A magnetotelluric investigation along a 40 km profile in Kangerlussuaq, West Greenland

Kother, Livia Kathleen; Junge, Andreas; Löwer, Alexander; Matzka, Jürgen; Olsen, Nils

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
A magnetotelluric investigation along a 40 km profile in
Kangerlussuaq, West Greenland

Livia Kother1, Andreas Junge³, Alexander Löwer³, Jürgen Matzka1, Nils Olsen1

1DTU Space, 2Copenhagen University, 3Goethe University Frankfurt a.M

SAFT Conference, Copenhagen 2013

1. Introduction

Despite a well-mapped, interesting surface geology, deep sounding geophysical studies like seismics or magnetotellurics have been used very rarely in Greenland. Here we show the first magnetotelluric investigation of subsurface resistivity structures in the Nagssugtoqidian mountain building range (orogen). Additionally the influence of the electrically conductive ocean, as well as the source geometry in the auroral oval was tested. Five MT instruments were located along a 40km WSW-ENE profile near Kangerlussuaq, West Greenland (Fig. 1) in the period from 5th of August 2010 to 17th of September 2010.

The orientation of the tipper vectors (as predicted by Jones (1993).) suggests a large and well-conducting structure in the geographic northwest, and with a strike direction parallel to the measurement profile. Such orientations of station A and E the three components of the magnetic field (B,B,B) and the horizontal components of the telluric field (E,E,E) were observed (orange circles), whereas at stations B, C and D only the telluric field was recorded (white circles). Transfer functions of these stations were calculated with respect to the magnetic fields at station E.

The sampling frequency was 4Hz and standard robust processing after Löwer et al. (2010) was applied to the measurements to calculate MT transfer functions such as impedance tensors and tipper vectors.

2. Data processing

The left panel of Fig. 2 illustrates the Kp-index for the measurement period, whereas the right panel shows one of the estimated off-diagonal impedance tensor components, Im(Zyx) at target frequency 0.1Hz. This example illustrates the change in transfer functions during time intervals of high geomagnetic activity. Half days (00-12 UT, 12-24 UT) with a mean Kp value above 2 were therefore neglected during data processing.

The upper panel of Fig. 3 displays the period and location dependency of the principal axes of the observed phase tensor ellipses (Häuserer et al., 2011), colored according to the corresponding phase values. The lower panel illustrates the tipper vectors at stations A and E.

3. Results

Comparing the measured tipper arrows and phase tensor bar orientations (Fig. 3), the different phase values could be assigned to the polarisation modes TE and TM (Fig. 4) under assumption of two-dimensionality. We observe a phase switch at periods around 100 sec as well as a distinctive phase split-up. The different measurement behaviour of station E is suggested to be caused by three dimensional effects and/or anisotropy.

The orientation of the tipper vectors (Fig. 3) suggests a large and well conducting structure in the geographic northwest, and with a strike direction parallel to the measurement profile.

4. Conclusion

The orientation of the tipper vectors suggests a large and extremely conducting structure in the Earth's crust located northwest of Kangerlussuaq, and with a strike direction of similar orientation as the measurement profile. Future surveys should therefore aim at locations along a profile perpendicular to the strike direction identified here. Such studies could then be compared to similar MT-studies, especially from Canada, and potentially reveal conductivity structures along the proterozoic Nagssugtoqidian orogen, as predicted by Jones (1993).

References


Acknowledgments

We wish to thank “Dansk Geofysisk Forening” and “Constance Heides Mindelegat” for financial support of this project. Great thanks also to the staff from SRI Research Radar for their hospitality and support.