ETM documentation update – including modelling conventions and manual for software tools

Grohnheit, Poul Erik

Publication date: 2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
EFDA TIMES

WP13-SER-ETM

D.2.2. ETM documentation update – including modelling conventions and manual for software tools

Poul Erik Grohnheit
Association Euratom – DTU, Technical University of Denmark
DTU Risø Campus, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
December 2013
Abbreviations

CCS
Carbon Capture and Storage

CHP
combined heat and power

CO₂
carbon dioxide

EFDA
European Fusion Development Agreement

EIA
Energy Information Administration (US DOE)

EJ
Exajoule 10¹⁸ Joule

ETP
Energy Technology Perspectives (IEA)

ETSAP
Energy Technology Systems Analysis Programme

EU
European Union

GHG
Greenhouse gases

Gt
Gigatonne

GW
Gigawatt

IEA
International Energy Agency

IPCC
Intergovernmental Panel on Climate Change

kt
Kilotonne

kW
Kilowatt

kWh
Kilowatt hour

MARKAL
Market Allocation (optimisation model developed by the IEA)

Mt
Megatonne

MW
Megawatt

MWe
megawatt, electric

MWh
megawatt hours

NEMS
National Energy Modeling System (US DOE)

PJ
Petajoule 10¹⁵ Joule

SAGE
System to Analyze Global Energy (US DOE)

SERF
Socio Economic Research on Fusion

TIAM
The Integrated Markal EFOM System

TWh
terawatt hours 10¹² Wh

VEDA
VErsatile Data Analyst (model interface)

DISCLAIMER

This work, supported by the European Communities under the contract of Association between EURATOM / DTU was carried out within the framework of EFDA. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Contents

Preface 5

1 Introduction 6
1.1 Task Agreement for WP13 6
1.2 Documentation and dissemination activities 6
1.3 History of SERF 7

2 Parameter studies on infrastructure, etc. 8
2.1 The future market for large-scale thermal base load electricity generation 8
2.2 Analyses of parameters 9
2.3 Modelling selected technologies and generic regions for parameter analyses 10

3 Discounting 11
3.1 Time horizon and discount rate 11
3.2 The impact of hurdle rates 11

4 Time slices 13

5 Use of objective values 14
5.1 Sensitivity analysis of parameter variation. 14
5.2 Regional objective values – comparing global TIMES results 14
5.3 Results from different global models 15
5.4 Dual values in linear programming. 15

6 Externalities and LCA 16

7 Selection of scenarios for comparison of results 17

8 Model documentation 18
8.1 Tool for management and presentation of many scenarios 18
8.2 Debugging the model 18
8.3 Presentation of assumptions and results 18
8.4 Warnings and error messages 19
8.5 Documentation packages 20
8.6 Library of EFDA reports and literature on the EFDA ftp server 20

9 Dissemination of model analyses and results 22
9.1 The IEA Implementing Agreement ETSAP 22
9.1.1 EFDA-TIMES in ETSAP Annex XI 22
9.1.2 ETSAP semi-annual workshop, Seoul/Roskilde November 2013 24
9.1.3 EFDA-TIMES in ETSAP Annex XII 24

References 27
Figures

Figure 3.1. Cases with and without hurdle rates. 12
Figure 5.1. Regional Objective Values comparing global ETM results. 15

Tables

Table 8.1. Extract of log of model runs 18
Table 9.1 List of references from ETSAP XI Final Report. 24
Table 9.2. ETSAP workshop, November 2013 25
Preface

This is the final report for the DTU contribution to Socio Economic Research on Fusion (SERF), EFDA Technology Work programme 2013. The structure and contents of this report was presented at the EFDA-TIMES workshop in Garching 12-13 December 2013.

This reports gives further background and references, it summarises the work done during 2013, and it also contains presentations for promotion of fusion as a future element in the electricity generation mix and presentations for the modelling community concerning model development and model documentation – in particular for TIAM collaboration workshops.

Details of these results have been posted on the EFDA ftp server in the following zip archives:

Folder: ETM_GROUP/01_ETM_MODEL/06 RESULTS
- ETM_pivot.zip
- TIMES_Global07_exHd.zip, 24.06.2013 (replaced by TIMES_Global11.zip)
- TIMES_Global08_09.zip, 30.11.1013.
- TIMES_Global10.zip, 01.12.2013

Folder: ETM_GROUP/02_ETM_REPORTS/
- Website Downloads.zip, 02.022013/12.12.2013
- Selected EFDA Reports_2013.zip, 10.12.2013

Folder ETM_GROUP/01_ETM_MODEL/01_ETM_DOCUMENTATION
- Modelling_Fusion.zip (latest version 25.11.2013),

DTU Risø Campus, Roskilde, Denmark. December 2013

Poul Erik Grohnheit
1 Introduction

1.1 Task Agreement for WP13

From the workprogramme 2013:

WP13-SERF ETM-T02.2: ETM documentation update

In parallel to subtask 02.1, an update of the documentation of the ETM model will be carried out, whereby the structure of the reviewed model sections, the according hypothesis, the literature sources and the acronyms of all technologies and commodities used in the model will be described.

In addition, a guideline will be set up, providing information on:

1. Modelling and documentation conventions
 - Modelling conventions (mainly focusing on naming conventions) will be outlined in one central documentation
 - A documentation standard for DD (Data Definition) files will be introduced that links every input dataset with the related literature sources

2. Software usage
 - Documentations for the different software tools in use will be pooled or – if not available – prepared by the developers.

The work will be carried out by the ETM team during a five-day project meeting (workshop) in April.

Deliverables of this task will be:

D02-1: Report on Data Review and Update, including the review and integration of scenario files and sub-RES (implemented as the result of the 1st ETM Workshop). CIEMAT. Due date: August 2013 (files D2.1.docx 04-10-13, Lithium data.xls 02-09-13)

D02-2: ETM Documentation Update, including modelling conventions, Manual for software tools and Template for DD files. DTU. Due date: December 2013.

1.2 Documentation and dissemination activities

The work during 2012 is illustrated in this report mainly by presentations prepared for workshops on ETSAP-TIAM collaboration and within the EFDA organisation.

The most important event was the EFDA-TIMES and ETSAP-TIAM Workshop connected to the 64th Semi-annual ETSAP meeting, Seoul, Republic of Korea
Overview

- History of SERF
- Discounting and other economic parameters in TIMES models
- Parameter studies on infrastructure, etc.
- Time slices
- Use of objective values
- Externalities and LCA
- Warnings and error messages
- Selection of scenarios for model comparison
- Documentation of series of model runs
- ETSAP Annexes final reports
- Report working draft: Modelling Fusion
- Library of selected reports and literature

1.3 History of SERF

Socio-Economic Research on Fusion

- 1986: Environmental impact and economic prospects of nuclear fusion
- 1988: STOA (Science and Technology Options Assessment) - European Parliament
- 1997: ECN MARKAL Western Europe
- 1997-2002: SERF 1-3
 - Direct Costs of Fusion Power production
 - External Costs of Fusion Power Production - ExternE
 - Cost-effective European Energy Scenarios
 - Social Acceptability of Fusion
- 2004- EFDA-TIMES – time horizon 2100. Main versions:
 - December 2009 – 15 regions, base year 2000
 - May 2011 – 15 regions, base year 2000
 - July 2012 – 17 regions, base year 2005
2 Parameter studies on infrastructure, etc.

The model contains a large number of technologies, each described by a few techno-economic parameters. The consistency of these parameters among technologies is essential for results containing the future technology mix to meet the demands for energy commodities and energy services. For some of these technologies the availability of infrastructure, e.g. the electricity transmission network is essential. The new renewable technologies, which are becoming very significant future competitors to fusion and other large-scale thermal electricity generation, both operate very differently and must be deployed where resources are available, in particular off-shore wind and concentrated solar power. Modelling of the interaction of all these technologies either requires very detailed modelling or very aggregated models with few processes and carefully calibrated parameters.

2.1 The future market for large-scale thermal base load electricity generation

Fusion units will operate very similar to other large-scale thermal generating units for supply of industrialised regions and population centres. Other technologies with very large potentials are likely to become significant earlier than fusion. However, these technologies are dependent either on natural resources and long-distance transmission of electricity, such as solar CSP and off-shore wind, or small-scale units, mainly solar PV or micro CHP to be integrated in local grids. The development, deployment and integration of these technologies into the energy system may be even more challenging than the long-term research and development of fusion; which is described by a well-established roadmap. The competing technologies will require far more resources for research and subsidies than the limited research budget, which is currently allocated to fusion.

Electric demand and production in Europe

- Existing hydro power in Scandinavia, Scotland and the Alps.
- Huge potential for wind power in North Sea and Baltic Sea.
- Huge potential for solar power in North Africa.
- Regional electricity generation is most needed in the central parts of Europe.
- Decentral generation:
 - Local and micro CHP
 - Solar PV
- Central regional generation:
 - Coal and gas with CCS and CHP
 - Nuclear fusion
 - Fusions only after 2050
2.2 Analyses of parameters

In the model the energy system is optimised by minimising discounted total system cost, subject to constraints that reflect infrastructure, technology availability and policy objectives, e.g. reduction of CO₂ and other greenhouse gasses. It means that the quality of model results is dependent not only on the consistency of techno-economic data, but also of the key economic assumptions, such as future energy prices and the choice of discount rates.

Modelling long-distance electricity transmission

- Required by modelling of large-scale solar power in deserts
- Off-shore wind power for continental supply (e.g. Desertec)
- Currently two commodities for electricity, ELCC (central) and ELCD (decentral).
- No grid is considered in EFDA-TIMES (or TIAM)
- Adding a third commodity, ELCT (electricity for long-distance transmission).
- Transmission processes then have ELCT as input and ELCC as output with parameters for efficiency, e.g. 0.95 and cost parameters.
- ELCT shall replace ELCC in interregional trade and as output from the major resource-based technologies, in particular off-shore wind and large-scale solar.

This analysis requires very stable base case results.

Conclusions on use of common heat distribution infrastructure

- Location of conventional fossil power near urban centres suitable for large large district heating systems is still an important option, although the role of this technology is decreasing.
- Many systematic studies using different TIMES models and similar models will be necessary to gain experience on the proper numerical values for infrastructure technology parameters on costs and performance.
- Technologies dependent on large-scale heat distribution:
 - Large thermal power stations (fossil or nuclear).
 - Fossil power stations with CCS.
 - Urban waste incineration
 - Deep geothermal energy

This analysis requires very stable base case results.
2.3 Modelling selected technologies and generic regions for parameter analyses

Within the ETSAP collaboration and the TIMES modelling community, there was developed a number of small models as tutorials for training and new model development. The most promising approach is a stepwise development from a very simple model with few processes, and stepwise adding more processes. This tool may also be useful for analyses in the framework of EFDA-TIMES.

SubRES and generic regions:

Examples of analyses

- EFOM 1999: Combined heat and power (CHP) in EFOM 1999
- EFDA-TIMES 2005: Nuclear fusion based on the Power Plant Conceptual Study
- EFDA-TIMES 2012: Update of the fuel cycle for nuclear fission
- TIMES-DK 2013: 32 time slices for demand variations and wind resources
- EV-STEP 2013-2014: Electric vehicles
- EFDA-TIMES 2014: Recommended for large-scale thermal electricity generation (coal, fission and fusion)

TIMES parameter models for technologies and regions

- Technologies described by SubRES
- Regions described by energy balance
- Testing of technology parameters combining regional level and sets of technologies
3 Discounting

The discounting issue is described in detail in Ciorba and Gracceva, 2010 and summarised in Grohnheit and Korsholm, 2013.

According to previous conclusions sensitivity analyses were performed in order to compare ETM hurdle rates with an alternative set of sectoral/regional specific hurdle rates found in literature reviews or applied in bottom-up models.

Discounting, regional-specific parameters and lead times in EFDA-TIMES and ETSAP-TIAM

- General discount rate 5% p.a., however
- Hurdle rate 10% for large-scale electricity generating technologies.
- Larger hurdle rates – e.g. 17.5% for small-scale technologies
- Regional specific hurdle rates and cost parameters and hurdle rates – industrial countries more efficient than developing countries
- Lead times in TIAM:
 - Sensitivity analyses for discounting and lead times
 - Simple solution needed for basic scenarios

Hurdle rates were introduced by UDOE for the SAGE model with 25 years time horizon. The same hurdle rates are used for most TIMES global models for 90 years time horizon.

3.1 Time horizon and discount rate

In NEMS (US regional model) projections are made for each year from the present through 2025. The same time horizon was used for the global SAGE model. EFDA-TIMES and TIAM is used with the more distant time horizon 2100. It means that most of the arguments for sectoral and regional differentiation of discount rates disappears. In the longer perspective the economy will adapt to the new technology, infrastructure and institutions that take decades to develop. Regional differences may not disappear, but the distribution of wealth among regions will be different and unpredictable.

The pragmatic approach to modelling will avoid arbitrary parameter differences. This will be a key argument to drop sectoral and regional discount rates. Sensitivity analyses on different general discount rates is important, and hyperbolic variations, i.e. decreasing discount rates over time, is important to consider.

3.2 The impact of hurdle rates

Several past cases are compared with the same scenario assumptions without hurdle rates. An example is shown in Figure 3.1
Figure 3.1. Cases with and without hurdle rates.

The left graph shows the base case of EFDA-TIMES 2011 version with consistent hurdle rates from, the right graph shows the same results without hurdle rates.

In this example, the practical impact of the hurdle rates on model results seems to be limited. The discount rate for all large-scale technologies is 10 %, which means that the impact on the generation mix could be small. In this example no inconsistencies were disclosed.
4 Time slices

EFDA-TIMES and TIAM are annual models. However, within the year time slices are used to reflect the variations in electricity and heat demands. The selected time slices are also used for variation of the availability of resource constrained technologies, e.g. wind and solar. Also electricity prices will vary with time slices, e.g. hourly day-ahead prices from wholesale electricity markets, e.g. Nord Pool or EEX.

Timeslices

Timeslice resolution in existing models

<table>
<thead>
<tr>
<th>Timeslice level / Model</th>
<th>DEMO</th>
<th>TIAM</th>
<th>PET</th>
<th>TIMES-DK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly</td>
<td></td>
<td></td>
<td>WD, NW</td>
<td></td>
</tr>
<tr>
<td>DayNite</td>
<td>D, N</td>
<td>D, N</td>
<td>D, N, P</td>
<td>A, D, C, B</td>
</tr>
<tr>
<td>Total number of timeslices</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>32</td>
</tr>
</tbody>
</table>

- Some demands are split into timeslices
- Availability for some technologies, e.g. wind and solar may vary among time slices

Timeslices are seldom analysed or updated in TIMES models. Revised time slices are essential for the split between large-scale thermal base load and variable electricity generation.

A presentation on "Systematic definition of time slices" was included in the session "Further development of the TIMES model" in the "EFDA-TIMES and ETSAP-TIAM Workshop" after closing the video link to the 64th Semi-annual ETSAP meeting, Seoul, Republic of Korea, DTU, 4 November 2013.
5 Use of objective values

A more detailed description of the use of objective values is found in Grohnheit and Korsholm, 2013. Variations in the overall objective value is very useful for a quick analysis of the results of parameter studies.

5.1 Sensitivity analysis of parameter variation.

Some model constraints are arbitrarily determined, i.e. there is no physical justification for the selected constraint, which is the case for resource constraints or capacity constraints for existing capacities and their retirement.

The quick analysis and documentation using objective values is particular useful for these sensitivity analyses.

5.2 Regional objective values – comparing global TIMES results

The Excel workbook, which is mentioned in Section 8.1 was developed for the management of a large number of cases for sensitivity analysis, which is also used for other versions of TIMES, e.g. ETSAP-TIAM.

This workbook contains a database for scenario assumptions and selected results, which are imported into the workbook. It is used to manage the dd-files that are created by VEDA-FE with documentation of assumptions and results. A small part or the results is stored in a database sheet in the workbook. These results are regional objective values divided into investment, fixed and variable costs, etc.

The results in the graph in Figure 5.1 are comparing two cases, which are looked up from the database. The database and graph are flexible concerning the regional breakdown of the global models. The current version covers EFDA-TIMES/ETSAP-TIAM (15
regions), TIAM-World (16 regions) and the new version of EFDA-TIMES (17 regions) from February 2012.

5.3 Results from different global models

In Figure 5.1 the presentation tool is used to compare results of EFDA-TIMES and ETSAP-TIAM. The two model versions have the same number of regions. The main difference is the starting year (2000 for the previous versions of EFDA-TIMES and 2005 for ETSAP-TIAM). The objective value (shown in the upper right corner) is some 35% higher for the ETSAP-TIAM result than for EFDA-TIMES.

The pattern of the distribution of the objective function is similar, although the investment volume is larger for the ETSAP-TIAM results. The ETSAP-TIAM case also contains the fusion module from EFDA-TIMES. However, the impact of this module has not yet been analysed.

![Figure 5.1. Regional Objective Values comparing global ETM results.](image)

5.4 Dual values in linear programming.

A key feature of linear programming is dual values, which are usually interpreted as shadow prices. These variables are available from most results of all TIMES models. For some results they are archived, but seldom analysed. When the model is fully documented, results are easily recalculated for analysing dual values.
6 Externalities and LCA

External costs of fusion power production was an important issue in the early stages of SERF. This work was carried out in the late 1990s using the method from the European project ExternE.

The EFDA-TIMES / ETSAP- TIAM workshop 4 November 2013 also contained a presentation ”Fusion externalities evaluation within SERF” with reference to the early SERF studies. The issue will be considered again from 2014 under the new organisation of Socio-Economic studies under the the EUROFUSION Consortium.

Externalities and LCA for Lithium

Fusion fuels, deuterium and tritium, are abundant. The former may be extracted from sea water, the last from lithium from the earth’s crust.

- Lithium is a key resource for two very different technologies with different time horizons
 - Electric vehicles
 - Nuclear fusion for large-scale electricity generation

- The European power plant conceptual study: Helium-cooled lithium-lead reactor concept. Fusion Engineering and Design, 2006

- US Environmental Agency, Application of Life-Cycle Assessment to Nanoscale Technology: Lithium-ion Batteries for Electric Vehicles, April 2013

DTU Management Engineering, Technical University of Denmark
SERF Annual Meeting, Garding 12-13 Oct. 2013
7 Selection of scenarios for comparison of results

The proper selection of arbitrary constraints is particular important for a background scenario (often called the 'Base Scenario' for a scenario matrix. This scenario is different from a base scenario with a minimum of constraints. The background scenario must have a set of constraints that will allow a broad range of scenarios to be chosen by the model. For the first analysis of CCS and biomass two constraints were chosen:

- Global electricity production in a carbon constrained scenario equivalent to restricting the atmospheric CO$_2$ concentration to 550 ppm (equivalent),
- Nuclear fission should not increase above 25 % of electricity generation each region during the rest of the century.

For comparisons with different versions of TIAM the 550 ppm constraint was chosen, because the 450 ppm constraint is being consideres as increasingly extreme during recent years.

Scenario for model comparison

- **Base Year templates** – standardised input documentation
- **Base scenario** – standardised input documentation and presentation of results
- **Benchmark scenarios** – standardised presentation of results
 - Robust scenario that is feasible and illustrative for most model versions, e.g. 550 ppm.
- **Study or policy scenarios** – presentation depending on study

This structure is used for the scenario analysis for EFDA-TIMES 2013. However, the documentation need to be more formalised.
8 Model documentation

8.1 Tool for management and presentation of many scenarios

The Excel workbook that was developed in the previous tasks is used for the management of a large number of cases for sensitivity analysis, which is also used for other versions of TIMES, e.g. ETSAP-TIAM. Recently the workbook was split in two: management of scenarios with capture of results (regional distribution of components of objective values) and result database with presentation of the captured results.

8.2 Debugging the model

Several Excel workbooks are used for model documentation and debugging. The Excel workbook TIMES_versions5h.xlsx, (last saved 11-07-2013), which is posted on the EFDA ftp.server together with the working draft of the documentation report "Modelling Fusion", which contains documentation of the various versions of TIAM and EFDA-TIMES, see (d:\EFDA-ftp_ETM_GROUP\01_ETM_MODEL\01_ETM_DOCUMENTATION\Modelling_Fusion.zip (latest version 25.11.2013),

An important tool for model documentation and debugging is the log of model runs, see Table 8.1. The extract shows the gradual development of the base case, which is used as the starting point for the scenario matrix.

<table>
<thead>
<tr>
<th>Case Id</th>
<th>Description</th>
<th>Model</th>
<th>Objective Value</th>
<th>TIMES Version</th>
<th>Comment1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETM_1312_Corr_BaseDem_ExHd</td>
<td>dd files manually corrected, Cf. QaCheck</td>
<td>ETM_1312</td>
<td>187869</td>
<td>331</td>
<td>139 iter., 1323 sek., Qa_Check 56k, No GAMS Warnings</td>
</tr>
<tr>
<td>ETM_1312_ExHd</td>
<td>dd files manually corrected, Cf. QaCheck, HiDem_new3</td>
<td>ETM_1312</td>
<td>242698</td>
<td>331</td>
<td>167 iter., 1036 sek., Qa_Check 56k, No GAMS Warnings</td>
</tr>
<tr>
<td>ETM_1312_Corr_LoDemUN</td>
<td>dd files manually corrected, Cf. QaCheck</td>
<td>ETM_1312</td>
<td>238908</td>
<td>331</td>
<td>134 iter., 709 sek., Qa_Check 56k, No GAMS Warnings</td>
</tr>
<tr>
<td>ETM_1312_Corr_BaseDem</td>
<td>dd files manually corrected, Cf. QaCheck</td>
<td>ETM_1312</td>
<td>252437</td>
<td>331</td>
<td>128 iter., 1110 sek., Qa_Check 56k, No GAMS Warnings</td>
</tr>
<tr>
<td>ETM_1312_Corr</td>
<td>dd files manually corrected, Cf. QaCheck</td>
<td>ETM_1312</td>
<td>320299</td>
<td>331</td>
<td>144 iter., 1919 sek., Qa_Check 56k, No GAMS Warnings</td>
</tr>
<tr>
<td>ETM_1312_pogr_312</td>
<td>dd files from CIEMAT, ETM2013_BASE_121213</td>
<td>ETM_1312</td>
<td>324726</td>
<td>312</td>
<td>141 iter., 862 sek., Qa_Check 99k, 34 GAMS Warnings</td>
</tr>
<tr>
<td>ETM2013_basev331_6122013</td>
<td>Results from ftp server (vd 14-05-13 21:46) reconstructed</td>
<td>ETM_1305</td>
<td>239485</td>
<td>331</td>
<td>137 iter., 1331 sek., Qa_Check 41k, 80 GAMS Warnings</td>
</tr>
</tbody>
</table>

8.3 Presentation of assumptions and results

An Excel workbook has been developed for running the model and capture and present the results. The workbook uses dd files, which are created by VEDA-FE. The output of the TIMES model – the GAMS gdx files are converted by gd2veda to vd files, which are read by VEDA-BE. Tables from VEDA-BE are used in a format from which pivot
tables are created as tables and graphs. Selected graphs are copied to result sheets as pictures in enhanced metafile.

The sheets in this workbook are:

Panel: Control panel for selected scenarios. With macro buttons.

Result: Capture of results with distribution of objective values - opening sheet.

Select2: Graph showing distribution of objective values from Sheet Result.

SysCost: VEDA-BE: Table Name: _SysCost.

Dummy: VEDA-BE: Table Name: Check Dummy Imports.

Prim: VEDA-BE: Table Name: Energy Balance - Primary Production F_F_Pivot. – Pivot Table and graph.

Elec: VEDA-BE: Table Name: ELC production by type – Details. – Pivot Table and graph.

Heat: VEDA-BE: Table Name: Table Name: Heat_all. – Pivot Table and graph.

HETC: VEDA-BE: Table Name: Table Name: HETC.

All, EUR, CHI: Graphs from Sheet Elec: Archived results, 550 ppm (hurdle rates from the SAGE Model) / Hurdle rates deleted. All regions, Europe and China.

Import: Import of vdz file (short vd file with objective values) – used by Sheet Panel.

TIMES: Contents of TIMES run file – saved from Sheet Panel.

SAVE: Auxilliary sheet used by macros.

8.4 Warnings and error messages

TIMES Quality Assurance log

```
TIMES Quality Assurance log

** Delayed Process but PASTinvestment,**
*OL WARNING* - Delay ignored: $xxx  P=EFCNPPPLWR000

** NCAP_AF Sounds conflict: FX + LD/UP at same TS-level, later ignored**
*OL WARNING* - R=$xxx Y=2004 P=EFCNPPPLWR000 S=$xx

** Demand: DBH commodity with missing COM_PROJ Projection**
*OL WARNING* - R=MEX C=RC1

** RPC in TOP not found in any ACT+LO/FLO,MAR/FLO_FUNC/FLO_SUM**
*OL WARNING* - R=IND P=UNRNPBC00 C=AINRBN 10-10

**OL WARNING* - R=IND P=UNRNPBC00 C=AINRBN 10-10

** Warning: The system keeps the wrong option**

** Several of the warnings are not well understood**
```

The model software TIMES and the data interface VEDA contains a number of tools for debugging and quality control of model assumptions and results. Unfortunately there is
limited experience among modellers on using these tools and documentation of the experience that has been gained is quite limited. However, a lot of documenting material is available and waiting for further studying. There is a large modelling community worldwide, and ETSAP and the provider of VEDA offer online for a for exchange of experience.

8.5 Documentation packages

The Excel workbook TIMES_Global07_exHd.xlsm combines the contents and methods of Excel files, which were earlier posted on the EFDA ftp server.

This workbook is in the root of TIMES_Global07_exHd.zip. All files necessary to run the model are in the folders ETM_0511, ETM_0912, ETM_1105, ETM_1203 and TIAM_0809. All these folders can be used as VEDA-FE template folders. However, instead the contains archived copies of c:\VEDA\Veda_FE\Gams_WrkTIMES\ in the subfolders \dd and \dd\GamsSave. Further documentation packages were added during the autumn of 2013. The most recent TIMES_Global11.xlsm is an update and expansion of the first package.

8.6 Library of EFDA reports and literature on the EFDA ftp server

The contents of this final report is being further developed in a larger document, which is available on the EFDA ftp server

see (d:\\EFDA-ftp_ETM_GROUP\\01_ETM_MODEL\\01_ETM_DOCUMENTATION\\Modelling_Fusion.zip (latest version 25.11.2013).
In addition the ftp server contains most reports that have been submitted within the SERF project. However, further report may still be available from past participants.

Relevant literature has also been collected and catalogued, see Reference Key.doc from 29.11.2007. Newer reports and literature were collected in 2010 and updated recently in the same format.

EFDA-TIMES: Collections of reports and literature on EFDA ftp server

- PPCS.zip, 02-11-2012
- Selected EFDA Reports_2010.zip 11-12-2010.
- Website Downloads.zip 02-03-2013
- Selected EFDA Reports_2013.zip 10-12-2013.
9 Dissemination of model analyses and results

9.1 The IEA Implementing Agreement ETSAP

The Energy Technology Systems Analysis Program (ETSAP) is an Implementing Agreement of the International Energy Agency (IEA), first established in 1976. It functions as a consortium of member country teams and invited teams that actively cooperate to establish, maintain, and expand a consistent multi-country energy/economy/environment/engineering (4E) analytical capability. Its backbone consists of individual national teams in nearly 70 countries, and a common, comparable and combinable methodology, mainly based on the MARKAL/TIMES family of models, permitting the compilation of long term energy scenarios and in-depth national, multi-country, and global energy and environmental analyses, (from www.iea-etsap.org).

9.1.1 EFDA-TIMES in ETSAP Annex XI

The TIMES (The Integrated MARKAL-EFOM System) model generator was developed within the IEA Implementing agreement ETSAP as a merger of the older model generators MARKAL and EFOM. The work of ETSAP is organised in 3-year Annexes. Annex XII runs until the end of 2013. After the end of each annex a report is published, which contains a description of the models developed in TIMES and results of model studies.
The Global TIMES Model of the European Fusion Development Agreement (EFDA)

The EFDA Times Model (ETM) is a multi-regional, global and long-term energy model of economic equilibrium, responsive to energy technology innovations, domestic and international trade energy policies, climate change mitigation and environment objectives. It has been developed within the European Fusion Development Agreement (EFDA) framework starting in 2004 and forms part of the TIMES family of energy models. In ETM the world is divided into 15 regions linked by energy and emissions permit trading variables. Time horizon will be 2100. Studies with the EFDA model are:

- Revised assessments of the economics of fusion power. A new energy economics model is employed to analyse the potential market performance of fusion power in a range of future energy scenarios and this shows that there can be a significant role for fusion in a future energy market. Possible implications for fusion’s role in a future energy market are then explored, using a sophisticated energy scenario tool, known as the EFDA/TIMES model.

- The future role of fusion power under endogenous technological learning. This dissertation addresses the impact of different endogenous learning approaches on the role of fusion power. To broaden the scope of endogenous learning descriptions, new approaches have been developed and implemented in the TIMES model generator.

- An analysis on the future costs of fusion power stations. There have been a wide range of studies of costs, varying primarily in the assumed materials and technology as well as assumptions about the fusion performance in scientific terms. This range is implemented in the EFDA Times Model (ETM) with the early generation plants assumed to be available in 2050, evolving to an advanced, mature plant over the following 30 years.

- Modelling CCS, nuclear fusion, and large-scale district heating. These presentations focus on modelling the infrastructure development for heat recovery from CCS and fusion in EFDATIMES and TIAM. CCS can be a driver for the development and expansion of large-scale district heating systems, which are currently widespread in Europe, Korea and China, and with large potentials in North America.

- The role of nuclear energy in long-term climate scenarios. Our objective is to analyze the role of nuclear energy in long-term climate scenarios using the World-TIMES (The Integrated MARKAL-EFOM System) bottom-up model.

- Global transportation scenarios in a multiregional energy model. The aim of this study is to assess the potential impact of the transportation sector on the role of fusion power in

Table 9.1 List of references from ETSAP XI Final Report.

<table>
<thead>
<tr>
<th>Global - EFDA</th>
<th>69</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Han W.E. Ward D.J. (2009). Revised assessments of the economics of fusion power. Fusion Engineering and Design 84: 895–898.</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

9.1.2 ETSAP semi-annual workshop, Seoul/Roskilde November 2013

Table 9.2 shows the programme for EFDA-TIMES and ETSAP-TIAM Workshop connected to the 64th Semi-annual ETSAP meeting, Seoul, Republic of Korea. The morning session Monday 4 November was carried out as a video conference between the ETSAP meeting in Seoul with some 30 participants (to be confirmed) and the EFDA-TIMES team meeting at DTU Risø Campus, Roskilde Denmark.

All presentations were shown as Share Screen in Skype. Only the presenters were shown by video. The video link was closed down at the morning coffee break in Denmark and late afternoon in Korea. The meeting continuing in Denmark focused on EFDA-TIMES issues concerning the future EUROFUSION consortium and improvements for fusion modelling.

Most of the contents of the presentation concerning EFDA-TIMES is described in the previous chapters of this document.

9.1.3 EFDA-TIMES in ETSAP Annex XII

The presentations from this workshop as well as the deliverables from Workprogramme 2013 are now available for the final report of ETSAP Annex XII, which will be published during 2014.
Table 9.2. ETSAP workshop, November 2013

<table>
<thead>
<tr>
<th>SERF: EFDA TIMES 2nd Modelling Workshop 4-5</th>
<th>EFDA-TIMES and ETSAP-TIAM Workshop connected to the 64th Semi-annual ETSAP meeting, Seoul, Republic of Korea</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2013, DTU Risø Campus, Roskilde, Denmark</td>
<td>The video conferences will connect the ETSAP meeting at the Oakwood Premier Coex Center, Seoul with the meeting arranged by EFDA (European Fusion Development Agreement) Socio-Economic Research of Fusion at DTU Risø Campus buildings 110, Roskilde, Denmark. Remote participants may register for the workshop via the ETSAP website (Please add "Remotely" to the presentation title). All presentations will be available by the start of the Skype session. Individual participants via Skype to the continuing programme in Denmark please register by e-mail to pogr@dtu.dk</td>
</tr>
</tbody>
</table>

4 November 2013, 08:00-10:30 in Denmark, 16:00-18:30 in Korea. Video conference
Chair: Kenneth Karlsson, DTU.

08:00 / 16:00 Welcome
08:10 / 16:10 Socio Economic Research on Fusion, Magdalena Gadomska, EFDA, Garching.
08:25 / 16:25 EFDA-TIMES model presentation, Helena Cabal, CIEMAT, Spain
08:40 / 16:40 Nuclear fusion in EFDA-TIMES, Chiara Bustreo, ENEA RFX, Italy.
09:00 / 17:00 Global Model cooperation
09:00 / 17:00 Impact of technology and regional specific discount rates, Poul Erik Grohnheit, DTU, Denmark.
09:20 / 17:20 ETSAP-TIAM co-operation. Markus Blesl, IER, Stuttgart, Germany.
09:40 / 17:40 TIAM in China, Peggy Mischke, DTU, Denmark (presented by Kenneth Karlsson)
10:00 / 18:00 Future development of ETSAP-TIAM and EFDA-TIMES. Discussion
10:30 / 18:30 in Korea. End of video conference/ In Denmark Coffee break.

Program continuing in Denmark with Skype connection to remote participants
Chair: Magdalena Gadomska, EFDA
10:50 Analysis of fusion penetration in the energy system using EFDA-TIMES, Helena Cabal, CIEMAT
11:10 Socio Economic studies and public information in the new EUROFUSION consortium under Horizon 2020, Volker Naulin, Søren Korsholm, EURATOM-DTU Association
11:30 Discussion
12:00 Lunch
13:00 Externalities and Life Cycle analysis. – Chair: Helena Cabal
13:00 Results from FP6 NEEDS/RES2020. Poul Erik Grohnheit, DTU, Denmark
13:20 Fusion externalities evaluation in SERF, Yolanda Lechón, CIEMAT
13:40 Discussion
14:00 Further development of the TIMES model – Chair: Yolanda Lechón
14:00 Biomass assumptions and results from other models to global TIMES models, Simon Bolwig, Jay S. Gregg, DTU
14:20 Data development for time slices, Helge V. Larsen, DTU, Denmark
14:40 Coffee break
15:00 Overview of existing tutorials, Poul Erik Grohnheit, DTU, Denmark; Maurizio Gargiulo, E4SMA, Italy; Konstantinos N. Genikomsakis, DeustoTech, Bilbao, Spain
15:20 Discussion. Report to the ETSAP ExCo meeting 5 November Item 5.2
16:00 End of first day.
5 November 2013, 08:00-09:00 in Denmark, 16:00-17:00 in Korea (for informal Skype connections)
Chair: Poul Erik Grohnheit

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00 / 16:00</td>
<td>Report from the ETSAP ExCo meeting, Kenneth Karlsson, DTU.</td>
</tr>
<tr>
<td>08:30 / 16:30</td>
<td>Towards the development of advanced TIMES demo models for electric vehicles, Konstantinos N. Genikomsakis, DeustoTech, Bilbao, Spain.</td>
</tr>
<tr>
<td>08:50</td>
<td>Discussion</td>
</tr>
<tr>
<td>09:15</td>
<td>End of meeting</td>
</tr>
</tbody>
</table>
References

Association Euratom - DTU, Technical University of Denmark, Department of Physics - Annual Progress Report 2011, DTU 2012.
Grohnheit, Poul Erik (2010a), Sensitivity Analyses of Biomass and CCS in EFDA-TIMES. WP08-SER-ETM, Activity 2.5, Draft Final Report. Risø DTU
Weitzman M.- (1998), Why the far distant future should be discounted at its lowest possible rate, Journal of environmental