A Green Micro-Algal Growth Model developed in the Activated Sludge Modeling Framework

Valverde Perez, Borja; Wágner, Dorottya Sarolta; Sæbø, Marian; Van Wagenen, Jonathan; Angelidaki, Irini; Smets, Barth F.; Plósz, Benedek G.

Publication date: 2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Microalgae photobioreactors can be used for wastewater treatment as:
- Tertiary treatment step for nutrient removal
- Nutrient recovery technology due to the phosphorus and nitrogen internal storage

Different reactor designs:
- Open pond reactors
- Closed photobioreactors (e.g., flat panel reactors)

Algal biomass applications:
- Direct use for biofuel production (e.g., biodiesel or biogas)
- Biofertilizer (the indirect use for biofuel production)
- High value products (e.g., pigments)

1. INTRODUCTION

Microalgae photobioreactors can be used for wastewater treatment as:
- Tertiary treatment step for nutrient removal
- Nutrient recovery technology due to the phosphorus and nitrogen internal storage

Different reactor designs:
- Open pond reactors
- Closed photobioreactors (e.g., flat panel reactors)

Algal biomass applications:
- Direct use for biofuel production (e.g., biodiesel or biogas)
- Biofertilizer (the indirect use for biofuel production)
- High value products (e.g., pigments)

2. OBJECTIVES

- Development of a process model for the photobioreactor in the Activated Sludge Modelling (ASM) framework:
 - Connecting conventional wastewater treatment plants with photobioreactors
 - Simulation of the micro-algal uptake, storage and growth on phosphorus and nitrogen

- Parameter estimation through targeted experiments:
 - Micro-batch experiments
 - Assessment of the growth rate under different light intensities
 - Batch experiments
 - Assessment of the growth and nutrients uptake under limitation by different macronutrients (N, P)

3. MATERIALS AND METHODS

- Microorganisms: mixed green microalgal culture of Chlorella sp. and Scenedesmus sp.
- Culturing of microalgae:
 - MWC-Se growth medium
 - Constant temperature (20°C)

- Algal biomass applications:
 - Algal biomass; B) Nitrate in the bulk liquid; and C) Nitrogen internal quota.

4. RESULTS

Simulation results with the calibrated model compared with an independent measured dataset:

Process rates

\[
R1 \left[\text{g N m}^{-2} \text{d}^{-1} \right] = k_{R1} \frac{S_{NH4}}{S_{NH4} + K_{NH4}} \frac{X_{alg,PP}}{X_{alg,N}} (X_{alg,PP} - X_{alg,N}) \\
R2 \left[\text{g N m}^{-2} \text{d}^{-1} \right] = k_{R2} \frac{S_{PO4}}{S_{PO4} + K_{PO4}} \frac{X_{alg,PP}}{X_{alg,N}} (X_{alg,PP} - X_{alg,N}) \\
R3 \left[\text{g P m}^{-2} \text{d}^{-1} \right] = k_{R3} \frac{S_{PO4}}{S_{PO4} + K_{PO4}} \frac{X_{alg,PP}}{X_{alg,N}} (X_{alg,PP} - X_{alg,N}) \\
R4 \left[\text{g COD m}^{-3} \text{d}^{-1} \right] = k_{R4} \frac{S_{COD}}{S_{COD} + K_{COD}} \frac{S_{alg}}{S_{alg} + K_{alg}} \\
R5 \left[\text{g COD m}^{-3} \text{d}^{-1} \right] = k_{R5} \frac{S_{COD}}{S_{COD} + K_{COD}} \frac{S_{alg}}{S_{alg} + K_{alg}} \frac{S_{PO4}}{S_{PO4} + K_{PO4}} \frac{X_{alg,PP}}{X_{alg,N}} (X_{alg,PP} - X_{alg,N}) \\
R6 \left[\text{g COD m}^{-3} \text{d}^{-1} \right] = k_{R6} \frac{S_{COD}}{S_{COD} + K_{COD}} \frac{S_{alg}}{S_{alg} + K_{alg}} \frac{S_{PO4}}{S_{PO4} + K_{PO4}} \frac{X_{alg,PP}}{X_{alg,N}} (X_{alg,PP} - X_{alg,N})
\]

5. CONCLUSION

- A process model for green micro-algal growth has been identified and developed using the systematic approach of the activated sludge models.
- The model accurately describes the micro-algal growth under constant light intensities.

ACKNOWLEDGEMENT

FP7-MTP-2011.3.4-1
Grant agreement n°: 280756
Start day: May 1th 2012
Duration: 48 month

Fundied by the European Commission

Disclaimer notice: The European Commission is neither responsible nor liable for any written content in this poster.