Polymer Replication of a Randomly Nanostructured Insert with and without Induction Heating of the Mold

Menotti, Stefano; Tang, Peter Torben; Hansen, Hans Nørgaard

Publication date:
2014

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Polymer Replication of a Randomly Nanostructured Insert with and without Induction Heating of the Mold

Stefano Menotti, Peter T. Tang & Hans N. Hansen
(steme@mek.dtu.dk)

In today's industry, applications involving surface patterning with sub-µm scale structures have shown a high interest. The replication of these structures by injection molding leads to special requirements for the mold in order to ensure proper replication and an acceptable cycle time.

This work investigates the applicability of induction heating embedded in the mold for the improvement of nano pattern replication. A tool insert, having a surface containing functional geometries in the sub-micrometer range, was produced using an innovative black nickel coating developed by Ebina Denka Kogyo (Japan). The result of the black nickel coating is a film which has low light reflection due of its complex surface and the optically black appearance is only due by its surface (no organic dye). The coating is also ultraviolet and heat resistant.

The main idea behind using this special coating was for decoration purposes. In fact, with structured coating in precise areas of the injection mold, it could in theory be possible to obtain different color perceptions on the replicated surface.

ABS was used for injection moulding and induction heating parameters were investigated after a preliminary optimization with standard heating conditions.

The replicated surfaces were qualitatively characterized by scanning electron microscopy and optical observation. The experimental results show that not even with the induction heating is it possible to replicate perfectly the micro geometry of the insert due its complexity. In the following picture it is possible to appreciate a partial replication of the geometry; the result is a very porous surface that it might be used for other technological purposes. Regarding the optical appearance is possible to appreciate that the polymer replica in the area with the coating is less shining compare to the areas without the coating.