Biochemical Application Compilation and Architecture Synthesis for Fault-Tolerant Digital Microfluidic Biochips

Alistar, Mirela; Pop, Paul; Madsen, Jan

Publication date: 2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Biochemical Application Compilation and Architecture Synthesis for Fault-Tolerant Digital Microfluidic Biochips

Authors: Mirela Alistar, Paul Pop, Jan Madsen

Biochemical Application Model

A biochemical protocol is modeled as a directed graph, where the nodes represent the operations and the edges represent the relationship between them. An operation is ready to execute when its inputs have arrived. Examples of operations are: dispensing, mix, dilution, optical detection, merge. Droplets are transmitted through the edges from one operation to its successor operation.

Biochip Architecture Model

A biochip architecture is modeled as an array of electrodes. Operations execute within specified areas called modules, which can be placed on any electrodes of the biochip. These architectures are general-purpose and highly reconfigurable.

Challenge: Faults

The applications have high sensitivity to volume variations. Faults during runtime, such as an unbalanced split, can compromise the result of the application.

A biochemical protocol is modeled as a directed graph, where the nodes represent the operations and the edges represent the relationship between them. An operation is ready to execute when its inputs have arrived. Examples of operations are: dispensing, mix, dilution, optical detection, merge. Droplets are transmitted through the edges from one operation to its successor operation.

Biochip Architecture Model

A biochip architecture is modeled as an array of electrodes. Operations execute within specified areas called modules, which can be placed on any electrodes of the biochip. These architectures are general-purpose and highly reconfigurable.

Challenge: Faults

The applications have high sensitivity to volume variations. Faults during runtime, such as an unbalanced split, can compromise the result of the application.

Runtime Compilation

Recovery Methods

a) Time redundancy

b) Space redundancy

Compilation Tasks

Allocation

Operation	Area	Time
Mix | x3 | 3
Mix | x2 | 2
Reaction | x1 | 1

Binding

Placement

Scheduling

Evaluation of fault-tolerant overhead (faults are marked with X)

Application Specific Architecture

Cost Evaluation

\[\text{Cost}_A = \sum N_{M_i} \times \text{Cost}_{M_i} \]

where

- \(A \) is the architecture
- \(N_{M_i} \) is the number of components \(M_i \)
- \(\text{Cost}_{M_i} \) is the cost of the physical component \(M_i \)

Problem Formulation

- Given
 - Biochemical application
 - Deadline requirements
 - Library of components
 - The number \(k \) of permanent faults
- Determine an application specific architecture \(A \), so that
 - the cost is minimized and
 - the application completes within deadline for any occurrence of the \(k \) permanent faults

http://www2.imm.dtu.dk/~paupo/biochips.html