in a ow domain.

To set the scene, we consider a uid in a 2-dimensional domain 
 as depicted
in Figure 2.1. Assuming the uid is isothermal, i.e., at constant temperature,
the state of the uid is given by the velocity u = (u; v), the pressure p, and
the density �. These so-called primitive state variables are governed by the

5



6 CHAPTER 2. PRELIMINARIES

Navier-Stokes and mass continuity equations:

�
@u
@t

+ �u � ru�r � � � �f = 0 in 
; (2.1a)

@�
@t

+r � (�u) = 0 in 
; (2.1b)

expressing conservation of momentum and mass for the uid, respectively. Here,
t denotes time, � the shear stress tensor, and f additional body forces (such as
gravity) acting on the uid.

The uids considered in this thesis are assumed to be incompressible, i.e.,
the density � is constant, and Newtonian, i.e., the stress and the strain rate are
linearly related. This gives the following constitutive relation between the stress
� and the pressure p and velocity u:

� = �p I + �
�
ru+ (ru)T

�
; (2.2)

where I is the identity matrix, and � is the viscosity, which is assumed to
be constant. Furthermore, we assume that the ow is stationary, i.e., time-
independent, and we employ the convective formulation for the non-linear iner-
tial term, i.e., u � ru = (u � r)u.

With the above assumptions, Equations (2.1) may then be rewritten as the
following steady-state, incompressible Navier-Stokes equations:

� (u � r)u+rp� �r �
�
ru+ (ru)T

�
� �f = 0 in 
; (2.3a)
r � u = 0 in 
: (2.3b)

By use of the incompressibility condition (2.3b) in (2.3a), this system may be
further reduced to:

� (u � r)u+rp� �r2u� �f = 0 in 
; (2.4a)
r � u = 0 in 
: (2.4b)

The equations above govern the ow in the interior of the domain 
, and they
must be augmented by suitable boundary conditions on the boundary � � @
.
Here, we assume that the velocity is given as u� along the Dirichlet part �D,
and that a condition on the pressure and the normal derivative of the velocity
applies along the Neumann part �N :

ui = u�i on �D; (2.5a)
(�rui � p ei ) � n = 0 on �N ; (2.5b)

where i = 1; 2, ei is the ith unit basis vector, � = �D [ �N , and �N \ �N = ;.
Typically, Dirichlet boundary conditions (2.5a) are used at inlets and �xed
boundaries, while Neumann boundary conditions (2.5b) are used at outlets
[Rannacher, 1995].1 At symmetry boundaries, the two conditions are com-
bined. When full Dirichlet boundary conditions are employed, i.e., �N = ; and
� = �D, a condition on the pressure, such as

s

 p dA = 0, must be included,

as the pressure is otherwise only determined up to an additive constant.
1The expression (�rui � p ei ) � n = 0 is the \natural" open boundary conditions for

Equations (2.4). For Equations (2.3), the \natural" open boundary condition is � � n = 0.
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Flows may crudely be separated into two very di�erent regimes: laminar
ows are characterized by smooth and ordered uid motion, whereas turbu-
lent ows exhibit random and uctuating uid motion. The Reynolds number
provides a useful measure of how laminar or turbulent a given ow is:

Re =
�UL
�

; (2.6)

where U is a characteristic ow speed and L is a characteristic length scale of
the problem. The Reynolds number measures the importance of (non-linear)
inertial forces to viscous forces in the Navier-Stokes equation (2.4a). The higher
the Re, the more non-linear the equation, and the more turbulent the ow. For
turbulent ows, spatial and temporal (stationarity) symmetries are broken.

Equations (2.4){(2.5) constitute a boundary value problem based on a non-
linear second order partial di�erential equation system. Only few formulations
of this problem are known to have an analytical solution, and numerical methods
are most often the only strategy to solve it. From a theoretical point of view,
there are no guarantees for neither existence nor uniqueness of a solution. From
a practical point of view, solutions may often be found numerically, provided the
problem is su�ciently well behaved. The ow problems considered in this thesis
are all at low to moderate Reynolds numbers. Such conditions may be found for
su�ciently high (kinematic) viscosities � = �=�, low ow speeds U , and small
scales L. Moreover, stability of solutions are for simplicity not considered.

2.2 B-splines and NURBS

The building blocks of the isogeometric method are B-splines and NURBS (Non-
Uniform Rational B-splines), which are widely used in Computer Aided Design
(CAD) systems. In isogeometric analysis, they are used both as basis for de-
scribing the geometry, and as basis for approximating the state variables in the
governing equations. In the following, we briey revise the basic concepts of
these functions, in their \original" geometric setting, and some often used al-
gorithms are outlined. The concepts are introduced in the plane, but they may
be generalized to higher dimensions in a straightforward way. The reader is
referred to, e.g., [Piegl and Tiller, 1995; Cottrell et al., 2009; Gravesen, 2002]
for more thorough introductions to the subject.

Univariate B-splines: Curves

Referring to Figure 2.2a, we consider a parametrization of a curve  : R ! R2

of the following form:

(�) =
�
x(�) ; y(�)

�
=

nX

i=1

xiNi(�); (2.7)

where the basis functions Ni : R ! R are univariate B-splines, xi 2 R2 are
control points2, and n is the number of basis functions and control points. We
refer to the curve itself as a spline curve, or simply just a spline.

2 Although similar letters are used to denote control points xi = (xi; yi) and spatial
coordinates X = (x; y), we emphasize that these should not be confused.



8 CHAPTER 2. PRELIMINARIES

a b

R



6
�

-
6

x

y

Figure 2.2: a: A parametrization of a curve in R2. b: A spline curve (black line)
and the corresponding control points (red markers) for the polynomial degree q = 2 and
the knot vector � = f0; 0; 0; 1=4; 1=2; 3=4; 1; 1; 1g.

To de�ne the univariate B-splines entering the parametrization above, we
�rstly de�ne a knot vector :

De�nition 1. A knot vector, or knot sequence, is a non-decreasing sequence
� = f�1; : : : ; �n+q+1g, where �i 2 R is the ith knot, and n+ q+ 1 is the number
of knots, where n is the number of basis functions of polynomial degree q on
the knot vector.

The knots partition the parameter domain into knot spans. A knot vector
is called uniform if the knots are equidistant, i.e., all non-vanishing knot spans
have the same size, and non-uniform, otherwise. If �‘ < �‘+1 = : : : = �‘+� <
�‘+�+1, we say that the knot �‘+1 = : : : = �‘+� has multiplicity �. Knots with
� = 1 are called simple, while knots with � = q are said to have full multiplicity.
Finally, a knot vector is said to be open if the boundary knots have multiplicity
� = q + 1.

With the knot vector de�ned, univariate B-splines are piecewise polonymials
over the spans of the knot vector, as expressed in the following de�nition:

De�nition 2 (Cox{de Boor recursion formula). Univariate B-splines N q
� : R!

R are de�ned recursively from a polynomial degree q 2 N and a knot vector �:

N j
�;i(�) =

�
1 if �i � � < �i+1
0 otherwise (2.8a)

for j = 0 and i = n+ q, and

N j
�;i(�) =

� � �i
�i+j � �i

N j�1
�;i (�) +

�i+j+1 � �
�i+j+1 � �i+1

N j�1
�;i+1(�) (2.8b)

for j = 1; 2; : : : ; q and i = 1; : : : ; n+ q � j, and where we de�ne 1=(�k � �‘) � 0
if �k = �‘.

Univariate B-splines are thus determined by the polynomial degree and the
knot vector. Examples of B-splines from di�erent polynomial degrees and knot
vectors are shown in Figure 2.3.

Some important properties of B-splines are contained in the following:

Theorem 1. B-splines with knot vector � and polynomial degree q ful�ll:
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N0
1 N0

2

N1
1 N1

2 N1
3

N2
1

N2
2 N2

3

N2
4

q = 0, � = f0; 1=2; 1g

q = 1, � = f0; 0; 1=2; 1; 1g

q = 2, � = f0; 0; 0; 1=2; 1; 1; 1g

q = 3, � = f0; 0; 0; 0; 1=4; 1=2; 3=4; 1; 1; 1; 1g

q = 3, � = f0; 0; 0; 0; 5=10; 6=10; 7=10; 1; 1; 1; 1g

q = 3, � = f0; 0; 0; 0; 2=5; 2=5; 2=5; 1; 1; 1; 1g

Figure 2.3: a: B-splines for polynomial degrees q 2 f0; 1; 2g and corresponding open
knot vectors with a simple interior knot. b: B-splines for polynomial degree q = 3 and
open knot vectors with di�erent simple and full interior knots.

1. B-splines are non-negative, i.e., Ni(�) � 0 for all �.

2. The support of Ni is [�i; �i+q+1], i.e., B-splines have compact support.

3. The restriction of the B-spline Ni(�) to the open knot interval ]�i; �i+1[ is
a polynomial of degree q.

4. B-splines form a partition of unity, i.e.,
Pn
i=1N (�) = 1 for all � 2

[�q+1; �n+1].

5. The continuity of Ni across a knot with multiplicity � is q � �.

The derivative of a B-spline of polynomial degree q is itself a B-spline of
polynomial degree q� 1. The derivative may be computed recursively from the
following theorem, from which also formulae for higher order derivative may be
derived:

Theorem 2. The derivative of the ith B-spline with polynomial degree q and
knot vector � is given by:

dN q
�;i

d�
(�) =

q
�i+q � �i

N q�1
�;i (�)�

q
�i+q+1 � �i+1

N q�1
�;i+1(�): (2.9)

With the B-splines in place, we see that a spline curve, as given in Equation
(2.7), is de�ned from a polynomial degree, a knot vector, and a set of control
points. Figure 2.2b shows an example of a spline curve in the plane.

A spline curve inherits many of the properties of its generating B-splines, as
stated in Theorem 1. In particular, we mention the property of locality, meaning
that moving the ith control point of a curve of degree q only a�ects the image of
the parameter values � 2 [�i; �i+q+1]. Additional properties worth mentioning
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include the a�ne covariance property, meaning that any a�ne transformation
of the spline, i.e. a translation and a linear mapping, may be obtained by
applying it directly to the control points, and the convex hull property, meaning
that a spline of degree q is contained in the polygon obtained by connecting each
control point of the spline to the q consecutive control points.

A spline curve may be re�ned, without changing the parametrization, by
inserting more knots in the knot vector, by elevating the polynomial degree,
or by a combination of the two. These methods are referred to as h, p, and k
re�nement, respectively [Cottrell et al., 2009]. The often used knot insertion
process is described in the following:

Theorem 3 (Knot insertion). Let (�) be a spline curve with polynomial degree
q, knot vector � = f�; : : : ; �n+q+1g and control points X = fx1; : : : ;xngT . By
inserting m knots,  may be represented identically by the same polynomial
degree q, the extended knot vector e� = f~� = �1; : : : ; ~�n+q+1+m = �n+q+1g � �,
and the extended control points eX = f~x1; : : : ; ~xn+mgT , where:

eX = T qX ; (2.10a)

T 0
i;j =

�
1 if ~�i 2 [�j ; �j+1)
0 otherwise

; (2.10b)

T r+1
i;j =

~�i+r � �j
�j+r � �j

T ri;j +
�j+r+1 � ~�i+r
�j+r+1 � �j+1

T ri;j+1; (2.10c)

for r = 1; : : : ; q � 1 in Equation (2.10c).

Bivariate Tensor Product B-splines: Surfaces

X

b

y

x

�

�




Figure 2.4: A parametrization of a domain in R2.

Referring to Figure 2.4, surfaces may be parametrized analogously to Equa-
tion (2.7) through tensor product structures:

X(�; �) =
�
x(�; �); y(�; �)

�
=

nX

i

mX

j

xi;j N q
�;i(�)M

r
	;j(�); (2.11)

where N q
�;i are the n univariate B-splines with polynomial degree q and knot

vector � in the parametric �-dimension, Mr
	;j are the m univariate B-splines

with polynomial degree r and knot vector 	 in the parametric �-dimension, and
xi;j 2 R2 is the control net. We refer to the domain itself as a spline surface, or
again simply just a spline.
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a b

Figure 2.5: A spline domain in R2 (a) and its corresponding control net (b) for
polynomial degrees q = r = 3 and knot vectors � = f0; 0; 0; 0; 1; 1; 1; 1g and 	 =
f0; 0; 0; 0; 1=2; 1; 1; 1; 1g.

We see that a spline surface is determined by two polynomial degrees, two
knot vectors, and a control net. An example is depicted in Figure 2.5.

By a simple reordering, and a slight change of notation in Equation (2.11),
we may write the parametrization as:

X(�; �) =
NX

k=1

xk Pgk (�; �); (2.12)

where xk are still the control points, and Pgk : b
! R2 are the N = nm bivariate
tensor product B-splines:

Pgk (�; �) = N q
�;i(�)M

r
	;j(�); (2.13)

where k = (j�1)n+ i for i = 1; : : : ; n and j = 1; : : : ;m. The superscript g indi-
cates that the functions refer to speci�c knot vectors, � and 	, and polynomial
degrees, q and r, for the geometry.

The construction of a bivariate tensor product B-spline from two univariate
B-splines, associated to each their polynomial degree and knots vector, is illus-
trated in Figure 2.6a. The basis functions Pi are functions on parameter space
b
. We may consider them as functions on physical space 
 as well through the
composition Pi �X�1, as shown in Figure 2.6b.

NURBS Parametrizations

The class of geometries that can be parametrized may be enlarged by the use of
NURBS, which are rational B-splines on non-uniform knot vectors. We mention,
in particular, that geometric objects such as circles and spheres may be described
exactly by the use of NURBS. Although most of the subsequent studies are based
on B-splines, we briey touch upon NURBS below.

A NURBS curve is parametrized as in Equation (2.7), but with the ba-
sis functions N replaced by univariate NURBS B. We may de�ne univariate
NURBS Bq�;W;i : R! R from the univariate B-splines in De�nition 2 and a set
of weights W = fw1; : : : ; wng, where wi 2 R:

Bq�;W;i(�) =
wiN q

�;i(�)
nP

j=1
wjN q

j (�)
: (2.14)
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�
2 =
f0; 0; 0; 0; 1=2; 1; 1; 1; 1g

r =
3

�1
= f

0; 0
; 0;

0; 1
; 1;

1; 1
g

q = 3

�1

�2

N ;M;P

P �X�1

x

y

a b

Figure 2.6: a: Construction in parameter space of a bivariate tensor product B-spline
(surface) from two univariate B-splines (lines in bold) of given polynomial degrees and
knot vectors (crosses and circles). b: The bivariate tensor product B-spline over the
physical space, using the geometry from Figure 2.5.

A NURBS surface is parametrized as in Equation (2.12), but with the basis
functions P replaced by bivariate tensor product NURBS R. We may de�ne
bivariate NURBS Rgk : b
 ! R from the bivariate B-splines in Equation (2.13)
and the weights W = fw1; : : : ; wNg with wk 2 R for k = 1; : : : ; N = nm:

Rgk(�; �) =
wk Pgk (�; �)
NP

k=1
wk Pgk (�; �)

: (2.15)

Many of the properties of B-splines naturally carry over to NURBS, e.g.
partition of unity, continuity, support, and a�ne covariance. Owing to the
partition of unity property of B-splines in Theorem 2, NURBS reduce to B-
splines when all weights are 1. Formulae for the derivatives of NURBS may be
found in e.g. [Piegl and Tiller, 1995].

Multiple Patches

The parametrization in Equation (2.12) covers a single patch. Often, a geom-
etry cannot be parametrized by a single patch. Multiple patches must then be
employed, cf. Figure 2.7.

C0 continuity of the geometry across patches with identical polynomial de-
grees and knot vectors is trivially achieved be equating the outer row/column of
control points of the joining patches. C1 and higher continuities across patches
put requirements on two or more rows/columns of the control net.

Patches with di�erent re�nement levels, i.e., di�erent knot vectors, may be
stitched together by use of the knot insertion relation in Equation (2.10). This
applies both to the control net, and to the basis functions.
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\master"

\slave"

�

-

-

-

�

�

Figure 2.7: Stitching of two patches.
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Chapter 3

Isogeometric Analysis of
Flows

In this chapter, we study how B-splines and NURBS may be used to solve en-
gineering problems within uid mechanics. More speci�cally, we apply isogeo-
metric analysis to the 2-dimensional, steady state, incompressible Navier-Stokes
equation with Dirichlet boundary conditions, and we investigate such things as
stability, error convergence and benchmark comparisons of the method. The
chapter summarizes the �ndings in [Nielsen et al., 2011a] included in Appendix
B.

3.1 Introduction

Since the introduction of isogeometric analysis in [Hughes et al., 2005], the
methodology has been applied to various ow problems and proved its value
within the �eld of uid mechanics. Some of the �rst studies were on steady-
state incompressible Stokes ow in the benchmarking lid-driven square cavity
[Bazilevs et al., 2006b]. Subsequent analysis of the full time dependent Navier-
Stokes equations using the isogeometric method has shown its advantages both
in terms of continuity of state variables [Akkerman et al., 2010] and the ability to
accurately represent complicated dynamic ow domains [Bazilevs and Hughes,
2008]. Benchmarking of the method for turbulent ows has shown very nice per-
formance of the method [Bazilevs and Akkerman, 2010; Bazilevs et al., 2010b].
Applications to free-surface ows [Akkerman et al., 2011], and to modelling of
wind-turbine aerodynamics [Hsu et al., 2011] have also been made.

An important issue in the analysis of the mixed formulation of the govern-
ing equations for uids is the stability of the element, or discretization, used
to approximate the state variables. The �rst stable B-spline discretization for
the Stokes problem was proposed in [Bazilevs et al., 2006b]. Recently, two
more families of stable B-spline discretizations were identi�ed in [Bu�a et al.,
2011], thereby further emphasizing how easily high degrees of continuity may
be achieved in isogeometric analysis. Mathematical proofs of the stability of
a range of discretizations have very recently been made [Bressan, 2010; Per-
sonal communication].

Below, we �rstly outline how ow problems may be solved using isogeometric

15
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analysis. Secondly, we extend the list of stable B-spline discretizations for the
2D steady state, incompressible Stokes problem. Thirdly, we apply the method
to the non-linear 2D steady state, incompressible Navier-Stokes problem and
examine how these discretizations perform in terms of error convergence based
on a ow problem with an analytical solution. Finally, the benchmarking lid-
driven square cavity is analyzed and the results of the discretizations compared
to data from the literature.

To set the scene, we consider a viscous, incompressible, isothermal, Newto-
nian uid in a steady-state ow through a domain 
. We assume full Dirichlet
boundary conditions along the boundary �, and vanishing mean pressure over
the domain. The governing equations read, cf. Chapter 2.1:

� (u � r)u+rp� �r2u� �f = 0 in 
; (3.1a)
r � u = 0 in 
: (3.1b)

u = uD on �; (3.1c)
x




p dA = 0; (3.1d)

where p, u, �, �, and f denote pressure, velocity, density, viscosity, and body
forces, respectively.

3.2 Isogeometric Method

In the following, we outline how B-splines- and NURBS-based isogeometric anal-
ysis may be used to solve the ow problem (3.1) numerically. The method builds
on Galerkin’s method, known from traditional �nite element methods, in which
the weak form of the governing partial di�erential equations is discretized to
form a simpler system of algebraic equations. In addition, we parametrize the
physical domain, where the equations are formulated, and pull these back to
solve them on the parameter domain, equivalent to the isoparametric concept
in �nite element methods. B-splines and NURBS are used as basis functions
both for the geometry and the ow variables. More details may be found in
[Cottrell et al., 2009; Reddy and Gartling, 2001; Donea and Huerta, 2003].

Flow Domain Parametrization

We �rstly parametrize the physical ow domain by a single patch, see Figure
3.1. We take the parameter domain b
 as the unit square, i.e. b
 = [0; 1]2,
and use the bivariate NURBS de�ned in Equation (2.15). The parametrization
X : [0; 1]2 ! R2 reads:

X(�; �) =
NgvarX

i=1

xiRgi (�; �); (3.2)

where xi are the control points, Rgi are the NURBS, Ng
var is the number of

NURBS and control points, and the superscript g indicates that the NURBS
functions refer to polynomial degrees, open knots vectors and weights that are
speci�c for the geometry representation, cf. Equation (2.12).



3.2. ISOGEOMETRIC METHOD 17

X

[0; 1]2

y

x

�

�




Figure 3.1: A parametrization of the ow domain 
.

For any scalar variable, we will consider it both as a function h on physical
space 
, and as a function h on parameter space [0; 1]2. For later reference,
the gradient r and the Hessian matrix H in physical space 
 of h are related
to their counterparts r, H, and h in parameter space [0; 1]2 by the following
relations:

rh = JT rh; (3.3a)

H(h) = JT H(h)J +
2X

m=1

H(xm) eTmrh; (3.3b)

where

J �

"
@x
@�

@x
@�

@y
@�

@y
@�

#

(3.4)

is the Jacobian matrix of the parametrization, and e1 = (1 0)T and e2 = (0 1)T

are the standard unit vectors.

Field Approximations

In a similar fashion as for the geometry representation in Equation (3.2) above,
we seek approximations of the velocity u : [0; 1]2 ! R2 and pressure p : [0; 1]2 !
R as linear combinations of the basis functions de�ned above. Since NURBS
are only needed to represent the geometry, and not the velocity and pressure,
we will for simplicity use B-splines to approximate the state variables:

uk(�; �) =
NukvarX

i=1

uk;iP
uk
i (�; �); (3.5a)

p(�; �) =
NpvarX

i=1

piP
p
i (�; �); (3.5b)

where k = 1; 2 in (3.5a) refers to the two components of the velocity �eld, Puki
denote the B-spline basis functions for the kth component of the velocity �eld,
while Ppi similarly denote the B-spline basis functions for the pressure �eld, as
de�ned in Equation (2.13). They refer to separate sets of polynomial degrees
and knot vectors that are in general not the same. Nuk

var and Np
var are the number

of velocity and pressure basis functions, while uk and p are the unknown control
variables for the velocity and pressure that are to be determined.
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The velocity and pressure �elds in Equations (3.5) are de�ned in parameter
space, while the governing equations (3.1) are formulated in physical space. To
evaluate the �elds in physical space, the inverse of the geometry parametrization
X is used; the pressure p : 
 ! R over the physical domain is computed as
p �X�1, and the velocity u : 
 ! R2 over the physical domain as u �X�1,
mapping each velocity component as a scalar �eld. With abuse of notation, we
here use the same symbol for the state variables both in parameter space and
in physical space. To evaluate gradients and Hessians of the �elds in physical
space, the relations in Equation (3.3) may be used.

Boundary Conditions

For simplicity we impose the Dirichlet boundary conditions in (3.1c) strongly
as opposed to the weak enforcement suggested in [Bazilevs and Hughes, 2007;
Bazilevs et al., 2007b]. Hereby, we avoid the need for de�nition of penalization
parameters.

B-splines have compact support, as stressed in Theorem 1. This means that
only a few of the velocity basis functions Puk in Equation (3.5a) have support
on �. We can simply arrange the functions Puk so that the �rst Nuk

dof of these
do not have support on the boundary, and the corresponding control variables
of these are thus \degrees of freedom", while the last Nuk

�x = Nuk
var �N

uk
dof have

support on �, and the corresponding control variables are thus \�xed":

uk =
NukdofX

i=1

uk;iP
uk
i +

NukvarX

i=Nukdof+1

uk;iP
uk
i : (3.6)

The strong imposition is done by directly specifying suitable values for these
last Nuk

�x velocity control variables uk;i, so that the sum in Equation (3.5a)
approximates the speci�ed value uD in (3.1c). If uD lies within the function
space spanned by Puki , the conditions are satis�ed exactly; otherwise they are
only satis�ed in a least square sense.

For the pressure, we note that only the pressure gradient appears in the
governing equations (3.1). The pressure is thus only determined up to an arbi-
trary constant, which is dealt with by the speci�cation of the mean pressure in
Equation (3.1d). By inserting the image in physical space of the pressure ap-
proximation in Equation (3.5b) into Equation (3.1d), interchanging the order of
summation and integration, and �nally pulling the integrals back to parameter
space, we arrive at the following equation:

P p = 0; (3.7)

where p is the column vector of pressure control variables, and P is the row
vector of pressure basis function integrals:

Pi =
x

[0;1]2
Ppi det

�
J
�

d� d�: (3.8)

Since no pressure control variables needs to be �xed, we have Np
dof = Np

var and
Np

�x = 0.



3.2. ISOGEOMETRIC METHOD 19

Weak Form of the Governing Equations

The governing equations (3.1) are cast into their weak, or variational, form. For
this we use the image in physical space of the B-spline introduced above as weight
functions for the governing equations. We will use only the �rst Nuk

dof velocity
basis functions, since these have no support on the �xed boundary. We multiply
the kth component of the Navier-Stokes equation (3.1a) by an arbitrary weight
function Puki among these velocity basis functions, and the incompressibility
equation (3.1b) by an arbitrary weight function Ppj among the pressure basis
functions, integrate the resulting equations over 
, and then simplify using
integration by parts. After some manipulations, we �nd the following weak
form of the governing equations:

0 =
x




�
(�rPuki + �Puki u) � ruk � (prPuki + �Puki f) � ek

�
dxdy (3.9a)

0 =
x




Ppj (r � u) dx dy (3.9b)

for k = 1; 2, i = 1; : : : ; Nuk
dof and j = 1; : : : ; Np

dof .

Matrix Equation

Finally, we insert the image in physical space of the approximations of the veloc-
ity and pressure �elds (3.5) into the weak form (3.9) of the governing equations,
split the superpositions of u into parts with support on the �xed boundary and
parts without as in Equation (3.6), interchange the order of summation and in-
tegration, rearrange to get the unknown terms on the LHS and the known terms
on the RHS, and pull the integration back to parameter space, using Equation
(3.3). This gives:

K(U)
z }| {2

4
�K1 + �C1(�u) 0 �GT

1
0 �K2 + �C2(�u) �GT

2
G1 G2 0

3

5

Uz }| {2

4
�u1
�u2
�p

3

5

= �

2

4
f1
f2
0

3

5�

2

4
�K?

1 + �C?
1 (�u) 0

0 �K?
2 + �C?

2 (�u)
G?

1 G?
2

3

5
�

�u?1
�u?2

�

| {z }
F

; (3.10)

or simply K(U)U = F , with

Kki;j =
x

[0;1]2
rTPuki J�1 J�T rPukj det

�
J
�

d� d�; (3.11a)

Cki;j =
x

[0;1]2
Puki uT (u)J�T rPukj det

�
J
�

d� d�; (3.11b)

Gki;j =
x

[0;1]2
Ppi e

T
k J
�T rPukj det

�
J
�

d� d�; (3.11c)

fki =
x

[0;1]2
Puki eTk f det

�
J
�

d� d�; (3.11d)
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Kk =
h
Kk K?

k

i �
Nukdof � (Nukdof+N

uk
fix )
�
; (3.11e)

Ck =
h
Ck C?

k

i �
Nukdof � (Nukdof+N

uk
fix )
�
; (3.11f)

Gk =
h
Gk G?

k

i �
Npdof �(Nukdof+N

uk
fix )
�
; (3.11g)

u
T

k =
h

�u
T

k �u?
T

k

i �
1�(Nukdof+N

uk
fix )
�
; (3.11h)

where u(u) is given by Equation (3.5a), and all starred quantities are given
by the Dirichlet boundary conditions. Kk is often called viscosity matrix, Ck
convective matrix, Gk gradient matrix, and fk force vector.

Implementation Details

We need to solve Nu1
dof + Nu2

dof + Np
dof equations from (3.10) supplemented by

the equation from the condition on the mean pressure from (3.7) in Nu1
dof +

Nu2
dof + Np

dof unknowns, and we do this in the least square sense. The problem
is non-linear, and an iterative, incremental Newton-Raphson method is used,
gradually increasing the Reynolds number, see e.g. [Reddy and Gartling, 2001].

The integrals in Equation (3.11) are evaluated using Gaussian quadrature.
The necessary number of quadrature points NG in each knot span is estimated
from the relation ~q = 2NG�1, where ~q is an estimate of the highest polynomial
degree of the integrands. Since the integrands are in general rational functions,
we simply estimate ~q as the sum of polynomial degrees of the numerator and the
denominator. Using polynomial degree 2 for the geometry and 4 for the velocity
and pressure, we estimate a polynomial degree of ~q = 12 for the integrand of C,
and this dictates that we should use at least NG = 7 quadrature points in each
knot span. All results in the following are based on 7 quadrature points per
knot span, which is a conservative choice compared to recent studies on more
e�cient quadrature rules [Hughes et al., 2010].

3.3 Stability for Stokes Problem: Wall-Driven
Anullar Cavity

In the following section, we deal with the stability of the isogeometric method
when applied to Stokes ow, which is the problem that arises when we neglect
the non-linear inertial term in Navier-Stokes equation (3.1a). Some discretiza-
tions of the mixed formulation of Stokes problem are stable while others are
unstable. Unstable discretizations can leave the system matrix K in Equation
(3.10) singular or badly scaled, which in turn leads to spurious, unphysical
oscillations for the pressure �eld, while the velocity �eld may still look quite
reasonable. Figure 3.3 below shows an example of this. Furthermore, it dete-
riorates the convergence properties of the method and thus prohibits iterative
solutions for the full Navier-Stokes problem. In order for a given discretization
to be stable, it needs to satisfy the so-called inf-sup condition, also known as
the BB or LBB condition:

inf
p

sup
u

s



pr � udA

kpk kuk
� � > 0; (3.12)
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Name Knot Vector 1 Knot Vector 2 inf-
sup

a u41
1p41

0
p

b u42
0p41

0
p

c u41
1p31

0
p

d u42
0p31

0
p

e u41
1p21

0
p

f u42
0p21

0
p

g u41
0p21

0 �

h N�ed�elec
p

i Raviart-Thomas
p

Table 3.1: Discretization names, knot vectors and inf-sup-stability. Velocity knot
vectors are shown in red and green, the pressure knot vector is shown in blue.

where the norm of the pressure p is the L2-norm, while the norm of the velocity
u is the H1-norm. The positive constant � is independent of the mesh.

In the following, we study how stable discretizations may be constructed
by using di�erent basis functions for the velocity and pressure �elds. More
speci�cally, we will establish suitable choices of polynomial degrees and knot
vectors for the velocity and pressure such that the discretizations are stable.
This idea follows the approach in a recent work [Bu�a et al., 2011], in which three
families of stable discretizations were presented, but contrasts to the stabilized
method in which identical basis functions for the velocity and pressure may be
used on the cost that stabilizing terms must be added to the Stokes equation,
see e.g. [Bazilevs et al., 2006b].

We report the stability of the isogeometric discretizations listed in table 3.1.
The discretizations di�er in polynomial degrees, knot re�nements and inner
knot multiplicities between the velocity and pressure representations. We have
adopted a heuristic nomenclature for naming of the individual discretizations.
For the u42

0p31
0 discretization (d), e.g., both velocity components are approxi-

mated using quartic B-splines (u4), and the pressure using cubic B-splines (p3).
Superscript indicates the multiplicity of inner knots, and thus also the degree
of continuity across the knots, see Theorem 2. Subscript indicates the number
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of h-re�nements by halving all knot spans. For the strategies a-g, each of the
velocity components u1 and u2 are represented identically, which reduces the
computational expenses since equality of the basis functions Pu1

i = Pu2
i implies

equality of the matrices K1 = K2, and in addition all �elds are represented
identically in both parametric directions. This is not the case for the strategies
h and i, which are modi�ed versions of the N�ed�elec and Raviart-Thomas ele-
ments presented in [Bu�a et al., 2011]. Compared to the original formulation
in [Bu�a et al., 2011], the velocity �elds have been h-re�ned once. It should be
stressed that with this enlargement of the velocity space, the exact ful�llment
of the divergence-free constraint for the Raviart-Thomas discretization is lost.
The u42

0p31
0 discretization (d) was originally proposed in [Bazilevs et al., 2006b]

and subsequently introduced in [Bu�a et al., 2011] as the Taylor-Hood element.
To examine the numerical stability, we consider the wall-driven annular cav-

ity problem outlined in Figure 3.2a. This is a slight modi�cation of the standard
benchmark lid -driven square cavity problem (treated in Section 3.5), utilizing
the capability of isogeometric analysis to exactly represent circular arcs. The
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Figure 3.2: Driven annular cavity. a: Domain and boundary conditions. b: Control
net (black dots and blue lines) and image of the computational mesh for velocity and
pressure (red and green lines).

uid is contained in an annular cavity. The inner circular wall moves with con-
stant tangential speed, while the remaining three walls are at rest. The velocity
�eld is speci�ed along the boundary of the domain, assuming no-slip conditions.
No body forces act upon the uid, and the uid motion is thus caused|or
driven|by the moving wall. We adopt the so-called leaky-lid boundary condi-
tion, meaning that the corners (x; y) = (0; 1) and (x; y) = (1; 0) belong to the
moving wall boundary. We parametrize the domain using quadratic NURBS.
The control net is shown in Figure 3.2b. For the velocity and pressure repre-
sentation, we h-re�ne the parameter mesh for the geometry by halving the knot
spans, leading to a family of parameter meshes ranging from 2 � 2 to 64 � 64
knot spans, one of which is also depicted in Figure 3.2b.

Figure 3.3 shows the computed velocity and pressure �elds for two di�er-
ent discretizations, namely the u41

0p41
0 discretization (top row) and the u41

1p41
0

discretization (bottom row). Both of these produce a reasonable, rotational
ow �eld. Clear pressure oscillations, however, are seen for �rst discretization,
whereas the latter nicely approximates the pressure singularities in the inner
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corners.
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Figure 3.3: Computed �elds for u41
0p41

0 (top) and u41
1p41

0 (bottom) discretizations.
Left: stream function contour lines and velocity arrows. Right: pressure (note the
di�erent vertical scalings).

To test the stability of the discretization strategies, we use the approach
described in [Chapelle and Bathe, 1993; Bathe, 2001]. For each discretization,
we vary the grid size for the velocity and pressure representations, and for each
of these meshes we determine a numerical estimate of the inf-sup \constant"
� in Equation (3.12). If this value does not change appreciably with varying
grid size, it indicates that the discretization is stable. On the other hand, if the
value tends to zero as the grid size changes, it indicates that the discretization
is unstable.

The results of these computations are shown in Figure 3.4. From this we
are led to conclude, that the discretization with identical polynomial degree for
velocity and pressure is stable if either the velocity knot vector is re�ned (a) or
the inner knot multiplicity for the velocity is increased (b). The same conclusion
applies to the discretizations for which the polynomial degree of the velocity is
larger than the polynomial degree of the pressure by one (c and d) and two
(e and f). The stability of u42

0p31
0 (d) was already known from [Bu�a et al.,

2011]. Both the modi�ed N�ed�elec (h) and Raviart-Thomas (i) discretizations are
seen to be stable, whereas the simple discretization u41

0p21
0 (g) with a di�erence

in polynomial degree of two but with identical inner knots does not pass the
stability test. The stability of each of the discretizations is summarized in the
right-most column of Table 3.1.

Several discretizations have been tested in addition to those listed in Table
3.1. It was found that increasing the di�erence between the polynomial degree
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Figure 3.4: Numerically computed inf-sup \constants" for varying grid size using
di�erent discretizations. The bottom plot shows an enlargement of the top plot as
marked by the dashed lines.

of the velocity approximation and the degree of the pressure approximation
does inuence the inf-sup stability, even without inserting or repeating knots.
More speci�cally, the value of grid size h where the inf-sup \constant" � starts
decreasing seemed to decrease with increasing polynomial degrees.

Assuming that the examined discretizations are representative, two simple
strategies for choosing stable discretizations for the velocity and pressure ap-
proximations can be established by means of induction. Given a simple dis-
cretization for the pressure, i.e. open knot vectors, choose the velocity degrees
at least equal to the pressure degree and then either take the velocity knot
vectors as the re�nement of the pressure knot vectors, or use the pressure knot
vectors with all inner knots repeated. Or conversely, given simple discretizations
for the velocity, i.e. with open knot vectors and single or double inner knots,
choose the pressure degree less than or equal to the velocity degree, and take
the pressure knot vectors as the velocity knot vectors with every 2nd inner knot
removed. The knot re�nement strategy is used for the cases a, c and e, and the
knot repetition strategy for cases b, d and f. The modi�ed Raviart-Thomas (i)
also uses the re�nement strategy, while the modi�ed N�ed�elec (h) combines both
strategies.

We conclude by emphasizing �rstly that the presented inf-sup method only
serves as a numerical test of the stability of the examined discretizations, and
secondly that the inductive step, going from the stability of the examined dis-
cretizations to the stability of a general discretization strategy, is only motivated
by a limited number of tests. None of these should in no way be mistaken for a
rigorous mathematical proof.
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3.4 Error Convergence: Forced Elliptic Cavity

To asses the validity of the isogeometric method for the full Navier-Stokes prob-
lem, we consider a test case for which an analytical solution exists, and examine
how well the discretizations listed in table 3.1 are able to reproduce the exact
solution.

The problem is outlined in Figure 3.5a. We take the physical domain 
 as
the elliptic disk f(x; y) 2 R2 j (x=a)2 + (y=b)2 � 1g with a = 2 and b = 1.
Assuming appropriate units are assigned to all quantities and focussing only on
their numerical values, we set � = � = 1, take the body force f = (f1; f2) to be

f1 = �
1
4
U2 sin2 �� ~r2� x�

1
4
�
~r

sin (� ~r) x+
13
2
� U cos

�
� ~r2� y

� 4�2 U sin
�
� ~r2� y3 �

1
4
�2 U sin

�
� ~r2� x2 y

f2 = �
1
4
U2 sin2 �� ~r2� y �

�
~r

sin (� ~r) y �
7
8
� U cos

�
� ~r2� x

+
1
16
�2 U sin

�
� ~r2� x3 + �2 U sin

�
� ~r2� y2 x;

where ~r = ~r(x; y) =
p

(x=2)2 + y2, and assume homogeneous no-slip boundary
conditions: u = 0 on �. The following velocity and pressure �elds solve the
governing equations and satisfy the boundary conditions:

u?1 = �U sin(�~r2) y;

u?2 =
1
4
U sin(�~r2)x;

p? =
4
�2 + cos(�~r);

where U is a velocity scale which in the following is assumed to be U = 200=
p

5.
These �elds are depicted in Figure 3.5b{c. Using L =

p
a2 + b2 =

p
5 as

length scale, the Reynolds number for the problem is Re = 200 which makes
the problem weakly nonlinear. We parametrize the domain using quadratic
NURBS. The control net and the coarsest computational mesh for the velocity
and pressure �elds are shown in Figure 3.5d.

We examine how well the exact velocity and pressure �elds are reproduced
by a given discretization as the computational parameter mesh is h-re�ned by
knot insertion. For each discretization, we uniformly vary the computational
mesh for velocity and pressure in the range from 4 � 4 to 64 � 64 knot spans,
and for each of these meshes we compute the L2-norm and the H1-seminorm of
the velocity residual and the pressure residual as measures of the error:

�2u =
x




ku� u?k2 dxdy; �2p =
x




(p� p?)2 dxdy;

�2ru =
x




2X

k=1

kruk �ru?kk
2 dxdy; �2rp =

x




krp�rp?k2 dxdy:

The results are shown in Figure 3.6. The �gure depicts the velocity error
(top) and pressure error (bottom) as function of the total number of variables
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u = 0

f = (f1; f2)

Figure 3.5: Forced elliptic cavity. a: Domain and boundary conditions. b: Analytical
stream function contour lines and velocity arrows. c: Analytical pressure contour lines.
d: Control net (black dots and blue lines) and image of the coarsest computational mesh
for velocity and pressure (red and green lines).
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Figure 3.6: Convergence of error: L2-norm (left) and H1-seminorm (right) of veloc-
ity residual (top) and pressure residual (bottom) as a function of the total number of
variables of the analysis using di�erent discretizations.

of the analysis, using both the L2-norm (left) and the H1-seminorm (right). We
note that the discretizations a-f which pairwise have identical polynomial de-
grees, the knot re�nement strategies (a, c, e) have a signi�cantly lower velocity
error than the knot repetition strategies (b, d, f). In addition, the di�erence be-
tween the two strategies grows as the number of degrees of freedom increases, as
is most evident for the H1-seminorm. The di�erence in pressure error between
the two strategies varies more, but the error of the knot re�nement strategy is
never larger than the error of the corresponding knot repetition strategy. This
make the knot re�nement strategy favorable in a per-degree-of-freedom sense.
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The knot re�nement strategy, unlike the knot repetition strategy, conserves the
degree of continuity for the velocity �eld. This therefore seems to con�rm the
high importance of continuity alluded to in [Akkerman et al., 2010]. However,
although the increase in number of degrees of freedom for a given re�nement
is nearly identical for the two strategies, the knot re�nement strategy is com-
putationally more expensive than the knot repetition strategy, since it doubles
the number of knot spans, and thus quadruples the number of function eval-
uations needed for the Gaussian quadrature, unless more e�cient quadrature
rules are employed [Hughes et al., 2010]. It is also worth noting that although
the pressure error of the unstable discretization u41

0p21
0 (g) attens out quit

quickly as the number of degrees of freedom increases, the velocity error falls o�
impressively. Lastly, the modi�ed Raviart-Thomas discretization (h) seem to
perform somewhat better than the modi�ed N�ed�elec discretization (i) for both
the velocity and the pressure.

3.5 Benchmark: Lid-Driven Square Cavity

As a �nal validation of the isogeometric method, we compare our results for a
standard benchmark ow problem, namely the lid-driven square cavity [Donea
and Huerta, 2003; Bazilevs et al., 2006b], against results from other numerical
simulations [Ghia et al., 1982; Erturk et al., 2005; Lee, 2010]. We consider
a uid contained in a square cavity with the top wall moving with constant
speed, and the other walls kept still as outlined in Figure 3.7a. This prescribes
the velocity �eld along the boundary of the domain, assuming no-slip conditions
at the walls and closed-lid conditions (u = 0) at the upper corners. No body
forces act upon the uid; the uid is set in motion from the movement of the
lid. We parametrize the domain using linear NURBS, and construct a stretched
computational mesh with increased resolution around the corner singularities
and boundary regions, see Figure 3.7b. For the analysis, a computational grid
of 64� 64 regularly spaced knot spans is employed.

a b

u
=

0

u
=

0

u = 0

u = 1; v = 0

f = 0

�! �! �!

Figure 3.7: Lid-driven square cavity. a: Domain and boundary conditions. b: Con-
trol net (black dots and blue lines) and image of regularly spaced isoparametric lines
(red and green lines).

Using the isogeometric discretizations listed in Table 3.1 we �rstly solve the
problem for Reynolds number Re = 5,000. We gradually increase Re, and the
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number of intermediate steps in Re necessary to achieve convergence for Re =
5,000 is around �ve, but is in general di�erent for the various discretizations.
The total number of basis functions for the analysis ranges from 13,604 for
the discretization u41

0p21
0 (g) to 72,865 for the N�ed�elec discretization (h), while

the remaining discretizations all have between 38,678 and 39,472 analysis basis
functions. Figure 3.8 compares the computed horizontal/vertical velocity pro-
�les through the vertical/horizontal center line of the cavity to the data from
[Ghia et al., 1982]. On the left, the velocity pro�les for all nine discretizations

a
b
c
d
e
f
g
h
i

Figure 3.8: Comparison of velocity pro�le curves and residual curves (velocity minus
�t) for the lid-driven square cavity for Re = 5,000 using di�erent discretizations,
plotted with data from [Ghia et al., 1982] and a �t to the data using a cubic spline.
Top: horizontal velocity pro�les (left) and residuals (right) through the vertical center
line. Bottom: vertical velocity pro�les (left) and residuals (right) through the horizontal
center line.

are seen to match very well with the data in [Ghia et al., 1982]. On the right, the
velocity residuals reveal that all discretizations yield slightly larger uid speeds
away from the center and towards the boundaries compared to the data. The
agreement between the discretizations, however, is very good.

We have in general good experiences with the Taylor-Hood discretization
u42

0p31
0 (d), since it discretizes both velocity components identically, and the

knot spans for the velocity and pressure �elds are also the same. In the following,
we therefore focus on the discretization u42

0p31
0 (d). Figure 3.9 shows velocity

vectors and stream function contour lines for Re = 5,000. The general pattern
of the stream function matches very well with previous results [Ghia et al., 1982;
Erturk et al., 2005; Lee, 2010]. The locations and the extremal values of both
the central main eddy as well as the minor eddies in the bottom right, bottom
left and top left corners are in overall good agreement. Small discrepancies are
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Figure 3.9: Four views of velocity vectors and stream function contour lines in the
lid-driven square cavity for Re = 5,000 using the u42

0p31
0 discretization (d).

still seen, e.g. close to the boundary in the top left corner.
Finally, the problem is solved for di�erent values of Re in the range from

100 to 10,000: f100 ; 400 ; 1,000 ; 2,000; 3,200 ; 5,000 ; 7,500 ; 10,000g. Figure
3.10a/b shows the computed horizontal/vertical velocity pro�les through the
vertical/horizontal center line of the cavity along with the data from [Ghia et al.,
1982] for the values of Re printed in italic. In general, the velocity pro�les from
the present study match very well with the data in [Ghia et al., 1982]. Once
again, however, a closer examination reveals a small di�erence: for higher Re,
we compute slightly larger uid speeds close to the boundaries than is done in
[Ghia et al., 1982], and this di�erence increases with Re. There is, however, a
very nice agreement in the location of the velocity extrema.

Regarding the di�erences in ow speeds close to the boundaries, several
points deserve mentioning. Firstly, the results depend critically on the choice
of boundary conditions speci�ed for the upper corners. We emphasize that
closed-lid conditions are assumed in the present study. Secondly, the results
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a
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d

Figure 3.10: Velocity pro�le curves for the lid-driven square cavity for seven values
of Re (solid lines) using the u42

0p31
0 discretization (d) plotted along with data from

[Ghia et al., 1982] (points). a: vertical velocity pro�le through the horizontal center
line. b: horizontal velocity pro�le through the vertical center line. c: vertical velocity
residual. d: horizontal velocity residual. The pro�le curves have been translated to
avoid clustering of data. We speculate that three obvious outliers, marked with rings,
stem from misprints in the tabulated data in [Ghia et al., 1982]. Cubic splines have
been used to �t to the remaining data.

depend slightly on the formulation of the Navier-Stokes equation for Re & 5,000,
depending on whether the convective [(u�r)u ] or the skew-symmetric [(u�r)u+
1=2r � u ] formulation of the non-linear term is used, see [Nielsen et al., 2011a]
in Appendix B for details. Thirdly, the data in [Ghia et al., 1982] are relatively
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sparse at the boundaries where the variation in velocity is high. Finally, it should
be stressed that the data in [Ghia et al., 1982] stem from another numerical
study, and an exact correspondence between that and the present study should
not be expected.

3.6 Conclusions

In this chapter, we have applied isogeometric analysis to the 2-dimensional,
steady state, incompressible Navier-Stokes equation subjected to Dirichlet bound-
ary conditions, and examined various discretizations of the velocity and pressure
spaces. Firstly, a detailed description of the implementation has been given.
Secondly, numerical inf-sup stability tests have been presented that con�rm the
existence of many stable discretizations of the velocity and pressure spaces. In
particular it was found that stability may be achieved by means of knot re�ne-
ment of the velocity space. Thirdly, error convergence studies compared the
performance of the various discretizations and indicated optimal convergence,
in a per-degree-of-freedom sense, of the discretization with identical polynomial
degrees of the velocity and pressure spaces but with the velocity space enriched
by knot re�nement. Finally, the method has been applied to the lid-driven
square cavity for benchmarking purposes, showing that the stable discretiza-
tions produce consistent results that match well with existing data and thus
con�rm the robustness of the method.

Appendix: Data for Geometry Parametrizations

Table 3.2 lists the polynomial degrees, knot vectors and control points for the
geometry of the problems analyzed in this chapter.
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Wall-Driven Annular Cavity
Degree q = r = 2
Knots � = � = f0; 0; 0; 1; 1; 1g
Point 1 2 3 4 5 6 7 8 9
�x1 0 1 1 0 3/2 3/2 0 2 2
�x2 1 1 0 3/2 3/2 0 2 2 0
w 1 1/

p
2 1 1 1/

p
2 1 1 1/

p
2 1

Forced Elliptic Cavity
Degree q = r = 2
Knots � = � = f0; 0; 0; 1; 1; 1g
Point 1 2 3 4 5 6 7 8 9
�x1 �2=

p
2 0 2=

p
2 �4=

p
2 0 4=

p
2 �2=

p
2 0 2=

p
2

�x2 �1=
p

2 �2=
p

2 �1=
p

2 0 0 0 1=
p

2 2=
p

2 1=
p

2
w 1 1/

p
2 1 1 1/

p
2 1 1 1/

p
2 1

Lid-Driven Square Cavity
Degree q = r = 1
Knots � = � = f0; 0; 1=2; 1; 1g
Point 1 2 3 4 5 6 7 8 9
�x1 0 1/2 1 0 1/2 1 0 1/2 1
�x2 0 0 0 1/2 1/2 1/2 1 1 1
w 1 1/2 1 1/2 1/4 1/2 1 1/2 1

Table 3.2: Polynomial degrees, knot vectors, control points and weights for the
geometry of the analyzed problems.



Chapter 4

Isogeometric Shape
Optimization of Flows

In this chapter, we extend the use of isogeometric analysis to shape optimiza-
tion of ows. We consider various shape optimization problems for uids in
two dimensions, and use isogeometric analysis both for solving the governing
equations, and as tool for designing optimal shapes. The chapter summarizes
the �ndings in [Nielsen and Gravesen, 2012] included in Appendix C.

4.1 Introduction

Numerical shape optimization for uids is the art of using computers to �nd
\best" shapes in engineering problems involving uids, based on some notion
of goodness [Mohammadi and Pironneau, 2010]. Applications of shape opti-
mization for uids ranges from, e.g., microuidic protein-folding devices [Ivorra
et al., 2006] to airplane wings [Painchaud-Oullet et al., 2006].

Some of the appealing features of isogeometric analysis from a uid me-
chanics point{of{view were presented in Chapter 3. From a shape optimization
point{of{view, isogeometric analysis may serve as a natural framework, due to
its ability to represent complex shapes in few design variables, and its tight con-
nection between analysis and geometry models. This means that an accurate
representation of the geometry can be maintained throughout the optimization,
and there is no need of communication between FEA and CAD models.

In recent years, isogeometric analysis has successfully been applied to various
shape optimization problems in mechanical engineering. Many studies within
structural mechanics have been made, using either NURBS control points [Wall
et al., 2008; Cho and Ha, 2009], NURBS control points and weights [Nagy et al.,
2010a;b; Qian, 2010; Nagy et al., 2011], or T-splines control points [Ha et al.,
2010; Seo et al., 2010a] as design variables. NURBS-based isogeometric shape
optimization using a boundary integral method has also been studied [Li and
Qian, 2011]. Applications of isogeometric shape optimization also include stud-
ies of vibrating membranes [Nguyen et al., 2011], and photonic crystals [Qian
and Sigmund, 2011]. Worth mentioning are also recent applications of isogeo-
metric topology optimization within structural mechanics [Seo et al., 2010a;b;
Hassani et al., 2012].

33
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An inherent challenge in numerical shape optimization is to maintain a high
quality of the computational mesh as the shape of the domain changes during
optimization [Mohammadi and Pironneau, 2004; Bletzinger et al., 2010]. In
isogeometric analysis, the shape is given by control points. Here, care has to be
taken to avoid clustering and folding over of control points during optimization,
which in turn may lead to singular parametrizations [Wall et al., 2008; Nagy
et al., 2011; Seo et al., 2010a].

The aim of this chapter is twofold. Firstly, we establish isogeometric analysis
as a framework for numerical shape optimization in uid mechanics, using the
method both as analysis tool to solve the governing Navier-Stokes equations,
and as design tool to guide an optimization procedure through analytically
computed gradients of objective and constraint functions. Secondly, to ensure
appropriate parametrizations during the optimization, we construct a measure
for regularization of the shape optimization problem. Based on a benchmark
optimization problem, in which we design a pipe bend to minimize the pressure
drop of the ow through it, we examine how this regularization measure inu-
ences the optimization process and the optimal design. Finally, to display the
robustness of the isogeometric shape optimization methodology, we apply it to
two other optimization problems for uids. First, we design a body at rest in a
circular uid container with rotating boundary to obtain a uniform pressure dis-
tribution along its boundary, a design problem which happens to have a known
solution, and second, we design a body traveling at constant speed through a
uid to minimize the drag.

4.2 Shape Optimization Problem

In the following, we introduce the generic shape optimization problem for uids
to be studied.

�N

�D

�0

u velocity
p pressure
� density
� viscosity

Figure 4.1: Setup of generic shape optimization problem for uids.

As in Chapter 3, we consider a viscous, incompressible, isothermal, steady
ow at low to moderate Reynolds numbers in a 2-dimensional domain 
 as
depicted in Figure 4.1. The uid is assumed to be Newtonian with constant
density � and constant viscosity �, and the state of the uid is characterized by
its velocity u = (u v )T and its pressure p. We assume that no external body
forces act on the system. For the boundary �, we assume that the domain is
open along the Neumann part �N , and that the ow �eld u is given along the
Dirichlet part �D, independently of the shape.

The aim in shape optimization is to design the shape of some speci�ed part
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�0 of the boundary of the domain to minimize some prescribed objective, with
some prescribed constraints on the problem. The speci�c form of the objective
function will be explained further below. The constraint functions are typically
dictated by the geometry and the physics of the problem. Here, we will consider
in particular the area of the domain as a constraint. Additional constraints could
of course be considered as well.

We formulate the following generic shape optimization problem for uids:

minimize
�0(x) C (4.1a)

such that Amin � Area � Amax (4.1b)
Lmin � L(x) � Lmax (4.1c)

0 = �(u � r)u+rp� �r2u (4.1d)
0 = r � u (4.1e)
u� = u j�D (4.1f)

0 = (�rui � p ei ) � n j�N (4.1g)

Here, the shape of the design boundary �0 is parametrized through the design
variables x. Equations (4.1a) and (4.1b) are the objective and the area con-
straint functions, respectively. Equation (4.1c) establishes bounds on the design
variables, as well as linear relations between them. Equations (4.1d) and (4.1e)
are the Navier-Stokes equation and the incompressibility condition, respectively,
governing the ow in the domain interior 
. Equations (4.1f) and (4.1g) are the
Dirichlet and the Neumann boundary conditions, respectively, where u� is the
given velocity �eld, i = 1; 2 is the component index, and n is the outward unit
normal.

We will consider three di�erent quantities as the cost function C in Equation
(4.1a): The di�erence in mean pressure between two boundary segments + and
�, the pressure variation along a boundary segment , and the aerodynamic
drag on a boundary segment . These are given by:

C�p =

R
+
p ds

L+

�

R
�
p ds

L�
; (4.2a)

Crp =
Z



�
rp � t

�2 ds; (4.2b)

Cd =
Z



�
� pI + �

�
ru+ (ru)T

��
n ds � eu; (4.2c)

respectively, where L =
R
 ds denotes the length of the segment , t is the unit

tangent vector, eu the constant unit vector along a speci�ed direction, n the
outward unit normal, and I the identity matrix. The context in which these
three di�erent cost functions may appear will be exempli�ed in Sections 4.4,
4.5, and 4.5, respectively.

4.3 Isogeometric Method

In this section, we outline how NURBS/B-spline based isogeometric analysis
may be applied to the shape optimization problem (4.1). Many aspects were
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already covered in Section 3.2, and we therefore primarily focus on the shape
optimization, see also, e.g., [Wall et al., 2008].

Geometry Parametrization

Referring to Figure 4.2, we construct a parametrization of the model domain
of the form X =

P
i xiR

g
i for i = 1; : : : ; Ng

var, where Rgi are tensor prod-
uct NURBS, xi are control points, and Ng

var is the number of terms. This
parametrization serves as foundation for both the ow model and the shape
optimization procedure.

X

[0; 1]2

y

x

�

�




Figure 4.2: Parametrization of the ow domain.

Flow Analysis

As in Chapter 3, we construct approximations of the velocity u and pressure
p in the form f =

P
i f iP

f
i for i = 1; : : : ; Nf

var, where, for each of the three
state variables f 2 fu; v; pg, Pfi are tensor product B-splines, f i are control
coe�cients, and Nf

var is the number of terms. Based on these approximations,
we may obtain, from a weak formulation of the governing equations (4.1d){(4.1e)
and the boundary conditions (4.1f){(4.1g), a system of non-linear equations of
the form K(U)U = F , where U is the vector of unknown control coe�cients
for the velocity and pressure, and the system matrix K and the right hand side
vector F are given by Equations (3.10){(3.11) with f = 0. This equation may
be solved by, e.g., an iterative Newton-Raphson method.

Optimization

To �nd a minimum in the cost function while ful�lling the constraints, the ge-
ometry parametrization is tweaked little by little, and over and over again the
governing ow equations are solved, and the objective and constraints evalu-
ated. To guide the optimization process, gradients of the cost function and the
constraints are computed analytically.

Design Variables

The control points xi entering the parametrization of the geometry are the
natural geometric \handles" on the ow domain, and these are therefore used
as design variables for the shape optimization routine. For simplicity, we neglect
weights as design variables. A parametrization and its control net are sketched
in Figure 4.3. The design variables of the optimization are the coordinates of
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the green control points in Figure 4.3a that determine the shape of the dashed
design boundary �0 in Figure 4.3b. As also shown in Figure 4.3a, control points
fall into three categories: The design control points (green) are \actively" moved
around in the search for the optimal shape, the linked control points (yellow) are
\passively" following the movement of the design control points, as described
below, while the �xed control points (red) remain unaltered.

a

b

Figure 4.3: a: Three types of control points: design (green), linked (yellow), and
�xed (red). b: Image of isoparametric lines.

Interior Parametrization

As the shape of ow domain is changed in the optimization process, the para-
metrization of its interior must be adequately updated. Referring to Figure 4.3,
in the isogeometric framework this amounts to specifying the location of the
yellow interior control points as the location of the green design control points
are changed through the optimization. This can be seen as the isogeometric
equivalent of �nite element re-meshing [Mohammadi and Pironneau, 2010], al-
though signi�cantly less work is required, since there are much fewer control
points in isogeometric analysis than there are nodes in �nite element methods.
Parametrization of interiors is a fundamental challenge in isogeometric analysis
[Cohen et al., 2010; Xu et al., 2010]. We choose to base the procedure on the
Winslow functional, see e.g. [Gravesen et al., 2010; Nguyen et al., 2011]. We
defer a description of the methodology to Section 6.1. For now, the following
description su�ces: The Winslow functional is a measure of conformality. Ini-
tially, the interior control points are determined as the ones that minimize the
Winslow functional, and thereby make the parametrization as conformal as pos-
sible, while keeping the boundary constant and ensuring a valid parametrization
det(J) > 0. The latter constraint may be evaluated using B-splines (NURBS),
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since the determinant of the Jacobian of a spline (NURBS) surface is itself a
spline (NURBS). In each design iteration, the interior control points are then
found as those that minimizes the 2nd order Taylor expansion of the Winslow
functional based on the initial control net. This procedure leads to a linear
problem to be solved in each design iteration. On top of this, the validity of the
parametrization is checked in each iteration by checking if det(J) > 0. If this
condition is not ful�lled, the interior control points are found as the solution to
the initial minimization problem as described above. This solution is then sub-
sequently used as linearization point for the Taylor expansion of the Winslow
functional, and the optimization is restarted from this con�guration.

Function Evaluation

To asses the quality and admissibility of a given design, the objective and con-
straint functions in Equations (4.2) and (4.1b) are evaluated in each iteration.
Using the parametrization of the geometry, and the discretizations of the ow
and pressure �elds, we collect the control points in two (Ng

var � 1 ) vectors x
and y, and the control coe�cients in one

�
(Nu

var + Nv
var + Np

var) � 1
�

vector
U . The mean pressure di�erence between two boundary segments + and �,
the pressure variation along a boundary segment , the aerodynamic drag on
a boundary segment , and the area of the domain 
, as de�ned in Equation
(4.2) and (4.1b), may then be computed as:

C�p = PT U ; (4.3a)

Crp = UTDU (4.3b)

Cd = FT U ; (4.3c)

A = xTAy; (4.3d)

respectively. Here, the following vectors and matrices have been de�ned:

P = P+ �P� (4.4a)

Pk =
1
L

1Z

0

Ppk k _k d�; (4.4b)

Dk;‘ =

1Z

0

�
tT J�T rPpk

��
tT J�T rPp‘

�
k _k d�; (4.4c)

F =

2

4
F11 F12
F21 F22
F31 F32

3

5 eTu ; (4.4d)

F11k = �
1Z

0

�
2eT1 ne

T
1 + eT2 ne

T
2

�
J�TrPu1

k k _k d�; (4.4e)

F21k = �
1Z

0

eT2 ne
T
1 J
�TrPu2

k k _k d�; (4.4f)
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F31k = �
1Z

0

eT1 nP
p
k k _k d�; (4.4g)

F12k = �
1Z

0

eT1 ne
T
2 J
�TrPu1

k k _k d�; (4.4h)

F22k = �
1Z

0

�
2eT2 ne

T
2 + eT1 ne

T
1

�
J�TrPu2

k k _k d�; (4.4i)

F32k = �
1Z

0

eT2 nP
p
k k _k d�; (4.4j)

Ak;‘ =
x

[0;1]2

� @Rgk
@u

@Rg‘
@v
�
@Rgk
@v

@Rg‘
@u

�
d�; (4.4k)

where the length is given by L =
R
k _k d�. The parametric speed k _k �p

_x2 + _y2, the unit tangent vector t � _=k _k, and the outward unit normal
vector n � �t̂ are found by di�erentiating the restriction of the parametrization
to the boundary with respect to the parameter �. These vectors and matrices
are in general sparse, P , D, and F in particular, since only few of the basis
functions have support on the design boundary.

Gradient Evaluation

The optimization is driven by gradients of the objective and constraint functions
de�ning the optimization problem. These sensitivities measure how the design
variables a�ect the objective and constraint functions. We compute these ana-
lytically by direct di�erentiation of the discretized versions of the functions in
Equation (4.3) with respect to the coordinates of the control points, that act as
our design variables.

We collect the design variables in one vector �, such that � = (x1; : : : ; xN ;
y1; : : : ; yN ), where (xk; yk) are the coordinates of the kth control point, and we
let �0 � @ � =@�k denote the partial derivative with respect to the kth design
variable. For the objectives and the constraint in Equation (4.3) we have:

C 0�p = P 0TU + PTU 0; (4.5a)

C 0�p = UTD0U + 2UTDU 0; (4.5b)

C 0d = F 0TU + FTU 0; (4.5c)

A0 = yTAx0 + xTAy0: (4.5d)

The derivatives of x and y in Equation (4.5d) are trivial. The derivatives of
the objective matrices/vectors P , D, and F in Equations (4.5a)|(4.5c) may
be found by di�erentiation of the integrands in Equation (4.4):

P 0i =
�
h Ppi k _k i
h k _k i

�0

=
h Ppi k _k0 i h k _k i+ h Ppi k _k i h k _k0 i

h k _k i2
; (4.6)
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where we have de�ned _� � @ � =@� and h�i �
R
� d�, and used that all basis

functions P are independent of the design variables. Here, the derivative of the
parametric speed k _k may be found from the parametrization:

k _k0 =
�p

_x2 + _y2
�0

=
_x _x0 + _y _y0

k _k

=

(
_x
k _k

_Rgk for k = 1; : : : ; N
_y
k _k

_Rgk for k = N + 1; : : : ; 2N
: (4.7)

Equivalent approaches may be taken for the matrices D and F in Equation
(4.4).

The derivative of the solution U in Equations (4.5a)|(4.5c) may be found
by solving the linear equation system obtained by di�erentiation of Equation
(3.10):

(M +D)U 0 = F 0 �M 0U ; (4.8)

where

D = �

2

4
D1;1 D1;2 0
D2;1 D2;2 0

0 0 0

3

5 ; (4.9a)

Di;jk;‘ =
x

[0;1]2
Puik

�
eTj J

�T rui(u)
�
Puj‘ det

�
J
�

d� : (4.9b)

We mention that the matrix J = M +D also appears in the iterative Newton-
Raphson method employed for solving the governing equations. The derivative
of the system matrix M and vector F in Equation (4.8) may be found by
di�erentiation of the integrands in Equation (3.11):

K 0ki;j =
x

[0;1]2
rTPuki J

�10J�TrPukj det
�
J
�

d�

+
x

[0;1]2
rTPuki J

�1J�T
0
rPukj det

�
J
�

d�:

+
x

[0;1]2
rTPuki J

�1J�TrPukj det
�
J
�0 d�: (4.10)

Here, the derivative of the determinant and of the inverse of the Jacobian ma-
trix may be found by simply writing them out explicitly in terms of x and y
and subsequently di�erentiating this as in Equation (4.7), or alternatively from
the relations J�10 = J�1 J 0 J�1 and det(J)0 = det(J) tr(J�1J 0), along with
di�erentiation of the parametrization:

J 0 =

8
>>>><

>>>>:

�
Rgk;� Rgk;�

0 0

�
for k = 1; : : : ; N

�
0 0
Rgk;� Rgk;�

�
for k = N + 1; : : : ; 2N

; (4.11)
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where we have de�ned �;s � @ � =@s. Equivalent approaches may be taken for
the matrices C and G in Equation (3.11).

Finally, to account for the induced movement of the linked control points,
as a result of the update of the interior parametrization when the design control
points are moved, the full sensitivity is computed as ~�0 = �0 +

P

i
�li
0 @
@�li

, where

the summation is over linked design variables, or

erd = rd +Wrl; (4.12)

where the subscripts d and l refer to design variables and linked variables, re-
spectively. The matrix Wi;j = @�li=@�dj relates the linked control points to the
design control points.

Implementation Details

Start

Initialization
read input �le
setup basic quantities
evaluate basis functions
initialize design + parametrization

Parametrization
update interior control points
evaluate parametrization
if invalid parametrization:

minimize Winslow functional
linearize Winslow functional
restart optimization

Optimization
loop : over Reynolds number

loop : until design convergence
evaluate parametrization
solve governing equations
evaluate objective + constraints
evaluate gradients

end

end

Flow Analysis
build linear matrices
initialize/reuse solution
loop : over Reynolds number

loop : until solution convergence
build non-linear matrices
solve system
update solution

end

end

Finish

Figure 4.4: Flow chart for the optimization process (left) with details of the
parametrization and analysis procedures (right).

The ow chart in Figure 4.4 sketches the most signi�cant steps in solving the
shape optimization problem in Equation (4.1) based on isogeometric analysis.

In the initialization phase, we perform as many calculations as possible that
are independent of the parametrization. In particular, all basis functions and
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their derivatives are evaluated in the Gauss quadrature points once and for all.
Although more memory demanding, this approach greatly reduces the com-
putational expenses, compared to evaluating the functions on the y in each
optimization iteration. The construction of a good initial parametrization is
also vital for the optimization.

The optimization process includes an outer loop over increasing Reynolds
number. This is only necessary when designing shapes in higher Reynolds num-
ber ows. The entire process outlined in the ow chart may be embedded into a
loop over increasing re�nement of geometry and/or analysis. The optimization
is performed using the SNOPT optimization package, which is based on a se-
quential quadratic programming algorithm [Gill et al., 2008]. Standard settings
for SNOPT are used, except for the step size limit which, when set relatively
low, e.g., 5% of the characteristic length scale of the problem, has been found to
signi�cantly improve the convergence by avoiding too large jumps in the design
space. For validation purposes, the analytically computed gradients are checked
initially against �nite di�erence estimates.

On the analysis side, we use an iterative Newton-Raphson method to solve
the governing non-linear equation, gradually increasing the Reynolds number
when this is high. In the �eld approximations, bi-quartic tensor product B-
splines are used for the velocities and bi-cubic tensor product B-splines for the
pressure, both C2 across knots, corresponding to the Taylor-Hood discretization
u42

0p31
0 (d) in Table 3.1). Dirichlet boundary conditions are enforced strongly,

while homogeneous Neumann boundary conditions are enforced weakly. All
integrals are evaluated numerically using Gaussian quadrature.

4.4 Regularization

To strengthen the result of the shape optimization, the design space in which
we look for solutions should be as large as possible. A natural way to ensure a
large design space is to use many control points as design variables, although
the inclusion of weights as design variables could also be considered [Qian, 2010;
Nagy et al., 2011]. As the number of design control points go up, more complex
shapes can be designed. This comes, however, on the cost of numerical chal-
lenges. These challenges, and solution strategies to remedy them, are discussed
in this section.

For the purpose of illustration, we consider a concrete example of the shape
optimization problem (4.1)-(4.2a), and use this as benchmark for the following
tests of the regularization technique. The problem is outlined in Figure 4.5a.
The aim is to design the shape �0 of a pipe bend (dashed) to minimize the
pressure drop from the inlet boundary (red) to the outlet boundary (blue),
keeping the shape of the inlet and the outlet (solid) �xed, and with an upper
bound on the area of the pipe.

We assume a parabolic horizontal velocity pro�le on the inlet boundary, that
the velocity it is zero along the side walls, assuming no-slip conditions, and that
its horizontal component is zero along the open outlet boundary. We take the
length scale as r = 1, the velocity scale as U = max(kuinletk) = 1, the density
as � = 1, and the viscosity as � = 1, assuming appropriate units are used, which
yields a Reynolds number of Re = 1 for the initial problem.

We parametrize the pipe bend as a bi-cubic tensor product B-spline surface,
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Figure 4.5: Pipe bend with minimal pressure drop: design problem setup (a), initial
control net (b), initial parametrization (c), and initial pressure contours and ow
stream lines (d).

and let the initial design connect the inlet and outlet by an approximate quar-
ter annulus. The initial control net, the corresponding parametrization, and
the resulting pressure distribution and stream lines of the ow through it are
depicted in Figure 4.5b{d. We use 20 control points as design variables, 10 on
each of the two boundaries segments to be designed, and we allow these to move
freely in both spatial dimensions, except for the four end control points, which
are only allowed to move along the direction of the inlet/outlet, in order to keep
a handle on these. As upper bound on the area, we use the initial value, i.e.,
Amax = A0, and we relax the lower bound, i.e., Amin = �1. Since the lengths
of the inlet and outlet boundaries are constant, the sensitivities in Equation
(4.6) are greatly simpli�ed.

The Challenge: Clustering of Control Points

Applying the isogeometric machinery from Section 3.2 to the shape optimization
problem outlined above results in the optimization history depicted in Figure
4.6. From iteration 0 to 15 (actually function call in SNOPT terminology), the
design control points �rstly align, connecting the inlet and the outlet by a more
or less straight segment, thereby decreasing the pressure drop by � 74%. This
design reduces the length of the pipe in intuitive accordance with the Poiseuille
law. At iteration 44, sharper corners at the inlet and outlet are formed, but from
iteration 44 and onwards, the shape changes only slightly, and the decrease in
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the pressure drop is accordingly small. The location of the control points, how-
ever, and the resulting parametrization change appreciably, though. The control
points cluster and eventually fold over, resulting in an invalid parametrization
after 67 iterations from which the method cannot proceed.

Iteration 15 Iteration 44 Iteration 67

Iteration

C
�
p

C
�
p

0

Figure 4.6: Pipe bend with minimal pressure drop: objective function as a function
of optimization iteration (bottom), and three snap shots of the control net and the
associated parametrization (top).

The problem seems to arise in the second of two qualitatively di�erent stages
of the optimization: the optimizer �nds an \optimal" shape in the �rst stage,
and then tries to �nd an \optimal" parametrization of it in the second stage.
The latter \optimality", however, is a numerical artefact. The optimizer �nds
the aws in the numerical procedure, so to say, and tries to align the errors in
such a way, that the numerical estimate is minimized, although the \actual"
value is not. This is the challenge in a nut-shell: when optimizing the location
of many control points in su�ciently unconstrained problems, they may cluster,
spuriously yielding slightly lower values of the objective function on the cost
of signi�cantly worse parametrizations and less accurate analysis, which may
eventually lead to a collapse of the method. The clustering of control points is
a well-known issue in isogeometric shape optimization [Wall et al., 2008; Nagy
et al., 2011; Seo et al., 2010a]. Related numerical problems in �nite element
based shape optimization, and regularization techniques to address them, are
also well-described [Bletzinger et al., 2010]. Below, we �rstly give a brief re-
view of some alternative ways out of the current problem, before proposing the
regularization approach, in an isogeometric framework.

Some Alternative Solution Strategies

The �rst natural point of focus, when looking for remedies for the current prob-
lem, is on the optimization routine. A quick �x is simply to stop the optimization
immediately after the �rst \shape" stage, and before the onset of the second
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\parametrization" stage. This could be achieved by relaxing the existing con-
vergence criterion, or by de�ning some other relevant measure. However, since
this approach only cures the symptoms of the problem, and not the cause of it,
and due to the risk of prematurely stopping the optimization, this approach is,
in our view, not only quick, but also dirty.

Turning away from the optimization routine, we may focus on the problem
formulation instead. An obvious solution to the problem is to reconsider the
design degrees of freedom. As the control points align, an ambiguity is intro-
duced, since movements of the control points along the line does not change
the shape, but does change the parametrization and thus also the numerical
estimates of the integrals, and hence the objective function value, making the
problem inherently ill-posed. One could then simply argue that for this partic-
ular design problem, say, four design control points on each boundary su�ce.
However, this is an a posteriori type of reasoning that we would like to avoid.
More interesting is the idea of making this estimation of the necessary number
of design variables dynamic, i.e., inserting and removing design control points
on the y during the optimization [Seo et al., 2010a]. The implementation of
a exible number of design variables in an optimization procedure, however, is
less than trivial.

Preserving the number of control points, but putting constraints on their
movement in the design space, poses yet another alternative. We could, for
instance, constrain the design control points to move only along speci�ed direc-
tions. In this approach, it is our duty as designers to specify \good" directions
along which the control points can move, ensuring both su�cient exibility in
the design while avoiding bad parametrizations. Along the same line of thinking
is the concept of putting bounds on the design variables, see e.g. [Cho and Ha,
2009], thus limiting the optimizer to search for a minimum in the vicinity of the
initial guess only. In any case, the design space shrinks in these approaches, and
the success of the optimization heavily depends on the designers choice in initial
condition and constraints on the movement of the control points. A somewhat
related, but much more exible approach, is to introduce a more general con-
straint on the design variables. A popular choice is to put a lower bound on
the distance between control points [Wall et al., 2008]. Although this approach
does take care of the tendency of control points to cluster, it still closes the door
to parts of the design space. Another choice is to prescribe an upper bound
on a single, global measure of the shape change [Nagy et al., 2011] during the
optimization, thereby signi�cantly reducing the number of constraints.

Boundary Regularization

To avoid the problem of clustering control points and the associated fatal
parametrization, we suggest to regularize the optimization problem [Moham-
madi and Pironneau, 2004; 2010]. More speci�cally, we suggest to add a term
to the objective function that, by measuring the quality of the parametrization,
prevents the unwanted phenomenon. In this approach, the regularized objective
function eC is written as:

eC = C + ~�R; (4.13)

where C is the \actual" physical objective, here expressing the pressure drop in
the pipe bend, R is the \arti�cial" regularization objective, and ~� > 0 speci�es
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the weight of the regularization term. The aim of the optimization, when using
the regularized objective, is twofold: we are not only searching for the design
that minimizes the pressure drop, but also for the shape whose parametrization
makes the numerical approximation of it more reliable. Thereby, we embed the
construction of a good parametrization into the design optimization, and we are
thus targeting the very cause of the problem.

The method poses two challenges: Firstly, it necessitates the construction
of a quality measure R of the parametrization, and secondly, it requires the
speci�cation of its relative importance ~� in the optimization.



Figure 4.7: Illustration of the focus of boundary regularization.

The focus of this study is on boundary regularization, as sketched in Fig-
ure 4.7. This addresses the quality of parametrization of the design boundary,
which is clearly compromised early on in the fatal optimization history in Figure
4.6. One measure we have found useful is the norm squared of the parametric
acceleration along the design boundaries, integrated in parameter domain:

R =
Z 1

0
k�k2 d�; (4.14)

where we have de�ned �� � @2 � =@�2. In discretized form, it reads:

R = xTRx+ yTRy; (4.15a)

Ri;j =
Z 1

0

�Rgi �Rgj d�: (4.15b)

By minimizing this measure, we bring the boundary parametrization closer to
a constant-speed parametrization, and boundary regularization thus leads the
optimizer towards a better boundary parametrization. The measure is com-
putationally cheap to implement, since the matrix R only involves integrals
of the second order derivatives of the (univariate) basis functions, and since it
is quadratic in the design variables, the sensitivities may be straightforwardly
computed.

An important challenge in the methodology is the speci�cation of a suitable
weight ~� of the regularization. This challenge is similar in nature to the one
associated with specifying a suitable minimal distance between control points
[Wall et al., 2008], or a maximal shape change norm [Nagy et al., 2011]. The
speci�cation may be partly facilitated by estimating the initial ratio between
the physical objective C0 and the regularization objective R0:

~� =
jC0j
jR0j

�; (4.16)



4.4. REGULARIZATION 47

where we assume that R0 6= 0, and that this ratio does not change too much with
the design. Taking � = 1 yields identical initial numerical values for the physical
and the regularization terms in Equation (4.13). Usually, a value �� 1 is there-
fore anticipated. The smaller the �, the closer we get to the original optimization
problem, but, on the other hand, the more we weaken the regularization and its
stabilizing inuence on the parametrization and the convergence.

Iteration 8 Iteration 19 Iteration 64

Iteration

C
�
p

C
�
p

0

Figure 4.8: Pipe bend with minimal pressure drop: regularized optimization history
(bottom), and snap shots of the control net and the associated parametrization (top).

We apply the regularized isogeometric shape optimization method to the
current design problem, thus minimizing the regularized pressure drop (4.13){
(4.14) through the pipe bend using the weight � = 10�2. The optimal design
is reached after 64 iterations, at which point the pressure drop is decreased to
74:5%, and the area constraint is active (but ful�lled). The optimization history
is shown in Figure 4.8. Here, it is worth noticing that the optimal design is quite
close to the design from which the original formulation drifts o�, cf. Figure
4.6, that the di�erence in the minimal pressure drop between the designs is
small, and, most importantly, that the parametrization is much better in this
regularized formulation, thereby making the analysis more reliable. The e�ect
of the regularization is clearly seen from the intermediate design in iteration 19,
to the converged design in iteration 64. The control points spread out along the
line, and the concentration of control points is shifted away from the straight
central part, towards the curved parts at the inlet and the outlet. This is also
where the geometry, and hence the ow analysis, is most challenging, due to the
presence of sharp corners that form as a result of coalescing control points. The
resulting pressure �eld is shown in Figure 4.9. The optimized design is similar
to the topology optimized design with minimal energy dissipation [Gersborg-
Hansen et al., 2005].

To examine the e�ect of the regularization in greater detail, we solve the
problem for a range of regularization weights � 2 [10�3; 10�1]. Figure 4.10
shows how the optimized pressure drop, the required number of iterations, and
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Figure 4.9: Pipe bend with minimal pressure drop: optimized pressure contours and
ow stream lines.

the optimal design vary with the regularization weight. When the regularization
is strong, the optimization converges quickly to a smoother design with a higher
pressure drop. As the regularization is decreased, more iterations are required
to reach designs with locally higher curvature and smaller pressure drops. A
stagnation point in the pressure drop curve is observed, associated with the for-
mation of the sharp corners at the inlet and the outlet, such that the optimized
pressure drop only falls o� slightly for � � 3 � 10�2. In addition, the number of
iterations is likewise relatively constant for 3 �10�3 � � � 3 �10�2. A regulariza-
tion weight in this range thus seems appropriate in this example. The results,
however, are not critically sensitive to the value used.

� = 10�3 � = 10�2 � = 10�1

�
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�
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�
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Figure 4.10: Pipe bend with minimal pressure drop: optimized pressure drop and
required number of iterations as a function of regularization weight � (bottom), and
optimal design for three values of � (top).



4.5. APPLICATIONS 49

We conclude this section by mentioning that a range of other regularization
measures could be considered. Among these, we have found that similar e�ects
as those presented above may be obtained by minimizing the scalar product of
the tangent _ and the acceleration �, the variance of the Jacobian determinant,
or the variance of the parametric speed, all evaluated along the design boundary.
Minimization of the Winslow functional, however, is found to be more problem-
atic to implement. Furthermore, the regularization measures could alternatively
be implemented as constraints, but such investigations have been outside the
scope of this study.

4.5 Applications

In this section, we apply the isogeometric shape optimization methodology for
uid design problems to two additional numerical examples.

Body with Uniform Pressure Distribution

We consider the shape optimization problem (4.1)-(4.2b) outlined in Figure
4.11a. The aim is to design the boundary �0 of a body of given area A0, placed
in a circular uid container of radius r whose outer boundary rotates, to make
the pressure distribution along �0 as uniform as possible, i.e., to minimize the
pressure variation Crp along �0. From symmetry considerations, the pressure is
constant along the boundary when a disk is placed in the center. Furthermore,
analytical solutions to the governing Navier-Stokes equations for this so-called
Taylor-Couette ow problem is well-known from the literature. A circle enclos-
ing the speci�ed area and with center in the center of the container is therefore
a solution to the shape optimization problem. In the following, we investigate
how well the isogeometric shape optimization methodology is able to reproduce
this.

To represent the outer perimeter as an exact circle, which is of paramount
importance when specifying boundary conditions, we parametrize the geometry
using quadratic NURBS. As initial design, we use a square placed in the middle,
which is an intentionally bad initial guess. The control net, knot vectors and
weights are shown in Figure 4.11b, and the corresponding parametrization is
visualized in Figure 4.11c. The patch is attached to itself along the dashed
line, resulting in an additional C0-continuity here. The velocity �eld is speci�ed
as purely tangential along the outer moving perimeter, and as vanishing on
the inner steady boundary, assuming no-slip conditions. Since full Dirichlet
boundary conditions are prescribed for the velocity �eld, we set the pressure to
zero in an arbitrary point. We take the initial area as A0 = 2, the radius of the
outer perimeter as r = 2, the velocity scale as U = 1, the density as � = 1, and
the viscosity as � = 1, assuming again appropriate units are used, which again
yields a Reynolds number of Re = 1. The initial pressure �eld is depicted in
Figure 4.11d. In this, the C0-continuities are invisible to the naked eye. We take
the constraint on the area as the initial value, i.e., Amax = Amin = �r2 � A0,
and a one-step approach is employed for the Reynolds number. To resolve
the rotational symmetry, the left-most control point is allowed only to move
horizontally. It turns out that this problem is su�ciently constrained to prevent
control points from clustering, and we therefore solve it without regularization.
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Figure 4.11: Body with uniform pressure distribution: design problem setup (a),
initial control net, knot vectors, and non-unitary weights (b), initial parametrization
(c), and initial pressure �eld (d).

a b c

Figure 4.12: Body with uniform pressure distribution: optimized control net (a),
parametrization (b), and pressure �eld (c) for 36 design control points.

We consider three consecutive re�nements of the coarse geometry described
above, obtained by uniform knot re�nement along the tangential direction,
thereby representing the design boundary �0 by 8, 12, 20, and 36 control points,
respectively. We solve the design problem for each of these four geometric
models, using in turn the optimized coarser design as initial guess for the �ner
optimization. The results for the �nest geometric approximation are shown in
Figure 4.12. The optimal design is reached in a total of 1032 iterations, and
the pressure variation is decreased by a factor of � 10�17. The optimal control
net is shown in (a), and the corresponding optimized parametrization is shown
in (b). The inner boundary is seen to approximate a circle very accurately.
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Ndesign Crp=Crp0 �circle Niter

8 8:1 � 10�4 6:3 � 10�2 131
12 5:1 � 10�5 3:7 � 10�3 127
20 3:3 � 10�6 2:5 � 10�4 344
36 1:4 � 10�17 2:1 � 10�5 430

Table 4.1: Body with uniform pressure distribution: comparison of objective function,
discrepancy from the exact circle, and number of iterations for di�erent numbers of
design variables.

The optimized pressure �eld shown in (c) is signi�cantly more uniform than the
initial one shown in Figure 4.11d.

N = 8

N = 12

N = 20

N = 36
circle

a

b
s=L

p

Figure 4.13: Body with uniform pressure distribution: comparison of pressure distri-
butions along the optimized boundaries (a), and comparison of the optimized bound-
aries to the exact circle in three zooms (b).

To examine more closely the e�ect of enlarging the design space by the use of
more design control points, Figure 4.13a shows the pressure distribution along
the optimized boundary when using 8, 16, 20, and 36 design control points.
Also shown, in Figure 4.13b, is a comparison of the lower part of the optimized
design boundaries to the exact circle. As is evident from the �gure, the more
control points we use, the more uniform the pressure distribution we obtain, and
the better the approximation to the exact circle we �nd. This is quantitatively
supported by the numerical values listed in Table 4.1, showing that both the
pressure variation, and the discrepancy of the design boundary from the circle
of radius r0 =

p
A0=� converge towards zero, as more design control points are

used. Here, we have estimated the discrepancy of the design boundary from the
circle of radius r0 by the measure:

�2circle =
Z



�
x2 + y2

r2
0
� 1
�2

ds:
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With 36 design control points, this error is � 2:1 � 10�5.

Body with Minimal Drag

We consider the classical shape optimization problem (4.1)-(4.2c) outlined in
Figure 4.14a, see e.g. [Pironneau, 1973; 1974]. The boundary �0 of a body
with given area A0 traveling at constant speed U through a uid is designed to
minimize the drag Cd it experiences as the uid ows past it.
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Figure 4.14: Body with minimal drag: design problem setup (a), initial control net,
initial parametrization, domain dimensions, boundary conditions, and knot vectors (b
and c), and initial pressure contours and ow stream lines for U = 1 (d).

Symmetry is assumed around the line along which the body travels, and
only the upper half of the problem is considered. To facilitate the implementa-
tion of boundary conditions, and to achieve local re�nement close to the body,
this half space is truncated using two patches, as shown by the black lines in
Figure 4.14b (top). The design boundary �0 is initialized as an approximate
half circle of radius r = 1, as depicted in Figure 4.14c (top), and the compu-
tational domain extends 20r upstream, 20r sidewards, and 40r downstream,
as depicted in Figure 4.14b (bottom). Cubic B-splines are employed for the
geometric parametrization. The initial control net is shown in Figures 4.14b-c
(bottom). The governing equations are solved in the co-moving inertial system
in which the body is at rest. For the boundary conditions, we assume no-slip
along the design boundary �0, that the ow is undisturbed along the upstream
truncation boundary, that the downstream truncation boundary is open, and
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that the �elds are symmetric around the lower truncation boundary, as sketched
in Figures 4.14b-c (top). The density and viscosity are set to � = 1 and � = 1,
respectively, assuming appropriate units.

We use 11 design control points, and take A0 = � as lower bound on the
area of the body, i.e., Amax = Area0 � A0=2, and relax the upper bound. The
end control points are allowed only to move horizontally and symmetrically, to
ensure that the domain is appropriately de�ned, and to resolve the translational
symmetry of the problem. To prevent the control net from folding over at the
leading and trailing edges in particular, boundary regularization with weight
� = 0:01 is employed.

a

b

Initial

U = 1

U = 10

U = 40

U = 100

Figure 4.15: Body with minimal drag: initial and optimized shapes for U 2
f1; 10; 40; 100g (a), and optimized pressure contours and ow stream lines for U = 100
(b).

We solve the shape optimization problem for four consecutive speeds U 2
f1; 10; 40; 100g, using again the lower speed solution as initial guess for the
higher speed. These speeds correspond to Reynolds numbers 1, 10, 40, and 100,
respectively, based on the initial setup. After 57 + 40 + 67 + 58 = 222 design
iterations, the optimization converges. To illustrate how the design varies with
ow speed, the initial and the optimized shapes for each of the four speeds are
compared in Figure 4.15a, and the characteristics of the shapes are summarized
in Table 4.2. A considerable change in the design is seen as the speed is in-
creased. For low speeds, a football-like shape is optimal. For higher speeds, a
more slender shape is optimal, eventually becoming slightly thicker upstream
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Design L=2 H=2 xw C�d r

Initial 1.00 1.00 0.00 4.13 -
U = 1 1.80 0.62 0.02 6.12 7.7%
U = 10 2.29 0.48 -0.03 1.81 2.4%
U = 40 2.80 0.41 -0.32 0.97 1.2%
U = 100 3.12 0.38 -0.51 0.64 0.4%

Table 4.2: Body with minimal drag: length (L), height (H), widest location (xw),
drag coe�cient (C �

d = Cd=( 1
2�U

2H)), and relative decrease in drag r = (C initial
d �

Coptimal
d )=C initial

d for the initial and optimized shapes.

than downstream. The long slender design relates well to the increase in the
signi�cance of the form drag, and the decrease in the signi�cance of the skin
friction drag, as the speed increases. The pressure and ow �elds around the
optimized shape for the terminal speed U = 100 are depicted in Figure 4.15b.

In the present context, minimizing the drag on the body is equivalent to
minimizing the energy dissipation in the ow past it [Mohammadi and Piron-
neau, 2010], and we may compare the results for these two types of problems.
Firstly, for Reynolds number Re = 1, the angle of the wedge-shaped upstream
part compares well to the theoretically predicted value of 90�, while for higher
Reynolds numbers, the shapes are more cusped [Pironneau, 1973; 1974]. For
Reynolds number Re = 1, the present optimal shape compare well qualitatively
to the numerical results obtained in [Katamine et al., 2005], while for Reynolds
numbers Re > 1, the present optimal shapes di�er signi�cantly from their ovoid
with the upstream part slimmer than the downstream part. Consistently bet-
ter qualitative correspondence is found with the numerical results in [Kim and
Kim, 1995], although the present optimal shapes are slightly longer, thinner,
and more ovoid than their elliptic shapes.

4.6 Conclusions

In this chapter, we have applied isogeometric analysis to shape optimization
problems for uids, using NURBS and B-splines from computer aided design
both as analysis tool in a �nite-element-like manner to solve the governing
steady-state, incompressible Navier-Stokes equations, and as design tool to �nd
optimal shapes by moving the control points using a gradient-based numeri-
cal optimization package. By adding to the objective function a measure of the
quality of the parametrization, we have established a regularization technique to
avoid inappropriate parametrizations during optimization, a commonly known
problem in isogeometric shape optimization. Based on a benchmark design
problem, in which a pipe bend is designed to minimize the pressure drop of the
ow through it, the integral of the norm squared parametric acceleration along
the design boundary was found to be a cheap, exible and e�cient regulariza-
tion measure. The method embeds the construction of a good parametrization
into the design optimization, allowing the designer to search for shapes in a
large design space, with little a priori knowledge on the optimal design. The
greatest challenge of the method lies in the choice of the regularization weight.
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To emphasize the robustness of the proposed isogeometric shape optimization
methodology for uids, we have used it �rstly to design a body at rest in a
circular uid container with rotating boundary to obtain a uniform pressure
distribution along its boundary, and secondly to design a body traveling at con-
stant speed through a uid to minimize the drag from the ow past it. For
the former problem, it was found that progressively better approximations of
a known solution is achieved when more design control points are used, while
the latter problem demonstrated that signi�cantly di�erent shapes of the min-
imal drag body may be obtained when the speed is varied. In summary, the
isogeometric shape optimization methodology facilitates the accurate design of
complex shapes in engineering problems within uid mechanics.
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Chapter 5

Isogeometric Analysis of
Flow Acoustics

In this chapter, we extend the use of isogeometric analysis to the propagation
of sound through moving uids. We construct and validate a coupled ow-
acoustic model based on the methodology, and use it to investigate geometric
e�ects on ultrasound propagation through ows in 2-dimensional ducts. The
chapter summarizes the �ndings in [Nielsen et al., 2011b] included in Appendix
D.

5.1 Introduction

It is well known in physics and engineering applications that wave propagation in
ducts is sensitive to the duct geometry. In particular, spatial resonances exist at
certain frequencies, and it is anticipated that even small disturbances may cause
large variations in signal transmission at such frequencies. Motivated by this,
we investigate the inuence of a background ow on acoustic wave propagation
in 2-dimensional ducts of varying width.

Finite element methods within the �eld of sound propagation through ow
in ducts are extensively used, based on, e.g., the convected Helmholtz equation
[Becache et al., 2004; Redon et al., 2011], the linearized Euler equations [Astley
and Eversman, 1981], or the so-called Galbrun’s equation [Peyret and �Elias,
2001; Dhia et al., 2007; 2010], and often discretized using Lagrange elements
with C0-continuity of the state variable approximations. Our work contributes
to this �eld in two ways.

Firstly, we analyze the coupled ow-acoustic system by explicitly connecting
a ow model to an acoustic model. The procedure we follow is �rst to compute
the background ow based on the steady-state, incompressible Navier-Stokes
equations in the laminar regime, i.e., at low Reynolds numbers, and then we
adopt a linear, time-harmonic ow-acoustic approach for the sound wave prop-
agation in the low Mach number regime, using the calculated background ow
as input. This results in a single equation in the acoustic pressure, linear in
both the ow �eld itself and its gradient.

Secondly, we base our calculations on isogeometric analysis. For the problem
at hand, isogeometric analysis is particularly appealing because it allows for

57
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simple descriptions of complex duct geometries, and provides high degrees of
smoothness for both ow and acoustic �elds. The applicability of the method
is well documented within uid mechanics, as demonstrated in Chapter 3, as
well as for wave phenomena and the closely related structural vibrations, see
e.g. [Cottrell et al., 2006; Hughes et al., 2008].

The �rst aim of this chapter is to establish and validate the coupled ow-
acoustic model for time-harmonic sound propagation at low Mach numbers
through a stationary, incompressible background ow at low Reynolds num-
bers in 2-dimensional ducts based on isogeometric analysis. The second aim is
to use the model to numerically examine how the geometry of the duct inu-
ences the sound propagation, and in particular its e�ect on how the acoustic
signal depends on ow speed. We consider a transmitting ultrasonic transducer
mounted on the duct wall, as sketched in Figure 5.1, and we examine the dif-
ference between the downstream and the upstream acoustic signals for di�erent
frequencies and ow speeds. Geometric e�ects are investigated by considering
three di�erent duct geometries.

5.2 Governing Equations and Approximations

Figure 5.1: Sound propagates (black arrows) from acoustic sources (black rings)
through a moving uid (gray arrows) in a symmetric (dashed lines) 2-dimensional
duct (solid lines).

In the following, we introduce the governing equations and approximations
of the coupled ow-acoustic model.

Referring to Figure 5.1, we consider the propagation of sound through an
isothermal moving uid in a symmetric 2-dimensional duct in the absence of
body forces. The uid is governed by the Navier-Stokes and mass continuity
equations (2.1), which we restate here:

�
@u
@t

+ �(u � r)u+rp�r � T = 0; (5.1a)

@�
@t

+r � (�u) = 0; (5.1b)

where p, u, �, T, and t, denote pressure, velocity, density, deviatoric stress
tensor, and time, respectively.

The problem involves two distinct physical phenomena: the ow of the uid
and the propagation of sound in it. We express this separation through the
state variables:

u = u0 + u0; p = p0 + p0; � = �0 + �0; (5.2)
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where u0, p0, �0 relate to the large scale mean ow, and u0, p0, �0 relate to
the small scale acoustic disturbances. For simplicity, we will assume a one-
way coupling of these phenomena, such that ow phenomena (u0, p0, and �0)
inuence acoustic phenomena (u0, p0, and �0), but not the other way around.
Hence, we may treat the ow model as independent of the acoustic model, and
use the output of the ow model as input to the acoustic model.

� +

�w

�s



x

y

Figure 5.2: Model domain (gray) and boundaries (black lines).

In the following, we consider the ow and acoustic equations over a sym-
metric, �nite segment of one half of the symmetric, in�nite 2-dimensional duct
as depicted in Figure 5.2. The four boundaries of the model domain 
 are:
the hard wall boundary �w, the symmetry boundary �s, and the two arti�cial
truncation boundaries � and +.

Flow Equations

For the ow model, we follow closely the approach outlined in the previous
chapters. We assume that the uid is Newtonian and incompressible, and that
the ow is stationary. The governing equations (5.1) then simplify to:

�0(u0 � r)u0 +rp0 � �r2u0 = 0; (5.3a)
r � u0 = 0; (5.3b)

where � is the dynamic viscosity of the uid, and �0 its density, which are both
constants.

The following boundary conditions are prescribed:

u0 = u�0 on � [ �w; (5.4a)
v0 = 0 ^ (�ru0 � p e1 ) � n = 0 on + [ �s; (5.4b)

where n is the outward unit normal, and u�0 prescribes a purely horizontal ow
velocity on the ow inlet �, and a vanishing ow velocity along the hard wall
�w. On the symmetry edge �s, we note that e1 � n = 0. On the ow outlet
�, the enforcement of v0 = 0 has implications on the validity of the acoustic
model, as explained below.

We solve the weak, or variational, form of the system (5.3)-(5.4) which reads:
given �0 and �, �nd u0 and p0 such that

x




�
U�0(u0 � r)u0 � p0

@U
@x

+ �rU � ru0

�
dA = 0; (5.5a)

x




�
V�0(u0 � r)v0 � p0

@V
@y

+ �rV � rv0

�
dA = 0; (5.5b)

x




P
�
r � u0

�
dA = 0; (5.5c)
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for all test functions U ;V;P without support on boundaries where the �elds are
explicitly prescribed.

Acoustic Equation

Our goal in the following is to derive a single equation that governs the acoustic
signal in a known background ow u0. To shorten the notation in the following
derivations, we let @t � @=@t denote di�erentiation with respect to time, and
@x � @=@x and @y � @=@y di�erentiation with respect to spatial dimensions.

We start by assuming that we may neglect viscous e�ects for the acoustic
signal. The governing equations (5.1) then read:

� @tu+ � (u � r)u+rp = 0; (5.6a)
@t�+r � (�u) = 0: (5.6b)

Next, we assume that the background ow (u0, p0, �0) ful�lls the governing
equations (5.6), that it is incompressible, i.e., @t�0 = @x�0 = @y�0 = 0, and
hence r � u0 = 0 by Equation (5.6b), and that it is stationary, i.e. @tu0 = 0,
as in the ow model above. Inserting the conventions (5.2) into the governing
equations (5.6), while using the above, and neglecting second orders terms in
the acoustic disturbances (u0, p0, �0), we �nd:

�0@tu0 + �0(u0 � r)u0 + �0(u0 � r)u0 +rp0 + �0(u0 � r)u0 = 0; (5.7a)
@t�0 + u0 � r�0 + �0r � u0 = 0: (5.7b)

Dividing Equation (5.7a) by �0, multiplying Equation (5.7b) by c2, and utilizing
the isentropic condition p0 = c2�0, where c is the speed of sound in the uid, we
obtain:

@tu0 + (u0 � r)u0 + (u0 � r)u0 +
1
�0
rp0 +

�0

�0
(u0 � r)u0 = 0; (5.8a)

@tp0 + u0 � rp0 + �0c2r � u0 = 0: (5.8b)

Assuming small acoustic disturbances, i.e., �0 � �0, we may neglect the second
order term in the background ow u0 in Equation (5.8a).

Next, we apply separation-of-variables and assume time-harmonic condi-
tions. We seek acoustic solutions u0 and p0 to Equations (5.8) of the following
form:

u0(t; x; y) = e�i!t ~u(x; y); p0(t; x; y) = e�i!t~p(x; y): (5.9)

where ! denotes the acoustic angular frequency. Inserting these relations into
Equations (5.8), ignoring the second order term in the background ow u0 in
Equation (5.8a), and dividing by the common temporal part e�i!t, we obtain
the following equations in the spatial parts of the acoustic �elds:

�i!~u + (u0 � r)~u + (~u � r)u0 +
1
�0
r~p = 0; (5.10a)

�i!~p+ u0 � r~p+ �0c2r � ~u = 0: (5.10b)

To reduce this system, Equation (5.10a) gives us:

~u = �
i
!

�
1
�0
r~p+ (~u � r)u0 + (u0 � r)~u

�
= �

i
!�0
r~p+O(u0); (5.11)
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and by inserting this into Equation (5.10b), we �nd:

� i!~p+ u0 � r~p�
i�0c2

!
r �
�

1
�0
r~p+ (~u � r)u0 + (u0 � r)~u

�
= 0: (5.12)

Next, we will neglect all second order terms in the background ow u0, assuming
low Mach numbers, i.e. ku0k � c. Exploiting again Equation (5.11) in the
above, we then obtain the following equation in the spatial part of acoustic
pressure only:

� i!~p+ u0 � r~p�
ic2

!
r2 ~p�

c2

!2r �
�

(r~p � r)u0 + (u0 � r)r~p
�

= 0: (5.13)

To simplify Equation (5.13), we use the following identity for two arbitrary
vector functions a = (a1; a2) and b = (b1; b2):

r �
�

(b � r)a+ (a � r)b
�

=

2
�
@xa � rb1 + @ya � rb2

�
+ (a � r)(r � b) + (b � r)(r � a); (5.14)

which may be veri�ed by straightforward calculations. Taking a = u0 and
b = r~p in the above yields:

r �
�

(r~p � r)u0 + (u0 � r)r~p
�

=

2
�
@xu0 � r@x~p+ @yu0 � r@y ~p

�
+ (u0 � r)(r2 ~p) + (r~p � r)(r � u0): (5.15)

Now, taking the divergence of (5.11), and inserting this into (5.10b), we �nd:

r2 ~p = �
w2

c2
p+O(u0): (5.16)

Next, we may insert Equation (5.15) into Equation (5.13), using the above
relation, neglecting again higher order terms in the background ow u0, and
exploiting the incompressibility of the background ow r � u0 = 0. After some
manipulations we �nd:

r2 ~p+
!2

c2
~p+

2i
!

� !2

c2
u0 � r~p� @xu0 � r@x~p� @yu0 � r@y ~p

�
= 0: (5.17)

Finally, we may de�ne the wave number k � !=c, and introduce an acoustic
source f on the right hand side. This gives us:

r2 ~p+ k2 ~p+
2i
!

�
k2u0 � r~p�

@u0

@x
� r

@~p
@x
�
@u0

@y
� r

@~p
@y

�
= f: (5.18)

Equation (5.18) is a second order partial di�erential equation for the spatial
part ~p of the acoustic pressure disturbance, with given angular frequency ! and
speed of sound c, and based on a given background ow u0. We note that the
terms in the parenthesis relate to the background ow u0 and its gradient ru0.
When the background ow vanishes, the equation reduces to the usual inhomo-
geneous Helmholtz equation. We emphasize in particular, that its derivation
relies on a linearization of the governing equations, that time-harmonic condi-
tions are assumed, and that second order e�ects in the background ow have
been neglected, i.e., low Mach numbers M � kuk=c are assumed.
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The associated boundary conditions on the hard wall and the symmetry edge
are:

r~p � n = 0 on �w [ �s: (5.19)

The treatment of the arti�cial truncation boundaries �, however, is less trivial
[Givoli, 2008; Becache et al., 2004; Redon et al., 2011]. Here, waves must be
allowed to propagate out of the domain, and, at the same time, reections back
into the domain must be avoided. We treat the truncation boundaries using the
mode matching formulation [Astley, 1996], based on a modal decomposition, a
method closely related to the so-called Dirichlet-to-Neumann map [Redon et al.,
2011].

The crux of the mode matching method is to assume that the acoustic pres-
sure on the truncation boundaries � may be expressed as linear combinations
of so-called acoustic duct modes, giving the following relations for the acoustic
pressure and its normal derivative:

~p(x; y) =
N�mX

n=1

b�n �
�
n (y) � ~p� on �; (5.20a)

r~p(x; y) � n = �
@~p
@x

(x; y) = �
N�mX

n=1

b�n �n�
�
n (y) on �; (5.20b)

where �n are the acoustic duct modes, �n are the associated (complex and
signed) wave numbers, bn are the expansion coe�cients, and Nm is the �nite
(and small) number of modes. The subscript indicates direction of propaga-
tion, such that forward propagating modes are speci�ed on the boundary +,
and backward propagating modes on the boundary �. This will be explained
further in Section 5.5 below.

The mode matching method involves two steps: In the �rst step, the acoustic
duct modes, i.e., the functions �n and the wave numbers �n, are determined.
In the second step, the weights bn of the modes on �, as well as the acoustic
pressure ~p over the entire domain 
 are determined.

For the �rst step, we assume that the truncation boundaries � are placed
far away from acoustic sources and geometric undulations, such that the back-
ground ow u0 is independent of x and normal to �. With these assumptions,
Equation (5.18) evaluated on the truncation boundaries simpli�es to:

@2 ~p
@x2 +

@2 ~p
@y2 + k2 ~p+

2i
!

�
k2u0

@~p
@x
� u00

@2 ~p
@x@y

�
= 0; (5.21)

where u0 = u0(y) is the horizontal background ow velocity, and u00 = du0=dy
its derivative. From Equation (5.19), the boundary conditions are:

u00 = 0 for y = 0; R; (5.22)

where R is the height of the duct. We are interested in the weak form of
Equation (5.21) which reads: given !, k, and u0, �nd ~p such that

Z

�

eP
h@2 ~p
@x2 +

@2 ~p
@y2 + k2 ~p+

2i
!

�
k2u0

@~p
@x
� u00

@2 ~p
@x@y

�i
dy = 0; (5.23)
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for all test functions eP. The modes are then determined by solving an eigen-
value problem based on Equation (5.23) while using the homogeneous Neumann
boundary conditions in Equation (5.22).

For the second step, we consider the weak forms of the system (5.18)-(5.19)
for the acoustic pressure over the domain 
, and of the modal relation (5.20a)
on the truncation boundaries �. These read: given !, k, f , and u0, �nd ~p and
~p� such that

Z

�

eP(r~p � n) ds�
x




r eP � r~p dA+
x




eP
h
k2 ~p� f

+
2i
!

�
k2u0 � r~p�

@u0

@x
� r

@~p
@x
�
@u0

@y
� r

@~p
@y

�i
dA = 0; (5.24a)

Z

�

eF�
�
~p� ~p�

�
ds = 0; (5.24b)

for all test functions eP; eF�. These equations are then solved using the Neumann
boundary conditions (5.20b) on the truncation boundaries.

5.3 Isogeometric Method

We solve the coupled ow-acoustic problem numerically using B-spline based
isogeometric analysis. We follow closely the approach in Chapter 3, from where
only the central parts are repeated in the following, and we primarily focus on
the acoustic model.

Geometry Model

Referring to Figure 5.3, we construct a parametrization of the model domain
of the form X =

P
i xiP

g
i for i = 1; : : : ; Ng

var, where Pgi are tensor product B-
splines, xi are control points, and Ng

var is the number of terms. The geometry
parametrization serves as foundation for both the ow model and the acoustic
model.

X[0; 1]2


y

x

�

�

Figure 5.3: Parametrization of the model domain.
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Flow Model

As for the geometry, approximations of the background ow velocity u0 and
pressure p0 are constructed in the form f =

P
i f iP

f
i for i = 1; : : : ; Nf

var, where,
for each of the three state variables f 2 fu0; v0; p0g, Pfi are tensor product B-
splines, f i are control coe�cients, and Nf

var is the number of terms. From these
approximations, we may obtain a system of non-linear equations of the form

K(U)U = F ; (5.25)

where U is the vector of unknown control coe�cients for the background ow
velocity and pressure, and the system matrix K and the right hand side vector
F are given by Equations (3.10){(3.11) with f = 0.

Acoustic Model

The acoustic model involves two steps: The �rst step determines the acoustic
duct modes on the truncation boundaries �, i.e., the functions �n and the wave
numbers �n. The second step determines the weights bn of the modes on � as
well as the acoustic pressure ~p over the entire domain 
.

Acoustic Duct Modes

To determine the acoustic duct modes, we approximate the pressure in the
regions far upstream and far downstream by the following expression:

~p(x; y) =
nX

‘=1

a‘(x)M‘(y) ; (5.26)

whereM‘ are univariate B-splines de�ned over the parameter domain � 2 [0; 1],
M‘ are their image in physical space, and thus functions of y, c‘ are expansion
coe�cients that are functions of x, and n is the number of terms in the expan-
sion.

Due to the properties of B-splines, the boundary condition (5.22) for the
acoustic pressure on the straight parts of the hard wall �w and the symmetry
edge �s may be ful�lled a priori by choosing a1 = a2 and an = an�1, or,
equivalently, by replacing the approximation (5.26) by

~p(x; y) =
n�2X

‘=1

b‘(x)N ‘(y) ; (5.27)

where

N1 =M1 +M2; b1 = a1 + a2;
N2 =M3; b2 = a3;

...
...

Nn�3 =Mn�2; bn�3 = an�2;
Nn�2 =Mn�1 +Mn; bn�2 = an�1 + an:
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By inserting the approximation (5.27) into the Equation (5.23) on the trun-
cation boundaries, using N k(y) as test functions, and pulling the integrals back
to parameter domain [0; 1], the following system of ordinary di�erential equa-
tions is obtained:

R �b +
2i
!

S _b + T b = 0 ; (5.28)

where dot denotes di�erentiation with respect to x, and

Rk;‘ =
Z 1

0
NkN‘ y0 d� ; (5.29a)

Sk;‘ =
Z 1

0
Nk
�
k2 u0N‘ � u00 y

0�1N 0‘
�
y0 d� ; (5.29b)

Tk;‘ =
Z 1

0
Nk
�
y0�2N 00‘ � y

00 y0�3N 0‘ + k2N‘
�
y0 d� ; (5.29c)

b =
�
b1(x) : : : bn�2(x)

�T ; (5.29d)

for k; ‘ = 1; : : : ; n � 2, where prime denotes di�erentiation with respect to �.
The second order system (5.28) can be rewritten as the �rst order system

�
I 0
0 R

� � _b
_c

�
=
�

0 I
�T � 2i

! S

� �
b
c

�
: (5.30)

By solving the generalized eigenvalue problem
�

0 I
�T � 2i

! S

� �
b
c

�
= �

�
I 0
0 R

� �
b
c

�
; (5.31)

we obtain 2n � 4 pairs of eigenvalues, �k, and eigenvectors, (bk ck)T . Each
eigenvalue represents a (complex and signed) wave number, and each eigenvector
corresponds to a (complex) acoustic duct mode

�k(y) =
n�2X

‘=1

b‘;kN ‘(y) : (5.32)

As demonstrated in section 5.5 below, a �nite and small number of modes
Nm with purely imaginary propagation constant � are found in practice, while
the number of modes with propagation constant with non-vanishing real part
is bounded only by the numerical discretization. We base the mode matching
formulation on the former propagative modes, while the latter evanescent modes
are neglected.

Acoustic Pressure

To compute the acoustic pressure ~p over the entire domain, and the weights bn
of the modes on the truncation boundaries, we will, as for the geometry and the
background ow variables, seek solutions of the following form:

~p =
N ~p

varX

i=1

~piR~p
i ; (5.33)
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where the basis functions P ~p are tensor product B-splines, ~pi are the unknown
control variables to be determined, and N ~p

var is the number of terms.
As test functions in the weak formulation of the governing equations (5.24),

we use the basis functions P ~p and the (B-spline approximations from above
of the) propagative acoustic duct modes ��. By inserting the acoustic �eld
approximation (5.33) and the acoustic duct mode approximation (5.32) into
these equations, exploiting the Neumann boundary condition (5.20b), rearrang-
ing terms and interchanging order of integration and summation, we arrive at
the following system of linear equations:

"
�D + k2M + 2i

!

�
k2L�Q

�
HB�

BTH �BTHB

# �
~p
b

�
=
�
f
0

�
(5.34)

where

Di;j =
x

[0;1]2
rP ~p

i � rP
~p
j det

�
J
�

d�; (5.35a)

Mi;j =
x

[0;1]2
P ~p
i P

~p
j det(J) d�; (5.35b)

Li;j =
x

[0;1]2
P ~p
i
�
u0 � rP

~p
j
�

det(J) d�; (5.35c)

Qi;j =
x

[0;1]2
P ~p
i

2X

m=1

(eTmr)u0 � (HP
~p
jem) det(J) d�; (5.35d)

Hi;j =
Z

[0;1]

P ~p
i P

~p
j k

0k d�; (5.35e)

Bi;k =
�
b‘;k if supp(P ~p

i ) \ � 6= ;
0 otherwise

; (5.35f)

�k;‘ = �k;l�k; (5.35g)

fi =
x

[0;1]2
P ~p
i f det

�
J
�

d�; (5.35h)

for i; j = 1; : : : ; N ~p
var and k; ‘ = 1; : : : ; Nm, where �k;l is the Kronecker delta.

Gradients and Hessians may be found from Equation (3.3). Here, the \sti�ness"
matrix D and the \mass" matrix M appear independently of the background
ow, whereas L is due to the ow �eld u0, and Q is due to the gradient of the
ow �eld ru0.

Implementation

For the geometry parametrization, we take Pgi as bi-quadratic tensor product
B-splines. For the ow approximations, we take Pui and Pvi as bi-quartic and Ppi
as bi-cubic, respectively, all C2 across knots, which corresponds to the Taylor-
Hood discretization u42

0p31
0 (d) in Table 3.1. For the acoustic approximation,

P ~p
i are taken as bi-quartic, unless otherwise stated.

Dirichlet boundary conditions, for which state variables are explicitly pre-
scribed, are enforced strongly by choosing the corresponding control variables
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appropriately. Neumann boundary conditions, for which normal derivatives of
state variables must vanish, are enforced weakly by equating the corresponding
boundary integrals to zero in the derivation of the weak form of the governing
equations.

5.4 Validation: Acoustic Duct Modes

In the following, we consider the propagation of sound waves in a straight duct
with uniform background ow, for which analytical solutions are readily avail-
able. We validate the coupled ow-acoustic model numerically by examining
how well the method is able to reproduce these analytical solutions.

� +

�w

�s



O
�

Figure 5.4: The modal problem.

The problem is outlined in Figure 5.4. It di�ers from the one described in
Figure 5.2 by the fact that a uniform background ow u0 = (U0; 0) is explicitly
prescribed, the interior acoustic source f has been removed, and the mode
matching boundary condition on the left boundary � has been replaced by an
explicit prescription of the acoustic pressure:

~p = ~p�n on �: (5.36)

Here, ~p�n is an analytical solution of Equation (5.18) for the acoustic pressure
�eld in a straight duct of height R with uniform background ow u0 = (U0; 0):

~p�n = exp
�
i�nx

�
cos
�
�ny

�
; (5.37)

where

�n = n�=R; (5.38a)

�n = �kM �
p
k2(1 +M2)� (n�=R)2 ; (5.38b)

where M � U0=c is the Mach number. This corresponds to the nth propagative
acoustic duct mode

�n(y) = cos
�
n�

y
R

�
; (5.39)

such that n �
p

1 +M2 k R =�, travelling towards �1.
To assess the quality of the method, we will use the normalized L2-norm of

the modulus of the pressure residual as error measure:

�2 =

s

 j~p� ~p�j2 dAs


 j~p
�j2 dA

: (5.40)

We investigate how this varies as the analysis mesh is re�ned by knot insertion,
and the number of degrees-of-freedom thereby increased. We use the parameter
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values for the duct size, sound frequency and ow speed as described in Table
5.1 in the following section, leading to two propagative modes n 2 f0; 1g.

We �rstly examine how di�erent approximations of the acoustic pressure
inuence the error convergence. Here, we consider the background ow U0 = 1
m s�1, the sound frequency f = 25 kHz, and the highest propagative mode
n = 1. For polynomial degrees q 2 f2; : : : ; 6g, we solve the problem for a
range of meshes, and evaluate the error using (5.40). The results are shown in

U0 = 1m s�1; f = 25kHz; n = 1

Nvar

�

Figure 5.5: Relative error � as a function of number of basis function Nvar for
di�erent polynomial degrees q.

Figure 5.5. By inspection of the slope of the curves, we note that the higher the
polynomial degree is, the higher the convergence rate also is. For polynomial
degrees q � 5, this holds only for su�ciently few degrees of freedom, presumably
because of rounding errors for more degrees of freedom. All following results
are based on a polynomial degree of q = 4.

Secondly, to illustrate the e�ect of the background ow on the acoustic wave
propagation, Figure 5.6 depicts the real part of the acoustic pressure in the
duct without ow (a), with ow U0 = 1 m s�1 (b), and the di�erence between
these (c), for the mode n = 1 and frequency f = 25 kHz. As expected, the
e�ect of background ow is to stretch the wavelength of the sound waves in the
downstream region.

Finally, we investigate the error convergence for di�erent background ows,
sound frequencies, and modes. For each combination of background ow U0 2
f0; 1g m s�1, frequency f 2 f20; 30g kHz, and mode n 2 f0; 1g, we solve the
problem for a range of meshes, and compute the error using (5.40). The results
are shown in Figure 5.7. We note that practically identical rates of convergence
are found independently of background ow, frequency, and mode.
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Figure 5.6: Real part of the acoustic pressure ~p using the background ow U0 = 0
(a), U0 = 1 m s� 1 (b), and the di�erence between these (c), for the mode n = 1 and
frequency f = 25 kHz.

Nvar

�

Figure 5.7: Relative error � as a function of number of basis functions Nvar for
di�erent background ows U0, frequencies f and modes n.

5.5 Results

In the following, we use the coupled ow-acoustic model to examine how the
duct geometry a�ects how the acoustic signal depends on sound frequency and
ow speed.
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Figure 5.8: Design of the numerical experiment: We investigate 3 geometries (a, b,
and c), and prescribe the ow at the inlet (blue arrows) and the sound excitation in
the middle (red circles).

Setup of Numerical Experiment

The numerical experiment is sketched in Figure 5.8. To assess the geometric
e�ects, three di�erent geometries are investigated: a straight duct (a), a duct
with a single bulge (b), and a corrugated duct (c). The ow is varied by pre-
scribing, for di�erent mean ow speeds U0, a parabolic velocity pro�le at the
inlet boundary:

u0 =
3
2
U0

�
1�

� y
R

�2 �
; v0 = 0; on � : (5.41)

The sound excitation is varied by assuming, for di�erent angular frequencies !,
a smooth, compactly supported acoustic source, centered at (0; r0), where r0 is
the height of the duct in x = 0, with the following form:

f(x; y) = f0 	(x; 0; Lx) 	(y; r0; Ly); (5.42)

where f0 denotes the strength of the source, L its spatial extent, and the foot-
print function 	 is given by:

	(x; a; b) =

(
e�

1
1��2 for j�j � jx�ab j < 1

0 otherwise
: (5.43)

The parameter values used in the numerical experiment for the geometry, the
uid, and the sound excitation are summarized in Table 5.1. With R as charac-
teristic length scale, and U0 as ow speed, this corresponds to Reynolds numbers
up to Re ’ 1 � 103 and Mach numbers up to M ’ 3 � 10�3.

Flow Field and Acoustic Modes

We �rstly investigate the background ow. Figure 5.9 depicts the ow �elds in
the three di�erent duct geometries using the ow speed U0 = 1 m s�1. In the
straight duct (a), the parabolic velocity pro�le is naturally conserved down the
duct. In the bulged duct (b) and the corrugated duct (c), we notice that the
ow pro�le is only slightly perturbed in the vicinity of undulations. In addition,
a weak recirculation ow is seen in the bulges.
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Parameter Description Value Unit

� Dynamic viscosity 1 � 10�5 kg m�1s�1

� Background density 1 kg m�3

c Speed of sound 340 m s�1

R Duct height 1 cm
L Duct length 20 cm
f Source strength 1 � 106

L = (Lx; Ly) Source size (2; 2) mm
f = !=2� Sound frequency 20{30 kHz
U0 Flow speed 0{1 m s�1

Table 5.1: Parameter values corresponding to propagation of ultrasound in air-�lled
narrow ducts are used.

a

b

c

[m s�1]

Figure 5.9: Flow speeds (colors) and stream lines (solid lines) using the mean speed
U0 = 1 m s� 1 in the straight duct (a), the bulged duct (b), and the corrugated duct
(c).

Next, we investigate how the acoustic duct modes vary with ow speed and
sound frequency. This is depicted in Figure 5.10. In a, a typical con�guration of
computed propagation constants � (scaled by k) is shown in the complex plane,
here with vanishing background ow U0 = 0, and frequency f = 25 kHz. The
propagation constants can be categorized as propagative/evanescent (on/o� the
imaginary axis), and as positive/negative (positive/negative imaginary part, or
vanishing imaginary part and strictly positive/negative real part). Four prop-
agative modes are found, two in each direction, in agreement with the analytical
values in Equation (5.38) with M = 0. The number of evanescent modes is
bounded only by the number of degrees of freedom of the discretization, and
only the �rst eight are shown here. We note that in the presence of a back-
ground ow, the symmetry of the propagative modes with respect to the real
axis vanishes, whereas the symmetry of the evanescent modes with respect to
the imaginary axis is maintained. In b, the modal functions � corresponding
to the propagation constants in a are shown, with propagative modes drawn in
solid, and evanescent modes in dashed. These agree with the analytical modes in
Equation (5.39). In c, the imaginary parts of the propagation constants (scaled
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Figure 5.10: Acoustic duct modes for di�erent frequencies f and ow speeds U0.
a: propagation constants � for f = 25 kHz and U0 = 0. b: mode functions � for
f = 25 kHz and U0 = 0. c: imaginary part of propagation constants � for U0 = 1 m s� 1

and f 2 [20; 30] kHz. d: mode function � residuals for U0 = 1 m s� 1 compared to
U0 = 0 for f = 25 kHz.

by k) corresponding to the four propagative modes for mean speed U0 = 1 m s�1

are shown as a function of frequency in the range f 2 [20; 30] kHz, plotted as
the residual compared to the case without ow as given by Equation (5.38)
with M = 0. The perturbations in the propagation constants due to the ow
are largest for the second mode n = 1, but are in general small and . 0:1h.
Finally in d, the four propagative modal functions for mean speed U0 = 1 m s�1

and frequency f = 25 kHz are depicted. The plot shows the modal function
residuals compared to the corresponding modal functions without ow, as shown
in a and given in Equation (5.39). Perturbations are of opposite sign for positive
and negative modes, and the perturbations are again in general small, with the
largest perturbations � 2% found for the �rst mode n = 0.

Acoustic Field Sensitivity

To quantify the acoustic response by a single entity when examining how it
changes with sound frequency and ow speed, we consider the relative modulus
of the symmetry deviation of the acoustic pressure:

h�~pi =

s

 j~p(x)� ~p(�x)jdAs


 j~p(x)jdA
: (5.44)
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Since the geometries and the acoustic excitation are all symmetric around x = 0,
any asymmetry in the acoustic pressure �eld arises due to the background ow.
As such, this quantity is a measure of how strongly the sound signal is coupled to
the ow �eld. For reference, we also examine the mean modulus of the acoustic
pressure:

h~pi =

s

 j~p(x)jdAs


 dA
: (5.45)

To investigate the sensitivity of the sound signal to the frequency for a
given ow speed, we compute the mean acoustic pressure h~pi and the relative
symmetry deviation in the acoustic pressure h�~pi for frequencies in the range
f 2 [20; 30] kHz with �xed ow speed U0 = 1 m s�1. The results are shown in
Figure 5.11 for each of the three duct geometries. On the top plot, no signi�cant

h
~p
i

[P
a
]

h�
~p
i

f [kHz]

Figure 5.11: Mean acoustic pressure h~pi using the ow speed U0 = 0 m s� 1 (bottom),
and relative symmetry deviation h�~pi using the ow speed U0 = 1 m s� 1 (top) as a
function of frequency f for the three duct geometries.

changes in the degree of asymmetry are found for the straight duct (a), while
the bulged duct (b) shows minor changes with frequency. For the corrugated
duct (c), however, strong peaks are seen in the h�~pi response. The strongest
peak occurs for frequencies close to f = 24:7 kHz, where the signal experiences
an increase by a factor of up to � 10. From the bottom plot, the peaks in
h�~pi for the corrugated duct (c) are seen to occur close to local minima in the
mean acoustic pressure h~pi that fall between strong peaks in the h~pi response
associated with resonances in the duct.

To further illustrate the phenomenon observed in the frequency sweeps above,
Figure 5.12 depicts the modulus of the acoustic pressure �eld using the frequency
f = 24:7 kHz and the ow speed U0 = 1 m s�1 in each of the three duct geome-
tries. Both the straight duct (a) and the bulged duct (b) exhibit a high degree
of symmetry in the acoustic pressure �eld. In the corrugated duct (c), however,
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Figure 5.12: Modulus of the acoustic pressure �eld ~p using the frequency f = 24:7 kHz
and ow speed U0 = 1 m s� 1 in the straight duct (a), the bulged duct (b), and the
corrugated duct (c).

there is a clear di�erence between the upstream and the downstream acoustic
�elds.

To investigate the sensitivity of the sound signal to the ow speed for a
given frequency, we compute the relative symmetry deviation in the acoustic
pressure h�~pi for ow speeds in the range U0 2 [0; 1] m s�1 with �xed frequency
f = 24:7 kHz. The results are shown in Figure 5.13 for each of the three duct
geometries. For all three ducts, a close-to-linear dependency upon ow speed is

h�
~p
i

U0 [m s�1]

Figure 5.13: Relative symmetry deviation in the acoustic pressure h�~pi as a function
of ow speed U0 using the frequency f = 24:7 kHz for the three duct geometries.

observed. We note in particular that the slope of the curve for the corrugated
duct (c) is signi�cantly larger than the slope of the curve for the straight duct
(a) as well as for the duct with a single bulge (b).

The results clearly show that we have identi�ed a combination of duct geom-
etry and sound frequency where the acoustic signal is particularly sensitive to
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the background ow. The coupling seems to be related to the parabolic velocity
pro�le in the duct interior. Similar results are found when explicitly prescribing
a parabolic velocity pro�le in the entire domain, whereas the e�ect is diminished
when prescribing a constant velocity pro�le.

We conclude by noting that if more (evanescent) modes are used in the
mode matching formulation for the acoustic truncation boundary conditions,
by increasing Nm, practically identical results are found. If the mode matching
formulation is replaced by a suitably scaled perfectly matched layer (PML)
formulation [Becache et al., 2004; 2006; Givoli, 2008; Berm�udez et al., 2008],
using, e.g., a linear absorbing function in a PML of width 10%, equivalent
results to within � 2% are found, although the improved error convergence rates
for higher order polynomial approximations of the acoustic pressure have been
found to be somewhat compromised in this formulation. If di�erent footprints
of the acoustic source are used, by changing L, qualitatively similar results
are found. Still, the phenomenon so far only exists in a numerical model and
lacks experimental validation. Nevertheless, it points towards the potential
importance of the geometry on ow sensitivity for acoustic wave propagation,
and shape optimization could likely enhance the e�ect.

5.6 Conclusions

In this chapter, we have presented a coupled ow-acoustic model of the prop-
agation of sound through a moving uid in a 2-dimensional duct based on iso-
geometric analysis. The model explicitly couples the non-linear, steady state,
incompressible Navier-Stokes equation in the laminar regime to a linear, time-
harmonic acoustic equation in the low Mach number regime, using both the
background ow and its gradient as input. Acoustic boundary conditions along
arti�cial truncation boundaries were dealt with using a mode matching for-
mulation. The model has been validated against known acoustic modes in 2-
dimensional ducts. These tests clearly supported the robustness of the method.
In particular, desirable error convergence properties were observed for higher or-
der polynomial approximations of the acoustic pressure, and these are naturally
embedded in isogeometric analysis. Using the model, acoustic signal changes vs.
duct geometry have been examined as a function of frequency and background
ow values. A combination of duct geometry and sound frequency was identi�ed
for which the acoustic signal is particularly sensitive to the background ow.
This enhanced sensitivity deserves closer examination in future studies.
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Chapter 6

Extensions and Outlook

This chapter presents, in a somewhat fragmented manner, a short collection
of additional investigations made within isogeometric analysis and shape opti-
mization in uid mechanics. Strategies for construction of parametrizations of
domains interiors, and applications of isogeometric shape optimization to design
of idealized airfoils are discussed. The chapter is concluded by a summary of
future research directions within the �eld.

6.1 Parametrizations of Domain Interiors

One challenge in isogeometric analysis is to construct a parametrization of the
interior of a domain from a parametrization of its boundary, assuming the latter
is given, or equivalently, to specify the interior control points from the boundary
control points [Xu et al., 2010; Cohen et al., 2010; Gravesen et al., 2010]. This
is sketched in Figure 6.1. The challenge is greatly enhanced in isogeometric
shape optimization: as described in Section 4.3, when the parametrization of
the boundary is changed in each optimization step by moving the boundary
control points, the parametrization of the interior must be updated as well by
moving the interior control points. Below, we describe two strategies for tackling
this challenge.

?

Figure 6.1: Challenge: How do we go from a parametrization of the boundary of a
domain to a parametrization that includes the interior of the domain?
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Conformality: the Winslow functional

In this methodology, the goal is to construct as conformal a parametrization as
possible [Gravesen et al., 2010; Nguyen et al., 2011]. For a conformal parametriza-
tion, isoparametric lines intersect at right angles, and the mesh therefore consists
of \nice" quadrilaterals.

To construct a measure of conformality, we consider a parametrization X,
its Jacobian J , and its �rst fundamental form g:

X(�; �) =
�
x(�; �) y(�; �)

�
; (6.1a)

J(�; �) =

 
@x
@�

@x
@�

@y
@�

@y
@�

!

; (6.1b)

g(�; �) = JTT : (6.1c)

Conformality of the parametrization X implies that the Jacobian J is the prod-
uct of a scaling and a rotation, or equivalently that the �rst fundamental form
g is diagonal with identical diagonal elements. If we let �1 and �2 denote the
eigenvalues of g, we want �1 = �2 to have conformality. We easily �nd that:

�p
�1 �

p
�2
�2

p
�1�2

=
�1 + �2 � 2

p
�1�2p

�1�2
=
�1 + �2p
�1�2

� 2

From this, we may de�ne the function W :

W =
�1 + �2p
�1�2

=
tr(g)

p
det(g)

=
(@x@� )2 + (@x@� )2 + (@y@� )2 + (@y@� )2

@x
@�

@y
@� �

@y
@�

@x
@�

; (6.2)

where
p

det(g) = det(J). As such, W is a pointwise measure of conformality.
From the function W , we may de�ne the Winslow functional W as the integral
of W . This is thus a global measure of conformality.

Now, we may seek a parametrization of the domain that minimizes the
Winslow functionalW, and has  as its boundary. To ensure a valid parametriza-
tion, we must have det(J) > 0 in the interior. We therefore seek a parametriza-
tion X as the argument of the following constrained optimization problem:

minimize
X W =

x

[0;1]2
W d� d� ; (6.3a)

such that Xj@
 =  ; (6.3b)
det(J) > 0 : (6.3c)

In the framework of B-spline based isogeometric analysis, the optimization
problem (6.3) is discretized using the B-spline parametrization in Equation
(2.12). The design variables are then the coordinates of the interior control
points. The Winslow functional (6.3a) may be evaluated directly from the
parametrization. The boundary constraint (6.3b) is easily ful�lled by �xing
the boundary control points. The constraint on the determinant of the Ja-
cobian (6.3c) may be evaluated by writing it as a new spline (with increased
polynomial degrees and knot multiplicities), and then using the control variables
of this spline as constraints, using the convex hull property of splines.
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Analysis Consistency: Multimesh Residual

In this methodology, the goal is to construct a parametrization that makes the
analysis as consistent as possible. By a consistent analysis, we mean a numeri-
cal solution of the governing equations that does not depend (strongly) on the
numerical discretization used. We may term this an analysis-aware parametriza-
tion [Xu et al., 2010; Cohen et al., 2010].

K h1Uh1 = Fh1 K h2Uh2 = Fh2

Figure 6.2: Illustration of the focus of an analysis-aware parametrization based on
the multimesh residual.

To construct a measure of analysis consistency, we consider the discrete form
of the governing equations at two di�erent discretizations, or mesh resolutions:

KhiUhi = Fhi ; (6.4)

for i = 1; 2. Here, h1 corresponds to a coarse mesh, and h2 < h1 corresponds
to a �ne mesh. An obvious choice is to take h1 = 2h2, i.e., to construct the h2-
mesh by uniform knot insertion in the h1-mesh, as sketched in Figure 6.2. We
may consider the norm squared di�erence between the two solutions of Equation
(6.4) as a measure of analysis consistency:

R =
Uh2 � Th1!h2Uh1

2 ; (6.5)

where Uh1 and Uh2 are the solution vectors on the coarse and the �ne mesh,
respectively, and Th1!h2 is the matrix that puts the coarse mesh solution Uh1

in the basis of the �ne mesh solution Uh2 , cf. Theorem 3. To ensure a proper
balancing between velocity and pressure control variables contained in Uhi , both
the �ne solution vector and the mapped coarse solution vector are normalized
with respect to the �ne solution vector:

Uhi =

 
uhi

k(uh2
;vh2

)k
;

vhi
k(uh2

;vh2
)k
;
phi
kph2

k

!T
: (6.6)

The measure (6.5) was originally suggested by [Hogan, 2010, Personal commu-
nication], and we refer to it here as a multimesh residual.

Based on this measure, we may seek a parametrization X of the computa-
tional domain as the argument of the following optimization problem:

minimize
X R =

Uh2 � Th1!h2Uh1

2 ; (6.7a)

such that Xj@
 =  ; (6.7b)
KhiUhi = Fhi for i = 1; 2; (6.7c)
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By minimizing the multimesh residual (6.5), we bring the solutions of the gov-
erning equations at two di�erent meshes as close to each other as possible, and
we expect, all other things being equal, to have a more reliable analysis.

We mention that the multimesh residual approach in principle may serve
as error estimator based on any quantity c(hi), by minimizing, e.g., ( c(h2) �
c(h1) )2.

A Numerical Example

To illustrate the above procedures at work, we consider the initial parametriza-
tion in Figure 6.3a. From this, we may �nd alternative parametrizations by
solving the optimization problems (6.3) and (6.7) using the isogeometric opti-
mization approach outlined in Chapter 4.

Both procedures require the speci�cation of an initial parametrization, i.e.,
an initial control net, from which the optimizations may proceed. This may be
done manually, or by, e.g., a simple linear spring model [Nguyen et al., 2011].
For simplicity, we base the multimesh residual on the linear Stokes problem,
using a parabolic horizontal velocity pro�le speci�ed along the upper left (in-
let) boundary, no-slip along the side (wall) boundaries, and outow boundary
conditions on the lower right (outlet) boundary.

a b c

Figure 6.3: Parametrization of a pipe bend: initial (a), Winslow functional (b), and
multimesh residual (c).

The results for the Winslow functional and the multimesh residual based
methods are shown in Figures 6.3a and 6.3b, respectively. The methods agree
on the �ne resolution of the sharp inner corner. Some di�erences are seen in the
curved outer corner and along the straight parts. We speculate that the multi-
mesh residual method may be too inuenced by parts of the domain where the
�elds taken on high values. A more appropriate normalization of the �eld vari-
ables could possibly resolve the issue. In terms of implementation, the Winslow
functional approach is cheaper to calculate, compared to the multimesh resid-
ual, where the governing equations must solved in each step. In addition, the
Winslow optimization converged in fewer iterations, compared to the multimesh
residual optimization.
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Linearization

In a shape optimization framework, solving the interior optimization problem
(6.3) or (6.7) in each boundary optimization iteration is not only expensive, it
also deteriorates the di�erentiability of the objective and constraint functions,
and hence prohibits the use of gradient-based optimization. This problem may
be circumvented by the following approach: �rst we �nd a good parametrization
by minimizing the given measure M using (6.3) or (6.7). Using these control
points x0, we subsequently approximate the measure by its 2nd order Taylor
expansion:

M(x0 + �x) �M0 + (r0M)T�x+
1
2

(�x)TH0(M)�x; (6.8)

where M0, r0M, and H0(M) denote the measure, its gradient and its Hes-
sian evaluated in x0, respectively. Now we may minimize the 2nd order Taylor
expansion of the measure, which then leads to a linear problem. To increase
the reliability of the method, the linearization must be updated now and then.
Using the Winslow functional, the linearization may be used, e.g., until the
parametrization becomes (close to) singular, at which point the procedure is
repeated. The optimization results presented in Chapter 4 all rests on this pro-
cedure for parametrizing the interior, and it has been found to be quite robust
and e�cient. More details may be found in [Gravesen et al., 2010; Nguyen et al.,
2011].

Conclusions

The construction of an interior parametrization is important, since it a�ects the
analysis results, and hence also the shape optimization results. Two optimiza-
tion methodologies for parametrizing a given domain from parametrization of its
boundaries have been examined. The Winslow functional based method focuses
on conformality, whereas the multimesh residual based method focuses on anal-
ysis consistency. In a shape optimization framework, we have good experience
with the linearization of the former. Further investigations are recommended
for the latter.

6.2 Design of Idealized Airfoils

Design of airfoils is a classical engineering task within aerodynamics [Moham-
madi and Pironneau, 2010; Painchaud-Oullet et al., 2006]. Within the last
decades, the concept of micro air vehicles (MAVs) has emerged, see e.g. [Mueller,
2009; Tanaka and Wood, 2010]. MAVs are interesting in the present context, be-
cause the assumptions of incompressibility, steady state, and moderate Reynolds
numbers, may be partly justi�ed. The aim in the following is to set up an iso-
geometric framework for optimal designs of airfoils under such highly idealized
ow conditions. We aim at designing a �xed-wing airfoil to minimize the drag
of the ow past it, subjected to a constraint on its lift, as well as constraints
on its area and thickness, and we present some preliminary results. This is a
natural extension of the minimal drag body optimization problem considered in
Section 4.5.
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Optimization Problem

As above, we consider the exterior ow in 2 dimensions around the airfoil de-
picted in Figure 6.4. We assume the uid to be Newtonian, isothermal and
incompressible, and the ow is assumed to be stationary. With the dynamic
viscosity � and the density � of the uid given, the velocity u and pressure p
of the ow past the airfoil are then governed by the steady-state Navier-Stokes
equation and the incompressibility condition, supplemented by suitable bound-
ary conditions, cf. Equations (2.4){(2.5).

FAL

D
l

x

y

O
T

e1

A

�

-
6

Figure 6.4: Physical and geometrical quantities for the airfoil.

The aerodynamic quantities of interest are the drag (D) and the lift (L)
of the airfoil. These are the ow-wise parallel and perpendicular components,
respectively, of the aerodynamic force FA on the airfoil, see Figure 6.4. We
write the aerodynamic force as:

FA =
Z



�n ds =
Z



�
� pI + �

�
ru+ (ru)T

��
nds; (6.9)

where � is the shear stress tensor, I the identity matrix, and n is the airfoil-wise
outward unit normal. We design the airfoil to minimize the drag coe�cient CD
and prescribe a minimal lift coe�cient CL

CD =
D

1
2�u2

1l
=
F � e1
1
2�u2

1l
; (6.10a)

CL =
L

1
2�u2

1l
=
F � ê1
1
2�u2

1l
; (6.10b)

where u1 is the undisturbed far �eld ow speed, l is the chord length, e1 is
the unit vector along the undisturbed far �eld ow direction and ê1 its normal
vector.

The geometric quantities of interest are the airfoil cross-sectional area A, and
the thickness T , e.g. at points close the leading and trailing edges, see Figure
6.4. The area may be determined by the line integral along the closed airfoil
curve:

A =
1
2

�Z



x dy �
Z



y dx
�
; (6.11)

The thickness at a given point x� along the chord is given by:

T (x) = y(�u)� y(�l) s.t. x(�u) = x(�l) = x�; (6.12)
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where (�) = (x(�); y(�)), and the superscripts u and l refer to the upper and
lower part of the closed airfoil curve, respectively. We constrain the area and
the thicknesses by prescribing minimal allowed values.

The optimization problem reads:

minimize
(x)

eCD = CD + � R (6.13a)

such that CL � CLmin (6.13b)
A � Amin (6.13c)

Ti � Tmin
i (6.13d)

0 = �(u � r)u+rp� �r2u in 
 (6.13e)
0 = r � u in 
 (6.13f)
u = u1 on �D (6.13g)
0 = (�rui � eip) � n on �N (6.13h)
xl � x � xu (6.13i)
Ax = b: (6.13j)

Here, Equations (6.13a){(6.13d) express the objective and constraint functions,
(6.13e){(6.13h) are the governing equations and boundary conditions, and (6.13i){
(6.13j) establish bounds on and linear relations between the design variables x
that parametrize the airfoil . The last term in the objective function ~CD in
Equation (6.13a) is included for regularization purposes.

Isogeometric Implementation

To solve the optimization problem (6.13), we follow the approach outlined in
Chapters 3{4.

To construct the geometry, we consider Figure 6.5. The airfoil is embedded in
a computational ow domain whose exterior boundary extends 15 chord lengths
upstream and sidewards, and 30 chord lengths downstream. A parametrization
of the ow domain is constructed from bi-quadratic tensor product B-splines,
and we choose to parametrize the ow domain using 6 patches. The airfoil
curve is represented as one of the patch boundary segments. This con�guration
of patches facilitates implementation of di�erent boundary conditions, as well as
local re�nement around the airfoil and downstream of it (by �xing the airfoil and
rotating the surrounding geometry by a prescribed angle of attack), although
more e�cient local re�nement techniques could be used with advantage (see
below).

The design variables xi are the coordinates of the control points correspond-
ing to the patch boundary in Figure 6.5 that de�ne the shape of the airfoil.
These control points are shown in Figure 6.6. For simplicity we keep the chord
length l and orientation constant throughout the optimization. This is done
by �xing the rightmost control point in both directions x0 = (l; 0), �xing the
leftmost control points in the horizontal direction such that x6 = x7 = 0, while
demanding that y6 = �y7, and �nally choosing xi � xl = 0, xi � xu = l
for i = 1; : : : ; 12. Additionally, we prescribe yi � yu = 0 for i = 1; : : : ; 6 and
yi � yl = 0 for i = 7; : : : ; 12 to avoid self-intersection of the curve.

For the analysis, we take the density and viscosity as � = 1 kg m�3 and
� = 1 � 10�5 kg m�1 s�1, approximately corresponding to normal room condi-
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a

b

c

Figure 6.5: a: An approximate ellipse serves as �rst approximation of the airfoil.
b: A parametrization is constructed of the ow domain around the airfoil. Green and
red lines are isoparametric lines. c: The ow domain (solid) is split into six patches
(dashed).
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Figure 6.6: 14 control points de�ne the shape of the airfoil.

tions, and we use a chord length of l = 1 � 10�2 m, corresponding roughly to an
insect wing. Along the upstream exterior boundary �U we prescribe the veloc-
ity as u = u1Rz(�)e1 m s�1, where Rz(�) denotes the matrix that rotates the
Cartesian basis vector e1 by the prescribed angle of attack �, and use a (very
low) speed of u1 = 10 cm s�1, and along the airfoil  we assume no-slip condi-
tions u = (0; 0). The angle of attack is taken as � = 5�, and with this choice of
parameters, the Reynolds number is Re � 100. The velocity and pressure �elds
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are approximated using the Taylor-Hood discretization u42
0p31

0 (d) in Table 3.1.
For the optimization, we simply use the properties of the initial shape,

namely an approximate ellipse with major axis l=2 and minor axis l=20 as de-
picted in Figure 6.5 (a), as lower bounds on both the lift, area, and thicknesses
at the leading edge x = 0:15 l and trailing edge x = 0:85 l. The regularization
scaling parameter is taken as � = 10�2.

By applying the isogeometric shape optimization machinery to the problem,
we �nd an optimal shape in 29 iterations. Figure 6.7 compares the optimal
airfoil shape to the initial shape (a), as well as the location of the control points
before and after the optimization (b). The optimized shape is remarkably close
to the initial ellipse. A small change, however, is seen near the trailing edge.
The decrease in drag is accordingly small, namely only 1h (and some of the
change in the parametrization may very well be due to the regularization). All
constraints are active, except the trailing edge thickness. Larger shape changes
may of course be found by slacking the constraints, or equivalently by using a
worse initial guess.

a

b
��

Figure 6.7: Comparison of initial (dashed blue) and optimized (full black) airfoil
shape (a) and control net (b).

Conclusions

We have presented a framework for isogeometric shape optimization for design
of airfoils in highly idealized ow conditions. Such studies may �nd their rele-
vance for micro air vehicles (MAVs). The airfoils can be designed to minimize
the drag with both constraints on the lift, area, and thickness at speci�ed loca-
tions. We have presented some �rst numerical results, and we emphasize that
these are preliminary. On the analysis side, inspection of pressure and skin fric-
tion coe�cients along the airfoil should be made to validate the results. More
reliable results may be obtained, e.g., by the use of more e�cient local re�ne-
ment schemes. This would also facilitate studies at higher Reynolds numbers,
where most MAVs operate [Mueller, 2009], as higher Reynolds numbers in the
current setup requires too much computer memory. On the optimization side,
it could be considered to reformulate the problem slightly and maximize the
lift-over-drag ratio instead, and a multipoint optimization with several angles



86 CHAPTER 6. EXTENSIONS AND OUTLOOK

of attack could also be considered to make the design more robust. Studies of
the importance of shape regularization should also be addressed.

6.3 Outlook

This thesis represents but a small step within the �eld of isogeometric analysis
and shape optimization in uid mechanics. In many aspects, we have merely
scratched the surface, and the thesis leaves the �eld wide open with several
challenges for the future.

Firstly, the type of ow problems considered in this thesis are rather simple,
compared to most of the real-world ow phenomena we see around us. From
the stirring in a co�ee cup, to the ow past the wing on an airplane, most ows
are inherently turbulent. When turbulent ows are considered, the ow �elds
become non-stationary, small scale phenomena appear, and in addition, spatial
symmetries are broken [Frisch, 1995]. The full time-dependent Navier-Stokes
equations in three spatial dimensions must therefore be considered.

In the isogeometric framework, a substantial amount of research has been
made within modeling of turbulent ows using the so-called residual-based vari-
ational multiscale (RBVM) method, see e.g. [Bazilevs et al., 2007a; Akkerman
et al., 2010; Bazilevs and Akkerman, 2010; Bazilevs et al., 2010b; Akkerman
et al., 2011; Hsu et al., 2011]. This method has proven very applicable to, e.g.,
turbulent Taylor-Couette ow, to modelling of wind-turbine aerodynamics, and
to free-surface ows. Once again, the high continuity of the method seems to
play an important role. In the framework of shape optimization, objective and
constraints will dependent on time, which complicates matters [Mohammadi
and Pironneau, 2010]. We consider the application of, e.g., the RBVM method
to turbulent ow, as an important step towards optimization of shapes in more
realistic ow problems.

From a numerical modeling perspective, turbulent ows are much more chal-
lenging. Not only does the governing equation involve more terms, the number
of degrees of freedom required to do the analysis increases signi�cantly with the
Reynolds number [Frisch, 1995]. This put strict requirements on the amount
of computer memory. To speed up computations, high-performance parallel
computing may be used large scale problems are solved [Hsu et al., 2011]. Im-
plementation of the isogeometric shape optimization methodology in a more
e�cient computational framework would facilitate the consideration of more
advanced problems. This is another interesting challenge.

An important aspect in isogeometric analysis is the concept of local re�ne-
ment, i.e., the ability to have some parts of the parametrization �nely resolved
in the analysis, and other parts coarsely resolved. In modelling the ow past an
airfoil, e.g., we want to have a very �ne analysis mesh close to and downstream
of it, and a coarse mesh farther away from it. While local re�nement may be
achieved through the use of multiple patches based on tensor product B-splines,
signi�cantly more e�cient local re�nements may be achieved by other means.
We mention here T-splines [Bazilevs et al., 2010a; D�orfel et al., 2010], hierar-
chical splines [Vuong et al., 2011], and locally re�ned (LR) B-splines [Dokken,
2011, Personal Communication], that all represent viable ways of achieving lo-
cal re�nement. In the framework of isogeometric shape optimization for uids,
we consider this as a very important next step to achieve higher e�ciency and
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reliability.
Most real-world problems are coupled problems of di�erent nature. For the

airfoil, e.g., the structure itself is actually deformed under the aerodynamic loads
from the ow past it, which in turn changes the ow, and so on. Studies of iso-
geometric analysis to various uid-structure interaction problems have demon-
strated the applicability of the method [Bazilevs et al., 2006a; 2008]. Shape
optimization of uid-structure interaction problems would be a very interesting
challenge to take up.

The propagation of sound through ows represents another coupled problem,
here between ow and acoustics. The geometric enhancement of the acoustic
ow sensitivity for sound propagation through ow in ducts mentioned in Chap-
ter 5 deserves further investigations. Studies in 3 dimensions should be made.
Applications of the isogeometric shape optimization methodology to �nd duct
shapes that enhance the e�ect further are an obvious extension. Here, the for-
mulations of robust objective and constraint functions are the �rst challenges.
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Chapter 7

Conclusions

The aim of this thesis has been to bring together the �elds of uid mechanics,
isogeometric analysis, and shape optimization. The ow problems that have
been considered are governed by the 2-dimensional, steady-state, incompressible
Navier-Stokes equations at low to moderate Reynolds numbers. Studies within
ow acoustics have been made as well, where the sound signal is governed by a
linear, time-harmonic, background ow-dependent acoustic equation in the low
Mach number regime. Isogeometric analysis has been used as numerical method
both to solve the governing equations, and as framework for a gradient-based
optimization procedure.

Firstly, applications of isogeometric analysis to ows were studied. Splines
were used to approximate ow velocity and pressure, and numerical inf-sup
stability tests con�rmed the existence of many stable discretizations of the ve-
locity and pressure spaces. In particular it was found that stability may be
achieved by means of knot re�nement of the velocity space. Error convergence
studies compared the performance of the various discretizations and indicated
optimal convergence, in a per-degree-of-freedom sense, of the discretization with
identical polynomial degrees of the velocity and pressure spaces, but with the
velocity space enriched by knot re�nement. Finally, the method was applied to
the lid-driven square cavity for benchmarking purposes, showing that the stable
discretizations produce consistent results that match well with previous results
and thus con�rm the robustness of the method.

Secondly, applications of the isogeometric method to shape optimization
problems for uids were studied. In this formalism, objects in ows were de-
signed by optimizing the location of the control points that de�ne the shape
of the body using a gradient-based numerical optimization package. To avoid
inappropriate parametrizations during optimization, a regularization technique
was established by adding to the objective function a measure of the quality of
the parametrization. Based on a benchmark design problem, in which a pipe
bend was designed to minimize the pressure drop of the ow through it, the inte-
gral of the norm squared parametric acceleration along the design boundary was
found to be a cheap, exible and e�cient regularization measure. To emphasize
the robustness of the proposed isogeometric shape optimization methodology
for uids, two additional problems were considered. Based on Taylor-Couette
ow, we �rstly solved a shape optimization problem with a known solution, and
we found that the more design variables we use, the better the approximation

89
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to the exact solution we obtain. Secondly, we designed a body to minimize
the drag from the ow past it, and we found that the methodology allows for
signi�cantly di�erent optimal shapes as the ow speed is increased.

Thirdly, applications of isogeometric analysis to the propagation of sound
through ows in ducts were presented. A coupled ow-acoustic model of the
phenomenon was described. Acoustic boundary conditions along arti�cial trun-
cation boundaries were treated based on a mode matching formulation. The
model was validated against known acoustic modes in 2-dimensional ducts, and
desirable error convergence properties were observed for higher order polyno-
mial approximations of the acoustic pressure. Using the model, acoustic signal
changes vs. duct geometry were examined as a function of frequency and back-
ground ow values. We identi�ed a combination of duct geometry and sound
frequency for which the acoustic signal was particularly sensitive to the back-
ground ow, a phenomenon deserving closer examination in future studies.

Finally, miscellaneous studies within the �eld were presented. Two methods
for automated domain parametrizations in isogeometric analysis were studied,
supporting the Winslow functional as a robust mesh quality measure, and a
preliminary application of isogeometric shape optimization to design of idealized
airfoils was presented, demonstrating the potential of the methodology.

The thesis represents but a small step within the �eld of isogeometric analy-
sis and shape optimization in uid mechanics. Suggestions for future research
directions include, among others, applications within less restrictive ow prob-
lems (3-dimensional, time-dependent, and turbulent ows), applications within
uid-structure interactions, implementation in a high-performance computing
framework, and implementation of local re�nement methods.
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Appendix A

Nomenclature

Symbol/Abbreviation Description

NURBS Non-uniform Rational B-spline
B-spline Basis-spline
q; r Polynomial degree
�;	 Knot vector
N ;M Univariate B-spline
B Univariate NURBS
P Bivariate B-spline
R Bivariate NURBS
e Unit basis vector
X = (x; y) Geometry/Parametrization
x = (x1; : : : ; xN ) Control points
Re Reynolds number
� Fluid density
� Fluid viscosity
� Fluid shear stress tensor
u = (u1; u2) = (u; v) Fluid velocity
p Fluid pressure
f Fluid body force
c Speed of sound
f Acoustic source
� Acoustic propagation constant
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Appendix B

Paper I: Discretizations in
Isogeometric Analysis of
Navier-Stokes Flow

This chapter contains a preprint of: P. N. Nielsen, A. R. Gersborg, J. Gravesen,
and N. L. Pedersen. Discretizations in isogeometric analysis of Navier-Stokes
ow. Computer Methods in Applied Mechanics and Engineering, 200:3242{3253,
2011a.
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Appendix C

Paper II: Isogeometric
Shape Optimization for
Fluids

This chapter contains a preprint of: P. N. Nielsen and J. Gravesen. Isogeo-
metric shape optimization for uids, 2012. To be submitted to Structural and
Multidisciplinary Optimization.
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Appendix D

Paper III: Isogeometric
Analysis of Sound
Propagation through Flow
in 2-Dimensional Ducts

This chapter contains a preprint of: P. N. Nielsen, J. Gravesen, and M. Willatzen.
Isogeometric analysis of sound propagation through ow in 2-dimensional ducts,
2011b. Submitted to Journal of Sound and Vibration.
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