Manufacture of Bi-cuprate thin films on MgO single crystal substrates by chemical solution deposition

Grivel, Jean-Claude; Bertelsen, Christian Vinther; Andersen, Niels Hessel; Kepa, Katarzyna; Hlásek, T.; Rubešová, K.; Huhtinen, H.; Paturi, P.

Published in:
Journal of Physics: Conference Series (Online)

Link to article, DOI:
10.1088/1742-6596/507/1/012017

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Manufacture of Bi-cuprate thin films on MgO single crystal substrates by chemical solution deposition

This content has been downloaded from IOPscience. Please scroll down to see the full text.
(http://iopscience.iop.org/1742-6596/507/1/012017)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 192.38.90.17
This content was downloaded on 21/05/2014 at 10:01

Please note that terms and conditions apply.
Manufacture of Bi-cuprate thin films on MgO single crystal substrates by chemical solution deposition

J-C Grivel¹, C V Bertelsen¹, N H Andersen², K Kępa¹,³, T Hlásek⁴, K Rubešová⁴, H Huhtinen⁵ and P Paturi⁵
¹Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
²Department of Physics, Technical University of Denmark, Fysikvej, 2800 Kgs Lyngby, Denmark
³Chemical and Process Engineering Division, Poznan University of Technology, pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
⁴Institute of Chemical Technology, Department of Inorganic Chemistry, Technická 5, Prague 6, 166 28, Czech Republic
⁵Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland

E-mail: jean@dtu.dk

Abstract. Bi₂Sr₂CaCu₂O₈ thin films have been deposited on MgO single crystal substrates by spin-coating a solution based on 2-ethylhexanoate precursors dissolved in xylene. Pyrolysis takes place between 200°C and 450°C and is accompanied by the release of 2-ethylhexanoic acid, CO₂ and H₂O vapour. Highly c-axis oriented Bi₂Sr₂CaCu₂O₈ as well as Er- or Ho-doped Bi₂Sr₂(Ca,Ln)Cu₂O₈ (Ln = Er, Ho) films were obtained after heat treatment at 840°C in air.

1. Introduction

Coated conductor tapes based on REBa₂Cu₃O₇ (RE = rare earth) thin films deposited on cube textured substrates can nowadays be produced in long lengths with remarkably high critical current densities (Jc) in excess of 1 MA/cm² at 77 K [1,2], which is more than three orders of magnitude higher than in YBa₂Cu₃O₇ wires made by the Powder-in-Tube (PIT) technology [3-5]. This large improvement is due to the decrease of the intergrain jₐ when the grain misorientation angle exceeds 10° [6]. Nevertheless, the jₐ of coated conductors at 77K under external magnetic fields is not high enough for some applications and cooling to 20K – 30K may be needed. In this temperature range, the Bi₂Sr₂CaCu₂O₈ (Bi2212) superconductor can also reach very high jₐ values under magnetic fields in the form of powder-in-tube wires or ribbons [7-9], with c-axis texture but no in-plane texture. The intergranular jₐ of Bi2212 is also lower when the grain boundary misorientation angle exceeds 10° [10], so that the application of a coated-conductor architecture to Bi2212 tapes could result in large performance improvements. Thin films deposited by vacuum techniques show Jc values in excess of 10 MA/cm² at 5K [10,11]. Only a few reports dealing with Bi2212 thin films prepared by solution deposition have been published to date [12-19], in spite of the potential of this technique for producing long textured...
coated conductors. The films are deposited on MgO single crystals and their T_c is generally between 70K and 84K [13-15,17-19]. In this contribution, we summarize our studies on the pyrolysis of a precursor solution based on 2-ethylhexanoates and on attempts at doping the films with Ho and Er.

2. Experimental details
The coating solutions were prepared by dissolving 2-ethylhexanoate salts of Bi (Alfa Aesar, 70% solution in xylene), Sr (Alfa Aesar, 40% solution in 2-ethylhexanoic acid), Ca (Alfa Aesar, powder), Ho (home made), Er (home made) and Cu (Aldrich, powder) in xylene (Aldrich). For the preparation of Ho- and Er-2-ethylhexanoates, Ho acetate and Er acetate were dissolved in 2-ethylhexanoic acid and excess solvent was evaporated by heating to 90°C. The cation ratio of the coating solutions was Bi : Sr : Ca : (Ho,Er) : Cu = 2 : 2 : 1 : x : 2 and the solutions had a metal molar concentration of 0.3M.

MgO (100) single crystals from CrysTec GmbH were used as substrates. Details on substrate pre-treatment and film deposition can be found in a previous publication [19]. 10 layers were deposited by spin coating. Annealing of the films was performed in air at 840°C.

Simultaneous thermogravimetry (TG) and differential thermal analysis (DTA) measurements were performed in a STA 449C from Netzsch with a heating rate of 10K/min in air (gas flow 40 ml/min) using Al$_2$O$_3$ crucibles. Fourier transform infra-red (FTIR) spectra were recorded in a Bruker Tensor 27 spectrometer coupled to the exhaust line of the TG/DTA device. X-ray diffraction (XRD) patterns were collected in a MD-10 bench-top X-ray diffractometer (for powder samples) or in a Bruker D8 diffractometer (for thin films), both using CuKα radiation. Scanning electron microscopy (SEM) was performed in a TM3000 Tabletop Microscope from HITACHI equipped with a QUANTAX 70 EDS analysis system. T_c was determined from AC-susceptibility measurements.

3. Results and discussion
The TG and DTA traces recorded on the precursor solution dried at 130°C (Fig. 1-left) show that the mass loss takes place in several overlapping steps from 200°C to 450°C. Beyond 450°C and up to 680°C, the sample mass is nearly constant. The mass loss at 500°C (67.3 %) is close to the theoretical value for the decomposition of 2-ethylhexanoates into oxide phases [19].

The FTIR spectra of the gas educts (Fig. 1-centre) show that 2-ethylhexanoic acid is released from about 170°C. From 200°C, CO$_2$ is also detected. The intensity ratio of the CO$_2$ and 2-ethylhexanoic acid absorption lines increases with temperature. H$_2$O vapor is also visible from 250° C, suggesting that combustion of 2-ethylhexanoic acid takes place at an increasing rate as the temperature increases.

Although films with a high degree of c-axis orientation were obtained as shown in Fig. 1-right, the T_c of the undoped films is limited to 73 K – 81 K depending on the samples. The T_c of Bi2212 can be

![Figure 1](image-url)
varied by annealing under specific conditions [20-27]. We tried to increase the T_c of the film by post annealing in Ar at 600°C (30 min) and in O$_2$ at 840°C. According to Triscone et al. [25], these conditions should result in optimum superconducting properties in bulk samples. However, as shown in a previous paper [19], both treatments result in a partial decomposition of the Bi2212 phase and no T_c improvements.

According to Vinu et al. [28], low level Ho doping in Bi2212 can result in an increase of T_c. We therefore tried to dope our films with Ho. Er-doping was also attempted due to the similar ionic size and chemistry of Er and Ho. Fig. 2 shows that the XRD lines of Bi2212 are shifted to higher 2θ angles with doping, as expected from a reduction of the c-axis parameter of the structure [28]. However, both Ho- and Er-doping also resulted in the formation of an increased amount of Bi2201 phase.

![Figure 2](image1)

Figure 2: Left panel: detail of the XRD patterns of films with Bi$_2$Sr$_2$Ca$_{1-x}$Ho$_x$Cu$_2$O$_8$ (x = 0.05, 0.10) nominal compositions. Right panel: T_c values measured on films with various Bi$_2$Sr$_2$Ca$_{1-x}$Ln$_x$Cu$_2$O$_8$ (L_n = Ho, Er) nominal compositions.

The T_c of the Bi2212 phase was not increased upon doping with either Ho or Er. In contrast, as shown in Figure 2, T_c decreases with doping and this occurs apparently much faster for Er doping compared to Ho doping. The microstructure of the surface of a few selected films is shown in Figure 3. The undoped film is covered mostly with platelet-like grains that have grown parallel to the substrate plane, as reflected by the strong c-axis texture observed in the XRD patterns. Ho doping does not seem to induce significant changes in the surface microstructure. In contrast, the Er doped sample consists of much smaller grains, with evidence for many platelets with ab-axis oriented growth as suggested by the appearance of plate edges in the right-hand picture of Fig. 3.

![Figure 3](image2)

Figure 3: SEM pictures (secondary electron mode) of the surface of films with different stoichiometries. a: Bi$_2$Sr$_2$Ca$_{1-\delta}$Cu$_2$O$_{8-\delta}$, b: Bi$_2$Sr$_2$Ca$_{0.95}$Ho$_{0.05}$Cu$_2$O$_{8-\delta}$ and c: Bi$_2$Sr$_2$Ca$_{0.95}$Er$_{0.05}$Cu$_2$O$_{8-\delta}$.
4. Conclusions
Bi$_2$Sr$_2$Ca$_{1-x}$Ho$_x$Cu$_2$O$_8$ (0.00 \leq x \leq 0.10) films with good c-axis orientation were grown on MgO single crystal substrates by means of chemical solution deposition. The T_c of the films was however not larger than 81 K in the best un-doped sample and decreases upon Ho doping. Attempts at doping with Er instead for Ho resulted in a degradation of the microstructure and a sharper decrease of T_c.

References