Jordforureningers påvirkning af overfladevand, delprojekt 4
Vurdering af fortynding i vandløb ved påvirkning fra forureneede grunde

Aisopou, Angeliki; Sonne, Anne Thobo; Bjerg, Poul Løgstrup; Binning, Philip John

Publication date: 2014

Document Version
Publisher’s PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Jordforureningers påvirkning af overfladevand, delprojekt 4

Vurdering af fortynding i vandløb ved påvirkning fra forurenedede grunde

Miljøprojekt nr. 1572, 2014
Titel: Jordforureningers påvirkning af overfladevand, delprojekt 4

Redaktion: Angelina Aisopou, Anne Th. Sonne, Poul L. Bjerg and Philip J. Binning

DTU Miljø

Udgiver: Miljøstyrelsen
Strandgade 29
1401 København K
www.mst.dk

År: 2014

ISBN nr. 978-87-93178-50-2

Ansvarsfraskrivelse:

Må citeres med kildeangivelse.
Bilag 1: Literature review .. 42
 1.1 Literature review on river mixing .. 42
 1.2 Transverse dispersion coefficients .. 44

Bilag 2: Analytisk model til at beregne fortynding af indsvivende forurenet grundvand i typiske danske vandløb .. 47
 2.1 Point source discharged at the bank .. 48
 2.2 Plume discharged over a length of the bank 49
 2.2.1 Mixing length .. 51
 2.2.2 Maximum concentration in the stream .. 51
 2.3 Plume discharged over a the half bottom of the stream 52

Bilag 3: Opblandingsforhold i typiske danske vandløb 53
 3.1 Koncentrationsfordeling på tværs af danske vandløb 53
 3.2 Koncentrationsfordeling over dybden i store og dybe vandløb 54

Bilag 4: Modelleringsresultater af grundvandsindsivning fra hhv. brink og åbund i typiske danske vandløb .. 56

Bilag 5: Sensitivity analysis ... 58

Bilag 6: Monte Carlo sensitivity analysis .. 63
 6.1 Exponential distribution of L_{mix} .. 64
 6.2 Effect of default width and depth on histograms of L_{mix} and C_{max} of a small and medium stream. ... 64

Bilag 7: Litteraturoversigt over relevante feltstudier 66

Rapporten er én ud af 6 delprojekter, der blev i gangsat af Miljøstyrelsen i forbindelse med identificering af overfladevandstruende jordforureninger. De 5 øvrige delprojekter omhandlede følgende emner: NIRAS, Relation mellem stoffer og brancher; COWI, Stofsæregne afstandskriterier til overfladevand; Orbicon, Relation mellem stoffer, koncentrationer og fluxe; DHI, Vurdering af fortyndingsforhold i nærbladevand, forurening og kyster i relation til påvirkning fra forurenede grunde; Orbicon, Systematisering af DK-Jord data og udvælgelse af overfladevandstruende jordforureninger vha. GIS og database. Det endelige resultat af de 6 delprojekter er et ”dashboard-lignede” værktoy (analog til fortynding langs danske kyster: http://www.mst.dk/fortynding), som skal udføre en risikoscreening af alle forurenede grunde i Danmark i forhold til nærliggende vandløb, nærbladevand, nærbladevand og åbne kyster.

1. **Introduktion**

Denne rapport har overordnet til formål og udvikle en fortyndingsmodel, som kan beregne forurenete grunds påvirkning af et vandløb og derved den kemiske tilstand i danske vandløb (små, mellem og store, se typeinddeling i afsnit 3.1).

Modellen vil blive brugt til at udføre en landsdækkende screening af forurenete grunde for at vurdere, hvorvidt de udgør en risiko for den kemiske tilstand i nærliggende vandløb. Beregningsværktøjet kan ligeledes anvendes til at udregne fortynding af en forurenet i et konkret vandløb.

Der vil i rapporten være en litteraturoversigt over eksisterende metoder til at beregne fortynding i vandløb, problemstillingen ved at risikovurdere en forurenet grundvandsindsivning i forhold til punktkilde udledning samt en præsentation af den konceptuelle model (kapitel 2). I kapitel 3 vil der være en gennemgang af den udviklede model og modellameter samt valg af placering af et kontrolpunkt i vandløbet til at vurdere forurenete grundes påvirkning af vandløbet. Der bliver udført en følsomhedsanalyse for at vurdere modellameterenes betydning for fortyndings-beregningerne, hvorfra en række standardparametre bliver valgt (kapitel 4). Der er i kapitel 5 en gennemgang af Miljøstyrelsen og Naturstyrelsen administrative definition på tolereret blandingszone samt, hvor og hvordan forureningskonzentrationen i danske vandløb kan beregnes med den udviklede fortyndingsmodel. Den endelige model bliver i kapitel 6 afprøvet med de tilgængelige data til den landsdækkende screening op imod feltdata fra to case studier i hhv. Skensved Å (Bruun og Rose, 2005) og Grindsted Å (Sonne et al., 2013). I kapitel 7 vil der være en sammenfatning af rapportens konklusioner.
2. Fortynding af forurening i vandløb

2.1 Litteraturoversigt over fortynding i vandløb
Opblanding af grundvandsforurening i naturlige vandløb er en kompleks proces, idet mange af vandløbets parametre er stærkt varierende i både tid og rum (strømningshastighed, bundforhold etc.). Opblandingsprocessen i vandløb har været studeret i mere end 50 år. Bilag 1 viser en opsummering af en række eksperimentelle og teoretiske studier af dette fænomen (se tabel 1\(\text{Table 11}\)). Mange studier fokuserer på udledningen af forurenet vand fra en enkelt jetstråle/rør i et vandløb – en punktformig udledning/forureningskilde. Der er et begrænset antal studier, der omhandler opblandingen af forureningen nedstrøms i et vandløb, udledt fra flere (multiple) diffusere. Der er ikke fundet studier publiceret i den internationale litteratur, som har undersøgt opblandings- og fortyndingsprocessen af indsvivende forurennet grundvand i et vandløb.

2.2 Eksisterende beregningsmetode til at udregne fortynding i vandløb fra punktkilde udledning i EU
Medlemslande i den Europæiske Union har implementeret beregningsmetoden, anbefalet af EU (Directive 2008/105/EC), for fortynding fra en punktkilde udledning til at vurdere, hvorvidt den kemiske tilstand i et vandløb er påvirket.

2.3 Punktkilde versus forureningsfane
Indsvingning af en forureningsfane fra en nærtliggende forureningskilde i et vandløb foregår over et areal og ikke ud fra et enkelt punkt, som illustreret på figur 1. Det er derfor ikke muligt at benytte den samme beregningsmetode for fortynding fra en punktkildeudledning (afsnit 2.1).

Der er ikke blevet anbefalet en beregningsmetode af EU til at vurdere fortynding i vandløb påvirket af forurenede grunde via grundvandet, som der er til risikovurderingen af punktkildeudledning (afsnit 2.1). Der er endnu ingen af medlemslandene, som har udmeldt, hvilken beregningsmetode de vil benytte til deres landsdækkende screening. Holland (Co Molenaar, Senior policy advisor, Ministry of Infrastructure and Environment og Soil Remediation Circular, 2009) har dog meddelt, at de vil bruge en 100 m zone mellem vandløb og forurenet grund, som kriterium for intervention (personlig kommunikation med Christian Andersen, Danske Regioner).

På den baggrund vil der i kapitel 3 blive gjort en række overvejelser vedrørende sådanne beregningsmetoder, opblandingszoner og principper for placering af kontrolpunkter.
Figur 1: Konceptuel model af et vandløb, påvirket af en forurenet grund via grundvandet, hvor indsvivningen sker som a) en punktkildeudledning eller b) over et areal fra brinken eller åbunden (vist for en 50 m bred forureningsfane).

Sammenfatning af kapitel 2: **Fortynding af forurening i vandløb**

- Fortynding af en forurenet punktkildeudledning i et vandløb er veldokumenteret, men der er ingen internationale undersøgelser eller model for opblandings- og fortyndingsprocessen af indsvivende forurenet grundvand i et vandløb.
- Indsvivning af en forureningsfane sker over et areal i et vandløb fra hhv. brinken/åbunden og ikke ud fra et enkelt punkt (ligesom punktkildeudledning), se figur 1.
3. Vurdering af fortynding i et vandløb påvirket af forurenset grundvand

3.1 Typiske parametre for danske vandløb og forureningsfaner

Der blev i forbindelse med denne rapport, som følge af revisionen af jordforureningsloven i 2013, ligeledes blevet identificeret og kategoriseret typiske danske vandløb, branchespecifikke forureningsfane bredder samt typiske koncentrationer og forureningsfluxe (Orbicon, 2013 og COWI, 2013).

Danske vandløb blev inddelt i 3 typer efter størrelse: lille, mellem og stor. Tabel 1 viser karakteristika for hver af de 3 vandløbstyper (Orbicon, 2013). Der er i tabel 2 vist et udtræk af typisk danske branchespecifikke forureningsfane bredder. Fanebredden er vurderet i en afstand af 100 m fra forureningskilden (COWI, 2013).

Tabel 1: Inddeling af danske vandløb efter størrelse (Orbicon, 2013).

<table>
<thead>
<tr>
<th>Bredde, b(vandløb) (m)</th>
<th>Dybde, d(vandløb) (m)</th>
<th>Vandføring (medianminimum), Q(vandløb) (l/s)</th>
<th>Bundhældning, S (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lille</td>
<td>0 – 2</td>
<td>0 – 0,75</td>
<td>0 – 10</td>
</tr>
<tr>
<td>Mellem</td>
<td>2 – 10</td>
<td>0,75 – 2</td>
<td>10 – 200</td>
</tr>
<tr>
<td>Stor</td>
<td>> 10</td>
<td>2 – 5</td>
<td>200 – 8000</td>
</tr>
</tbody>
</table>

Tabel 2: Et udtræk af typisk danske størrelser af bredden for branchespecifikke forureningsfaner (COWI, 2013).

<table>
<thead>
<tr>
<th>Branche</th>
<th>Beskrivelse</th>
<th>Gruppe nr.</th>
<th>Kildestørrelse/diameter (m)</th>
<th>Fanebredder (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boligejendom (villaolietank)</td>
<td>Lille forurening</td>
<td>1</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Kemisk industri (Fremstilling af sprængstoffer mv.)</td>
<td>Mellem forurening</td>
<td>2</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Industrigrunf</td>
<td>Stor forurening</td>
<td>3</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>FYld- og lossepladser</td>
<td>Meget stor forurening</td>
<td>4</td>
<td>100</td>
<td>75</td>
</tr>
</tbody>
</table>

I tabel 3 er der vist et eksempel for typiske danske værdier for størrelsen af en jordforurening afhængig af forureningskilden, f.eks. falder et autoreparationsværksted ind under branchegruppe nr. 2 og derved kendes en typisk diameter samt areal for kilden (Orbicon, 2013). Forureningsfluxen (kg/år) fra en forureningskilde beregnes ved at gange "worst case"-stofkonzentration med arealet for forureningskilden samt det gennemsnitlige nettonedbør i området (som er udtrukket fra JAGG-modellen for den aktuelle kommune, Orbicon, 2013). Typiske stofkonzentrationer er blevet bestemt for 15 forskellige miljøfremmede stofgrupper, hvor f.eks. TCE er anvendt som et modelstof for gruppen af chlorerede oplosningsmidler PCE og TCE samt deres nedbrydningsprodukter cis-DCE og VC (Orbicon, 2013).
Tabel 3: Eksempler fra rapporten af Orbicon (2013), hvor typisk danske værdier for en jordforurening (størrelse og inddeling af branchegrupper) samt ”worst case” koncentrationer for en TCE forurening på en kildegrund er vist (i hhv. alle branche grupper eller lossepladser specifikt). TCE er benyttet som et modelstof for de chlorerede opløsningsmidler PCE og TCE samt deres nedbrydningsprodukter cis-DCE og VC.

<table>
<thead>
<tr>
<th>Størrelse af forurenings-kilde</th>
<th>Branche-gruppe nr.</th>
<th>Diameter af kilde (m)</th>
<th>Areal af kilde (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lille</td>
<td>1</td>
<td>3</td>
<td>7,1</td>
</tr>
<tr>
<td>Mellem</td>
<td>2</td>
<td>10</td>
<td>79</td>
</tr>
<tr>
<td>Stor</td>
<td>3</td>
<td>30</td>
<td>707</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TCE</th>
<th>"Worst case" stofkonzentration (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generelt</td>
<td>128.000</td>
</tr>
<tr>
<td>Losseplads</td>
<td>5000</td>
</tr>
</tbody>
</table>

3.2 Model for fortyndingsforhold i vandløb

Der vil i dette afsnit være en kort gennemgang af tre forskellige scenarier for, hvorfra i et vandløb en indsvingning af en forureningsfane kan ske, samt de fire forskellige inputfunktioner, som blev afgjort til at beskrive en fortynding i vandløb ved påvirkning af forurenet grundvandet. Figur 2 viser de tre scenarier for, hvorfra i et vandløb en forureningsfane kan indsvine: brinden fra hhv. et punkt (figur 2 a) eller et areal (figur 2 b) samt fra den halve åbund over et areal (figur 2 c). Figur 2 d viser en oversigt over de tre forskellige forureningsfordelinger (Guassian, homogen og heterogen), som er brugt til at beskrive en forureningsfanes (50 m bred) indsviningsmønster i et vandløb.

En 2-D model kan benyttes da den vertikale opblanding i de fleste naturlige vandløb sker øjeblikkeligt sammenlignet med den tværgående opblanding (Fischer et al., 1979). En grundlæggende forudsætning for alle de opstillede fortyndingsmodeller er, at grundvandsindsivningen er negligeabel i forhold til vandføringen i vandløbet.
Vurdering af fortynding i vandløb ved påvirkning fra forurenede grunde

3.2.1 Indsivning af en punktkilde fra brinken

I den første af de tre scenarier, er fortyndingen af en grundvandsforurening beskrevet, som en punktkildeudledning i et vandløb (figur 2 a), som en funktion af afstanden (Fischer et al. (1979), ligning 1). Der er i bilag 2.1 givet en mere detaljeret gennemgang af den analytiske beregningsmodel:

\[c(x, y) = \frac{c_{\text{mix}}}{4\pi x} \sum_{n=-\infty}^{\infty} \left\{ \exp \left[\frac{-(y'-2n)^2}{4x'} \right] + \exp \left[\frac{-(y'-2n)^2}{4x'} \right] \right\} \]

Samtlige parametre, som er benyttet, er gennemgået i tabel 4. Længden, \(L_{\text{mix}} \), er defineret som afstanden fra en punktkildeudledning, hvor koncentrationen er fuldstændigt opblandet i vandløbet (x-aksen) (Fischer et al., 1979) (se figur 1 a):

\[L_{\text{mix}} = \frac{0.4\pi b_{\text{vandløb}}^2}{e_1} \]

hvor \(e_1 \) er den transversale opblandingskoefficient. Den tranversale opblandingskoefficient har stor betydning for opblandingsprocessen. En direkte eksperimentel estimering af diffusionskoefficienten kræver tidskrævende og dyre sporstofforsøg (e.g., Zhang and Zhu 2011a). Dette har gjort, at der er blevet udviklet flere metoder til at beregne den transversal opblandingskoefficient ud fra vandløbets geometri, bredde, dybde, flow forhold og evtl. isdække (bilag 1.1). Mange af de foreslåede ligninger kræver mange inputværdier, som er svære at skaffe. Det er derfor valgt at bruge den simplificerede form af ligningen: \(e_1 = \text{konstant} \cdot u'd \), som er blevet vurderet af flere forskere til at være den bedste til beskrivelse af naturlige vandløb. Vi benytter ligningen foreslået af Fischer et al. (1979) and
Rutherford (1994), hvor konstanten er lig 0,3 (se tabel 15). Den benyttede værdi er baseret på en omfattende litteraturgennemgang (bilag 1) og ligger i den lavere ende af de foreslåede værdier for at give en konservativ løsning, idet en lille diffusionskoefficient resulterer i mindre opblanding (bilag 2).

Friktionshastigheden, \(u^* \), som er en funktion af diffusionskoefficienten er estimeret ved \(u^* = \sqrt{g d_{vandløb}} \) (tabell 4). Forskellige formler er foreslået i litteraturen som inkluderer koefficienter for eksempel Chezy eller Manning. EU guidelines foreslår at estimere \(u^* \) ved at bruge Chezy koefficienten, men både Chezy og Manning koefficienten afhænger af flere parameter, hvilket gør dem svære at estimere, da de ikke er fysiske men empiriske parametre (Chlow 1973). Den benyttede ligning (\(u^* = \sqrt{g d_{vandløb}} \)) har mindre usikkerhed.

Tabel 4: Parametre og formler som indgår i beregningsmodellen for de tre scenarier.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Enhed</th>
<th>Terminologi</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J)</td>
<td>(kg/s)</td>
<td>Forureningsflux</td>
</tr>
<tr>
<td>(b_{fane})</td>
<td>(m)</td>
<td>Bredden af forurensningsfane</td>
</tr>
<tr>
<td>(d_{vandløb})</td>
<td>(m)</td>
<td>Gennemsnitlig dybde i vandløb</td>
</tr>
<tr>
<td>(v_{mix})</td>
<td>(kg/m³)</td>
<td>Koncentration ved fuldstændig opblanding i vandløb</td>
</tr>
<tr>
<td>(u)</td>
<td>(m/s)</td>
<td>Gennemsnitlig strømningshastighed i vandløb</td>
</tr>
<tr>
<td>(Q_{vandløb})</td>
<td>(m³/s)</td>
<td>Vandføring</td>
</tr>
<tr>
<td>(x' = \frac{u d_{vandløb} b_{vandløb}}{\sqrt{\pi}})</td>
<td>dimensionsløs</td>
<td>Dimensionsløs afstand (nedstrøms)</td>
</tr>
<tr>
<td>(y' = \frac{v_{mix}}{b_{vandløb}})</td>
<td>dimensionsløs</td>
<td>Dimensionsløs afstand på tværs af åen</td>
</tr>
<tr>
<td>(e_v = 0.06 d_{vandløb} u^*)</td>
<td>(m²/s)</td>
<td>Vertikal opblandingskoefficient</td>
</tr>
<tr>
<td>(e_t = 0.3 d_{vandløb} u^*)</td>
<td>(m²/s)</td>
<td>Transversal opblandingskoefficient</td>
</tr>
<tr>
<td>(u^* = \sqrt{g d_{vandløb}})</td>
<td>(m/s)</td>
<td>Friktionshastighed</td>
</tr>
<tr>
<td>(S)</td>
<td>dimensionsløs</td>
<td>Bundhældning</td>
</tr>
<tr>
<td>(g)</td>
<td>(m/s²)</td>
<td>Tyngdeacceleration</td>
</tr>
</tbody>
</table>

3.2.2 Indsivning af forurensningsfane langs brinken

I det andet scenarie, hvor forurening af en grundvandsforurening i et vandløb beskrives som en funktion af afstanden fra et areal ved brinen, hvor \(x = 0 \) er det punkt langs vandløbet, hvorfor inds(ivningen af forurensningsfane starter (figur 2b). Fordelingen er beskrevet ved et sæt af sektioner fordelt over en afstand \(d \). Idet koncentrationen er antaget at være homogen fordelt, indeholder hver sektion en forurensningsflux \(f(x)dx \). Der er i tabell 2.2 givet en mere detaljeret gennemgang af denne model (ligning 3), der er en videreudviklet version af Fischer et al. (1979) (ligning 1), hvor indsivningen sker over et areal langs brinen i stedet for et enkelt punkt:

\[
c(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c(x, y) \sum_{n=-\infty}^{\infty} \exp \left[-\frac{(y - 2n - y_0)^2}{4(x - \xi)^2} \right] + \exp \left[-\frac{(y - 2n + y_0)^2}{4(x - \xi)^2} \right] \, d\xi (3)
\]

hvor \(c(x, y) = \frac{f(x)dx}{\sqrt{\pi}(x - \xi)} \), \(\xi = \frac{x e_t}{u_{vandløb}} \). Forurensningsfluxen \(f(x)dx \) beskrives i denne model, som en arbitær fordelt kilde og kan derfor beskrive en koncentrationsfordeling som er hhv. normal (Guassian), homogen eller heterogen. \(e_t \) er den transversal opblandingskoefficient (se bilag 2.2 for flere detaljer). Parametrene, som indgår i beregningsmodellen, er gennemgået i tabel 4.
3.2.3 Indsivning af forureningsfane fra den halve åbund
I afsnit 3.1.1 og 3.1.2 beskrives scenarierne for, hvor forureningsfanen indsiver fra brinken i et vandløb. I det tredje mulige scenarie indsiiver forureningsfanen fra den halve åbund i vandløbet over et areal (ligning 4), en videreudvikling af ligningen (ligning 1) fra Fisher et al. (1979):

\[
c(x, y) = \int_{-\infty}^{\infty} c_o(\xi) \sum_{n=0}^{\infty} \left\{ \text{erf} \left[\frac{y' + \frac{1}{2} + 2n}{\sqrt{(4x - \xi)}} \right] - \text{erf} \left[\frac{y' - \frac{1}{2} + 2n}{\sqrt{(4x - \xi)}} \right] \right\} d\xi
\]

hvor \(c_o(\xi) \) er den fuldstændigt opblandede koncentration i vandløbet. Forureningsfluxen, \(J \), er udtrykt som en arbitrær fordelt kilde og kan derfor beskrive en koncentrationsfordeling, som er hhv. normalfordelt (Guassian), homogen fordelt eller heterogen fordelt. Se bilag 2.3 for flere detaljer.

Ligning (1) til (4) kan simplificeres ved at benytte formlerne vist i tabel 4 og kan alle udtrykkes som funktion af de 6 parametre i tabel 5.

<table>
<thead>
<tr>
<th>Parameterparametre</th>
<th>Enhed</th>
<th>Parameter nr.</th>
<th>Parameter symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bredde</td>
<td>M</td>
<td>1</td>
<td>(b_{\text{梵地}})</td>
</tr>
<tr>
<td>Dybde</td>
<td>M</td>
<td>2</td>
<td>(d_{\text{梵地}})</td>
</tr>
<tr>
<td>Vandføring</td>
<td>m³/s</td>
<td>3</td>
<td>(Q_{\text{梵地}})</td>
</tr>
<tr>
<td>Bundhældning</td>
<td>%</td>
<td>4</td>
<td>(S)</td>
</tr>
</tbody>
</table>

Forureningsfane

<table>
<thead>
<tr>
<th>Parameterparametre</th>
<th>Enhed</th>
<th>Parameter nr.</th>
<th>Parameter symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bredde</td>
<td>M</td>
<td>5</td>
<td>(b_{\text{赎}})</td>
</tr>
<tr>
<td>Forureningsflux</td>
<td>kg/år</td>
<td>6</td>
<td>(J)</td>
</tr>
</tbody>
</table>

3.3 Valg af input funktion for forureningsfanen fra en forurenet grund
Forureningsfanen fra en forurenet grund blev simuleret på fire forskellige måder: i) som en punktformig kilde; og som en fane med bredde (\(b_{\text{赎}} \)): hvor koncentrationsfordelingen er ii) normal (Guassisk), iii) homogen og iv) heterogen. Det er antaget, at koncentrationen er ligeligt (uniformt) fordelt over dybden (z-aksen), fordi opblanding med dybden sker meget hurtigere en opblanding på tværs af åen (se figur 3).
Vurdering af fortynding i vandløb ved påvirkning fra forurenede grunde

Figur 3: a) Konceptuel model af en 50 m bred forureningsfane med en forureningsflux på 4 kg/år (J), som siver ind i et vandløb. Størrelsen af parametrene er typiske værdier for danske grundvandsforureninger med chlorerede oplosningsmidler (COWI, 2013; Orbicon, 2013) b) viser en oversigt over de tre forskellige forureningsfordelinger (Guassian, homogen og heterogen), som er brugt til at beskrive den 50 m bredde forureningsfanes indsviningsmønster i et vandløb c) illustrerer indsvinning af en fane fra brinden i et vandløb. Pliene viser hhv. størmønstringen af vandløbet a) og forureningsfanan c).

Figur 4 viser koncentrationen i overfladevandet langs vandløbet for de fire forskellige fordelingsfunktioner i et typisk mellemstort dansk vandløb, hvor vandløbets flow er 100 L/s (Qvandløb), 6 m bred (b vandløb) og 1,5 m dyb (d vandløb) (se bilag 2 for inddeling og karakteristika af typisk danske små, mellemstore og store vandløb). Medianminimumsvandføring i et givent vandløb benyttes, Qvandløb, da det giver en konservativ vurdering af fortyndingen i vandløbet. Samtidig vurderes det, at medianminimumsvandføring kan tilvejebringes for alle danske vandløb. Indsviningsforløbet sker fra brinden (y=0).

Figur 4 a-d viser konturkurver af den normaliserede koncentration, efter at stationære forhold er indtruffet i vandløbet. Koncentrationen er normaliseret med koncentrationen ved fuldstændig opblanding (Cmix = J/Qvandløb = 1,3 µg/L), og resultaterne viser derfor fortyndningsmønstret for alle potentielle størrelser af en forureningsflux. Det ses, at koncentrationsfordelingen varierer langs vandløbet (x-aksen).

Ved en punktformig udsvingning (figur 4 a) ses en variation på tværs af vandløbet op til 2 meter efter udledningszonen. De højeste koncentrationer er fundet ved brinden (y=0), hvor forureningsfanen er antaget at sive ind (diskuteres i næste afsnit). Ved de 3 øvrige fordelingsfunktioner er koncentrationen stort set fuldt opblødet på tværs af vandløbet med det samme. Resultaterne viser for mellemstore vandløb er der ingen variation på tværs. Der er dog en variation på fordelingsmønsteret på tværs af vandløbet for vandløb med andre proportioner i de tre hovedkategorier: små, mellemstore og store (tabel 1, afsnit 3.1) (se bilag 3.1 hvor eksempler af små og mellemstore vandløber er vist). For store vandløb sker den fuldstændige opblanding på tværs af vandløbet først længere nedstrøms i vandløbet, som det bliver diskuteret i næste afsnit.

Figur 4 e-h viser den normaliserede koncentration langs brinden i et typisk mellemstort dansk vandløb. Langs vandløbet indtræffer den fuldstændige opblanding (Cmix) få meter efter indsviningszonen slutter (x=50 m, Laq = 3 m eks. figur 4 h). Det ses, at de fire forskellige fordelingsfunktioner ikke ændrer koncentrationen ved fuldstændig opblanding, men at de har en signifikant betydning for koncentrationerne, inden den fuldstændige opblanding indtræffer efter ca. 50 m.

Ved den punktformige kilde ses det, at koncentrationen ved selve kilden (x=0) er ekstrem høj i forhold til de andre scenarier. Modellen for en punktkilde er ikke i overensstemmelse med, hvad der observeres ved en grundvandsforurening af et vandløb. Her ses der typisk en gradvis
koncentrationsstigning i overfladevandet langs vandløbet i takt med, at forureningen tilføres vandløbet (f.eks. Sonne et al., 2013).

Simuleringer med de tre forskellige inputfunktioner (Guassian, homogen og heterogen) viser et mere realistisk billede af forureningsfanens påvirkning af vandløbet, idet de alle viser en gradvis koncentrationsstigning i overfladevandet langs brinken (figur 4 f, g og h). Koncentrationsforløbet langs vandløbet er bedst illustreret af modellen for den heterogent fordelt forureningsfane. Denne model kræver detaljerede data for forureningsfanen. Da fanebredden i det parallelle projekt (COWI, 2013) er angivet for en homogen koncentration (>EQS 1), anbefales det, at den homogent fordelt input model benyttes. Den homogent fordelt input funktion er derfor blevet anvendt til at vurdere de efterfølgende scenarier.

3.4 Hvor i vandløbet sker indsiuvning?

Betydningen af beliggenheden af indsiuvningszonen for fortyndingsforholdene i vandløbet er også undersøgt. Et typisk stort dansk vandløb (Qvandløb = 2300 L/s, bvandløb = 12 m og dvandløb = 1,5 m) er benyttet for at illustrere variationen af koncentrationen over dybden, på tværs og langs vandløbet. Figur 5 viser koncentrationsfordelingen i vandløbet for scenarierne, hvor forureningsfanen indsiver fra hhv. åbunden (figur 5 d), brinken (figur 5 e) og halvdelen af åbunden (figur 5 f).

Det ses, at sker indsiuvning fra åbunden (figur 5 a), er der fuldstændig opblanding over dybden (z-aksen) efter få meters transport (x-aksen) i vandløbet, og variationen i koncentrationen over dybden er minimal (figur 5 g). Øjeblikkelig vertikal opblanding blev ligeledes observeret i dybe danske vandløb (dvandløb = 5 m, bilag 3.2). Den tværgående opblandingssafstand var én størrelsesorden højere end den vertikale opblandingssafstand. Dette er et gennemgående resultat, og det kan derfor antages, at den vertikale opblanding sker hurtigt sammenlignet med tværgående opblanding.

I de øvrige scenarier, hvor indsiuvningen sker fra hhv. brinker og halvdelen af åbunden, sker opblandingen langsommere, og der er en større variation på tværs af vandløbet (y-aksen).

1 Environmental Quality Standards (Directive 2008/105/EC)
Det ses, at ved indsvingning fra brinken (figur 5 e og h), opnår overfladevandet en koncentration (ved \(y=0 \)), der er dobbelt så høj som den fuldstændigt opblandede koncentration \((C_{mix}) \), før der sker en fuldstændig opblanding længere nedstrøms. Det er antaget, at koncentrationen er ligeligt fordelt over dybden (\(z \)-aksen). Koncentrationsfordelingen på tværs af vandløbet er meget lig scenariet, hvor fanen indsviver fra brinken (figur 5 e og f). Variationerne i koncentrationen langs brinkerne (\(y=0 \) og \(y=bredde \)) var dog mindre udtalt. Modellen for indsvingning langs brinden vil derfor være det mest konservative valg, og denne model anbefales.

Det skal bemærkes, at indsvingning fra brinden også er det mest sandsynlige scenarie. Det var vist ved brug af en numerisk flowmodel (bilag 4) for typiske danske forhold (vandløb, opland, nedbør samt hydrogeologi), at forureningsofaner, som resultat af forurenede grunde indenfor en afstand af 0,5 km fra et vandløb primært vil indsvive fra brinden.

Figur 5: Skitse tegning af de tre senarier for en forureningsfanes indsvingning i et vandløb: åbund (a), brink (b) og halv åbund (c). Den normaliserede koncentrationsfordeling er set fra hhv. et x-z plan (d) og x-y plan (e og f). I (g) er den normaliserede koncentration vist langs vandløbet ved åbunden (\(z=0 \) m), \(z=dybde/2 \) og ved overfladen (\(z=dybde \)). I (h og i) er den normaliserede koncentration vist langs vandløbet ved brinken (\(y=0 \) og \(y=bredde \)) og i midten af vandløbet (\(y=bvandløb/2 \)). Koncentrationerne er normaliseret med den fuldstændigt opblandede koncentration \((C_{mix}) \). Forureningsfanen havde en forureningsflux på 4 kg/år og fanebredde på 50 m. Simuleringerne er vist for et typisk stort dansk vandløb (\(Q_{vandløb} = 2300 \) L/s, \(b_{vandløb}= 12 \) m og \(d_{vandløb}= 1,5 \) m).
3.5 Målepunkter i vandløb

I figur 6, som viser en simulering af den normaliserede koncentration langs vandløbet ved forureningsfaner af forskellige bredde, ses det, at afstanden (x-aksen) i vandløbet, hvor koncentrationen er fuldstændigt opblandet, er direkte afhængig af forureningsfanens bredde.

I den følgende diskussion i kapitel 4 antager vi et målepunkt i vandløbet i afstanden \(x_{kontrolpunkt} \), hvor koncentrationen er fuldstændigt opblandet. Det skal bemærkes, at \(x_{kontrolpunkt} \) ikke skal forveksles med den administrativt definerede blandingszone (BZ), som er diskuteret i kapitel 5.

\[x_{kontrolpunkt} = b_{fanen} + L_{mix} \]

(5)

\(L_{mix} \) er udregnet iflg. Fischer et al. (1979) (se ligning (2)), hvor \(L_{mix} \) er afstanden fra, hvor input slutter (her \(x = b_{fanen} \)) til den afstand, hvor koncentrationen er fuldstændigt opblandet. Ligning (2)) kan simplificeres og udtrykkes som funktion af 6 parametre, tabel 5:

\[L_{mix} = \frac{0.4Q_{vandløb}b_{vandløb}}{0.3 d_{vandløb}^2 \sqrt{\varrho d_{vandløb}}} \]

(6)

Figur 7 viser placeringen af \(x_{kontrolpunkt} \) i vandløbet i forhold til forureningsfanen og vandløbet. Ved det valgte målepunkt (\(x_{kontrolpunkt} \)) vil koncentrationen være ligeligt fordelt på tværs af vandløbet, og det vil derfor ikke påvirke vandprøvens koncentration, hvor prøven udtages på tværs af vandløbet (y-aksen).

![Diagram](image.png)

Figur 6: Den normaliserede koncentration er vist ved brinken (y=0) langs vandløbet (x-aksen) ved forureningsfaner af forskellige bredde. Den fuldstændigt opblandede koncentration \(c_{mix} \) indtræffer ved \(x_{kontrolpunkt} = b_{fanen} + L_{mix} \), hvor \(x = 0 \) er det punkt langs vandløbet hvorfra indsvinningen af forureningsfanen starter (figur 7). Afstandene \(b_{fanen} \) og \(L_{mix} \) er vist med grønt for \(b_{fanen} = 50 \) m. Den homogene input funktion er benyttet for indsvinning af forureningsfanen fra brinken, og parametrene for vandløbet og fanen er de samme som benyttet i figur 5.
Vurdering af fortynding i vandløb ved påvirkning fra forurenede grunde

Figur 7: Konceptuel model af en forureningsfane der indsviver i et vandløb samt placeringen af kontrolpunktet \((x, y)\) for prøvetagning i vandløbet, hvor der er opnået fuldstændig opblanding. I vandløb mindre end 2 m anbefales det dog at udtage vandprøven ved \(y = \frac{b_{vandløb}}{2}\). Vandløbets strømningsretning er ligeledes angivet.

Ud fra ligning (3) kan den komplette model (2-D) til at beskrive koncentrationen i et vandløb fra en indsvivende forureningsfane simplificeres og udtrykkes som en funktion af 6 parametre (se tabel 5):

\[
c(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{c_i(\xi)}{4\pi(x-\xi)^2_{vandløb}d_{vandløb}^5} \sum_{n=-150}^{150} \exp \left\{ \frac{-\left(y - 2nb_{vandløb}\right)^2}{4(x-\xi)_{vandløb}^2d_{vandløb}^5} \right\} d\xi
\]

Integralet er kun vist for \(\xi < x\).

\(c_i(\xi) = j_i(\xi)/Q_{vandløb}\). Ved homogenfordeling af forureningsfluxen over forureningsfanens brede er

\(j_i(x)\) defineret ved \(j_i(x) = \frac{1}{b_{fanee}},\) for \(0 < x < b_{fanee}\) og \(j_i(x) = 0,\) for \(x > b_{fanee}\)

Den maksimale koncentration \((C_{max})\) i vandløbet vil for et scenarie, hvor forureningsfanen indsviver i vandløbet fra et areal i brinken, altid forekomme ved slutningen af fanebredden \((x = b_{fanee})\) ved brinker \((y = 0)\) i vandløbet. Koncentrationen ved dette punkt kan estimeres ud fra ligning (7), som kan forenkles og udtrykkes som en funktion af de 6 input parametre i modellen (tabel 5, for flere detaljer se bilag 5):
\[c(b_{\text{fane}}, 0) = \int_{0}^{b_{\text{fane}}} \frac{f(x)}{Q_{\text{vandløb}}} \frac{1}{4\pi} \frac{(b_{\text{fane}} - \xi)0.3}{Q_{\text{vandløb}}} \frac{d^2}{Q_{\text{vandløb}}} \frac{g}{d_{\text{vandløb}}} \frac{t}{\sqrt{d_{\text{vandløb}}}} \left(\sum_{n=-10}^{10} 2\exp \left[\frac{n^2}{(\xi-b_{\text{fane}})0.3} \frac{d^2}{Q_{\text{vandløb}}} \frac{g}{d_{\text{vandløb}}} \frac{t}{\sqrt{d_{\text{vandløb}}}} \right] \right) d\xi \] (8)

3.6 Prøvetagning af vandløb

I forhold til en praktisk prøvetagning af dette målepunkt, foreslår vi, at vandprøven udtages ca. 1 m fra bredden (se figur 7), da bevoksning langs brinken kan påvirke den målte koncentration, dog anbefales det, at vandprøven i vandløb smallere end 2 m udtages ved \(y = \frac{b_{\text{vandløb}}}{2} \).

<table>
<thead>
<tr>
<th>Sammenfatning af kapitel 3: Vurdering af fortyndning i et vandløb påvirket af forurenet grundvand</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Det anbefales at vælge en homogen input funktion for forureningsfanen fra en forurenet grund (figur 4 c).</td>
</tr>
<tr>
<td>• Indsivning af en forureningsfane i et vandløb antages at ske fra brinken for alle forureningssrunde indenfor en afstand af 0,5 km (figur 5 b).</td>
</tr>
<tr>
<td>• Der er defineret et kontrolpunkt for vandløbet i afstanden (x_{\text{kontrolpunkt}} = b_{\text{fane}} + L_{\text{mix}}), hvor (x = 0) er det punkt langs vandløbet, hvorfra indsivningen af forureningsfanen starter (figur 7).</td>
</tr>
<tr>
<td>• Ved praktisk vandprøvetagning bør principperne fra NOVA (2003) følges.</td>
</tr>
<tr>
<td>• Der indgår 6 parametre i fortyndingsmodellen (tabel 5, se flere detaljer i bilag 2).</td>
</tr>
</tbody>
</table>
4. Følsomhedsanalyse af fortyningsmodellen

4.1 Metoder for følsomhedsanalyse af fortyningsmodellen

Der blev udført følsomhedsanalyse på den endelige fortyningsmodel for at afgøre, hvilke parametre der var afgørende for udregningen af længden på opblændingszone (L_{mix}) samt maksimumskoncentration i vandløbet (C_{max}). Formålet var bl.a. at afgøre, om det er muligt at sætte en eller flere af de 6 modelparametre (tabell 5) i modellen til en forudsat (default) værdi.

To metoder til følsomhedsanalyse blev benyttet: 1) One Factor At a Time analysis (OAT), hvor én parameter varieres af gangen, og variationen af resultaterne er målt 2) Global Sensitivity analysis (GSA), hvor alle parametre er varieret vilkårligt hver gang. Se bilag 5 for flere detaljer om teorien bag de to metoder samt resultaterne fra de to analyser. Til sidst udfører en Monte Carlo analyse for at bestemme intervallet af mulige værdier for L_{mix} og C_{max} i typiske danske små, mellemstore og store vandløb (tabel 1).

4.1.1 Parametre til vurdering af modelfølsomhed, L_{mix} og C_{max}

Længden af opblændingszonen (L_{mix}) og den maksimale koncentration (C_{max}), der opnås i vandløbet inden en fuldstændig opblanding indtræffer, er begge to kritiske værdier som udregnes med modellen. Længden af opblændingszonen er nødvendig for at lokaliserer kontrolpunktet for prøveudtagning af vandkvaliteten og er beregnet ud fra en punktkildeberegning (Fischer et al. (1979), se bilag 2) hvor parametrene, enheder samt øvre og nedre grænser er vist i tabel 6 og tabel 13.

4.1.2 Modelparametrenes variation for danske vandløb

Modellens 6 parametre er vist i tabel 5. I tabel 6 defineres modelparametrene for de tre typer danske vandløb (små, mellemstore og store). Følsomhedsanalysen blev gentaget for hver af de tre typer vandløb, som havde forskellige øvre og nedre grænser for de 6 parametre undtagen bundhældningen, bredden af forureningsfanen og forureningsfluxen, som havde de samme variationer i alle tre typer vandløb (tabel 6, se flere detaljer i bilag 5).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nr.</th>
<th>Små vandløb</th>
<th>Mellemstore vandløb</th>
<th>Store vandløb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nedre grænse</td>
<td>Øvre grænse</td>
<td>Nedre grænse</td>
</tr>
<tr>
<td>Vandløb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bredde (m)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Dybde (m)</td>
<td>2</td>
<td>0,2</td>
<td>0,75</td>
<td>0,75</td>
</tr>
<tr>
<td>Vandføring (m³/s)</td>
<td>3</td>
<td>0,001</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Bundhældning (%)</td>
<td>4</td>
<td>0,0001</td>
<td>0,01</td>
<td>0,0001</td>
</tr>
<tr>
<td>Fane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bredde (m)</td>
<td>5</td>
<td>9</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Forureningsflux (kg/år)</td>
<td>6</td>
<td>3</td>
<td>200</td>
<td>3</td>
</tr>
</tbody>
</table>
4.2 **Betydende faktorer for \(L_{\text{mix}} \) og \(C_{\text{max}} \) iflg. OAT og GSA**

Tabel 7 og tabel 8 opsommerer resultaterne for analysen samt rangering af parametrene efter deres betydning for \(L_{\text{mix}} \) og \(C_{\text{max}} \) ud fra OAT og GSA.

Det kan ses, at \(L_{\text{mix}} \) er meget følsom overfor bundhældningen (rangeret som nr.1 af parametrene, tabel 7). Dette skyldes, at bundhældningen påvirker den transversale opblandingskoefficient \((e_t = 0.3d \sqrt{\frac{\text{flow}}{v_{\text{vandløb}}}}) \), og derved opblandingen i vandløbet. Vandløbet flow, bredde og dybde er ligeledes vigtige. Dybden kan f.eks. påvirke \(L_{\text{mix}} \) med en faktor 2 for alle typer vandløb (se figur 24). Forureningsfanens bredde samt forureningsfluxen har ikke nogen påvirkning på \(L_{\text{mix}} \) (tabel 7).

\(C_{\text{max}} \) er meget følsom overfor vandføringen i vandløbet samt forureningsfluxen. Dybden påvirker kun \(C_{\text{max}} \) i små vandløb og har ingen effekt på mellemstore og store vandløb. Bredden af vandløbet og bredden af forureningsfanen har ingen betydning for \(C_{\text{max}} \). Bundhældningen har kun en meget lille effekt på \(C_{\text{max}} \) (tabel 7).

Den eneste parameter som har en lille effekt på \(C_{\text{max}} \) og ingen effekt på \(L_{\text{mix}} \) er forureningsfanens bredde, men denne parameter er nødvendig for at kunne beregne kontrolpunktet for prøvetagning (som er lig med \(L_{\text{mix}} + b_{\text{fan}} \)) og derfor påkrævet.

Det kan derfor konkluderes, at alle 6 parametre er nødvendige for at kunne estimere \(C_{\text{max}}, L_{\text{mix}} \) samt kontrolpunktet for prøvetagning i vandløbet, og at ingen af parametrene umiddelbart kan sættes til en default værdi på baggrund af de udførte følsomhedsanalyser, OAT og GSA. Dette er uddybet og illustreret i bilag 5.

De absolutte værdier for \(C_{\text{max}} \) er belyst i forhold til variationen af de to mest betydende parametre (vandføring, forureningsflux) på figur 24. De øvrige parametre er fastholdt til midtpunktet af de karakteristiske intervaller for de tre typer vandløb, hvor de øvrige parametre er fastholdt til middelværdien. Det ses, at de absolut højeste koncentrationer af \(C_{\text{max}} \) ikke overraskende findes i små vandløb med lille vandføring og høj forureningsflux. For de store vandløb skal der være en betydelig forureningsflux for at få en markant koncentration.

Længden af opblandingszonen, \(L_{\text{mix}} \), varierer som det ses af bilag 5, mellem stort set momentan opblanding og op til 160 m. Den største længde opnås ved de store vandløb med meget lille bundhældning. For praktiske formål vil der således i langt de fleste tilfælde være fuldstændig opblanding efter 100 m og ofte langt før for små vandløb.

Tabel 7: Rangering af de 6 input parametres betydning for beregningen af \(L_{\text{mix}} \).

<table>
<thead>
<tr>
<th>(L_{\text{mix}}) Rangering</th>
<th>Små, mellem, store vandløb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Følsomme parametre</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Bundhældning</td>
</tr>
<tr>
<td>2</td>
<td>Vandføring</td>
</tr>
<tr>
<td>3</td>
<td>Vandløbets bredde</td>
</tr>
<tr>
<td>4</td>
<td>Vandløbets dybde</td>
</tr>
<tr>
<td>Ikke følsomme parameter</td>
<td>Forureningsfanens bredde</td>
</tr>
<tr>
<td></td>
<td>Forureningsflux</td>
</tr>
</tbody>
</table>

Vurdering af fortyning i vandløb ved påvirkning fra forureneede grunde 21
Tabel 8: Rangering af de 6 input parametres betydning for beregningen af Cmax.

<table>
<thead>
<tr>
<th>Cmax</th>
<th>Rank</th>
<th>Små vandløb</th>
<th>Mellemstore vandløb</th>
<th>Store vandløb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Følsomme parametre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Vandføring</td>
<td>Vandføring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Forureningsflux</td>
<td>Forureningsflux</td>
<td>Forureningsflux</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Vandløbs dybde</td>
<td>Bundhældning</td>
<td></td>
<td>Forureningsfanens bredde</td>
</tr>
<tr>
<td>4</td>
<td>Bundhældning</td>
<td>Forureningsfanens bredde</td>
<td></td>
<td>Bundhældning</td>
</tr>
<tr>
<td>Ikke følsomme parametre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vandløbs bredde</td>
<td>Vandløbs bredde</td>
<td></td>
<td>Vandløbs bredde</td>
</tr>
<tr>
<td></td>
<td>Forureningsfanens bredde</td>
<td>Vandløbs dybde</td>
<td></td>
<td>Vandløbs dybde</td>
</tr>
</tbody>
</table>

For at forenkle modellen, da alle parametre viste sig at være betydelige for beregningen af længden af blandingszonen, Lmix, og den maksimale koncentration, Cmax i vandløb, blev der udført Monte Carlo simuleringer for at bestemme intervallet af mulige værdier for Lmix og Cmax i typiske danske små, mellemstore og store vandløb (tabel 1).

4.3 Monte Carlo simuleringer

En følsomhedsanalyse på baggrund af Monte Carlo simuleringer (se bilag 6) blev foretaget for at bestemme middelværdien samt standardafvigelsen for Lmix, Cmax og Cmix i typiske danske små, mellemstore og store vandløb (tabel 1).

Figur 7 viser placering af begreberne Lmix, Cmax og Cmix i et vandløb. Lmix er længden nedstrøms for, hvor indsviningszonen slutter (x=bflane), og hvor koncentrationen på tværs af vandløbet er fuldstændigt opblandet (Cmix). Lmix er nødvendig for at kunne bestemme kontrolpunktet med fuld opblanding nedstrøms forureningsfanens indsviningszone, der er defineret som Lmix + bflane. Cmax er maksimum koncentrationen, der opnås i vandløbet, som observeres ved brinken (y=0) og ved x=bflane (Figur 7).

Figur 8 og 9 viser histogrammerne for Lmix, Cmax og Cmix i typiske danske små, mellemstore og store vandløb. Figur 9 g, h og i viser plottet af Cmix versus Cmax.

Det bør bemærkes, at alle viste fordelingerne er tæt på at være eksponentielt fordelt, og middelværdien og standardafvigelsen er derfor næsten de samme. For en eksponentiel fordeling udgør en standardafvigelse over og under middelværdien (dvs. 2 x standard afvigelsen) størstedelen (86 %) af mulige udfald.

4.3.1 I hvilket interval ligger de mulige Lmix værdier?

Lmix stiger med størrelsen af vandløbsstørrelsen, som forventet (figur 8 a, b og c). For små og mellemstore vandløb er Lmix meget lille med middelværdier på hhv. 0,8 m og 3 m. For store vandløb har Lmix en middelværdi på 23 m og en standardafvigelse på 30 m. Da fordelingen er eksponentiel (se bilag 6 for flere detaljer) betyder det, at 86 % af store vandløb vil have Lmix værdier, der er mindre end 60 m (2 x standard afvigelsen). Det vil derfor være opnået fuld opblanding i størstedelen af alle vandløbsstyper, hvis der fx blev målt i et punkt 100 m fra fanens afslutning.
4.3.2 C_{max} versus C_{mix} – er det nødvendigt at beregne C_{max}?

Figur 9 viser histogrammerne for C_{max}, C_{mix} samt plottet for C_{max} versus C_{mix} for små, mellemstore og store vandløb. For små og mellemstore vandløb ses det, at værdierne for C_{max} og C_{mix} er meget lig hinanden. Der er kun enkelte punkter, som ligger over de røde linjer med hældningen 1. (figur 9 c og f). Det virker derfor overflødigt at beregne C_{max} i disse vandløb ved en indledende risikovurdering. Bemærk, at udregningen af C_{max} er meget mere kompliceret end for C_{mix}, som er estimeret ud fra forureningsfluxen (J) og vandføringen ($Q_{vandløb}$) (se tabel 4). C_{mix} kan derfor blive beregnet i stedet for C_{max} i små og mellemstore vandløb.

I store vandløb derimod (figur 9) er der flere tilfælde, hvor C_{max} er betydeligt større end C_{mix}. Vi anbefaler derfor, at C_{max} beregnes for store vandløb ved hjælp af ligning 8, hvis den korrekte værdi skal bestemmes. I de tilfælde, hvor et stort vandløb bliver kategoriseret som et mellemstort (pga. stor sæsonvariation), og C_{max} derfor antages at være lig C_{mix}, er det ikke et stort problem, idet C_{max} i de fleste store vandløb er lig C_{mix}.
Vurdering af fortynding i vandløb ved påvirkning fra forurenede grunde

4.3.3 Kan default værdier benyttes for dybden og bredden i store vandløb til beregning af C_{max}?

Værdierne for dybden og bredden i et vandløb er nødvendige for at kunne beregne C_{max} i store vandløb præcist (se afsnit 4.3.2). Figur 10 viser histogrammer for typiske store danske vandløb, hvor dybden og bredden af vandløbet er sat til default værdier (lig gennemsnittet af de øvre og nedre grænser, se tabel 6). Sammenlignes figur 10 med figur 9 c, f og i, kan det ses, at de observerede statistiske egenskaber af plottene for C_{mix} og C_{max} stort set ikke ændres, idet de estimerede middelværdier og standardafvigler er meget tæt på hinanden (± 5 %). Bilag 6 viser histogrammerne for små og mellemstore vandløb, hvor default værdierne er benyttet for dybden og bredden.

Der vil derfor for at forenkle beregningerne kunne anvendes gennemsnitsværdier for dybde og brede af vandløb, uden at det i screeningsojemed vil give større ændringer i C_{mix} og C_{max}.

Figur 9: Histogrammer for C_{max} (a, b og c) og C_{mix} (d, e og f) for typiske danske små, mellemstore og store vandløb. (g, h og i) viser plottet af C_{max} versus C_{mix} for typiske danske små, mellemstore og store vandløb. De røde linjer har hældningen 1, således at punkter over denne linje illustrerer at C_{max} er større end C_{mix}. Dette er langt mest udtalt for de store vandløb.
Vurdering af fortynding i vandløb ved påvirkning fra forurenede grunde

Sammenfatning af kapitel 4: Folsomhedsanalyse af fortyndingsmodellen

- Der vil være fuld opblanding i de fleste vandløbstyper inden for 100 m. Små og mellem store vandløb vil have fuldstændig opblanding kort efter forureningsfanen indsvinningszone slutter. 86% af store vandløb vil have L_{mix} værdier, der er mindre end 60 m.
- I små og mellemstore vandløb: $C_{\text{max}} = C_{\text{mix}} = \frac{\text{forureningsfluxen}}{\text{vandføringen}}$. C_{max} bør beregnes i store vandløb, hvis der ønskes en præcis beregning.
- Ved beregningen af C_{max} kan defaultværdier for bredden og dybden benyttes ($b_{\text{vandløb}} = 12.5$ m og $d_{\text{vandløb}} = 3.5$ m), idet effekten af værdierne for disse parametre ikke har betydning for resultatet.
- Nødvendige parametre:
 1) **Bredden af forureningsfanen** (b_{fan}) er nødvendig for alle forureningsfaner for at kunne estimere kontrolpunktet til vandprøvetagningen, hvor der er fuld opblanding.
 2) **Forureningsfluxen** (J) er nødvendig for alle forureningsfaner for at kunne estimere C_{max} og C_{mix}.
 3) **Vandføringen** ($Q_{\text{vandløb}}$) er nødvendig for alle typer vandløb for at kunne estimere C_{max} og C_{mix}.
 4) **Bundhældningen** (S) er kun nødvendig for store vandløb for at kunne estimere C_{max}.

Figur 10: Histogrammer af C_{max} (a), C_{mix} (b) og plottet af C_{max} versus C_{mix} (c) for store vandløb, hvor default værdierne er benyttet for bredden og dybden ($b_{\text{vandløb}} = 12.5$ m og $d_{\text{vandløb}} = 3.5$ m). Den røde linje har hældningen 1, således at punkter over denne linje illustrerer, at C_{max} er større end C_{mix}.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Mean</th>
<th>Std Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 2</td>
<td>1.74</td>
<td>2.50</td>
</tr>
<tr>
<td>2 - 4</td>
<td>1.52</td>
<td>2.47</td>
</tr>
</tbody>
</table>

Vurdering af fortynding i vandløb ved påvirkning fra forurened grunde 25
5. Miljøstyrelsens og Naturstyrelsens administrative definition på tolereret blandingszone i vandløb

5.1 Definition af blandingszoner

På basis af vurderingerne af forturydning i vandløb påvirket af forurenet grundvand samt resultaterne fra følsohedsanalyserne for den udviklede model (kapitel 3 og 4) har Miljøstyrelsen vurderet, at der i den landsdækkende screening kun er behov for at beregne forureningskonzentrationen (C_{mix}) i små og mellemstore vandløb (tabel 1), da C_{max} er lig C_{mix} (se afsnit 4.3.2). Overholder C_{max} kvalitetskriteriet, vil alle koncentrationer i vandløbet overholde kvalitetskriteriet (da C_{max} jo netop er defineret som den maksimale koncentration i vandløbet). Det er således ikke relevant at overveje blandingszonens længde for små og mellemstore vandløb, men alene sammenligne C_{max}=C_{mix}=forureningssluxen/vandføringen (jf. kapitel 4) og sammenligne med kvalitetskriteriet for ferskvand af det pågældende stof. Det skal dog bemærkes, at C_{mix} for små og mellemstore vandløb kan optræde i større afstand end 10 gange vandløbets bredde, da afstanden afhænger af planebredden, som er beskrevet i tabel 2.
Figur 11: Illustration af blandingszonen (BZ) og C_{BZ} som den er defineret af Miljøstyrelsen og Naturstyrelsen i forbindelse med identifikation af potentielle overfladevandstruende jordforureninger. Bemærk at figuren kun er gældende for fanebredder mindre end blandingszonens længde.

I store vandløb (defineret som > 10 m i bredden) er der behov for at udregne C_{BZ} og sammenligne med kvalitetskriteriet for det pågældende stof. Som det fremgår af figur 11, så er blandingszonen alene defineret ud fra bredden af vandløbet, og derfor vil der både kunne forekomme situationer hvor blandingszonen ophører før eller efter punktet, hvor der er opnået fuldstændig opblanding i vandløbet. Dette vil primært afhænge af fanebredden, som i screeningssammenhæng maksimalt er fastsat til 75 m (tabel 2). Blandingszonen for store vandløb fastsættes administrativt til 10 gange bredden af minimumsbredden for store vandløb, som er 10 m (tabel 1). Disse to forudsætninger betyder, at C_{BZ} skal vurderes ved en afstand på 100 m og enten vil være lig C_{mix} eller større end C_{mix}. Da den maksimale koncentration forekommer ved brinken af vandløbet er C_{BZ} i screeningssammenhæng lig C(100 m, 0 m):

\[
C(100,0) = \int_{0}^{100} \frac{J_{i}(\xi)}{Q_{vandløb}} \sqrt{\frac{(100 - \xi)0.3 d_{vandløb}^2}{Q_{vandløb} b_{vandløb} S}} \sum_{n=-150}^{150} 2\exp \left(\frac{n^2}{(\xi - 100)0.3 d_{vandløb}^2 S Q_{vandløb} b_{vandløb}} \right) d\xi
\]

Det fremgår, at denne er formel er ret kompliceret at anvende i forhold til blot at beregne C_{mix}. Der blev derfor svarende til figur 10 udført en Monte Carlo lo simulering af forholdet mellem C_{max} og C_{mix}, samt forholdet mellem C(100,0) og C_{mix} for en maksimal fanebredde på 75 meter (figur 12). Denne simulering viser, at C(100,0) ikke udviser nogen reel forskel i forhold til C_{mix}. I praksis peger det på, at C_{max} kan anvendes i en screeningssammenhæng med den definerede blandingszone på 100 m for store vandløb.
Vurdering af fortynding i vandløb ved påvirkning fra forurenede grunde

Figur 12 C_{max} versus C_{mix} og C_{mix} versus $C(100,0)$ for store vandløb, hvor default værdierne er benyttet for bredden og dybden ($b_{\text{vandløb}}=12.5$ m og $d_{\text{vandløb}}=3.5$ m). De røde linjer har hældningen 1, således at punkter over denne linje illustrerer, at C_{max} er større end C_{mix} eller $C(100,0)$ er større end C_{mix}. Der er regnet med en maksimal banebredde på 75 m.

Sammenfatning af kapitel 5: **Administrativ definition af blandingszone**

- Miljøstyrelsen og Naturstyrelsen har fastlagt en blandingszone, hvis areal er defineret som vandløbets bredde gange 10 gange vandløbets bredde, som gælder i screeningssammenhæng
- Zonen starter fra opstrøms rand af indsviningszonen
- I screeningssammenhæng for små og mellemstore vandløb beregnes $C_{\text{mix}} = C_{\text{max}}$, som sammenholdes med vandkvalitetskriteriet
- Længden af opblandingszonen fastsættes administrativt til 100 m for store vandløb i screeningssammenhæng
- I screeningssammenhæng for store vandløb beregnes den aktuelle koncentration med fortyndingsmodellen ved brinken i en afstand på 100 m. Den beregnede koncentration sammenholdes med vandkvalitetskriteriet.
- Det kan overvejes at anvende den simple formel for C_{mix}, da en Monte Carlo simulering viser, at der ikke er en betydelig forskel på C_{mix} og $C(100,0)$.

<table>
<thead>
<tr>
<th>Cmix [µg/L]</th>
<th>C(100,0) [µg/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
6. Modelafprøvning på feltstudier

6.1 Litteraturoversigt over feltstudier

Der er, som nævnt i afsnit 2.1, ikke blevet publiceret nogen feltstudier eller beregningsmetoder for fortynding af en indsvingende forureningsfane i et vandløb. Der er en del publicerede studier af en forureningsfanes udsivningsmønstre og mikrobiel nedbrydning i udvekslingszonen i et vandløb (bilag 6, tabel 20). Det er relativt få studier, hvor karakteriseringen af den indsvingende forureningsfane er efterfulgt af en kortlægning af den specifikke forureningsfortynding langs det undersøgte vandløb. Disse studier blev dog udført i store vandløb (f. eks. Pine River, Canada, hvor \(b_{vandløb}=11-14 \, m \), \(d_{vandløb}=0,5-1 \, m \) og \(Q_{vandløb}=1-2 \, m^3/s \)), hvor koncentrationerne af de miljøfremmede stoffer i floden var mindre end de fastsatte miljøkvalitetskriterier for ferskvand eller helt under detektionsgrænsen pga. den store fortynding.

Dette gjorde, at vi valgte to danske feltstudier til afprøvning af fortyndingsmodellen: Skensved Å og Grindsted Å (Bruun og Rose, 2005, McKnight et al., 2010 og Sonne et al., 2013). I de to vandløb, som begge er påvirket af forurenede grunde via grundvandet, blev indsviningszonen og koncentrationerne af forureningsfanerne samt fortyndingen ned langs vandløbet kortlagt (se bilag 6, tabel 21).

Studierne er ikke ideelle i forhold til de grænser for typiske fanebredder og afstandskriterier, som er fastsat i de parallele projekter. Vi har dog valgt at medtage eksemplerne, da de har værdi i forhold til beskrivelse af metodik og også illustrerer nogle problemstillinger, som kan opstå ved anvendelse af fortyndingsmodellen ved en specifik lokalitet. Det sidste kan være til gavn ved udarbejdelse af konkrete risikovurderinger i fremtiden i de danske regioner.

Den komplette fortyndingsmodel (afsnit 4.3) blev brugt til at simulere de to feltstudier. Der blev udført to simuleringer for hver lokalitet, hvor den ene simulering kun benyttede målte feltdata, og den anden kun anvendte værdier for input parametrene i det færdige "dashboard"-værktøj (som skal benyttes til den landsdækkende screening). Resultaterne af de to simuleringer blev derefter sammenlignet med de observerede koncentrationer i vandløbene samt de beregnede værdier fra den forenklede version af modellen, hvor \(C_{\max} \) er lig \(C_{\text{mix}} (=J/Q_{vandløb}) \) i små (Skensved Å) og mellemstore vandløb (Grindsted Å). Det antages, at der sker en øjeblikkelig fuldstændig opblanding på tværs af disse typer vandløb.

6.2 Skensved Å

Der blev i 1982 opført et autolakeringsværksted på Hjørnegårdsvej 13 i Skensved på Sjælland (figur 13 a). I 1993 blev en TCE (trichlorethylen) forurening påvist under værkstedet, hvor det sekundære og primære grundvandsmagasin indeholdt hhv. 100.000 \(\mu g/L \) og 225.000 \(\mu g/L \) TCE. Den forurenede grundvandsfane blev kortlagt af Roskilde Amt (2005), hvor det blev konstateret, at aerobe forhold i jordbunden medførte, at der ingen signifikant nedbrydning foregik af TCE-forureningen. Afstanden mellem den forurenede grund og Skensved Å samt området for indsviningszonen for forureningsfanen i vandløbet er 750 m (figur 13 b, McKnight et al. 2010). Det er værd at bemærke, at indsvinningen ikke sker ved den korteste afstand mellem vandløb og den forurenede lokalitet ved Hjørnegårdsvej 13.
Vurdering af fornynding i vandløb ved påvirkning fra forurenede grunde

6.2.1 Input data
De to forskellige input data fra hhv. feltundersøgelserne i Skensved Å (Bruun og Rose, 2005 og McKnight et al. 2010) samt dataværdier fra det færdige "dashboard"-værktøjet for området er opsummeret i tabel 5. Iflg. "dashboard"-værktøjet falder autoreparationsværkstedet på Hjørnegårdsvej 13 i Ll. Skensved ind under "Autoreparationsværksteder", branchegruppe 2, som er defineret ved at have en diameter af forureningskilden på 10 m og et areal på 72 m². Nettonedbør for Skensved (Køge Kommune) er i gennemsnit 250 mm/år.

Idet Skensved Å er karakteriseret som et lille vandløb (tabel 1) er det antaget ifølge den forenklede model (afsnit 4.3), at $C_{\text{max}} = C_{\text{mix}} = J/Q_{\text{vandløb}} = 50 \mu g/L$ (se tabel 9).

6.2.2 Resultater fra de to simuleringer af Skensved Å
Figur 14 a og b viser resultaterne for koncentrationen på tværs af vandløbet fra simuleringerne af data fra hhv. feltundersøgelsen (Bruun og Rose, 2005) og "dashboard"-værktøjet.

Figur 14 c og d viser koncentrationen i midten af vandløbet, analogt med vandprøverne, udtaget i feltundersøgelsen. Simuleringen ved brug af feltdata svarede fint til koncentrationen observeret i Skensved Å (se figur 14 a), hvis maksimumværdierne for q_e (grundvandsfluxen) og koncentrationen af TCE i indsvinningszonen (CGW zone) blev benyttet, da overfladevandskoncentrationen blev estimeret til at være ca. dobbelt så høj, som observeret i feltet. Ved brug af værdierne for input parametrene fra "dashboard"-værktøjet ses en lignende størrelsesforskel med de observerede koncentrationer i vandløbet (figur 14 d). L_{mix} er lig 19 m ved brug af feltdata og 1 m ved brug af data fra "dashboard"-værktøjet i den komplette model.

Det ses, at for små og meget lave vandløb, hvor fordampningen kan reducere koncentrationen af forurening (f.eks. det flygtige TCE) i overfladevandet, giver den komplette såvel som den forenklede model (afsnit 3 og 4.4), hvor nedbrydning og fordampning er negligeret, et mere konservativt estimat end ved brug af feltdata. Det er ligeledes illustreret i denne beregning (input: feltdata som dashboarddata), at det ikke er nødvendigt at udregne C_{max} for små vandløb, idet C_{max} og C_{mix} er næsten identiske (se figur 9 e og f), som antaget i den forenklede model (afsnit 4.4). Bemærk at C_{max} optræder sted ved $y=0$ og $x=\text{x}_{\text{faneq}}$.

Eksempel illustrerer også, at dashboardværdier for fanebredder kan være mindre end de faktiske fanebredder. Dette har ikke nogen praktisk betydning for risikovurderingen, men betyder, at den maksimale koncentration observeres væsentligt længere nedstrøms end modelsimuleringen med dashboardværdierne vil indikere.
Tabel 9: Oversigt over datasæt fra "dashboard"-værktøjet og feltundersøgelsen af hhv. autolakeringsværksted på Hjørnegårdsvej i Lille Skensved og Skensved Å (Bruun og Rose, 2005 og McKnight et al. 2010), som er benyttet i de to simuleringer af TCE grundvandsforureningen i Skensved Å.

<table>
<thead>
<tr>
<th>Parametre</th>
<th>Enhed</th>
<th>Værdi</th>
<th>Terminologi</th>
<th>Oprindelse af data</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCE forureningsfane fra et autoreparationsværksted</td>
<td></td>
<td></td>
<td></td>
<td>Dashboard data</td>
</tr>
<tr>
<td>b_{fane}</td>
<td>(m)</td>
<td>30</td>
<td>Breddes af en TCE forureningsfane</td>
<td></td>
</tr>
<tr>
<td>Afstand</td>
<td>(m)</td>
<td>150</td>
<td>Afstanden mellem værkstedet og Skensved Å</td>
<td></td>
</tr>
<tr>
<td>C_{fane, (max)}</td>
<td>(µg/L)</td>
<td>128.000</td>
<td>TCE konc. (worse case under kategorien: generelt)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>(m²)</td>
<td>79</td>
<td>Areal af forureningenskålen</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>(mm/år)</td>
<td>250</td>
<td>Nettonedbør i området</td>
<td></td>
</tr>
<tr>
<td>J_{forureningsfane, (beregnes)}</td>
<td>(kg/år)</td>
<td>Forureningsflux</td>
<td></td>
<td></td>
</tr>
<tr>
<td>= C_{fane, (max)} * A * N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karakteristika for Skensved Å</td>
<td></td>
<td></td>
<td></td>
<td>Feltdata</td>
</tr>
<tr>
<td>Q_{vandløb}</td>
<td>(L/s)</td>
<td>1,6</td>
<td>Vandføring, medianminimum</td>
<td></td>
</tr>
<tr>
<td>b_{vandløb}</td>
<td>(m)</td>
<td>1</td>
<td>Breddes af vandløb</td>
<td></td>
</tr>
<tr>
<td>d_{vandløb}</td>
<td>(m)</td>
<td>0,38</td>
<td>Dybde af vandløb</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>(%)</td>
<td>2,4</td>
<td>Bundhældning</td>
<td></td>
</tr>
<tr>
<td>Karakteristika for Skensved Å</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_{vandløb, (august)}</td>
<td>(m³/s)</td>
<td>0,0063</td>
<td>Vandføring, medianminimum</td>
<td></td>
</tr>
<tr>
<td>b_{vandløb}</td>
<td>(m)</td>
<td>1,4</td>
<td>Breddes af vandløb</td>
<td></td>
</tr>
<tr>
<td>d_{vandløb}</td>
<td>(m)</td>
<td>0,11</td>
<td>Dybde af vandløb</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>(%)</td>
<td>2,4</td>
<td>Bundhældning</td>
<td></td>
</tr>
<tr>
<td>û</td>
<td>(m/s)</td>
<td>Gennemsnitlig strømningshastighed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>= \frac{\left(Q_{vandløb, (august)} * b_{vandløb} * d_{vandløb} \right)}{S}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Indsivningszone af TCE forureningensfane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_{GW zone}</td>
<td>(m)</td>
<td>250</td>
<td>Breddes af den forurenede GW zone</td>
<td></td>
</tr>
<tr>
<td>J_{forureningsfane, (beregnes)}</td>
<td>(kg/år)</td>
<td>Forureningsflux</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{GW zone, (max)}</td>
<td>(µg/L)</td>
<td>54</td>
<td>TCE konc. i indsvinningszonen</td>
<td></td>
</tr>
<tr>
<td>q_{GW zone, (max)}</td>
<td>(m³/s)</td>
<td>1,5E-05</td>
<td>Grundvandsløb (GW flux)</td>
<td></td>
</tr>
<tr>
<td>Q_{GW zone}</td>
<td>(m³/s)</td>
<td>\left(= b_{GW zone} * b_{vandløb} * q_{GW zone, (max)} \right)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCE koncentrationer i overfladevandet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{baggrund}</td>
<td>(µg/L)</td>
<td>< DT</td>
<td>< DT</td>
<td></td>
</tr>
<tr>
<td>30 m opstrøms for GW zone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{0}</td>
<td>(µg/L)</td>
<td>< DT</td>
<td>GW zone starter (0 m)</td>
<td></td>
</tr>
<tr>
<td>C_{mix, (beregnes)}</td>
<td>(µg/L)</td>
<td>\left(= û d_{vandløb} û b_{vandløb} û \right)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figur 14: Resultaterne for de to simuleringer af fortyningen af den indsvivne TCE forureningsfane i Skensved Å ved brug af den komplette model (afsnit 3) med hhv. feltdata og dashboard-værdier. a) og b) viser koncentrationen på tværs af vandløbet. c) og d) viser koncentrationen i midten af vandløbet. Bemærk, at vandløbets bredde er fastsat forskelligt i hhv. feltundersøgelsen og "dashboard"-værktøjet. L_{mix} = 19 m ved brug af feltdata og 1 m ved brug af data fra "dashboard"-værktøjet.
6.3 Grindsted Å

I 2012 blev en PCE/TCE forureningsfanes centrale udmunding lokaliseret i Grindsted Å, ca. 1,5 km fra fabriksgrunden, som illustreret på figur 15 b (Sonne et al., 2013).

![Figur 15: a) Oversigtsskørt over Danmark, der viser beliggenheden af Grindsted by. b) Oversigtsskørt over Grindsted by, Grindstedværket, og PCE/TCE forureningsfanen, der spreder sig med grundvandet til Grindsted Å (modificeret kort fra Grundvandskontoret, 2005).](image)

6.3.1 Input data

De to forskellige input data fra hhv. feltundersøgelserne i Grindsted Å (Sonne et al., 2013) og parametrene fra det færdige "dashboard"-værktøj for området, som blev indsat i den komplette model (afsnit 3) er opsummeret i tabel 10. Iflg. "dashboard"-værktøjet falder Grindstedværket under kategorien "Kemisk industri", branchegruppe 4, som er defineret ved at have en kildediameter på 100 m og et areal på 7.900 m². Nettonedbør for Grindsted (Billund Kommune) er 650 mm/år. Worst case koncentrationen for TCE (128.000 µg/L) benyttes for VC forureningsfanen ved forureningskilden, som omtalt i afsnit 3.1.

Iflg. inddelingen af danske vandløb er Grindsted Å karakteriseret som et mellemstort vandløb (tabel 1), og det antages derfor efter den forenklede model (afsnit 4.3), at $C_{\text{max}} = C_{\text{mix}} = J/Q_{\text{vandløb}} = 11 \mu g/L$ (se tabel 10).
Vurdering af fortynding i vandløb ved påvirkning fra forurenede grunde

6.3.2 Resultater fra de to simuleringer af Grindsted Å

Figur 16 a og b viser resultaterne for koncentrationen på tværs af vandløbet fra de to simuleringer fra hhv. feltundersøgelsen (Sonne et al., 2013) og "dashboard"-værktøjet. Figur 16 c og d viser koncentrationen i midten af vandløbet, hvor vandprover blev udtaget i feltundersøgelsen.

Simuleringen ved brug af feltdata giver et meget fint estimat af koncentrationen, observeret i Grindsted Å (se figur 16 a), når de maksimale værdier for q_L og C_{kilde} i grundvandsindsivningszonen bliver benyttet.

Ved brug af dataværderne fra "dashboard"-værktøjet gav simuleringen et mere konservativt resultat, idet den fuldt opblandede koncentration er én størrelsesorden højere end den observerede i Grindsted Å. Dette kan skyldes, usikkerheden knyttet til kildekonzentrationen, eller at der er set bort fra sorption og nedbrydning i transporten fra kilden til vandløbet. Forureningsfluxen er derfor signifikant højere ($J=657$ kg/år) end estimeret ud fra feltdata ($J=15$ kg/år).

Længden af blandingszonen fra, hvor forureningsfanen ($x=b_{fanfig}$) slutter, til den fuldtænke opblanding er opnået i vandløbet (L_{mix}), blev iflg. de to simuleringer (feltdata og dashboarddata) estimeret til at være omkring 55 m (hhv. 52 m og 57 m) (figur 16).
Vurdering af fortynding i vandløb ved påvirkning fra forurenede grunde

Figur 16: Resultaterne for de to simuleringer af fortyndingen af den indsinvede VC forureningsfane i Grindsted Å vha. den komplette model (afsnit 3) med hhv. feltdata og dashboard-værktøj. a) og b) viser koncentrationen på tværs af vandløbet. c) og d) viser koncentrationen i midten af vandløbet. Bemærk, at vandløbets bredde er fastsat forskelligt i hhv. feltundersøgelsen og ”dashboard”-værktøjet. $L_{mix} = 52$ m ved brug af feltdata og 57 m ved brug af data fra ”dashboard”-værktøjet.
Den forenklede model antager for mellemstore vandløb, at $C_{\text{max}} = \frac{C_{\text{mix}}}{J/Q_{\text{vandløb}}} (=11 \ \mu g/L)$, hvorimod simuleringen af dashboard værdierne i den komplette model giver en C_{max} værdi, som er mere end dobbelt så stor som C_{mix} ved brinden ($=27 \ \mu g/L$) (figur 16 f).

Monte Carlo analyseresultaterne for mellemstore vandløb, hvor C_{max} og C_{mix} sammenlignes (figur 9 h), viste, at for de fleste mellemstore vandløb er C_{max} lig C_{mix} og kun i få tilfælde er C_{max} større end C_{mix}; Grindsted Å er sådan et tilfælde. Endvidere er vandløbet bredde ud fra dashboard-værktøjet mindre (6 m) end fundet i feltet (10 m), hvilket medfører en stigning i forskellen mellem C_{max} og C_{mix} i vandløbet i simuleringen (figur 16 f).

Eksemplet illustrerer som for Skensved, at dashboardværdier for fanebredder kan være mindre end de faktiske fanebredder, samt at en forureningsfane ved meget kraftige forureningsskilder kan påvirke et vandløb, selvom vandløbet ligger langt fra forureningsskilden. Forklaringen på dette kan i dette tilfælde søges i forureningsskildens størrelse, samt den meget store afstand mellem forureningsskilden og åen. Det er begge to forhold som falder uden for de forudsætninger, der er sat op ved valg af standardværdier.
7. Konklusion og Sammenfatning

Miljøministeriet har for at opfylde de overordnede principper fra EU’s vandrammedirektiv (EQS Directive 2008/105/EC) behov for at risikovurdere forurening i vandløb ved påvirkning fra forurenete grunde via grundvandet.

Denne rapport hælser fornydingsforhold i danske vandløb i forhold til implementering af en screening af forurenete grundes påvirkning af vandløb. En matematisk model er opstillet til at beskrive fornydningen af en indsvende forureningsfane i et vandløb. Modellen beskriver et scenarie, hvor en forureningsfane med en bredde, \(b_{\text{fane}} \), og homogent fordelt koncentration indsviger i et vandløb fra brinken. Dette blev vist at være det mest realistiske og almindelige scenarie i danske vandløb. Modellen tager ikke højde for fordampning, sorption/udveksling i bundsedimentet og nedbrydning og giver derved et konservativt estimat af koncentrationsfordelingen i et vandløb.

Den udviklede fornydingsmodel giver en formel til at beregne koncentrationen i en vilkårlig afstand fra opstrøms rand af indsvivningszonen i et vandløb, samt den maksimale koncentration (\(C_{\text{max}} \)). Modellen kan ligeledes beregne det punkt, hvor den fuldt opblandede forureningskoncentration forekommer (\(L_{\text{mix}} \)) og koncentration (\(C_{\text{mix}} \)) i dette punkt.

Fortyndingsmodellen kræver 6 input-parametre: vandløbes dybde (\(d_{\text{vandløb}} \)), bredde (\(b_{\text{vandløb}} \)), vandføringen (\(Q_{\text{vandløb}} \)), bundhældningen (\(S \)), forureningsfluxen (\(J \)) og fanebredden (\(b_{\text{fane}} \)). Følsomhedsanalyser blev udført for de 3 forskellige vandløbstyper (små, mellemstore og store) for at teste følsomheden af \(L_{\text{mix}} \) og \(C_{\text{max}} \) i forhold til hver af de 6 parametre, samt at bestemme middelværdien og standardafvigelsen af \(L_{\text{mix}} \) og \(C_{\text{max}} \). Resultaterne viste, at for små og mellemstore vandløb er \(C_{\text{max}} = C_{\text{mix}} \) og \(C_{\text{max}} \) er derfor ikke nødvendig at beregne. I store vandløb er \(C_{\text{max}} \) i flere tilfælde signifikant højere end \(C_{\text{mix}} \).

Vandløbes dybde og bredde havde mindre betydning for beregningen af \(C_{\text{max}} \), så der kan benyttes standardværdier for disse parametre. De nødvendige input-parametre i forhold til en forenklet beregning bliver dermed reduceret til:
1) \(Q_{\text{vandløb}}, \) vandføringen
2) \(S, \) bundhældningen
3) \(b_{\text{fane}}, \) fanebredden
4) \(J, \) forureningsfluxen

Miljøstyrelsen og Naturstyrelsen har i screeningssammenhæng fastlagt en administrativ blandingszone, hvis areal er defineret som vandløbes bredde gange 10 gange vandløbets bredde. Zonen starter fra opstrøms rand af indlivningszonen.

Miljøstyrelsen har derefter med udgangspunkt i ovenstående resultater i screeningssammenhæng fastlagt at:
1) \(C_{\text{mix}} = C_{\text{max}} \) beregnes for små vandløb. Den beregnede koncentration sammenholdes med vandkvalitetskriteriet.
2) længden af opblandingszonen fastsættes administrativt til 100 m for store vandløb.
3) den aktuelle koncentration beregnes med fornydingsmodellen ved brinken i en afstand på 100 m fra opstrøms rand af indlivningszonen.
Fortyndingsmodellen blev afprøvet på to case studier: et mellemstort vandløb (Grindsted Å) og et lille vandløb (Skensved Å). Modellerne var testet ved at bruge hhv. data fra feltundersøgelsen og data fra dashboard-værktøjet. Koncentrationsfordelingen i vandløbet estimeret ud fra de to simuleringer blev derefter sammenlignet med koncentrationerne målt i vandløbet. Det bedst beskrivende og mest realistiske resultat af koncentrationsfordelingen i vandløbet kom ved at bruge feltdata. Dashboard data gav en mere konservativ beskrivelse, hvor højere værdier for C\text{max} og C\text{mix} blev estimeret.
Referencer

1.1 Literature review on river mixing

Pollutants leaching in the groundwater from contaminated sites (e.g. landfill) create contaminated groundwater plumes, which are often drawn to a gaining stream and may affect the water quality of the surface water. This work focuses on the dilution in streams affected by contaminated groundwater.

The mixing process of pollutants in natural rivers and streams is complicated due to irregularities of the velocity, bed configuration etc. Mixing in rivers has been actively studied since the middle of the 20th century.

Table 11 summarizes the findings of the most important experimental and theoretical studies on river mixing. Many studies focus on individual jets that emit a pollutant into the river at a particular point (Table 11, point input). A limited number of studies deal with mixing downstream of multiport diffusers in rivers (that emit pollutants in a line), despite the fact that these have been widely used (Table 11, line input). Finally, there are no reported international studies on the mixing in a river affected by contaminated groundwater plumes (Table 11, groundwater seepage input).

In the point input scenario the effluent exits the pipe as a jet, from a specific point and with a high initial velocity. In the groundwater seepage scenario, the effluent enters the river from a larger area (most likely from the side of the river and half of its bottom, see bilag 5) and with a very small velocity.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Type of study</th>
<th>River in field experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Fischer 1967; Fischer et al. 1979)</td>
<td>Mathematical modeling</td>
<td>River in field experiment</td>
</tr>
<tr>
<td>Studied the distribution of an effluent, discharged continuously from a source into a uniformly flowing stream, considering degradation, diffusion and different input conditions. Derived formulas to describe the 3-D concentration distribution in the stream and the mixing length (the downstream distance required to ensure uniform concentration across the river). Present equations for the vertical and transverse diffusion coefficients, based on experiments, extensive field results and Elder’s analysis (Elder 1959). For a typical stream with a small depth compared to its width, complete mixing in the vertical direction is very fast, hence the variations along the depth can be neglected. Summarize early studies on transverse mixing in rivers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Sanders et al. 1977)</td>
<td>Mathematical modeling and field experiment</td>
<td>Mill River, Northampton, Mass (Q=2.3m³/s, width=14m, depth=1.1m)</td>
</tr>
<tr>
<td>Perform tracer tests to estimate the turbulent diffusion coefficients and validate the predictive equations proposed by Fischer (1968). The pollutant is conservative, dissolved and has no buoyancy effects. Present a theoretical approach to determine an equation for the mixing length and compare its performance to other proposed equations (e.g., Ruthven 1971). The mixing lengths equations apply to straight uniform channels and steady state flow conditions, and additions of bends in a stream will decrease the mixing length (Fukuoka and Sayre 1973).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
POINT INPUT (PIPE)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Review on river mixing: description of processes and mathematical formulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Elhadi et al. 1984)</td>
<td>• Diffusion coefficients: Describes the various physical processes involved in the spreading of a neutral and conservative substance in river flows as well as the mathematical formulation of these processes. A summary of analytical solutions to estimate transverse mixing is presented and the measurement and selection of the transverse mixing coefficient is discussed. It is shown that for a typical river vertical mixing is complete within a very short distance from the injection point and the concentration variation can be considered 2D.</td>
</tr>
<tr>
<td>(Lung 1995)</td>
<td>Mathematical modeling applied to case study: James River Estuary, Virginia (Q=6.3m³/s, width=61m depth=7.6m)</td>
</tr>
<tr>
<td>• Mixing length</td>
<td>Present a modeling approach to analyzing mixing zones for toxic waste discharges with minimum initial flow and thus minimum initial dilution. They introduce an analytical solution to the transport equation, to solve for the concentration distribution in the river and apply it to a case study in Virginia, to show that the maximum mixing size defined by the federal guidelines and state specifications, (e.g., mixing length equals to 5 times the width of the stream) is not exceeded.</td>
</tr>
<tr>
<td>• US regulations</td>
<td>Mathematical modeling: Summarize the guidelines for identification of mixing zones in rivers to satisfy the Environmental Quality Standards. Present existing approach for calculating dilution as a function of distance from the point of discharge using Fischers’ equations (1967).</td>
</tr>
</tbody>
</table>

LINE INPUT (MULTIPOINT DIFFUSERS)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Mathematical modeling and field experiment: Athabasca river, Canada (Q=661m³/s, width=260m, depth=1.6m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Zhang and Zhu 2011a)</td>
<td>• 3-d concentration distribution</td>
</tr>
<tr>
<td>• Initial condition in modeling</td>
<td>Studied the mixing downstream of a multiport diffuser in a wide shallow river with a field dye test. Buoyancy effects were neglected. Dye concentrations at different depths and lateral locations were measured. Downstream mixing was analyzed in different zones and analytical models (based on the equations of Fisher et al. (1979)) were proposed to derive the 3-D concentration distribution. The sensitivity of the modeling results to different initial conditions (homogeneous versus Gaussian concentration distributions in the vertical and lateral direction) was tested and it was found that there is little difference among the different methods. Data validated models and diffusion coefficient formulas suggested by Fischer et al. (1979).</td>
</tr>
</tbody>
</table>

GROUNDWATER SEEPAGE INPUT

<table>
<thead>
<tr>
<th>Reference</th>
<th>Field observation: Grindsted Stream, Denmark (Q=2.3m³/s, width=12m, depth=1.5m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Sonne et al. 2013)</td>
<td>• 3-d concentration distribution</td>
</tr>
<tr>
<td>Located groundwater interaction zones. Measured chlorinated solvents' concentrations in incoming groundwater and surface water in different lateral and longitudinal locations at mid-depth, to understand the 2-D concentration distribution along the stream. Used the data to estimate the dilution and assess whether the stream satisfies the Environmental Quality Standards.</td>
<td></td>
</tr>
</tbody>
</table>

GROUNDWATER SEEPAGE INPUT

<table>
<thead>
<tr>
<th>Reference</th>
<th>Field experiment: Skensved stream, Denmark (Q=0.16m³/s, width=1.4m, depth=0.11m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(McKnight et al. 2010)</td>
<td>• 3-d concentration distribution</td>
</tr>
<tr>
<td>Located groundwater interaction zones and measured TCE concentrations in incoming groundwater and surface water in different lateral and longitudinal locations at mid-depth, to understand the 2-D concentration distribution along the stream. The data showed that only a 30m stream reach failed to meet surface water quality criteria.</td>
<td></td>
</tr>
</tbody>
</table>
1.2 Transverse dispersion coefficients

Mixing in natural rivers can be analyzed by a detailed, 3-D model, which is numerically inefficient. The 2-D advection-dispersion model, derived by depth averaging, is effective since the vertical mixing in most streams occurs very quickly compared with the longitudinal and transverse mixing. This applies for the majority of natural rivers and streams, where the flow depth is small in comparison with the width. The 2-D model requires approximating the actual site conditions with idealized geometry, topography and current fields.

A careful selection of the transverse diffusion coefficient, e_t which dominates the mixing process, is very important. A direct estimation of the diffusion coefficient by experimental means requires expensive and time-consuming tracer studies (e.g., Zhang and Zhu 2011a). As a result, dispersion-coefficient values reported in the literature or diffusion coefficient prediction equations are used instead. Numerous studies evaluate experimentally diffusion coefficients or propose theoretical equations to predict how the transverse diffusion coefficient varies with stream geometry and flow conditions. Table 12 summarizes the empirical equations resulting from some of these studies. The large variations in $e_t/u’d$ observed in Table 12 are probably attributable to the site-specific nature of transverse mixing (Dow et al. 2009) and the differences in the field work designs and data analysis (Rutherford 1994). A number of factors may affect the value of e_t, such as river sinuosity, local curvature, river width, depth, discharge, river shear velocity and ice cover.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Type of study</th>
<th>Diffusion coefficients (m²/s)</th>
<th>River width & depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Fischer 1967)</td>
<td>Field experiment to derive diffusion in a straight irrigation canal</td>
<td>$e_t = 0.15u’d, \ u’ = \sqrt{gdS}$</td>
<td>width= 18.3 m depth=0.7 m Flow=8.45 m³/s</td>
</tr>
<tr>
<td>(Fischer 1969)</td>
<td>Laboratory experiment to derive diffusion in curved canals</td>
<td>$e_t = 25 \left[\frac{u’}{u} \right]^2 \left[\frac{d}{R} \right]^2 u’d, R is radius of curvature</td>
<td>width= 0.7 m depth=0.02-0.05m Flow=0.3-1 m³/s</td>
</tr>
<tr>
<td>(Bansal 1971)</td>
<td>Field experiment</td>
<td>$e_t = 0.002 \left[\frac{W}{d} \right]^{1.498} u’d$</td>
<td>Based on 10 field experiments</td>
</tr>
<tr>
<td>(Yotsukura and Sayre 1976)</td>
<td>Field experiment to derive diffusion in channel with curvature</td>
<td>$e_t = 0.4 \left[\frac{u’}{u} \right]^2 \left[\frac{d}{R} \right]^2 u’d, R is radius of curvature</td>
<td>width= 200 m depth=2.7 m Flow=9.45 m³/s</td>
</tr>
<tr>
<td>(Yotsukura and Sayre 1976)</td>
<td>Laboratory experiment to derive diffusion in channel with curvature</td>
<td>$e_t = 0.04 \left[\frac{u’}{u} \right]^2 \left[\frac{d}{R} \right]^2 u’d, R is radius of curvature</td>
<td>width= 200 m depth=2.7 m Flow=9.45 m³/s</td>
</tr>
<tr>
<td>Fischer et al. 1979)</td>
<td>Diffusion coefficients based on extensive literature review on field studies</td>
<td>$e_t = (0.60 \pm 50%) \cdot u’d, e’v = 0.067u’d$</td>
<td>Based on extensive literature review</td>
</tr>
<tr>
<td>Sanders et al. 1977)</td>
<td>Field experiment</td>
<td>$e_t = 0.0038 \text{m}^2/\text{s},$ compares well to that from Fischer’s equation $(e_t = 0.23u’d = 0.0029 \text{m}^2/\text{s})$</td>
<td>width=12 m depth=1.2 m Flow=2.16 m³/s</td>
</tr>
</tbody>
</table>

Table 12: Empirical equations for transverse dispersion coefficients suggested in the literature.
Vurdering af fortyning i vandløb ved påvirkning fra forurenede grunde

(Rutherford 1994) Analysis of results from 23 published field data to define coefficient at curved and straight channels

“straight” 0.15u’d < et < 0.3u’d
“meandering” 0.3u’d < et < 1u’d
“straight” 1u’d < et < 3u’d
et/u’d remains constant with river discharge

Based on 23 published data sets

(Jeon et al. 2007) Analysis of 32 published data sets to define empirical equation

Based on 32 published data sets

(Zhang and Zhu 2011a) Field experiment in Athabasca river (Q=238m3/s, width=274m, height=1.58m)

Based on 32 published data sets

(Zhang and Zhu 2011b) Field study in Athabasca river to estimate effect of ice cover on transverse diffuse coefficient

Equations to estimate the transverse dispersion coefficient have been derived from the concept of shear flow which has dominant effects on the transverse mixing (Chow 1973). Thus the transverse dispersion coefficient is related to the shear velocity, \(u^* = \sqrt{\tau_o / \rho} \), where \(\tau_o \) is the shear stress applied at the bottom of the channel and \(\rho \) (kg/m\(^3\)) is the density.

In a uniform open channel flow, the shear velocity can be evaluated by simple force balance as:

\[
u^* = \sqrt{gdS} \quad \text{(B 1)}
\]

where \(g \) (m/s\(^2\)) is the acceleration due to gravity, \(d \) (m) is the stream’s depth and \(S \) is the slope. A variety of equations to calculate the shear velocity, which is related to the roughness coefficient of the stream are commonly used in hydraulics. The interrelationship between the various equations is (Henderson 1966):

\[
u^* = \frac{\bar{u}}{C} = \frac{\bar{f}}{8} = \frac{\bar{u}n}{R_h^{1/6}} \quad \text{(B 2)}
\]

where \(C \) is the Chezy’s roughness coefficient for open channels, \(g \) is the acceleration due to gravity, \(\bar{u} \) (m/s) is the mean velocity, \(f \) is the Darcy-Weisbach friction factor, \(n \) is the Manning’s coefficient, and \(R_h \) is the hydraulic radius of the flow, which is the ratio of flow cross-sectional area and perimeter. For a rectangular stream of depth \(d \) and width, \(b \), \(R = db / (b + 2d) \).

Chezy’s equation is the earliest, and various formulas have been proposed to estimate the value of the Chezy coefficient. However these attempts have not been very successful because \(C \) depends upon several parameters in addition to the channel’s roughness and Reynolds number. For a hydraulically rough flow, where the velocity distribution is not uniform along the depth, \(C = 18log\left(\frac{12Rh}{k}\right) \), where \(k \) is the roughness coefficient and has a value of 0.05 for streams.
The Manning’s equation is more frequently used; however the value of n depends upon the surface roughness, amount of vegetation and channel irregularity and is difficult to estimate since it does not have any physical meaning (Chaudhry 1993).

The transverse diffusion coefficient, e_t, dominates the mixing process and its reliable selection is very important. It can be observed from Table 12 that some of the equations proposed to estimate e_t require values for the sinuosity or radius of curvature, which is difficult to obtain. Therefore the simpler form of the equation, i.e. $e_t = \text{coefficient} \cdot u’d$, which has been validated by many researchers, is the best choice for field applications. In this work we use the equation proposed by Fischer et al. (1979) and Rutherford (1994), $e_t = 0.3u’d$ (see Table 12), since it is based on a large number of published field studies. Moreover, it is the smallest coefficient from the range of coefficients proposed by Fischer et al. (1979), and the smallest one for a “meandering” channel proposed by Rutherford (1994). We use the smallest value in order to obtain a more conservative solution, since a small diffusion coefficient will result in less mixing. The shear velocity, u^* which is a function of the diffusion coefficient, was estimated as $u^* = \sqrt{g d_{vandløb} S}$ (Equation (B 1)). Other formulas to estimate u^*, proposed in the literature (given in Equation (B 2)), include coefficients (such as the Chezy or the Manning coefficient), which depend on several parameters and are difficult to estimate, since they do not have any physical meaning.
Bilag 2: Analytisk model til at beregne fortynding af indsivende forurennet grundvand i typiske danske vandløb

The concentration of a contaminant in rivers and streams as a function of the distance from the discharge source has been studied and derived by Fischer et al. (1979). This appendix presents in detail the equations used to simulate each of the scenarios studied. First, the location of the groundwater seepage in the stream was studied and the groundwater plume was discharged at a) a point at the bank of the stream (Figure 17 a), b) along a length of the bank (Figure 17 b), and c) at the half bottom of the stream (Figure 17 c). Also, for the case where the plume was discharged over a width (\(b_{fane}\)), the effect of the initial condition of the mass distribution of the plume was studied, and the mass was distributed as: i) a Gaussian distribution, ii) homogeneously, and iii) non-homogeneously (see Figure 17 d).

Figure 17: Scenarios studied. Groundwater plume discharged at: a) a point at the side of the stream (\(x=0, y=0\)), b) along a length of the bank (plume width = \(b_{fane}\)), and c) at the half bottom of the stream. \(x=0\) is at the point located at the most upstream point of plume discharge. For a) and b) the concentration is assumed uniform along the stream’s depth. d) shows a contaminated plume of 50 m width, discharged in the river; the mass is distributed as i) a Gaussian distribution, ii) homogeneously, and iii) non-homogeneously.
2.1 Point source discharged at the bank

Table 13 presents the parameters used in the model. The 2-D advection-dispersion equation, derived by depth averaging, is effective since the vertical mixing in most streams occurs very quickly compared with the longitudinal and transverse mixing. This applies for the majority of natural rivers and streams, where the flow depth is small in comparison with the width (e.g., Fischer et al. 1979; Elhadi et al. 1984; Zhang and Zhu 2011a). The 2-D model requires approximating the actual site conditions with idealized geometry, topography and current fields.

A rectangular stream of depth \(d_{\text{vandløb}} \) and width \(b_{\text{vandløb}} \) is assumed into which \(J \) units of mass per time is discharged. For the scenario where the groundwater is discharged at a point at the side of the stream \((x=0\) and \(y=0\), see Figure 17 a) and assuming that the concentration is uniform along the stream's depth \((z\)-direction), the concentration \(c \) (kg/m\(^3\)) at any point \((x,y)\) downstream of the source is given by:

\[
c(x,y) = c_{\text{mix}} \sqrt{\frac{4\pi m'}{\varepsilon_t}} \sum_{n=-\infty}^{\infty} \left\{ \exp\left[\frac{-(y'-2n)^2}{4x'}\right] + \exp\left[\frac{-(y'-2n)^2}{4x'}\right] \right\}
\]

where \(x \in (0,\infty) \) and \(y \in (0, b_{\text{vandløb}}) \). \(c_{\text{mix}} \) (kg/m\(^3\)) is the totally mixed concentration in the stream (Table 13), \(x' \) and \(y' \) are dimensionless quantities defined in Table 13, \(\varepsilon_t \) (m\(^2\)/s) is the transverse mixing coefficient, \(u^* \) is the shear velocity, \(g \) (m\(^2\)/s) is the acceleration due to gravity and \(S \) is the stream slope (Table 13). It is also assumed that the flow of the groundwater plume in the river is negligible to the flow of the water in the river.

The transverse diffusion coefficient, \(\varepsilon_t \) dominates the mixing process and its reliable selection is very important. Numerous equations to predict the transverse diffusion coefficient are proposed in the literature. The equation used to estimate \(\varepsilon_t \) (\(\varepsilon_t = 0.3u'd \), see Table 12), was proposed by Fischer et al. (1979) and Rutherford (1994) and was chosen because it is based on a large number of published field studies and results in a more conservation solution. The shear velocity, \(u^* \) which is a function of the diffusion coefficient is defined as \(u^* = \sqrt{g d_{\text{vandløb}} S} \).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Enhed</th>
<th>Terminologi (dansk/engelsk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J)</td>
<td>(kg/s)</td>
<td>Forureningstøj/ Mass discharge</td>
</tr>
<tr>
<td>(d_{\text{vandløb}})</td>
<td>(m)</td>
<td>Dybde i vandløb/ Stream's depth</td>
</tr>
<tr>
<td>(b_{\text{vandløb}})</td>
<td>(m)</td>
<td>Bredder af vandløb/ Stream's width</td>
</tr>
<tr>
<td>(c_{\text{mix}} = J / \bar{U} d_{\text{vandløb}} b_{\text{vandløb}})</td>
<td>(kg/m(^3))</td>
<td>Koncentration ved fuldstændig opblanding i vandløb/ totally mixed concentration in the stream</td>
</tr>
<tr>
<td>(\bar{U} = Q_{\text{vandløb}} / d_{\text{vandløb}} b_{\text{vandløb}})</td>
<td>(m/s)</td>
<td>Gennemsnitlig strømningshastighed i vandløb/ mean velocity</td>
</tr>
<tr>
<td>(Q_{\text{vandløb}})</td>
<td>(m(^3)/s)</td>
<td>Vandføring/Stream flow</td>
</tr>
<tr>
<td>(\varepsilon_t = \frac{Q_{\text{vandløb}} x \varepsilon_t}{\bar{U} b_{\text{vandløb}}^2})</td>
<td>dimensionsløs</td>
<td>Transversal opbladningskoefficient/ transversal mixing coefficient</td>
</tr>
<tr>
<td>(\varepsilon_t = \frac{Q_{\text{vandløb}} y}{b_{\text{vandløb}}^2})</td>
<td>dimensionsløs</td>
<td>Vertikal opbladningskoefficient/ vertical mixing coefficient</td>
</tr>
<tr>
<td>(\varepsilon_t = 0.3 d_{\text{vandløb}} u^*)</td>
<td>(m(^2)/s)</td>
<td>Transversal opbladningskoefficient/ transversal mixing coefficient</td>
</tr>
<tr>
<td>(\varepsilon_t = 0.06 d_{\text{vandløb}} u^*)</td>
<td>(m(^2)/s)</td>
<td>Vertikal opbladningskoefficient/ vertical mixing coefficient</td>
</tr>
<tr>
<td>(u^* = \sqrt{g d_{\text{vandløb}} S})</td>
<td>dimensionsløs</td>
<td>Friktionshastighed/ shear velocity</td>
</tr>
<tr>
<td>(S)</td>
<td>dimensionsløs</td>
<td>Bundhældning/ stream’s slope</td>
</tr>
<tr>
<td>(g)</td>
<td>(m(^2)/s)</td>
<td>Tyngdeacceleration/ acceleration due to gravity</td>
</tr>
</tbody>
</table>
2.2 Plume discharged over a length of the bank

Equation (B3) can be modified to account for the fact that groundwater is not discharged at a point, but instead is discharged over a length of the bank (plume width) (see Figure 18). Figure 18 shows how the distribution is described by a set of slugs each distributed over a distance \(d\xi \). When the concentration distribution is assumed uniform, each slug contains a mass discharge \(j_i(\xi) d\xi \). The solution is derived using the principle of superposition (Fisher et al. 1979) to be:

\[
e(x, y) = \int_{-\infty}^{\infty} \frac{c_i(\xi)}{\sqrt{4\pi (x - \xi)}} \sum_{n=-\infty}^{\infty} \left\{ \exp \left[\frac{-(y' - 2n - y_o')^2}{4(x' - \xi)} \right] + \exp \left[\frac{-(y' + 2n + y_o')^2}{4(x' - \xi)} \right] \right\} d\xi \tag{B 4}
\]

where \(y_o' = \frac{y_o}{b_{vandløb}} \), and \(y_o \) is the y-location where the plume is discharged. Since the plume is discharged at the bank, \(y_o' = 0 \), \(c_i(\xi) = \frac{j_i(\xi)}{Q_{vandløb}} = \frac{j_i(\xi)}{u_{vandløb} b_{vandløb}} \), \(\xi' = \frac{\xi}{u_{vandløb}} \), and \(\xi \) is the length over which the plume is spread. Performing the summation for \(-10 < n < 10\) will give accuracy to the order of \(10^{-5} \) µg/L. The integration is performed only for \(\xi' < \xi \), i.e. for a given \(x \), only the upstream \(\xi \) are considered.

\(j_i(x) \) describes an arbitrary distributed source. If the mass discharged is distributed as a Gaussian distribution along \(x \):

\[
j(x) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left[\frac{-(x - \mu)^2}{2\sigma^2} \right] \tag{B 5}
\]

where \(\mu \) is the mean and \(\sigma \) is the standard deviation \(\sigma = \frac{\text{plume width}}{6} \), assuming that the plume is spread over 6 standard deviations.

If the mass discharged is distributed uniformly along the plume width, then \(j_i(x) \) is defined as:

\[
\begin{align*}
j_i(x) &= \frac{1}{b_{fanefløb}}, & \text{for } 0 < x < b_{fanefløb} \\
j_i(x) &= 0, & \text{for } x < b_{fanefløb}
\end{align*}
\]

\(j_i(x) \) can be also defined as non-homogeneous over the plume width (figure 18 d).
Equation (B 4) can be further simplified to express \(c(x,y) \) as a function only 6 parameters shown in Table 14. These parameters are the input parameters for the model.

\[
c(x,y) = \int_{-\infty}^{\infty} \frac{c_1(\xi)}{4\pi(x - \xi)0.3d_{vandløb}\sqrt{g d_{vandløb} S}} \sum_{n=-10}^{10} \exp \left\{ \frac{-(y - 2nb_{vandløb})^2}{4(x - \xi)0.3d_{vandløb}\sqrt{g d_{vandløb} S}} \right\} d\xi
\]

\[\text{(B 6)}\]

Table 12. Input parameters used in the dilution model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Parameter number</th>
<th>Parameter symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>m</td>
<td>1</td>
<td>(b_{vandløb})</td>
</tr>
<tr>
<td>Depth</td>
<td>m</td>
<td>2</td>
<td>(d_{vandløb})</td>
</tr>
<tr>
<td>Flow</td>
<td>m³/s</td>
<td>3</td>
<td>(Q_{vandløb})</td>
</tr>
<tr>
<td>Slope</td>
<td>‰</td>
<td>4</td>
<td>(S)</td>
</tr>
<tr>
<td>Plume parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plume width</td>
<td>m</td>
<td>5</td>
<td>(b_{fane})</td>
</tr>
<tr>
<td>Mass discharge</td>
<td>kg/yr</td>
<td>6</td>
<td>(j)</td>
</tr>
</tbody>
</table>
2.1.1 Mixing length

The downstream length for complete mixing to be achieved in the transversal direction (y-direction) is given by Fischer et al. (1979):

\[L_{mix} = \frac{0.4\pi b_{vandrab}^2}{e_t} \]

(B 7)

which can be further simplified to express \(L_{mix} \) as a function of the 6 parameters shown in Table 12:

\[L_{mix} = \frac{0.4Q_{vandrab}b_{vandrab}}{0.3 d_{vandrab}^2 \sqrt{g d_{vandrab}} S} \]

(B 8)

The downstream length for complete mixing to be achieved in the vertical direction is \(L_{vmix} = \frac{\pi d_{vandrab}^2}{e_v} \), where \(e_v \) (m²/s) is the vertical mixing coefficient (Fischer et al. 1979). Since \(L_{mix} > L_{vmix} \), in all the Danish streams studied, i.e. the mixing in the vertical direction is much faster than the mixing in the transverse direction, it is reasonable to assume that the concentration along the depth is uniform.

2.2.2. Maximum concentration in the stream

The maximum concentration reached in the stream when a plume of width, \(b_{fanec} \) enters the stream from the side, will always occur at the end of the plume width (\(m = b_{fanec} \)) and at the bank of the stream (\(y = 0 \)). The coordinates of the system are shown in figure 7. The concentration at this point can be estimated using Equation (B 4), as:

\[c(b_{fanec}, 0) = \int_0^{b_{fanec}} \frac{c_i(\xi)}{4\pi(x_{b_{fanec}} - \xi)} \sum_{n=-\infty}^{\infty} \left\{ 2\exp\left[\frac{n^2}{(\xi - x'_{b_{fanec}})} \right] \right\} d\xi \]

(B 9)

where \(c_i(x) = \frac{f_i(x)}{Q_{vandrab}} \), \(x'_{b_{fanec}} = \frac{b_{fanec} e_t}{ub_{vandrab}} \), \(x'_{mix} = \frac{\xi e_t}{ub_{vandrab}} \), \(\xi \) is the length over the integration is performed, and \(f_i(x) \) is the mass discharged by the contaminated plume at each grid. Equation (B 9) can be further simplified to express \(c(b_{fanec}, 0) \) as a function of the 6 parameters shown in Table 12:

\[
\begin{align*}
\int_0^{b_{fanec}} & \frac{f_i(x)}{Q_{vandrab}} \sqrt{\frac{4\pi}{4\pi (b_{fanec} - \xi)0.3 d_{vandrab}^2 g d_{vandrab} S}} \left\{ 2\exp\left[\frac{n^2}{(\xi - b_{fanec}) 0.3 d_{vandrab}^2 g d_{vandrab} S} \right] \right\} d\xi \\
& \sum_{n=-150}^{150} \left\{ 2\exp\left[\frac{n^2}{(\xi - b_{fanec}) 0.3 d_{vandrab}^2 g d_{vandrab} S} \right] \right\} d\xi
\end{align*}
\]

(B 10)

Performing the summation for \(-150 < n < 150\) will give accuracy to the order of \(10^{-5} \mu g/L\) for all stream types. Integrating for a smaller range of \(n \) will not give accurate results for some streams. The integration is performed only for \(\xi' < x' \), i.e. for a given \(x \), only the upstream \(\xi \) are considered.
2.3 Plume discharged over the half bottom of the stream

Sections 2.1 and 2.2 in this appendix describe a scenario where the plume was discharged at the side of the river. Another possible scenario is that the plume is discharged at the half bottom of the stream (see figure 18c). Equation (5.11) from Fischer et al. (1979) describes the scenario when the pollutant enters at a point along the x-direction, and its concentration along the transverse direction (y-direction) is not uniform:

$$c(y') = \int_0^1 \frac{c_i(y_0)}{\sqrt{4\pi x'}} \sum_{n=-\infty}^{\infty} \left\{ \exp \left[-\frac{(y' - 2n - y_0)^2}{4x'} \right] + \exp \left[-\frac{(y' - 2n - y_0)^2}{4x'} \right] \right\} dy_0'$$

(B 11)

where $x' = \frac{xu}{\alpha w}$, $y' = \frac{y}{w}$

The analytical solution for Equation (B11) for the case where:

$C_{\text{input}} = C_{\text{input}}$ for $0 < y' < \frac{1}{2}$

$C_{\text{input}} = 0$ for $\frac{1}{2} < y' < 1$

is given by Fischer et al. (1979) (Equation 5.12), and is:

$$c(y') = \frac{c_0}{2} \sum_{n=-\infty}^{\infty} \left\{ \text{erf} \left[\frac{y' + \frac{1}{2} + 2n}{\sqrt{4x'}} \right] - \text{erf} \left[\frac{y' - \frac{1}{2} + 2n}{\sqrt{4x'}} \right] \right\}$$

(B 12)

If the plume has a width along the x-direction, with a Gaussian or a step distribution, Equation (B 12) must integrated along the x-direction, as follows:

$$c(x, y) = \int_{-\infty}^{\infty} c_0(\xi) \sum_{n=-\infty}^{\infty} \left\{ \text{erf} \left[\frac{y' + \frac{1}{2} + 2n}{\sqrt{(4x' - \xi)}} \right] - \text{erf} \left[\frac{y' - \frac{1}{2} + 2n}{\sqrt{(4x' - \xi)}} \right] \right\} d\xi$$

(B 13)

where $c_0(\xi)$ is the final mixed concentration: $c_0 = \frac{J}{uaw}$.
3.1 Koncentrationsfordeling på tværs af danske vandløb

I simuleringerne af typiske danske vandløb (tabel 1) påvirket af en forureningsfane, anvendt i dette appendix, er modellen for indsving langs brinden benyttet. Figur 18 og figur 19 viser, at normaliseret koncentrationen på tværs af vandløbet (y-aksen) for vandløbstyper: små og mellemstore (tabel 1, afsnit 3.1), hvor det ses, at der er stor koncentionsvariation på tværs af vandløbene for koncentrationen er fuldstændigt opblandet. I begge eksempler vist er Lmix meget stor (21 m f. eks. i figur 18 og Lmix=30 m i figur 19) og det er derfor vigtigt at medtage Lmix i udregningen af afstanden af kontrolpunktet for prøvetagning. Der er dog eksempler på små, mellemstore og store vandløb, hvor Lmix kun er få meter og opblandingen af forureningen på tværs af vandløbet sker øjeblikkeligt. Et eksempel for dette scenarie er vist figur 4.

Figur 18 viser den normaliserede koncentration i et typisk lille vandløb: $Q_{vandløb} = 10$ L/s, $b_{vandløb}= 2$ m og $d_{vandløb}= 0,2$ m. Forureningsfane: $J = 4$ kg/år og $b_{fane} = 50$ m. Bundhældning er på 0,5 %.

Figur 19 viser den normaliserede koncentration i et mellemstort vandløb, hvor de højeste værdier er benyttet iflg. tabel 2: $Q_{vandløb} = 200$ L/s, $b_{vandløb}= 10$ m og $d_{vandløb}= 1$ m. Forureningsfane: $J = 4$ kg/år og $b_{fane} = 50$ m. Bundhældning, S, er 0,0005.

Figur 18: Den normaliserede koncentration er vist for et lille dansk vandløb: $Q_{vandløb} = 10$ L/s, $b_{vandløb}= 2$ m, $d_{vandløb}= 0,2$ m og bundhældning 1,2 %, påvirket af en forureningsfane: $J = 4$ kg/år og $b_{fane} = 50$ m, hvor indsvingen sker langs brinden og bundhældningen er 0,5 % (S).
3.2 Koncentrationsfordeling over dybden i store og dybe vandløb

Variationen af koncentrationen over dybden blev simulert for alle tre vandløbstyper (tabel 1) ved brug af den mest konservative model, hvor forureningsfanen indsiver over hele åbunden. Eftersom opblandingen over dybden (z-aksen) afhænger af både 2) dybde og 1) flow i vandløbet, blev modellen afprøvet på alle tre vandløbstyper. Ifølge denne model var koncentrationen over dybden næsten ligeligt fordelt for alle små og mellemstore vandløb. Det samme gjaldt for store og lavvandede vandløb. Kun i vandløb, som var både brede ($b_{vandløb} > 12$ m), dybe ($d_{vandløb} = 5$ m) og havde det største flow ($Q_{vandløb} = 7000$ l/s), ifølge tabel 1, blev en betydelig variation i koncentrationen over dybden observeret (figur 20 c og f). Det kan derfor antages, at koncentrationen over dybden generelt i typiske danske vandløb er ligeligt fordelt.

Figur 19: Den normaliserede koncentration er vist i et mellemstort vandløb, hvor de største værdier er benyttet: $Q_{vandløb} = 200$ l/s, $b_{vandløb} = 10$ m, $S = 0.0005$ og $d_{vandløb} = 1$ m (ifølge tabel 1), påvirket af en forurensningsfane: $J = 4$ kg/år og $b_{fan} = 50$ m, hvor indsivningen sker langs brinken.
Vurdering af fortynding i vandløb ved påvirkning fra forurenete grunde

Figur 20: Koncentrationen over dybden er vist for den store vandløbstype (tabel 1) med maksimum dybde (dybde = 5 m) ved tre forskellige flow (200, 4000 og 7000 l/s), flowstørrelser som svarer til den laveste, mellemste og højeste i denne kategori (tabel 1), simuleret vha. modellen for indsivning over hele åbunden.
Simulations were run to investigate whether a contaminated plume in a typical Danish aquifer will reach the stream from the side or the bottom. A 2-D model of the catchment of the stream was developed to model the groundwater flow at steady state conditions using COMSOL Multiphysics, a finite element tool. Figure 21 a shows the conceptual model, and the boundary conditions used. The simulations were repeated for different stream depths and widths, representing the whole range of typical Danish streams (Table 1). Also, the effect of the recharge and the size of the catchment were studied; a recharge of 0.340 m/year and 0.120 m/year was tested, which are typical for Jutland and Zealand, respectively. Three different catchment sizes were tested: 10km, 4km and 2km. A sand aquifer was used with vertical and hydraulic conductivities of 10^{-4} and 10^{-5} m/s, respectively. The depth of the aquifer did not affect the results and a depth of 50m, which is typical for Danish aquifers, was used.

Symmetrical conditions were assumed from both sides of the river, so only half of the catchment was modeled for computational efficiency (Figure 21 b). Particle tracking was used to investigate how much water will reach the stream from the side and how much from the bottom. As shown in Figure 21 b a contaminated plume resulting from a source located close to the stream will typically reach the stream from the side, while a plume resulting from a source located further away from the stream, will move in the deeper layers of the aquifer and will reach the stream from the bottom. For each scenario studied, $x_{critical}$ was estimated, where the $x_{critical}$ is the maximum distance of a contaminated source from the stream that the plume resulting from the source will reach the stream from the side (figure 21 b). Figure 22 shows the hydraulic head and streamlines reaching the side of a typical Danish stream (depth=1.5 m and width=12 m), for a catchment size equal to 10 km and a recharge equal to 0.34 m/year. For this scenario $x_{critical}$ is 2 km and the plume from a contaminated source located at any $x < 2$ km will end up at the side of the stream.

Table 15 shows $x_{critical}$ for the different streams’ widths, depths, recharges and catchment sizes. It can be observed that for typical Danish conditions, $x_{critical}$ is always bigger than 0.5 km, i.e. any contaminated source located closer than 0.5 km from the stream will reach the stream from its side. This validates the use of the model that considers the plume entering from the side, since this will be the most common scenario.
Figure 21: a) Conceptual model to test if groundwater reaches the stream from the bottom or the bank (side). b) Black and white streamlines show water going to the bottom and the side of the stream, respectively. Only half of the catchment is modeled due to symmetry. \(x_{\text{critical}}\) is the maximum distance from the stream that a contaminant at the surface will reach the stream from the side.

Figure 22: Hydraulic head and streamlines reaching the side of a stream with depth 1.5 m and width 12 m, when the catchment size is 10 km and the recharge is 0.34 m/year. For this scenario \(x_{\text{critical}}\) is 2 km and the plume from a contaminated source located at any \(x<2\) km will enter at the side of the stream.

Table 15: \(x_{\text{critical}}\) for different stream widths, depths, recharges and catchment sizes.

<table>
<thead>
<tr>
<th>Width [m]</th>
<th>Depth [m]</th>
<th>Width/depth</th>
<th>Recharge [m/yr]</th>
<th>Size of catchment [km]</th>
<th>(x_{\text{critical}}) [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1.5</td>
<td>8</td>
<td>0.34</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>6.6</td>
<td>0.34</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>4</td>
<td>0.34</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>1</td>
<td>0.34</td>
<td>10</td>
<td>3.7</td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>4</td>
<td>0.12</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>4</td>
<td>0.34</td>
<td>4</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>4</td>
<td>0.34</td>
<td>2</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Bilag 5: Sensitivity analysis

This appendix presents the sensitivity analysis performed to determine the parameters that dominate the mixing length and the maximum concentration reached in the river. The sensitivity analysis also aims to determine the parameters accounting for the majority of model uncertainty, i.e. the parameters that if determined (for example, by measurements) will induce the highest reduction of model output uncertainty. Two sensitivity analyses were performed: a One Factor At a Time analysis (OAT), in which one factor is varied each time and the variation in the output was measured and a Global Sensitivity analysis (GSA), in which all the factors are varied randomly each time. This appendix presents the theory of the two methods and the results obtained.

The model’s 6 parameters are shown in table 16. Table 14 defines the model’s space for the three types of Danish streams (small, medium and large). Different upper and lower bounds are defined for each parameter for each type of stream.

Table 13. Stream and plume input parameters used in the stream dilution model.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Units</th>
<th>Parameter number</th>
<th>Parameter symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>m</td>
<td>1</td>
<td>$b_{vandløb}$</td>
</tr>
<tr>
<td>Depth</td>
<td>m</td>
<td>2</td>
<td>$d_{vandløb}$</td>
</tr>
<tr>
<td>Flow</td>
<td>m3/s</td>
<td>3</td>
<td>$Q_{vandløb}$</td>
</tr>
<tr>
<td>Slope</td>
<td>‰</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>Plume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plume width</td>
<td>m</td>
<td>5</td>
<td>$b_{fanø}$</td>
</tr>
<tr>
<td>Mass discharge</td>
<td>kg/yr</td>
<td>6</td>
<td>J</td>
</tr>
</tbody>
</table>

Table 14. Lower and upper bounds for the six parameters, for the three types of Danish streams (small, medium and large)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter.</th>
<th>SMALL STREAM</th>
<th>MEDIUM STREAMS</th>
<th>LARGE STREAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parameter.</td>
<td>Lower bound</td>
<td>Upper bound</td>
<td>Lower bound</td>
</tr>
<tr>
<td>Stream</td>
<td>Width (m)</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Depth (m)</td>
<td>2</td>
<td>0.2</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Flow (m3/s)</td>
<td>3</td>
<td>0.001</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Slope (%)</td>
<td>4</td>
<td>0.0001</td>
<td>0.01</td>
</tr>
<tr>
<td>Plume</td>
<td>Plume width (m)</td>
<td>5</td>
<td>9</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Mass discharge (kg/yr)</td>
<td>6</td>
<td>3</td>
<td>200</td>
</tr>
</tbody>
</table>
5.1 Theory – One at a time sensitivity analysis (OAT) and Global Sensitivity Analysis (GSA): Morris Method

For the OAT sensitivity analysis, a base case was chosen and each parameter was varied from its lower to its upper bound in 100 equally spaced values. The base case for each stream type was chosen to be the average value of the parameters, i.e. $\frac{L_{\text{bound}} + U_{\text{bound}}}{2}$ (see Table 17).

Morris method is a GBA method and is able to provide qualitative results with limited computational effort (Campolongo et al. 2007). It is based on calculating for each input a number of incremental ratios, called Elementary Effects (EE), from which basic statistics are computed to derive sensitivity information (Morris 1991). The EE method was proven to be a very good compromise between accuracy and efficiency. A v-dimensional grid is constructed from the model space, where v is the number of parameters and the elementary effect d_i associated to each input factor is defined as:

$$d_i(x) = \frac{y(x_1, x_2, ..., x_{i-1}, x_i + \Delta, x_{i+1}, ..., x_k) - y(x)}{\Delta}$$ (B 14)

For $i = 1, 2, ..., v$ and Δ being a multiple of the grid step size. The finite distribution of EE associated with the ith input factor, is obtained by randomly sampling different parameter values, and is denoted by F_i.

The mean, μ and the standard deviation, σ of F_i, and the mean of absolute values, μ^* are the most informative sensitivity measures and the main output of the Morris method. A high value of μ^* indicates that a parameter is important, while a high value of σ indicates that the μ^* value is affected by the value of other parameters. In this work Morris screening was carried out over 4000 random paths, each composed of 7 runs, using two different values of Δ.

5.2 Sensitivity measures

The mixing length and the maximum concentration reached in the stream are considered as the sensitivity measures. L_{mix} is defined as the distance after the end of the plume, required for the concentration to be uniform along the width of the stream. The mixing length is necessary in locating a representative sampling point for water quality analysis and is estimated for a point source as (Fischer et al. (1979), see section 2.2.1):

$$L_{\text{mix}} = \frac{0.4Q_{\text{vandløb}}b_{\text{vandløb}}}{0.3 d_{\text{vandløb}}^2 \sqrt{g_{\text{vandløb}} S}}$$ (B 15)

where the parameters’ symbols, units and lower/upper bounds are shown in Table 13 and Table 14.

The second sensitivity measure was the maximum concentration reached in the stream, which for the scenario of a plume of width, $b_{\text{fanø}}$ entering the stream from the side, will always occur at the end of the plume width ($x = b_{\text{fanø}}$) and at the bank of the stream ($y = 0$). The concentration at this point can be estimated as (see section 2.2.2):

$$c(b_{\text{fanø}}, 0) = \int_{0}^{b_{\text{fanø}}} \frac{J_1(x)}{Q_{\text{vandløb}}} \sqrt{\frac{4\pi (b_{\text{fanø}} - \xi) 0.3 d_{\text{vandløb}}^2 \sqrt{g_{\text{vandløb}} S}}{Q_{\text{vandløb}} b_{\text{vandløb}}}}$$

$$\sum_{n=-10}^{10} \left\{ 2\exp \left[\frac{n^2}{(\xi - b_{\text{fanø}}) 0.3 d_{\text{vandløb}}^2 \sqrt{g_{\text{vandløb}} S}}{Q_{\text{vandløb}} b_{\text{vandløb}}} \right] \right\} d\xi$$ (B 16)
5.3 Results of sensitivity analysis

Figure 23 shows the effect of varying each parameter at a time, on the L_{mix} (mixing length) and C_{max} (maximum concentration in the stream) for the small, medium and large stream. The x-axis is the normalized value of the parameters, and ranges from 0 to 1 (the x-axis is 0 for when the parameters equals to its lower bound and is 1 for when the parameter equals to its upper bound). The base case for each stream type was chosen to be the average value of the parameters, i.e. \(\frac{L_{\text{bound}}+U_{\text{bound}}}{2} \) (see Table 17).

Figure 24 shows the results from the GSA. The graphs in Figure 24 show the μ^* of each parameter obtained with the Morris analysis; a high μ^* indicates that a parameters is important (parameters 1 to 6 are shown in Table 16). Table 18 and Table 19 summarize the results from the sensitivity analysis, for L_{mix} and C_{max} respectively.

It can be observed that L_{mix} is very sensitivity the slope, especially for the smaller values of slope. This is because of the effect of the slope on the transverse mixing coefficient ($\varepsilon_t = 0.3d_4^{0.5}L_{\text{vandlab}}$), and hence the mixing in the stream. Moreover, the flow, the width and the depth are also important. For example the depth could affect L_{mix} by a factor of 2 for all stream types (Figure 24). The plume width and the mass discharge do not affect L_{mix}. C_{max} is very sensitive to the flow, and the mass discharge. The depth affected C_{max} only in small streams and had no effect in medium or large streams. The width of the stream and the plume’s width were found to be unimportant for C_{max}. Finally the slope had very small effect on C_{max}.

The only parameter that has a small effect in C_{max} and has no effect in L_{mix} is the plume’s width. However, this parameter is necessary to determine the point of compliance (which is equal to $L_{\text{mix}}+b_{\text{fane}}$) and is therefore needed. It can be concluded that all six parameters are necessary for the correct estimation of C_{max} and L_{mix} and the point of compliance and therefore none should be set as default.

Table 18. Ranking of importance of parameters from the sensitivity analysis for L_{mix}. OAT is one at a time sensitivity analysis, and the results are based on Figure 24. The parameter with the highest slope is more important. GSA is Global sensitivity analysis, and the results are based on μ^*. A high value of μ^* indicates that a parameters is important.

<table>
<thead>
<tr>
<th>Rank for L_{mix}</th>
<th>Small stream</th>
<th>Medium stream</th>
<th>Large stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAT</td>
<td>GSA (μ^*)</td>
<td>OAT</td>
<td>GSA (μ^*)</td>
</tr>
<tr>
<td>1</td>
<td>Slope slope (13)</td>
<td>Slope slope (5)</td>
<td>Slope slope (8)</td>
</tr>
<tr>
<td>2</td>
<td>flow, width flow (0.7)</td>
<td>flow, width flow (0.2)</td>
<td>flow, width depth (0.15)</td>
</tr>
<tr>
<td>3</td>
<td>Depth depth (0.3)</td>
<td>Depth depth (0.1)</td>
<td>Depth width, flow (0.1)</td>
</tr>
<tr>
<td>4</td>
<td>width (0.1)</td>
<td>width (0.05)</td>
<td>width, plume width</td>
</tr>
<tr>
<td>not sensitive</td>
<td>plume width</td>
<td>Plume width</td>
<td>plume width</td>
</tr>
<tr>
<td>mass discharge</td>
<td>mass discharge</td>
<td>mass discharge</td>
<td>mass discharge</td>
</tr>
</tbody>
</table>

Table 19. Ranking of importance of parameters from sensitivity analysis for C_{max}. OAT is one at a time sensitivity analysis, and the results are based on Figure 25. The parameter with the highest slope is more important. GSA is Global sensitivity analysis, and the results are based on μ^*. A high value of μ^* indicates that a parameters is important.

<table>
<thead>
<tr>
<th>Rank for C_{max}</th>
<th>Small stream</th>
<th>Medium stream</th>
<th>Large stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAT</td>
<td>GSA (μ^*)</td>
<td>OAT</td>
<td>GSA (μ^*)</td>
</tr>
<tr>
<td>1</td>
<td>flow flow (4.5)</td>
<td>Flow flow (2.3)</td>
<td>flow flow (1.7)</td>
</tr>
<tr>
<td>2</td>
<td>mass disch. mass disch. (1.2)</td>
<td>mass disch. mass disch. (0.2)</td>
<td>mass disch. mass disch. (0.5)</td>
</tr>
<tr>
<td>3</td>
<td>depth slope (0.3)</td>
<td>slope slope (0.2)</td>
<td>pl. width slope (0.2)</td>
</tr>
<tr>
<td>4</td>
<td>depth (0.1)</td>
<td>pl. width</td>
<td>pl. width (0.1)</td>
</tr>
<tr>
<td>Not sensitive</td>
<td>width, plume width</td>
<td>width, depth</td>
<td>depth, width</td>
</tr>
</tbody>
</table>
Figure 23: Results from One-At-A-Time Sensitivity analysis. Effect of varying each parameter one at a time, on L_{mix} (mixing length) and C_{max} (maximum concentration in the stream). The x-axis shows the normalized value of the parameter, which is equal to zero when the parameter equals to its lower bound and equal to 1, when the parameter equals to its upper bound.
5.4 Conclusion
Two sensitivity analysis were performed (a One Factor At a Time analysis and a Global Sensitivity analysis) to determine the parameters that dominate the mixing length and the maximum concentration reached in the river and determine whether any of the six parameters included in the model (Table 16) can be set as default parameters. The results of the analysis showed that all six parameters influenced the estimation of C_{max} and L_{mix}.
Bilag 6: Monte Carlo sensitivity analysis

A Monte Carlo sensitivity analysis was performed to evaluate the mean and standard deviation of \(L_{\text{mix}} \), \(C_{\text{max}} \) and \(C_{\text{mix}} \) for small, medium and large streams. \(L_{\text{mix}} \) is the length downstream of \(x=b_{\text{fane}} \), where the concentration across the stream is fully mixed and equal to \(C_{\text{mix}} \). \(L_{\text{mix}} \) is necessary to find the point of compliance, which has been defined as \(L_{\text{mix}}+b_{\text{fane}} \). \(C_{\text{mix}} \) is defined as:

\[
C_{\text{mix}} = \frac{\text{Mass discharged}}{\text{stream flow}} \tag{B 17}
\]

\(C_{\text{max}} \), is the maximum concentration in the stream, observed at the bank (\(y=0 \)) and at \(x=b_{\text{fane}} \) (Equation (B 16)) and is important to know since it gives the worst case scenario.

In this work Morris screening was carried out to obtain the input values for the Monte Carlo simulation. The Morris method is a GBA method and is able to provide qualitative results with limited computational effort (Campolongo et al. 2007). For each stream type, the Morris screening was carried out over 10000 random paths, each one composed of 7 model runs, hence in total 70000 simulations were performed. Figure 25 shows how the matrix including the input parameters for the runs was constructed with the Morris screening. For each random path, a different set of base values for the 6 parameters was chosen randomly (P1-P6). During each random path, 7 model runs were run where each parameter was changed to a new parameter (P1’-P6’), which was also chosen randomly. Parameters P1-P6 and P1’-P6’ were chosen by dividing the range of values of each parameter (shown in Table 17) into 150 grid levels and randomly choosing one value.

Figure 25. Morris screening carried out over 10000 random paths to get the input parameters for the Monte Carlo simulations. In this work there are 6 parameters and P1-P6 are the base values of the parameters chosen randomly for each random path. During each random path, 7 model runs were run where each parameter was changed to a new parameter (P1’-P6’), which was chosen randomly. The total number of runs is 7*10000.
6.1 Exponential distribution of L_{mix}

It must be noted that all the distributions presented are almost exponential distributions, i.e. the standard deviation and mean are almost the same. Figure 26 shows an exponential distribution fitted to the distribution of L_{mix} for large streams. The exponential distribution fits well the data. Moreover, the mean and the standard deviation are very close, which is the most typical characteristic of exponential distributions. For an exponential distribution $2 \times$ standard deviation, comprises the majority (86% of the values) of the population.

![Figure 26: Histogram for L_{mix} for large streams, with exponential distribution fitted. The data fits well so it can be assumed that 86% of the population is comprised in $2 \times$ standard deviations.](image)

6.2 Effect of default width and depth on histograms of L_{mix} and C_{max} of a small and medium stream.

This section presents and analyzes the histograms of L_{mix}, C_{max} and C_{mix} for small and medium streams when the width and depth are set as default parameters equal to the average of the upper and lower bounds.

Figure 27 and figure 28 show the histograms for a small and medium stream, when the depth and width are set as default values (equal to the average of the upper and lower bounds, see Table 6). By comparing with Figure 9 (a) – (f), it can be observed that the statistical characteristics of the C_{max} and C_{mix} plots did not change with this assumption and the means and standard deviations estimated are very close (+-5%).

It should be noted that the mean and standard deviation of L_{mix} is 80% smaller for small streams and 30% smaller for medium streams when the default depth and width are used (compare with Figure 8 a and b). This is because the larger values of L_{mix} obtained when considering the wider and shallower streams, are neglected.
Figure 27: Histograms for L_{mix} (a), C_{max} (b), C_{mix} (c) for a small stream. (d) shows plot of C_{max} vs C_{mix}. Defaults width and depth are assumed, that are the average of the minimum and maximum values of small streams.

Figure 28: Histograms for L_{mix} (a), C_{max} (b), C_{mix} (c) for a medium stream. (d) shows plot of C_{max} vs C_{mix}. Defaults width and depth are assumed, that are the average of the minimum and maximum values of medium streams.
Bilag 7: Litteraturoversigt over relevante feltstudier

Tabel 15 giver et overblik over artikler, hvor vandløb påvirket af forurene grunde via grundvandet er blevet undersøgt. De fleste har særlig fokus på indsvingsmønsteret samt nedbrydningsprocesser i interaktionszonen mellem grundvandet og vandløbet. Der er et begrænset antal af internationale undersøgelser, hvor karakteriseringen ligeledes følger fortyndingen af grundvandsforureningen langs vandløbet. Det er dog kun undersøgt i større vandløb (eks. Pine River, Canada), som viste, at koncentrationerne af de miljøfremmede stoffer var mindre end de fastsatte miljøkvalitetskriterier for ferskvand pga. den store fortynding i vandløbene.

Der er i to projekter på DTU Miljø blevet sat fokus på vandløb påvirket af forurenet grunde via grundvandet samt fortyndingen af forureningen i mindre vandløb (typiske størrelser for Danmark). Resultaterne viste, at der sker en tydelig påvirkning af vandkvaliteten ved grundvands-indsvíningszonerne samt nedstrøms i vandløbene (tabel 20).

Denne oversigt peger på, at der stadig kun er begrænset viden om påvirkning på vandløb fra forurene grunde, som blev konkluderet i bilag 1 og Bjerg et al. (2008).

<table>
<thead>
<tr>
<th>Site name, Country</th>
<th>Type of point source</th>
<th>Surface water</th>
<th>Key contaminants</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birmingham, England</td>
<td>Industrial activities</td>
<td>River Tame</td>
<td>VOCs, mostly TCE, cDCE and PCE</td>
<td>Ellis and Rivett (2007)</td>
</tr>
</tbody>
</table>

- Identification of GW discharge
- Detection of VOCs in riverbed (hyporheic zone)
- Degradation

A network of riverbed piezometers was used to study a 7.4-km urbanized reach of the River Tame. Baseflow VOC fluxes were estimated through in-river flow metering of river discharge increase, Darcy’s law calculation using riverbed hydraulic gradient and conductivity data, and baseflow separation analysis. The general absence of aromatic hydrocarbon VOCs in riverbed piezometers suggested they were attenuated by biodegradation in the vicinity of the source areas. Chlorinated VOC degradation products were widely detected, however, there was no evidence that anaerobic degradation occurred in the riverbed: the high hydraulic conductivity and the low organic carbon content of the riparian zone keep the aquifer strictly aerobic, preventing microbial dechlorination.
### Site name, Country	Type of point source	Surface water	Key contaminants	Key references
British Columbia, Canada | Wood-preserving facility | Fraser River | Naphthalene (Creosote) | Bianchin et al. (2006)

- Radiotracer method to enlighten the fate and transport of Naphthalene from the aquifer to riverbed

Degradation of naphthalene has been unambiguously distinguished in situ from other fate and transport processes such as sorption and dispersion using a radiotracer method. Ratio-labeled naphthalene was injected into the aquifer in the region beneath the river and the production of radio-labeled degradation product monitored. 500 groundwater (GW) samples were collected, providing a dense sampling network sufficient to map the extent of the tracer-plume including details of the internal geometry. Results provided the evidence of in situ naphthalene degradation under methanogenic and iron-reducing conditions within a creosote contaminated aquifer; however, the collected samples were not sufficient to reliably identify the order of the degradation model.

Perth, Western Australia | Gasoline and diesel tank | Estuary of the Canning River | BTEXN (Benzene, Toluene, Ethylbenzene, Xylene and Naphthalene) | Westbrook et al. (2005)

- Mapping the seepage pattern of a BTEXN plume according to the seasonal and tidal fluctuation

Fine scale mapping (0.5 m) of a hydrocarbon plume were performed through samples collected from transects of multiport wells along the riverbank and into the river. The zone of mixing between river water and groundwater (GW) was delineated through electric conductivity measurements of samples collected beneath the river sediments and into the water table. Results show that the hyporheic zone can significantly influence the spatial and temporal discharge patterns of groundwater at the sediment/water interface and that seasonal and tidal fluctuations play a role in redistributing hydrocarbon concentrations, governing the lateral extent of discharge into the river.

Angus, Ontario, Canada | Dry cleaning facility | Pine River | TCE | Conant Jr. et al. (2004)

- Characterization of a complex plume discharge zone (silty-clay deposit)
- Biodegradation and sorption within streambed
- VOCs rarely detected in SW due to high dilution in the river

A groundwater (GW) plume discharging to a river was extensively characterized using multilevel samplers, Ground Penetrating Radar, streambed temperature mapping, drive point piezometers, and soil coring and testing. Results showed a complex concentration distribution in the streambed due to temporal and spatial variations in groundwater contaminant concentrations, low hydraulic conductivity silty-clay deposits beneath the river affecting groundwater discharge into the river, extensive biodegradation within the top 2.5 m of the streambed, and sorption to streambed sediments containing an high organic carbon content. Despite the relatively large area of VOCs discharging through the streambed, VOCs were rarely detected in surface water (SW) because rapidly diluted by clean river water.
Vurdering af fortynding i vandløb ved påvirkning fra forurenede grunde

<table>
<thead>
<tr>
<th>Site name, Country</th>
<th>Type of point source</th>
<th>Surface water</th>
<th>Key contaminants</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecticut, USA</td>
<td>Metal product manufacturing facility</td>
<td>A river, two streams and a pond</td>
<td>TCE</td>
<td>Chapman et al. (2007)</td>
</tr>
</tbody>
</table>

- Characterization of the seasonal distribution of a VOC plume beneath a complex surface water system
- Biodegradation and evaporation
- SW concentration in streams was < DT due to strong dilution

The VOC distribution in a plume in a surficial sand aquifer was determined in detail using discrete sampling techniques. Results showed that although degradation plays a role in the plume attenuation, the major attenuation factor is partial groundwater plume discharge to surface water, where some mass loss occurs via water-air exchange. The pond also showed to cause large seasonal variation in VOC concentration downgradient in the groundwater, with highest concentrations observed at the spring and lowest at the beginning of the fall. The VOC plume did not reach the river but discharged to the streams were it was strongly diluted, so that concentrations were below the minimum detection limit (DT).

<table>
<thead>
<tr>
<th>Site name, Country</th>
<th>Type of point source</th>
<th>Surface water</th>
<th>Key contaminants</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risby, Denmark</td>
<td>Landfill</td>
<td>Risby stream</td>
<td>Herbicides, Petroleum hydrocarbons and CAH</td>
<td>Milosevic et al. 2012</td>
</tr>
</tbody>
</table>

- GW discharge zones identified
- Contaminated mass discharged quantified
- GW and SW analysed
- Contaminated GW discharge only a small fraction of the actual pollution in the stream

The discharge zones were identified and the contaminant mass discharge was quantified in a complex geologic setting (clay till, sand and peat) from Risby Landfill into a nearby stream. The groundwater discharge was quantified by two methods: direct collection of discharged groundwater by seepage meters and calculations from measurements of streambed temperature gradients. Stream flow was estimated. Stream water and groundwater from the landfill and the discharge zones were sampled and analyzed. The results showed that the contaminated groundwater discharge was only responsible for a small fraction of the actual contamination of the stream were as surface runoff and seepage from ponds along the stream (impacted by the landfill) had a bigger impact on the stream.
Tabel 16: Oversigt over resultaterne fra to danske projekter (DTU Miljø) vedrørende påvirkning af overfladevand i vandløb ved påvirkning fra forurenede grunde samt undersøgelse af fortynding af grundvandsforureningen langs vandløbene.

<table>
<thead>
<tr>
<th>Site name, Country</th>
<th>Type of point source</th>
<th>Surface water</th>
<th>Key contaminants</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skensved site, Denmark</td>
<td>Industrial site</td>
<td>Stream (Å), Skensved Å</td>
<td>Chlorinated solvents, trichloroethene (TCE) and cis-dichloroethene</td>
<td>Christensen og Raun (2005); Brun og Rose (2005)</td>
</tr>
<tr>
<td>• Identification of plume seepage zone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Degradation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Contamination followed along the stream</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grindsted Site, Denmark</td>
<td>Industrial site</td>
<td>Stream (Å), Grindsted Å</td>
<td>Chlorinated solvents, site specific medical compounds</td>
<td>Sonne et al. (2013)</td>
</tr>
<tr>
<td>• Detailed identification of plume seepage zones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Contamination followed along the stream</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A contaminant plume impacts Skensved stream. A discharge zone is identified by mapping of the plume close to the stream, temperature measurements in and below the stream and flux meters. No conversion of chlorinated ethenes was found due to the aerobic environment in the aquifer and the river bed. The discharge of TCE is significant and measurements of chlorinated ethenes in the river reveal concentrations of TCE above 10 µg/l in the stream for several 100 m’s.

Identified seepage zones of a contaminant plume from Grindsted factory in Grindsted stream by mapping temperature of the surface water and 20 cm below the streambed, sampling surface water and hyporheic zone water (piezometers, 40 cm below streambed) along the stream. Transects across the stream were carried out in order to attain a detailed profile of the seepage zones. The presence of VC and site specific medical compounds (sum of sulfonamides) in the surface water went from not detected to exceed the EQS values downstream of the identified seepage zones. The dilution of the contaminants in the surface water was followed along the stream.
Jordforureningers påvirkning af overfladevand, delprojekt 4
Miljøstyrelsen har iværksat 7 delprojekter for at tilrettelegge indsatsen over for jordforureninger, der truer overfladevand og internationale beskyttelsesområder.