How well can the industry predict the wind resources? Overview of the results from EWEA CREYAP exercises

Mortensen, Niels Gylling; Ejsing Jørgensen, Hans; Nielsen, Morten

Publication date: 2014

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
How well can the industry predict the wind resources? Overview of the results from EWEA CREYAP exercises

Niels G Mortensen, Hans E Jørgensen and Morten Nielsen, DTU Wind Energy
Sample 28-MW onshore wind farm in Scotland

One site wind climate
4y (92%)

One wind farm layout

One reference climate
14y

One terrain specification

z₀ = 3 cm
RIX < 2%

N different teams:
Resulting AEP and σ_{AEP}?
CREYAP = Comparative Resource and Energy Yield Assessment Procedures

- EWEA initiative from 2011 and onwards
 - Industry benchmark, input to R&D, learning and training

- **2011 EWEA Wind Resource Assessment Technology Workshop, Brussels**
 - On-shore UK wind farm, 28 MW, hilly terrain, simple land cover
 - Focus on long-term adjustment, loss and uncertainty estimations
 - 37 different teams from 16 countries (49 slides)

- **2013 EWEA Technology Workshop: Resource Assessment, Dublin**
 - On-shore UK wind farm, 29 MW, hilly terrain, complex land cover
 - Focus on long-term adjustment, flow modelling, observed AEP
 - 60 teams from 17 countries (79 slides)

- **2013 EWEA Offshore, Frankfurt**
 - Off-shore UK wind farm, 576 MW, 160 wind turbines, simple terrain
 - Focus on terminology, wake modelling, energy yield calculations
 - 38 teams from 13 countries (47 slides)
EWEA Technology Workshop: Resource Assessment 2013
Purpose and participants

CREYAP Pt. II

- 60 teams from 56 organisations in 17 countries submitted results!
 - consultancy (41)
 - developer (7)
 - R&D/university (5)
 - wind turbine manufacturer (3)
 - electricity generator/utility (2)
 - certification body (1)
 - service provider (1)

Reliable energy yield predictions are obtained when the bias and the uncertainty are both low.
Note, that the ‘true value’ is often measured – with some uncertainty...
Energy yield prediction process

- Site wind observation
- Site wind climate
- Reference yield
- Virtual yield
- Gross yield
- Net yield
- Flow modelling
- Wake modelling
- Loss estimation
- Uncertainty modelling
- Project planning
- Long-term adjustment
- Vertical extrapolation
- Horizontal extrapolation
Onshore wind farm in hilly/complex terrain
Comparison of flow models

Box Wisker Plot
- outliers
- upper fence
- 75% quantile
- 25% quantile
- lower fence

Topographic effect [%]

WASP (30) CFD (9) WindSim (6) Meteodyn (3) OpenWind (4) Meso/NWP (4) Misc. (3) All models
Onshore wind farm in hilly/complex terrain

Turbine yields – which type of flow model is best?

- Linearised models (32)
- CFD-type models (18)
Onshore wind farm in hilly/complex terrain

Spread for different steps in the prediction process
Offshore CREYAP, Gwynt y Môr, Irish Sea
Turbine sites: mean gross AEP [GWhy$^{-1}$]
Offshore wind farm
Comparison of wake models

[Box plot showing comparison of wake models across different models, including WASp Park (11), WindPRO Park (8), WindFarmer EV (6), OpenWind (3), Ensemble (3), Fuga + CFD (3), Misc. (4), and All models (38)].
Offshore wind farm

Spread for different steps in the prediction process

[Bar chart showing the spread for different steps in the prediction process]

- Loss estimation
- Uncertainty estimation
- Wake modelling
- Potential yield
- Net yield, P50
- Net yield, P90
- Flow modelling
- Vertical extrapolation & yield calculation
- LT correlation
- Reference yield
- Gross yield
- LT wind @ 85 m
- HH air density
Summary and conclusions

Onshore (NW Europe)
• Important uncertainty factors
 – Long-term adjustment
 – Flow modelling
 – Loss estimation
 – Uncertainty estimation
• Overall uncertainty
 – About 7-8% minimum
 – Similar self-evaluation
 – Mean bias still not known!

Offshore (NW Europe)
• Important uncertainty factors
 – Yield calculations
 – Wake modelling
 – Loss estimation
 – Uncertainty estimation
• Overall uncertainty
 – About 8-9% minimum
 – Similar self-evaluation
 – Mean bias still not known!

Common conclusions
• The ‘human factor’ is largely unknown, but seems to be significant
• Standards and guidelines should be improved (IEC, IEA, Measnet, etc.)
• We need access to reliable wind farm data for benchmark exercises + R&D
Thank you for your attention!