Advantages and Challenges of Superconducting Wind Turbine Generators

Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

Publication date:
2012

Citation (APA):
Advantages and Challenges of Superconducting Wind Turbine Generators

Bogi B. Jensen1, Nenad Mijatovic1, Asger B. Abrahamsen2

1 Department of Electrical Engineering, Technical University of Denmark, Denmark
2 Department of Wind Energy, Technical University of Denmark, Denmark

2nd International Conference E/E Systems for Wind Turbines
21st – 23rd May 2012, Bremen, Germany
Overview

• Background of superconductivity and its relevance for wind turbine generators

• Advantages of superconducting generators for wind turbines

• Challenges of superconducting generators for wind turbines

• Commercial activities
BACKGROUND
Technical University of Denmark (DTU)

- Based in Copenhagen, the Capital of Denmark
- 8200 students – 530 faculty – 1040 researchers
- Ranked 4th in Europe in the field of engineering by THE based on citations per journal paper from 2000-2010
 (http://www.timeshighereducation.co.uk/story.asp?storyCode=414302§ioncode=26)
Development of wind turbines

\[\text{CoE} = \frac{\text{Annualised CAPEX and OPEX}}{\text{Annual energy production}} \]
Current trend

- Elimination of Gearbox
- Permanent Magnet Generators

Conventional Turbine Generator

Copper Wound-Coil with Gearbox > 500 Tons

Permanent Magnet > 320 Tons

Next Generation - No Gearbox

10 MW
5MW and beyond

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Transmission</th>
<th>Generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siemens Wind Power</td>
<td>Direct drive</td>
<td>PMSG 6.0MW</td>
</tr>
<tr>
<td>Vestas</td>
<td>Medium speed</td>
<td>PMSG 7.0MW</td>
</tr>
<tr>
<td>Enercon</td>
<td>Direct drive</td>
<td>EESG 7.5MW</td>
</tr>
<tr>
<td>Alstom</td>
<td>Direct drive</td>
<td>PMSG 6.0MW</td>
</tr>
<tr>
<td>REPower</td>
<td>High speed</td>
<td>DFIG 6.2MW</td>
</tr>
<tr>
<td>Areva</td>
<td>Low speed</td>
<td>PMSG 5.0MW</td>
</tr>
</tbody>
</table>

10MW and beyond – proposals/investigations

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Transmission</th>
<th>Generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Superconductor</td>
<td>Direct drive</td>
<td>HTS 10MW</td>
</tr>
<tr>
<td>General Electric</td>
<td>Direct drive</td>
<td>LTS 10-15MW</td>
</tr>
<tr>
<td>Advanced Magnet Lab</td>
<td>Direct drive</td>
<td>MgB$_2$ 10MW</td>
</tr>
</tbody>
</table>
Schematic of a Superconducting Machine

- The superconductor must be kept at cryogenic temperatures

- The armature winding is usually proposed to be copper at ambient temperature

\[P = \omega \times T \]

\[T \propto A \times B \times V \]

- \(P \): power
- \(T \): torque
- \(\omega \): rotational speed
- \(A \): electric loading
- \(B \): magnetic loading
- \(V \): volume
High Temperature Superconductors

• The superconducting state is limited by
 – Critical flux density B_c
 – Critical current density J_c
 – Critical temperature T_c

• Superconducting materials can be characterised by IV curves

$$E[V/m] = E_0 \left(\frac{J}{J_c(B,T)} \right)^{n(B,T)}$$

• E_0 is the electric field at the critical current (1μV/cm)
Overview of superconductors

<table>
<thead>
<tr>
<th>Type</th>
<th>Price €/m</th>
<th>J_e/A/mm²</th>
<th>Flux density [T]</th>
<th>Temp. [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NbTi</td>
<td>0.4</td>
<td>10^3</td>
<td>5</td>
<td>4.2</td>
</tr>
<tr>
<td>Nb₃Sn</td>
<td>3</td>
<td>1-4x10^3</td>
<td>5</td>
<td>4.2</td>
</tr>
<tr>
<td>MgB₂</td>
<td>4</td>
<td>10^2</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Bi-2223</td>
<td>20</td>
<td>390</td>
<td>3 ↵tape</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>3 ↵tape</td>
<td>50</td>
</tr>
<tr>
<td>YBCO</td>
<td>30</td>
<td>98 (480)</td>
<td>3 ↵tape</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 (190)</td>
<td>3 ↵tape</td>
<td>50</td>
</tr>
</tbody>
</table>
ADVANTAGES
Generator Power

\[P = \omega_m T = \omega_m \sqrt{2 A \hat{B}_g V \cos(p \psi)} \]

\[A \approx 70,000 \text{A/m} \text{ limited by stator cooling} \]
\[\omega \approx 1.05 \text{rad/s} \text{ limited by the power rating of the WT} \]
(around 10rpm at 10MW)

PM Generator \(B_g = 0.9 \text{T} \)
HTS Generator \(B_g = 2.5 \text{T} \)

\[P = 10 \text{MW} \Rightarrow V_{PM} = 115 \text{m}^3 \quad P = 10 \text{MW} \Rightarrow V_{HTS} = 42 \text{m}^3 \]

With an axial stack length of 2.0m, this would result in a airgap diameter of:
\[D_g = 8.6 \text{m} \quad D_g = 5.2 \text{m} \]
PM in wind turbines

- A 6MW direct drive wind turbine is estimated to use 5 tons of permanent magnets
- This is the same as 2500 Toyota Prius
- Should we be worried?

x2500
Summary

• Very high torque density

\[P = \omega \times T, \quad T \propto A \times B \times V \]

• Very limited dependence on rare earth materials

<table>
<thead>
<tr>
<th></th>
<th>PM</th>
<th>HTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>50kgR/MW</td>
<td>20gR/MW</td>
</tr>
<tr>
<td>Direct drive</td>
<td>250kgR/MW</td>
<td>100gR/MW</td>
</tr>
</tbody>
</table>

\[m_R = 0.27m_{R-B-Fe} \]

• Higher efficiency than an equivalent direct drive PM generator

\[P_{Cu} = I_{Cu}^2 R_{Cu} = J_{Cu}^2 A_{Cu}^2 \frac{l_{Cu}}{A_{Cu} \sigma_{Cu}} = \frac{J_{Cu}^2 V_{Cu}}{\sigma_{Cu}} \]
CHALLENGES
Cooling system

- The superconductors need to be cold:
 - <5K for LTS
 - <20K for MgB$_2$
 - 30-50K for HTS

- Insulation requires large effective airgap
 - Large fault currents and torques

- Torque transfer

- Reliability has yet to be proven and requires years of operating experience

- Production capacity of HTS and MgB$_2$ are currently not adequate for large-scale commercialisation – this should change if the need is present
Size and weight

- Size and weight do not necessarily scale linearly
 \[P = \omega \times T, \quad T \propto A \times B \times V \]

- Iron coreback is required to shield the magnetic field from ambient

- Not as cheap to increase the number of poles

Mass, HTS length and price as a function of pole number
Cost of HTS and PM in a 10MW wind turbine

- If 400km of 4mm HTS tape is assumed for a 10MW wind turbine generator

- With a current carrying capacity of 80A and a price of €50/kAm, this gives €4/m

- The cost of the HTS tape for a 10MW would therefore be €1.6 million

- In addition the cryostat, cryocooler etc. will have to be added

- PM price today? €50/kg

- If 10 tons of PM is required for a 10MW wind turbine

- The cost of the PM for a 10MW would be k€500
Future cost of HTS must/will come down

• It is not unlikely that the price of HTS tape will come down to €15/kAm

• This would result in €480,000 for a 10MW wind turbine

• This would be competitive with PM technology

• But it is clear that the usage of HTS tape must be minimised!
COMMERCIAL ACTIVITIES
American Superconductor (AMSC) SeaTitan 10MW

- HTS – Superconducting field winding
- Copper armature winding
- Generator diameter: 4.5–5 meters
- Weight: 150-180 tonnes (55-66Nm/kg)
- Efficiency at rated load: 96%

- Challenge
 - HTS price and availability

- Advantage
 - Relatively simple cooling system with off-the-shelf solutions
 - Cooling power

Highest torque HTS machine intended for ship propulsion:
- 36.5MW @ 120rpm
- 2.9MNm @ 75 tons
- 39Nm/kg

Reproduced with permission from AMSC
General Electric (GE) 10-15MW

- LTS – Superconducting field winding
- Extensive experience from the MRI sector
- Rotating armature

- Challenge
 - Complicated cooling system and higher cooling power

- Advantage
 - Proven technology from MRI
 - Cheaper superconductor

Reproduced with permission from GE
Advanced Magnet Lab (AML)
10MW fully superconducting

- MgB$_2$ – Fully superconducting generator
- Superconducting field winding
- Superconducting armature winding

- Challenge
 - Complicated cooling system and higher cooling power
 - Improvement in MgB$_2$ wire is needed
 - AC losses

- Advantage
 - Cheap superconductor
 - Fully superconducting
 - More torque dense

\[P = \omega \times T \quad , \quad T \propto A \times B \times V \]
Patent Development

- Web of Knowledge search with keywords: “Supercond*” and “machin*”
Discussion and conclusion

• Superconducting generators might be the answer to large wind turbines
 – Smaller generator
 – Less RE demand by a three orders of magnitude

• A collaborative effort is needed including:
 – Wire manufacturers
 – Wind turbine manufacturers
 – Wind turbine operators

• Large-scale demonstrators are needed
 – To test the performance in a wind turbine
 – To test the reliability
Continue research at universities

- Building small scale prototypes
- Learning from these and extrapolating to large scale
Results for a simple prototype

[Graphs and images showing simulation and measurement results for a simple prototype of a superconducting wind turbine.]
THANK YOU! QUESTIONS?