Swine Plasma Immunoglobulins for Prevention and Treatment of Post-Weaning Diarrhoea
Optimizing Stability Towards Gut Conditions

Hedegaard, Chris Juul; Ballegaard, Anne-Sofie; Røjel, Nanna; Bendix Hansen, Marie; Kjær Lindved, Bodil; Bisgaard Frantzen, Kirsten; Larsen, Lars Erik; Lihme, Allan; Heegaard, Peter M. H.

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
SWINE PLASMA IMMUNOGLOBULINS FOR PREVENTION AND TREATMENT OF POST-WEANING DIARRHÉA: OPTIMIZING STABILITY TOWARDS GUT CONDITIONS

Chris Juul Hedegaard¹, Anne-Sofie Ballegaard¹, Nanna Røjel¹, Marie Bendix Hansen², Bodil Kjær Lindved³, Kirsten Bisgaard Frantzén⁴, Lars E. Larsen¹, Allan Lihme², and Peter M.H. Heegaard¹*

¹. National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark. ². Upfront Chromatography A/S, Copenhagen, Denmark. ³. KiBif ApS. ⁴. Multimerics ApS. *contact: PMHH@vet.dtu.dk

Background
Post-weaning diarrhoea (PWD) is a common condition in intensive swine production, resulting in reduced welfare of weaners and economic losses for the farmer as a result of illness, death, treatment costs, e.g. high consumption of antibiotics and zinc oxide.

Aim
1. Developing feed additives for oral provision for protection against PWD based on natural antibodies (immunoglobulins) derived directly from inexpensive raw materials.
2. To increase stability (reducing gut proteolysis) by cross-linking the immunoglobulins (Igs).

Conclusions
• The optimal conditions for Igs-multimerisation were observed to be at pH 9 using 5-10 mM NaIO4, which confers to increased reactivity towards Salmonella Diarizonea after pepsin digestion.
• These results suggest that cross-linked Igs could be used for prevention/treatment of PWD and reduce antibiotic consumption.

Materials & Methods
Immunoglobulin isolation:
Porcine Igs were purified from blood plasma at UpFront Chromatography A/S (Copenhagen) by high-volume Expanded Bed Adsorption with a proprietary adsorbent. Plasma was obtained from a Danish slaughter house. The immunoglobulins were multimerised by controlled periodate oxidation of immunoglobulin-bound carbohydrate (Fig. 1). The multimerisation process was stopped by increasing pH to 12. Cross-coupled Igs-species were analysed by silver staining or Western blotting.

ELISA:
For testing the reactivity of the swine Igs on pathogenic bacterial antigens a competitive ELISAs were applied. Along with the swine Igs either Genway Biotech’s anti-E. coli (18-511-245057) or anti-salmonella (18-511-245055) HRP-conjugated antibodies were used. Initially, antigens were coated in the wells before a mix of swine Igs and HRP-conjugated antibody was added. The signal was then determined by the binding of conjugated antibody to its ligands.

In vitro (piglet) stomach conditions:
According to Petschow & Talbott (1) the stomach pH was 3 units/ml; this was mixed with swine Igs and incubated in 50mM sodium acetate pH 3 for 3 hrs, at 37°C where after the pepsin was inactivated by increasing the pH to 9.6 by adding Na3CO3.

Results
IMMUNOGLOBULIN MULTIMERISATION:
The degree of Igs-multimerisation was tested at 5, 10, and 20 mM NaIO4 and at different pH values (6, 7 and 9), and all conditions subjected to NaIO4 oxidation resulted in multimerisation (Fig. 2A-B). As the increasing multimerisation was associated with lower signal on Western blot (developed with anti-porcine Fc-antibody) suggests that the Fc moieties are situated in the centre of the complex shielded from the anti-Fc-antibody (Fig. 2A, Western blot). The lower level of protein in the samples multimerised with 20 mM NaIO4 might be due to aggregated Igs caught during filtration of the samples preceding gelfiltration (Fig. 2B, 20 mM). NaIO4-multimerisation seems to sacrifice some Ig-reactivity (Fig. 2C, 5 mM, pH 9) but on the other hand gain some reactivity by size and complexity (Fig. 2C, 10-20 mM).

GUT CONDITIONS:
The pepsin concentration applied was not strong enough to digest the non-multimerised nor the multimerised swine Igs (Fig. 2A). By comparing the different levels of inhibition between the digested and non-digested samples, in the competitive ELISA, it appears that Igs multimerised at 5 mM NaIO4 gain an increased ability to inhibit binding of the conjugated antibody (Fig. 3), thus multimerisation at pH 9 and 5 mM could preferable.

Materials & Methods
Immunoglobulin isolation:
Porcine Igs were purified from blood plasma at UpFront Chromatography A/S (Copenhagen) by high-volume Expanded Bed Adsorption with a proprietary adsorbent. Plasma was obtained from a Danish slaughter house. The immunoglobulins were multimerised by controlled periodate oxidation of immunoglobulin-bound carbohydrate (Fig. 1). The multimerisation process was stopped by increasing pH to 12. Cross-coupled Igs-species were analysed by silver staining or Western blotting; primary antibody: biotinylated mouse anti-porcine Fc antibody (BD, clone F007-1241); developed by alkaline phosphatase-streptavidin and NB7/BCIP.

ELISA:
For testing the reactivity of the swine Igs on pathogenic bacterial antigens a competitive ELISAs were applied. Along with the swine Igs either Genway Biotech’s anti-E. coli (18-511-245057) or anti-salmonella (18-511-245055) HRP-conjugated antibodies were used. Initially, antigens were coated in the wells before a mix of swine Igs and HRP-conjugated antibody was added. The signal was then determined by the binding of conjugated antibody to its ligands.

In vitro (piglet) stomach conditions:
According to Petschow & Talbott (1) the stomach pH was 3 units/ml; this was mixed with swine Igs and incubated in 50mM sodium acetate pH 3 for 3 hrs, at 37°C where after the pepsin was inactivated by increasing the pH to 9.6 by adding Na3CO3.