Iodine in marine samples - Determination of Iodine and Iodine Compounds in Marine Samples by ICPMS and HPLC-ICPMS

Hansen, Maiken Sødergreen; Lewandowski, Daniel Jacob; Rasmussen, Rie Romme; Herbst, Birgitte Koch; Sloth, Jens Jørgen

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
INTRODUCTION

Iodine is an essential element for the human body, why the World Health Organization (WHO) has issued a recommendation that adults should have an intake of 150 µg of iodine/day\(^1\). Despite this recommendation, it is estimated that 2 billion people worldwide are at risk of developing diseases related to iodine deficiency\(^2\). A less common iodine related disease is iodine excess, which is defined to an iodine intake larger than 600 µg iodine/day\(^3\). In Denmark, analyses previously indicated a iodine deficiency in the population, but in recent years, the intake has increased\(^4\). This could be due recommendations of higher intake of fish, which is a good iodine source. Along with fish, seaweed is considered to be a good iodine source. Previously it has only been the total iodine concentrations that has been measured and not the various iodine compounds, which may have different bioavailability and toxicity. Therefore, there is an increased interest in the development of analytical techniques for the determination of the different iodine compounds.

TOTAL EXTRACTION

An experiment to find the most precise and accurate method for total iodine extraction was conducted. Five different methods were tested and the results (Fig. 1) showed that the 15 minutes extraction with ultrasound gave low yields. The 24 hours extraction at 25°C showed varying results and low precision. Finally the extraction at 90°C for 3 hours was chosen based on the best precision and accuracy. The results for the fish and shellfish showed that shellfish contained higher concentrations of iodine (2.4-40 µg/g) compared with the fish (0.23-7.7 µg/g). In Fig. 2 iodine concentrations are presented together with typical literature values. There was a large difference between these values. This difference could be due to the growth environment.

The results for the seaweed samples showed a larger variety in the iodine concentrations (0.51-8400 µg/g) compared with the fish (0.23-7.7 µg/g). This may have occurred due to insufficient dissolving of the samples. The samples were not quantified because it was observed that a small amount of the previous sample was transferred to the next measurement. This may have occurred due to insufficient cleaning of the needle in the HPLC autosampler.

CONCLUSION

Thirty-two marine samples were extracted with the enzyme pancreatin (extraction efficiency: 37-94%) and then analyzed by using a reversed phase column in a HPLC-ICPMS system. This method showed a good separation of four iodine species within 3.5 minutes (Fig. 4).

The results showed that all the samples contained iodide (I\(^-\)) and diiodotyrosine (DIT) with iodide as the most significant species. The results also showed a great variation in the distribution of moniodotyrosine (MIT) and iodate (IO\(_3\)-) in the samples.

The samples were not quantified because it was observed that a small amount of the previous sample was transferred to the next measurement. This may have occurred due to insufficient cleaning of the needle in the HPLC autosampler.

DTU Food
National Food Institute

REFERENCES

1. B. de Benoist et al. (2007). Assessment of iodine deficiency disorders and monitoring their elimination, Technical report, WHO
3. European Commission (2002), Opinion of the Scientific Committee on Food on Food on the Tolerable Upper Intake Level of Iodine
4. A. N. Pedersen et al. (2010), Danskemates koster, Scandinavian Journal of Food

Iodine is an essential element for the human body, why the World Health Organization (WHO) has issued a recommendation that adults should have an intake of 150 µg of iodine/day. Despite this recommendation, it is estimated that 2 billion people worldwide are at risk of developing diseases related to iodine deficiency. A less common iodine related disease is iodine excess, which is defined to an iodine intake larger than 600 µg iodine/day. In Denmark, analyses previously indicated a iodine deficiency in the population, but in recent years, the intake has increased. This could be due recommendations of higher intake of fish, which is a good iodine source. Along with fish, seaweed is considered to be a good iodine source. Previously it has only been the total iodine concentrations that has been measured and not the various iodine compounds, which may have different bioavailability and toxicity. Therefore, there is an increased interest in the development of analytical techniques for the determination of the different iodine compounds.

An experiment to find the most precise and accurate method for total iodine extraction was conducted. Five different methods were tested and the results (Fig. 1) showed that the 15 minutes extraction with ultrasound gave low yields. The 24 hours extraction at 25°C showed varying results and low precision. Finally the extraction at 90°C for 3 hours was chosen based on the best precision and accuracy. The results for the fish and shellfish showed that shellfish contained higher concentrations of iodine (2.4-40 µg/g) compared with the fish (0.23-7.7 µg/g). In Fig. 2 iodine concentrations are presented together with typical literature values. There was a large difference between these values. This difference could be due to the growth environment.

The results for the seaweed samples showed a larger variety in the iodine concentrations (0.51-8400 µg/g) compared with the fish (0.23-7.7 µg/g). This may have occurred due to insufficient dissolving of the samples. The samples were not quantified because it was observed that a small amount of the previous sample was transferred to the next measurement. This may have occurred due to insufficient cleaning of the needle in the HPLC autosampler.

Thirty-two marine samples were extracted with the enzyme pancreatin (extraction efficiency: 37-94%) and then analyzed by using a reversed phase column in a HPLC-ICPMS system. This method showed a good separation of four iodine species within 3.5 minutes (Fig. 4).

The results showed that all the samples contained iodide (I\(^-\)) and diiodotyrosine (DIT) with iodide as the most significant species. The results also showed a great variation in the distribution of moniodotyrosine (MIT) and iodate (IO\(_3\)-) in the samples.

The samples were not quantified because it was observed that a small amount of the previous sample was transferred to the next measurement. This may have occurred due to insufficient cleaning of the needle in the HPLC autosampler.