Fucose-containing sulfated polysaccharides from brown seaweed: Extraction technology and bioactivity assessment

Ale, Marcel Tutor

Publication date: 2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Ale, M. T. (2012). Fucose-containing sulfated polysaccharides from brown seaweed: Extraction technology and bioactivity assessment. DTU Chemical Engineering.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Fucose-containing sulfated polysaccharides from brown seaweed: Extraction technology and biological activity assessment

Marcel Tutor Ale

PhD dissertation - 2012
DTU Chemical Engineering
Department of Chemical and Biochemical Engineering
Fucose-containing sulfated polysaccharides from brown seaweed: Extraction technology and biological activity assessment

Marcel Tutor Ale
PhD Thesis
2012
Preface

Enormous amounts of seaweed resource still remain unexploited. Examining new applications of this unexploited seaweed by developing state-of-the-art solutions; and innovation of seaweed products are the primary interest and motivation of this PhD study.

The PhD work was initiated at the Department of System Biology, Technical University of Denmark (DTU) and was completed at Center for Bioprocess Engineering (BioEng), Department of Chemical and Biochemical Engineering System Biology, Technical University of Denmark (DTU), Lyngby Denmark. The main research and experimental activities were performed in BioEng laboratory facilities located at Bldg. 227 DTU Selskft Plads, Kgs. Lyngby. In fulfillment of the PhD programme various courses, seminars, conference participations and research activities were taken both locally and internationally. External research activity was also accomplished at School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan.

In this PhD thesis, published works are cited and the chapters are based on published research and scientific papers completed by the author during the PhD study:

Chapter 2 is an introduction to the state-of-the-art FCSP methods. It also outlines the problems, hypotheses, and core objectives of this PhD study. This chapter provides an overall outline of different scientific investigations and research activities in the form of project phases.

Chapter 2 is based on Paper 1, which highlights FCSP structure-function relationships and extraction methods. It also includes an overview of seaweed potentials based on recent development and reports from published journals.

Chapter 3 is about optimized single-step extraction of FCSPs based on Paper 2. This chapter provides an in-depth investigation of the influence of different extraction parameters on the chemical nature and structural features of FCSPs.

Chapter 4 shows the FCSP bioactivity. The anti-proliferative and immune response activity of fucoidan extracted from Sargassum sp. using minimal processes based on Papers 3 and 4 is also presented.

Preface

Enormous amounts of seaweed resource still remain unexploited. Examining new applications of this unexploited seaweed by developing state-of-the-art solutions; and innovation of seaweed products are the primary interest and motivation of this PhD study.

The PhD work was initiated at the Department of System Biology, Technical University of Denmark (DTU) and was completed at Center for Bioprocess Engineering (BioEng), Department of Chemical and Biochemical Engineering System Biology, Technical University of Denmark (DTU), Lyngby Denmark. The main research and experimental activities were performed in BioEng laboratory facilities located at Bldg. 227 DTU Selskft Plads, Kgs. Lyngby. In fulfillment of the PhD programme various courses, seminars, conference participations and research activities were taken both locally and internationally. External research activity was also accomplished at School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan.

In this PhD thesis, published works are cited and the chapters are based on published research and scientific papers completed by the author during the PhD study:

Chapter 2 is an introduction to the state-of-the-art FCSP methods. It also outlines the problems, hypotheses, and core objectives of this PhD study. This chapter provides an overall outline of different scientific investigations and research activities in the form of project phases.

Chapter 2 is based on Paper 1, which highlights FCSP structure-function relationships and extraction methods. It also includes an overview of seaweed potentials based on recent development and reports from published journals.

Chapter 3 is about optimized single-step extraction of FCSPs based on Paper 2. This chapter provides an in-depth investigation of the influence of different extraction parameters on the chemical nature and structural features of FCSPs.

Chapter 4 shows the FCSP bioactivity. The anti-proliferative and immune response activity of fucoidan extracted from Sargassum sp. using minimal processes based on Papers 3 and 4 is also presented.
Chapter 5 is based on Paper 5. Successful exploitation of seaweed for commercial applications is accomplished provided that growth parameters are optimized; hence, growth and nutrient assimilation monitoring of seaweed has also been the subject of this study using *U. lactuca* seaweed as a model.

Chapter 6 contains the final remarks about the present work. It also gives some future perspectives and prospective research areas.

This whole PhD study was undertaken with superior guidance and supervision of Prof. Anne S. Meyer, head of Center for Bioprocess Engineering and tireless encouragement of Prof. Jørn Dalgaard Mikkelsen, Center for Bioprocess Engineering as co-supervisor. Moreover, the diligent assistance and supervision of Dr. Hiroko Maruyama and Dr. Hidezaku Tamauchi during my research work in Kitasato University, Kanagawa Japan was so beneficial for the advancement of this PhD study.

The PhD project was fully financed by the Technical University of Denmark (DTU) for a period from March 2008 to October 2011.

This thesis is submitted for the fulfillment of the PhD degree requirements at Technical University of Denmark.

Marcel Tutor Ale
Technical University of Denmark (DTU)
February 2012
Abstract

Marine seaweed that is washed up on the coastline is a nuisance as its degradation produces a foul smell and generates waste problems. Exploitation of coastline-polluting seaweeds such as Sargassum sp., Ulva sp., and other beach-cast seaweed species for various commercial applications will generate new valuable products that may help lessen coastal pollution by seaweeds and create new seaweed-based resources. Thus, utilization of these natural resources is of great importance. The objectives of this PhD study were to develop a technology to extract bioactive compounds from nuisance brown seaweeds, and investigate their bioactivity. To this effect, designed optimized extraction of fucose-containing sulfated polysaccharides (FCSPs) and/or crude fucoidan from brown seaweed were performed, and the bioactivity of the isolated FCSPs was investigated. Moreover, to assess the potential of seaweed to assimilate nitrogen-based nutrients, a technology for accurate monitoring of differential seaweed growth responses to nutrient assimilation was also developed.

Fucoidan is a term used to describe a class of sulfated polysaccharides extracted from brown seaweed, which contains substantial amounts of fucose; varying amounts of galactose, xylose, and glucuronic acid; and differing glycosidic linkages, and are variously substituted with sulfate and acetyl groups and side branches containing fucose or other glycosyl units. These FCSPs principally consist of a backbone of (1→3)- and/or (1→4)-linked α-D-fucopyranose residues that may be substituted with sulfate (SO₃⁻) on C-2, C-3, or C-4 and acetyl groups at C-4 on the main chain or may have short fucoside side chains that are usually linked from the O-4 of one or several of the fucopyranose backbone residues. FCSPs are known to exhibit crucial biological activities including anti-tumor activity. Although differently extracted, purified, fucose-rich, modified fucoidans have been reported to exert bioactive properties such as anti-coagulant and enhance immune response activity, few studies have investigated the bioactivity of unfractonated FCSPs, notably FCSPs extracted using milder and fewer processing steps. Crude fucoidan from Sargassum sp. and Furus vesiculosus were examined for their bioactivity against lung and skin cancer cell lines in both in vitro and in vivo studies. This study showed that unfractonated FCSPs hinder the in vitro proliferation of Lewis lung carcinoma and melanoma B16 cell lines by induction of apoptosis. Moreover, the anti-tumor activity of crude fucoidan seems to be associated with an enhanced immune response as depicted by an increase in natural killer cell activity in mice.
The classical extraction of FCSPs involving long, repetitive, multi-step acid and alkaline treatments is detrimental to its structural properties, yield, and compositional attributes. In this study, statistically designed, optimized extraction of a single-step extraction of FCSPs from Sargassum sp. was carried out. The effects of the different extraction parameters on the natural chemical composition of the isolated sulfated polysaccharides were also investigated. The data showed that classical multi-step extraction using ≥0.2 M HCl at elevated temperature and extended time had a detrimental effect on the FCSPs yield, as this treatment apparently disrupted the structural integrity of the polymer and evidently degraded carbohydrate chains of fucose residues during extraction. The results also revealed a maximal FCSPs yield of approximately 7% dry weight with Sargassum sp. using 0.03 M HCl at 90°C and 4 h extraction conditions.

Accurate monitoring of the differential growth response of seaweed to different nutrient assimilation is crucial to explore various applications of seaweed resources, such as biomass for bioenergy production and source of functional healthy compounds and bioactive compounds. A major prerequisite for the successful exploitation of cultivated seaweed like Ulva lactuca for commercial purposes is that the growth rate and yields should be optimized. In this study, the growth response of U. lactuca to ammonium and nitrate assimilation was investigated using a photoscanning technique to monitor the growth kinetics in U. lactuca. Photoscanning images revealed differential increases in the surface area of U. lactuca discs over time in response to different nitrogen-based nutrient sources. The results also showed a favorable growth response to ammonium as a nitrogen source, and the presence of ammonium discriminated the nitrate uptake by U. lactuca upon exposure to ammonium nitrate. This study exhibits the applicability of a photoscanning approach for acquiring precise quantitative growth data for U. lactuca.

In conclusion, we demonstrated that nuisance seaweed can be a potential source of biomass and bioactive compound notably FCSPs. This study proved the hypotheses that different extraction conditions have crucial influenced to the chemical nature of FCSPs. The study also demonstrated that unfraccionated FCSPs are able to exert bioactive actions such as anti-tumor and immune-modulating properties in both in vitro and in vivo studies. This study illustrates the importance of a precise monitoring technique of the growth of U. lactuca in order to successfully exploit it for commercial application.

The classical extraction of FCSPs involving long, repetitive, multi-step acid and alkaline treatments is detrimental to its structural properties, yield, and compositional attributes. In this study, statistically designed, optimized extraction of a single-step extraction of FCSPs from Sargassum sp. was carried out. The effects of the different extraction parameters on the natural chemical composition of the isolated sulfated polysaccharides were also investigated. The data showed that classical multi-step extraction using ≥0.2 M HCl at elevated temperature and extended time had a detrimental effect on the FCSPs yield, as this treatment apparently disrupted the structural integrity of the polymer and evidently degraded carbohydrate chains of fucose residues during extraction. The results also revealed a maximal FCSPs yield of approximately 7% dry weight with Sargassum sp. using 0.03 M HCl at 90°C and 4 h extraction conditions.

Accurate monitoring of the differential growth response of seaweed to different nutrient assimilation is crucial to explore various applications of seaweed resources, such as biomass for bioenergy production and source of functional healthy compounds and bioactive compounds. A major prerequisite for the successful exploitation of cultivated seaweed like Ulva lactuca for commercial purposes is that the growth rate and yields should be optimized. In this study, the growth response of U. lactuca to ammonium and nitrate assimilation was investigated using a photoscanning technique to monitor the growth kinetics in U. lactuca. Photoscanning images revealed differential increases in the surface area of U. lactuca discs over time in response to different nitrogen-based nutrient sources. The results also showed a favorable growth response to ammonium as a nitrogen source, and the presence of ammonium discriminated the nitrate uptake by U. lactuca upon exposure to ammonium nitrate. This study exhibits the applicability of a photoscanning approach for acquiring precise quantitative growth data for U. lactuca.

In conclusion, we demonstrated that nuisance seaweed can be a potential source of biomass and bioactive compound notably FCSPs. This study proved the hypotheses that different extraction conditions have crucial influenced to the chemical nature of FCSPs. The study also demonstrated that unfraccionated FCSPs are able to exert bioactive actions such as anti-tumor and immune-modulating properties in both in vitro and in vivo studies. This study illustrates the importance of a precise monitoring technique of the growth of U. lactuca in order to successfully exploit it for commercial application.
Dansk Sammenfatning

Tang på stranden er en plage, først og fremmest på grund af de lugtgener, som kommer når tangen går i forråd. En udnyttelse af dette tang, såsom Sargassum sp., Ulva sp., og andre lignende kyst-nære typer af tang, kan frembringe helt nye værdifulde produkter og måske samtidig mindsk de uønskede lugtgener fra tang som skyller op på stranden. En udnyttelse af tang som resource er udgangspunktet for dette PhD studium. PhD studiets formål har været dels at udvikle en ekstraktionsmetode til at isole bioaktive produkter fra brunt tang, dels at undersøge disse produkters bioaktivitet. For at opfylde dette formål blev der i PhD arbejdet udviklet en statistisk designet, optimaliseret ekstraktionsmetode til ekstraktion af såkaldte fucose-inderholderne sulfaterede polysakkarider (eng. fucose-containing sulfated polysaccharides), forkortet FCSPs, henholdsvis grøv fucoidan fra brun tang, primært Sargassum sp., og bioaktiviteten af ekstraktionsprodukter blev undersøgt. For ydermere at vurdere tangs evne til at assimilere, og dermed vokse på nitrogen-holdige salte, blev der udviklet en teknologi til at monitorere differential vækst af Ulvo lactuce, på forskellige næringsstoffer i vandet.

Fucoidan er en betegnelse, som dækker over en gruppe af sulfaterede, fucose-holdige, polysakkarider fra tang. Udover fucose indeholder fucoidan forskellige mængder galaktose, xylose, glikuronosy, som er forbundet via forskellige typer glykosidbindinger, og som derudover er substitueret i forskellig grad med sulfat og acetyl-grupper og som kan have sidekæder indeholdende fucose eller andre glikosyl-substituerer. Disse FCSPs består principielt af en rygrad, eller en hovedkæde, af (1→3)- og/eller (1→4)-linkede α-fucopyranose enheder, som kan være substitueret med sulfater (SO₄²⁻) på C-2, C-3, eller C-4 foruden acetyl grupper på C-4 på fucose-enhederne i hovedkæden, og/eller som har korte fucose-kader, der normalt er bundet via O-4 fra en eller flere fucose-enheder i hovedkæden. Det er kendt, at FCSPs isoleret fra tang har forskellige gavnige, bioaktive effekter, herunder anti-tumor aktivitet. Selvom det har været rapporteret, at oprensede, fucose-rige, modificerede fucoidan-prøver har bioaktive effekter, såsom anti-koagulerende, og immun-respons foregående egenskaber, er bioaktiviteten af mere grove, ultrafraktionerede FCSPs – ekstraheret med mildere og færre ekstraktionstrin - ikke undersøgt.

Groft oprensede fucoidan-prøver fra Sargassum sp. og Fucus vesiculosus blev i dette PhD arbejde undersøgt for deres bioaktivitet mod lunge- og hudcancer cellelinjer vækst både in vitro og in vivo.

Dansk Sammenfatning

Tang på stranden er en plage, først og fremmest på grund af de lugtgener, som kommer når tangen går i forråd. En udnyttelse af dette tang, såsom Sargassum sp., Ulva sp., og andre lignende kyst-nære typer af tang, kan frembringe helt nye værdifulde produkter og måske samtidig mindsk de uønskede lugtgener fra tang som skyller op på stranden. En udnyttelse af tang som resource er udgangspunktet for dette PhD studium. PhD studiets formål har været dels at udvikle en ekstraktionsmetode til at isole bioaktive produkter fra brunt tang, dels at undersøge disse produkters bioaktivitet. For at opfylde dette formål blev der i PhD arbejdet udviklet en statistisk designet, optimaliseret ekstraktionsmetode til ekstraktion af såkaldte fucose-inderholderne sulfaterede polysakkarider (eng. fucose-containing sulfated polysaccharides), forkortet FCSPs, henholdsvis grøv fucoidan fra brun tang, primært Sargassum sp., og bioaktiviteten af ekstraktionsprodukter blev undersøgt. For ydermere at vurdere tangs evne til at assimilere, og dermed vokse på nitrogen-holdige salte, blev der udviklet en teknologi til at monitorere differential vækst af Ulvo lactuce, på forskellige næringsstoffer i vandet.

Fucoidan er en betegnelse, som dækker over en gruppe af sulfaterede, fucose-holdige, polysakkarider fra tang. Udover fucose indeholder fucoidan forskellige mængder galaktose, xylose, glikuronosy, som er forbundet via forskellige typer glykosidbindinger, og som derudover er substitueret i forskellig grad med sulfat og acetyl-grupper og som kan have sidekæder indeholdende fucose eller andre glikosyl-substituerer. Disse FCSPs består principielt af en rygrad, eller en hovedkæde, af (1→3)- og/eller (1→4)-linkede α-fucopyranose enheder, som kan være substitueret med sulfater (SO₄²⁻) på C-2, C-3, eller C-4 foruden acetyl grupper på C-4 på fucose-enhederne i hovedkæden, og/eller som har korte fucose-kader, der normalt er bundet via O-4 fra en eller flere fucose-enheder i hovedkæden. Det er kendt, at FCSPs isoleret fra tang har forskellige gavnige, bioaktive effekter, herunder anti-tumor aktivitet. Selvom det har været rapporteret, at oprensede, fucose-rige, modificerede fucoidan-prøver har bioaktive effekter, såsom anti-koagulerende, og immun-respons foregående egenskaber, er bioaktiviteten af mere grove, ultrafraktionerede FCSPs – ekstraheret med mildere og færre ekstraktionstrin - ikke undersøgt.

Groft oprensede fucoidan-prøver fra Sargassum sp. og Fucus vesiculosus blev i dette PhD arbejde undersøgt for deres bioaktivitet mod lunge- og hudcancer cellelinjer vækst både in vitro og in vivo.
Arbejdet viste, at ufarktionerede FCSPs ekstrakter hindrer proliferation in vitro af Lewis lung carcinoma og melanoma B16 celle linjer via induction af apoptosis. Desuden blev det vist, at denne anti-tumor aktivitet af grov fucoidan, tilsyneladende er associeret med et øget immunresspons, målt som et forøget niveau af naturlige "killer" cellers aktivitet i mus.

Klassisk ekstraktion af FCSPs fra tang involverer adskillelige langsommelige, behandlinger med syre og base, hvilket er ødelæggende for deres specifikke struktur og sammensætning. I dette PhD arbejde blev der udviklet en statistisk designet, optimeret enkelt-trins ekstraktionsmetode til at udtække FCSPs fra Sargassum sp.. Effekten af de forskellige ekstraktionsparametre på sammensætningen af de ekstraherede polysaccharider blev også vurderet. Resultaterne viste, at klassisk, multi-trins ekstraktion ved brug af 20.2 M HCl ved høj temperature hade en ødelæggende effekt på udstyret af FCSPs og viste desuden at en sådan behandling tilsyneladende ødelagte polysaccharidstrukturken og at fucose-kæderne blev nedbrudt under behandlingen. Resultaterne viste også, at et maximal FCSPS udbyrte, på ca. 7% af tørvægten for Sargassum sp. kunne opnås ved et-trins ekstraktion med 0.03 M HCl ved 90°C i 4 timer.

Den samlede konklusen er således at vi demonstrerede, at tang kan være en potential kilde til biomasse og bioaktive komponenter, især FCSPs. PhD studiet viste desuden at hypotesen, at forskellige ekstraktionsbetingelser har afgørende indflydelse på den kemiske natur af FCSPs er sand. Studiet demonstrerede også, at ufarktionerede FCSPs har bioaktive egenskaber såsom anti-tumor og immun-modulerende effekter, vist i både in vitro og in vivo. Studiet illustrerer desuden vigtigheden af en præcis monitoringsmetode til måling af U. lactuca vækst.

Arbejdet viste, at ufarktionerede FCSPs ekstrakter hindrer proliferation in vitro af Lewis lung carcinoma og melanoma B16 celle linjer via induction af apoptosis. Desuden blev det vist, at denne anti-tumor aktivitet af grov fucoidan, tilsyneladende er associeret med et øget immunresspons, målt som et forøget niveau af naturlige "killer" cellers aktivitet i mus.

Klassisk ekstraktion af FCSPs fra tang involverer adskillelige langsommelige, behandlinger med syre og base, hvilket er ødelæggende for deres specifikke struktur og sammensætning. I dette PhD arbejde blev der udviklet en statistisk designet, optimeret enkelt-trins ekstraktionsmetode til at udtække FCSPs fra Sargassum sp.. Effekten af de forskellige ekstraktionsparametre på sammensætningen af de ekstraherede polysaccharider blev også vurderet. Resultaterne viste, at klassisk, multi-trins ekstraktion ved brug af 20.2 M HCl ved høj temperature havde en ødelæggende effekt på udstyret af FCSPs og viste desuden at en sådan behandling tilsyneladende ødelagte polysaccharidstrukturken og at fucose-kæderne blev nedbrudt under behandlingen. Resultaterne viste også, at et maximal FCSPS udbyrte, på ca. 7% af tørvægten for Sargassum sp. kunne opnås ved et-trins ekstraktion med 0.03 M HCl ved 90°C i 4 timer.

Den samlede konklusen er således at vi demonstrerede, at tang kan være en potential kilde til biomasse og bioaktive komponenter, især FCSPs. PhD studiet viste desuden at hypotesen, at forskellige ekstraktionsbetingelser har afgørende indflydelse på den kemiske natur af FCSPs er sand. Studiet demonstrerede også, at ufarktionerede FCSPs har bioaktive egenskaber såsom anti-tumor og immun-modulerende effekter, vist i både in vitro og in vivo. Studiet illustrerer desuden vigtigheden af en præcis monitoringsmetode til måling af U. lactuca vækst.
List of publications

The PhD thesis is based on the work presented in the following papers:

I. Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweed
 Ale MT, Mikkelsen JD and Meyer AS
 Marine Drugs (2011) 9, 2106 - 30, DOI:10.3390/md9102106, Published online

II. Optimization of a single-step extraction of fucose-containing sulfated polysaccharides from Sargassum sp.
 Ale MT, Mikkelsen JD and Meyer AS
 DOI: 10.1007/s10811-011-9690-3, Published online

III. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo
 Ale MT, Maruyama H, Tamauchi H, Mikkelsen JD and Meyer AS
 DOI: 10.1016/j.ijbiomac.2011.05.009, Published online

IV. Fucose-containing sulfated polysaccharides from brown seaweed inhibit proliferation of melanoma cells and induce apoptosis by activation of caspase-3 in vitro
 Ale MT, Maruyama H, Tamauchi H, Mikkelsen JD and Meyer AS
 Marine Drugs (2011) 9, 2605 - 21 DOI:10.3390/md9122605, Published online

V. Differential growth response of Ulva lactuca to ammonium and nitrate assimilation
 Ale MT, Mikkelsen JD and Meyer AS

IIi. Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweed
 Ale MT, Mikkelsen JD and Meyer AS
 Marine Drugs (2011) 9, 2106 - 30, DOI:10.3390/md9102106, Published online

III. Designed optimization of a single-step extraction of fucose-containing sulfated polysaccharides from Sargassum sp.
 Ale MT, Mikkelsen JD and Meyer AS
 DOI: 10.1007/s10811-011-9690-3, Published online

III. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo
 Ale MT, Maruyama H, Tamauchi H, Mikkelsen JD and Meyer AS
 DOI: 10.1016/j.ijbiomac.2011.05.009, Published online

IV. Fucose-containing sulfated polysaccharides from brown seaweed inhibit proliferation of melanoma cells and induce apoptosis by activation of caspase-3 in vitro
 Ale MT, Maruyama H, Tamauchi H, Mikkelsen JD and Meyer AS
 Marine Drugs (2011) 9, 2605 - 21 DOI:10.3390/md9122605, Published online

V. Differential growth response of Ulva lactuca to ammonium and nitrate assimilation
 Ale MT, Mikkelsen JD and Meyer AS
Table of Contents

Preface ... i
Abstract .. ii
Dansk Sammenfatning .. v
List of publications .. vii
Table of Contents ... ix

1 Introduction .. 1
 1.1 Problems statement .. 3
 1.2 Hypotheses ... 4
 1.3 Core objectives and project phases ... 5

2 Seaweed potentials: a general overview .. 9
 2.1 Bioactive seaweed compounds: sulfated polysaccharides .. 10
 2.1.1 FCSPs structure .. 10
 2.1.2 Anti-tumor bioactivity of FCSPs ... 13
 2.2 FCSPs extraction and chemical composition: past and present 15
 2.2.1 FCSPs composition studies, 1930–1950 .. 17
 2.2.2 Lab-scale extraction of fucoidan, 1950s ... 18
 2.2.3 FCSPs extraction, 1970s–present ... 19
 2.3 Seaweed products and biomass potential ... 19
 2.3.1 Phycocolloids .. 20
 2.3.2 Seaweed biomass for bioenergy production ... 21
 2.4 Seaweed production .. 21
 2.5 Paper 1: Important determinants for fucoidan bioactivity: a critical review of structure-
 function correlations and extraction methods for FCSPs from brown seaweeds 22

3 Extraction of FCSPs .. 49
 3.1 Extraction methods ... 49
 3.2 Single-step extraction of FCSPs ... 50

Table of Contents

Preface ... i
Abstract .. ii
Dansk Sammenfatning .. v
List of publications .. vii
Table of Contents ... ix

1 Introduction .. 1
 1.1 Problems statement .. 3
 1.2 Hypotheses .. 4
 1.3 Core objectives and project phases .. 5

2 Seaweed potentials: a general overview .. 9
 2.1 Bioactive seaweed compounds: sulfated polysaccharides .. 10
 2.1.1 FCSPs structure .. 10
 2.1.2 Anti-tumor bioactivity of FCSPs ... 13
 2.2 FCSPs extraction and chemical composition: past and present 15
 2.2.1 FCSPs composition studies, 1930–1950 .. 17
 2.2.2 Lab-scale extraction of fucoidan, 1950s ... 18
 2.2.3 FCSPs extraction, 1970s–present ... 19
 2.3 Seaweed products and biomass potential ... 19
 2.3.1 Phycocolloids .. 20
 2.3.2 Seaweed biomass for bioenergy production ... 21
 2.4 Seaweed production .. 21
 2.5 Paper 1: Important determinants for fucoidan bioactivity: a critical review of structure-
 function correlations and extraction methods for FCSPs from brown seaweeds 22

3 Extraction of FCSPs .. 49
 3.1 Extraction methods ... 49
 3.2 Single-step extraction of FCSPs ... 50
3.2.1 Relevance .. 50
3.2.2 Hypotheses and objectives ... 50
3.2.3 Result highlights .. 51
3.2.4 Consideration and justification ... 51
3.3 Paper 2: Designed optimization of single-step extraction of FCSPs from Sargassum sp. ... 52
4 Bioactivity of FCSPs .. 65
4.1 Anti-tumor activity of FCSPs ... 66
4.2 Anti-proliferative and immune-response activities ... 66
4.2.1 Relevance ... 67
4.2.2 Hypotheses and objectives ... 67
4.2.3 Result highlights ... 68
4.2.4 Consideration and justification ... 69
4.3 Paper 3: Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo .. 70
4.4 Paper 4: Fucose containing sulfated polysaccharides inhibits the proliferation of melanoma cells and induces apoptosis by activation of caspase-3 in vitro ... 70
5 Seaweed nutrient assimilation and growth response .. 95
5.1 Evaluation of growth and assimilation ... 96
5.2 Growth response of U. lactuca ... 96
5.2.1 Relevance ... 96
5.2.2 Hypotheses and objectives ... 97
5.2.3 Result highlights ... 98
5.2.4 Consideration and justification ... 98
5.3 Paper 5: Differential growth response of Ulva lactuca to ammonium and nitrate assimilation ... 99
6 Conclusions and perspectives .. 109
6.1 Future perspectives .. 112
7 References ... 115
1 Introduction

In the vast coastal areas worldwide, seaweed has played a major role in maintaining the ecological balance of the environment and marine bio-ecosystem. Seaweeds, including various brown seaweeds such as Undaria and Laminaria spp., are part of the food culture in many Asian countries, notably Japan, the Philippines, and Korea, and seaweed extracts have also been used as remedies in traditional medicine. In recent years, harvesting and monoculture farming of certain seaweed species have become an important livelihood for fishermen in Southeast Asia owing to the progressively increasing demand for raw seaweed worldwide. Many seaweed species, notably beach-cast seaweeds, still need to be examined for their characteristics and properties, which will determine their commercial applications, before they can be recognized as important commodities.

Seaweed that washes up on the coastline often generates waste problems for populations residing seaside owing to microbial accumulation and unpleasant odors. Utilization of beach-cast seaweeds such as Ulva sp., Sargassum sp., and other nuisance seaweed species for advantageous applications may alleviate these problems and create valuable seaweed-based products. It is widely known that seaweed may contain unique components that have potential commercial applications; however, few seaweed species are commercially utilized and others remain unexploited. Some seaweed species could be potential sources of functional dietary fiber and polysaccharides with bioactive properties (Lahaye 1991; Takahashi 1983). Recent developments in seaweed utilization include applications involving naturally derived seaweed extracts and bioactive compounds such as fucose-containing sulfated polysaccharides (FCSPs) and/or fucoidan in some cosmetic products and food supplements.

Fucoidan is a term used to described a class of sulfated polysaccharide extracted from the seaweed class Phaeophyceae, which consist almost entirely of fucose and ester sulfate (Perivial and McDowell 1967). This FCSP principally consists of a backbone of (1→3)- and/or (1→4)-linked α-L-fucopyranose residues that may be organized in stretches of (1→3)-α-fucan or with alternating α(1→3)- and α(1→4)-bonded L-fucopyranose residues. The L-fucopyranose residues may be substituted with sulfate (SO₄²⁻) on C-2 or C-4 (rarely on C-3) single L-fucosyl residues and/or short fucoidose (fuculo-oligosaccharides) side chains. If present, the fucoidose side chains are usually O-4, linked to the α-L-fucopyranose backbone residues. Apart from variations in the sulfate content and

PhD Thesis 2012
substitutions, the monosaccharide composition of FCSPs varies among different species of brown seaweeds. Hence, in addition to fucose, different types of FCSPs may also contain galactose, mannose, xylose, glucose, and/or glucuronic acid, usually in minor amounts (Percival and McDowell, 1967; Bilan and Usov, 2008). It appears that FCSPs cover a broader range of complex polysaccharides than those having only fucan backbones. Fucoidan—or more correctly, FCSPs extracted from brown seaweeds like Sargassum sp. and Fucus vesiculosus—were documented to have a wide range of biological activities including anticoagulant (Nardella et al., 1996); anti-inflammatory (Blondin et al., 1994); antiviral (Adhikari et al., 2006; Trinchero et al., 2009); and, notably, anti-tumoral effects (Zhuang et al., 1995; Ale et al., 2011).

Typical extraction of FCSPs from brown seaweed involves a harsh processing condition and several purification steps. Purification of FCSPs by column chromatography was effective for isolating polysaccharide fractions as they had higher fucose contents than those FCSPs obtained using minimal processing steps (Li et al., 2006; Ale et al., 2011). The conditions for obtaining FCSPs from brown seaweed generally consist of multiple, long, repetitive steps using acid (e.g., HCl) and other solvents at elevated temperatures (Chizhov et al., 1999; Bilan et al., 2002). The influence of the extraction methods on the chemical nature of sulfated polysaccharide has already been demonstrated by Black et al. (1952). On the other hand, the FCSP yield of F. evanescens extracted 4 times using 2% CaCl₂ solution at 85°C for 5 h was 12.9% dry weight (DW) (Bilan et al., 2002), while extraction at 25°C using 0.4% HCl for 5 h yielded 12.0% DW (Zvyagintseva et al., 1999).

Despite the existence of early seminal studies about FCP or fucoidan extraction, there is only limited evidence about the influences and apparently complex interactions of extraction parameters, such as acid solvents, temperature, and time, on FCSP yield and composition. FCSP extraction procedures with fewer steps are milder on the brown seaweeds than are other though they may yield a heterogeneous sulfated polysaccharide product. Nevertheless, fewer steps extraction approach minimizes the structural alteration of alginate-sulfated polysaccharides and, thereby, maintains the natural bioactive characteristics of FCSPs.

Although differently extracted and purified FCSPs have been reported to exert bioactivity (Holtkamp et al., 2009), unFractionated FCSPs has also been found to reduce cell proliferation of lung carcinoma and melanoma cells, exert immunopotentiating effects in tumor-bearing animals, and to activate natural killer (NK) cells in mice, leading to anti-tumor activity efficacy (Takahashi, 1983; Ale et al., 2011; Foley et al., 2011). Kim et al. (2010) applied a crude polysaccharide composed predominantly of sulfated fucose from F. vesiculosus to human colon cancer cells in
biomass extraction and concluded that this polysaccharide from brown seaweed induces apoptosis. Moreover, commercially available crude fucoidan (Sigma Inc.) was tested on human lymphoma HS-Sultan cell lines and was found to inhibit proliferation and induce apoptosis by activating caspase-3 (Aisa et al., 2005). It was reported recently that FCSPs from Sargassum sp. and crude fucoidan (Sigma Inc.) from F. vesiculosus induced apoptosis in melanoma cells (Ale et al., 2011).

Besides the bioactive compounds, seaweeds also possess other valuable components, such as soluble dietary fibers and carbohydrates for hydrocolloid applications. The green seaweed (Ulva species) are particularly rich in rare cell wall polysaccharides and have been proposed as being important sources of dietary fiber, mainly soluble fiber (Lahaye 1991; Lahaye and Axelos 1993). Furthermore, U. lactuca is also a good source of vitamins A, B2, B12, and C and is rich in γ-tocopherol (Abd El-Baky et al., 2008; Ortiz et al., 2006). It has been shown that seaweed, notably U. lactuca, was suitable for propagation under controlled conditions (Vermaat and Sand-Jensen, 1987; Lee, 2000; Sato et al., 2006). For this reason, U. lactuca cultivation in tanks for either crude biomass production for bioenergy or for the production of biologically active compounds is currently receiving increased attention (Hiraoka and Oka, 2008). However, a major prerequisite for the successful exploitation of cultivated U. lactuca for commercial applications is optimization of growth rates and yields. This in turn requires both an understanding of the influence of different nutrients on the growth response and a precise methodology to measure the growth. Nuisance green seaweeds like U. lactuca showed bioremediation ability in nitrogen- and phosphate-rich waste water (Copertino et al., 2008). Nevertheless, limited information is known about the growth response and nutrient uptake assimilation of U. lactuca when expose to combine concentrations of ammonium and nitrate.

This PhD thesis delivers the most recent study involving FCSPs extraction technology and evaluates FCSPs biological activity. A single-step extraction method for the removal of FCSPs from Sargassum sp. was developed in the course of this study. FCSPs bioactivity studies have been conducted in lung and skin cancer cell models in vitro and immune response activity in vivo. In addition to extraction and bioactivity studies, evaluation of the growth response of U. lactuca to nutrients such as NH₄ and NO₃ was also performed.

1.1 Problems statement

Purified fractions from FCSPs are commonly used for structural and bioactivity analysis. These samples contain high fucose-sulfate levels and are free from other contaminant saccharides and proteins. Furthermore, U. lactuca is also a good source of vitamins A, B2, B12, and C and is rich in γ-tocopherol (Abd El-Baky et al., 2008; Ortiz et al., 2006). It has been shown that seaweed, notably U. lactuca, was suitable for propagation under controlled conditions (Vermaat and Sand-Jensen, 1987; Lee, 2000; Sato et al., 2006). For this reason, U. lactuca cultivation in tanks for either crude biomass production for bioenergy or for the production of biologically active compounds is currently receiving increased attention (Hiraoka and Oka, 2008). However, a major prerequisite for the successful exploitation of cultivated U. lactuca for commercial applications is optimization of growth rates and yields. This in turn requires both an understanding of the influence of different nutrients on the growth response and a precise methodology to measure the growth. Nuisance green seaweeds like U. lactuca showed bioremediation ability in nitrogen- and phosphate-rich waste water (Copertino et al., 2008). Nevertheless, limited information is known about the growth response and nutrient uptake assimilation of U. lactuca when expose to combine concentrations of ammonium and nitrate.

This PhD thesis delivers the most recent study involving FCSPs extraction technology and evaluates FCSPs biological activity. A single-step extraction method for the removal of FCSPs from Sargassum sp. was developed in the course of this study. FCSPs bioactivity studies have been conducted in lung and skin cancer cell models in vitro and immune response activity in vivo. In addition to extraction and bioactivity studies, evaluation of the growth response of U. lactuca to nutrients such as NH₄ and NO₃ was also performed.

1.1 Problems statement

Purified fractions from FCSPs are commonly used for structural and bioactivity analysis. These samples contain high fucose-sulfate levels and are free from other contaminant saccharides and proteins.
residues. Hence, many seminal studies have shown that purified fucoidan has high bioactivity as a result of multi-step extraction and further purification and fractionation.

Can an unpurified FCSPs product extracted using minimal steps exert bioactivity?

What is the effect of unpurified FCSPs against certain cancer cell lines and what is its influence on immune response activity?

The present extraction technology using aqueous-alkali solution or dilute acid at ambient or slightly elevated temperature has always been the most convenient method to produced FCSPs.

Would different extraction parameters, i.e., acid, temperature, and time, influence the structural features and chemical nature of FCSPs?

What are the effects of the interactions of different extraction treatments?

Exploitation of seaweed resources has recently received special attention for its potential for both the production of bioactive compounds and as a biomass source for bioenergy production. To successfully exploit seaweed for commercial applications, the growth rate and yields must be optimized. Hence, a precise monitoring technology to evaluate the seaweed growth response is required.

What are the different monitoring techniques that are used to evaluate the U. lactuca growth response to nutrient assimilation? How does it affect the measurements’ precision?

How is the growth of U. lactuca influenced by the assimilation of different nutrients (NH₄ and NO₃)?

1.2 Hypotheses

Nuisance marine seaweed that has washed up on the coastlines is a potential starting material for producing bioactive compounds like fucoidan or FCSPs. The precise assessment of seaweed growth is crucial in our understanding of seaweed nutrient assimilation mechanisms. In this thesis, some specific hypotheses were outlined:

Minimal extraction step of FCSPs will preserve the polysaccharides' structural integrity and, thus, increase the yield and improve its biological properties

Can an unpurified FCSPs product extracted using minimal steps exert bioactivity?

What is the effect of unpurified FCSPs against certain cancer cell lines and what is its influence on immune response activity?

The present extraction technology using aqueous-alkali solution or dilute acid at ambient or slightly elevated temperature has always been the most convenient method to produced FCSPs.

Would different extraction parameters, i.e., acid, temperature, and time, influence the structural features and chemical nature of FCSPs?

What are the effects of the interactions of different extraction treatments?

Exploitation of seaweed resources has recently received special attention for its potential for both the production of bioactive compounds and as a biomass source for bioenergy production. To successfully exploit seaweed for commercial applications, the growth rate and yields must be optimized. Hence, a precise monitoring technology to evaluate the seaweed growth response is required.

What are the different monitoring techniques that are used to evaluate the U. lactuca growth response to nutrient assimilation? How does it affect the measurements’ precision?

How is the growth of U. lactuca influenced by the assimilation of different nutrients (NH₄ and NO₃)?

1.2 Hypotheses

Nuisance marine seaweed that has washed up on the coastlines is a potential starting material for producing bioactive compounds like fucoidan or FCSPs. The precise assessment of seaweed growth is crucial in our understanding of seaweed nutrient assimilation mechanisms. In this thesis, some specific hypotheses were outlined:

Minimal extraction step of FCSPs will preserve the polysaccharides' structural integrity and, thus, increase the yield and improve its biological properties
1 Introduction

FCSP products from a single-step extraction process (i.e., crude fucoidan) from brown seaweed can exert bioactivity against certain types of cancer cell lines (e.g., by inducing apoptosis) and can promote immune responses.

Classical extraction of FCSPs involving long, repetitive, multi-step acid and alkaline treatments can be detrimental to its structural makeup, yield, and compositional attributes and, thus, may influence its bioactive properties.

To exploit marine seaweed for commercial applications, growth monitoring is crucial to the accurate evaluation of differential growth responses and nutrient (NH_4 or $NaNO_3$) assimilations.

1.3 Core objectives and project phases

Seaweed resources generally cover wide potential applications for different industries including food and nutrition, pharmaceuticals, cosmetics, and bioenergy. Therefore, their study requires extensive in-depth research involving an interdisciplinary approach and a considerable amount of time to accomplish certain achievable objectives. This PhD study narrows the subjects into more focused areas with very realistic aims or specific objectives to produce novel technology while attaining basic scientific understanding.

To test the hypotheses, various specific objectives were applied in this study. The core objectives were primarily concentrated on the investigation of different FCSPs extraction methods and developing innovative FCSPs extraction technology, the potential of seaweeds as a source of bioactive compounds, notably FCSPs; and to assess the bioactivity and mechanism of FCPS products against certain types of cancer. Furthermore, we evaluate seaweeds’ differential growth responses to nutrient assimilation. Along with the core objectives, the specific aims of the study were as follows:

- Development of a new process for producing bioactive compound like fucose-containing sulfated polysaccharides from brown seaweed by optimized designed extraction parameters using of state-of-the-art analytical methods and quantification analyses
- Investigation of the bioactivity of single-step extracted unpurified FCSPs products (i.e., crude fucoidan) in cancer cell lines using in vitro and in vivo experiments
- Evaluation of the seaweed growth response to nutrient assimilation (i.e., NH_4 and NO_3)
To ensure that the work was conducted in the right direction, workloads were organized and narrowed down to specific scopes in a number of project phases:

Phase 1: Survey of seaweed bioactive compound structure and bioactivity
A literature research and gathering of review articles was conducted with the aim of gaining an overall perspective of the subject. Special focus was placed on the available technical and scientific information regarding bioactive compounds’ structural makeup and composition, the influence of the extraction process, and factors affecting bioactivity.

Phase 2: Optimized extraction and hydrolysis of seaweed polysaccharides (i.e., FCSPs)
Fucoidan can be obtained by extraction from brown seaweeds like Sargassum sp. The typical extraction of FCSPs involves multi-step extraction using different temperatures and acid and alkaline concentrations in an extended period. In this study, it was hypothesized that harsh extraction treatment is detrimental to the integrity of the chemical nature of these polysaccharides; thus, preservation of its structure during extraction can only be done using a mild extraction technique. The main objective of this project was to design an optimized extraction of FCSPs using a minimal-step method compared to existing classical extraction methods with special attention placed on the influence on chemical composition.

Phase 3: Assessment of FCSP bioactivity
FCSPs are known to possess bioactive properties such as anti-tumor activity, apoptosis induction in cancer cells, and immune potentiation. The efficacy of FCSPs derived from brown seaweed remains a matter of debate; nevertheless, several reports attribute its efficacy to its structural makeup, substitutions, and content of sulfate. It was hypothesized that mild extracted FCSPs must possess high bioactive properties because their structural makeup remains intact. The objective of this study was to examine the different contributing factors influencing FCSP bioactivity on some cancer cell lines. The bioactivities of FCSPs extracted from nuisance seaweed were evaluated using cancer cell lines in vitro and in vivo experiments.

Phase 4: Seaweed growth response to nutrient assimilation
The proliferation of seaweed is mostly influenced by photosynthesis and available nutrients that can be utilized and assimilated. Seaweed growth is tantamount to increased biomass production. Seaweed can potentially be utilized for the production of bioactive compounds and healthy
components. Monitoring the seaweed growth and nutrient uptake is a crucial step for evaluating the seaweed growth rate, nutrient uptake rate, and biomass yield. Thus, developing a method to properly monitor seaweed growth will contribute to our understanding of the seaweed growth response to nutrient and assimilation patterns. The objective of this study is to examine the U. lactuca growth response to nutrients, i.e., NH₄ or NaNO₃, with the special aim of developing a growth monitoring technique to accurately evaluate the differential growth response and nutrient assimilation and to analyze different biomass accumulation-related parameters.
2 Seaweed potentials: a general overview

Marine seaweeds are classified according to their morphology and taxonomic characteristic into 3 groups: the green (Chlorophyta), red (Rhodophyta), and brown algae (Phaeophyta). The green algae are distributed worldwide (Lahaye & Robic, 2007), and the most common green seaweed species in the temperate zones is Ulva lactuca (Fig. 2.1). It is harvested naturally or cultivated in tanks for food consumption or biomass production for bioenergy (Lahaye & Robic, 2007). Natural habitats of red seaweed are found at intertidal and subtidal depths. In recent years, fishermen in the Southeast Asian countries engaged in the farming of the red seaweeds Kappaphycus and Eucheuma (Fig. 2.1) for the production of carrageenan. Carrageenan is a gel-forming, viscousifying polysaccharide that is commercially exploited for food products and cosmetic products (De Reiter and Rudolph, 1997). The brown seaweeds are usually found in tidal splash zones or rock pools, and certain species such as Sargassum are found floating on the shorelines (Fig. 2.1). Brown algae are typically used for the production of alginate, which is commercially used as an ingredient for different industrial, biotechnology, and food applications. FCSPs from brown seaweed, notably fucoidan, have been known to exert bioactive properties.

Fig. 2.1 Photographs of different seaweed species that are utilized for different commercial applications. a. Ulva lactuca as bulking agent for feeds. b. Kappaphycus sp. for carrageenan production. c. Sargassum sp. as a potential source of bioactive fucose-containing sulfated polysaccharides, particularly fucoidan compound. (Source: www.algaebase.org)

Several studies have indicated that FCSPs from brown seaweeds are highly potent anti-cancer agents, tumor cell growth inhibitors, and immune system strengtheners (Jiao et al., 2011; Pereira

2 Seaweed potentials: a general overview

Marine seaweeds are classified according to their morphology and taxonomic characteristic into 3 groups: the green (Chlorophyta), red (Rhodophyta), and brown algae (Phaeophyta). The green algae are distributed worldwide (Lahaye & Robic, 2007), and the most common green seaweed species in the temperate zones is Ulva lactuca (Fig. 2.1). It is harvested naturally or cultivated in tanks for food consumption or biomass production for bioenergy (Lahaye & Robic, 2007). Natural habitats of red seaweed are found at intertidal and subtidal depths. In recent years, fishermen in the Southeast Asian countries engaged in the farming of the red seaweeds Kappaphycus and Eucheuma (Fig. 2.1) for the production of carrageenan. Carrageenan is a gel-forming, viscousifying polysaccharide that is commercially exploited for food products and cosmetic products (De Reiter and Rudolph, 1997). The brown seaweeds are usually found in tidal splash zones or rock pools, and certain species such as Sargassum are found floating on the shorelines (Fig. 2.1). Brown algae are typically used for the production of alginate, which is commercially used as an ingredient for different industrial, biotechnology, and food applications. FCSPs from brown seaweed, notably fucoidan, have been known to exert bioactive properties.

Fig. 2.1 Photographs of different seaweed species that are utilized for different commercial applications. a. Ulva lactuca as bulking agent for feeds. b. Kappaphycus sp. for carrageenan production. c. Sargassum sp. as a potential source of bioactive fucose-containing sulfated polysaccharides, particularly fucoidan compound. (Source: www.algaebase.org)

Several studies have indicated that FCSPs from brown seaweeds are highly potent anti-cancer agents, tumor cell growth inhibitors, and immune system strengtheners (Jiao et al., 2011; Pereira
et al., 1999). It has been suggested that the lower breast cancer and obesity rates in Japan may be related to regular intake of brown seaweed (Tea 1983). Brown seaweeds are very abundant and constitute unexploited resources worldwide, thus making them viable sources of polysaccharides, especially those with bioactive properties such as fucoidan or other FCSPs. Nevertheless, the red and green seaweeds are also good sources of functional food ingredients, including phycocolloids and dietary fibers.

2.1 Bioactive seaweed compounds: sulfated polysaccharides
Sulfated polysaccharides are a family of compounds containing ester sulfate groups in their sugar residues. These polysaccharides are commonly found in the marine algal groups Phaeophyta, Rhodophyta, and Chlorophyta. Fucans is the general term for sulfated polysaccharides that are present in the class Phaeophyta, which includes FCSPs. The sulfated polysaccharides in the class Rhodophyta are galactans consisting entirely of galactose or modified galactose units such as agar and carrageenans. The major polysaccharides in the class Chlorophyta are polydisperse heteropolysaccharides known as ulvans.

Ulva, the green seaweed species of the class Chlorophyta, are particularly rich in rare cell wall polysaccharides and have been proposed as being an important source of dietary fiber, mainly soluble fiber, which could be a potential prebiotic substrate (Lahaye 1991; Lahaye and Anelos 1993). Brown seaweed is a source of a unique compound, notably FCSPs, which have shown high potency against certain cancers in some in vitro studies and exhibited immune response activity in vivo (Cumashi et al., 2007; Maruyama et al., 2003). Red seaweed, on the other hand, is known for its hydrocolloid characteristics; however, published reports have shown that sulfated polysaccharides from red seaweed also possessed some bioactive properties (Pereira et al., 2005; Talarico et al., 2007).

2.1.1 FCSPs structure
Fucoidan, an FCSP that is extracted from brown algae, may contain differing glycosidic linkages and is variously substituted with acetate and side branches containing fucose or other glycosyl units. Brown seaweed in the order of Fucales such as F. evanescens and F. serratus possess a large proportion of both α(1→3)- and α(1→4)-linked L-fucopyranose residues may be substituted with sulfate (SO₄) on C-2 and C-4 (Fig. 2.2; Bilan et al., 2002, 2006; Cumashi et al., 2007). The alga Ascosiphum nodosum (Fucales) has a predominant repeating structure α(1→3)-L-fucopyranose residues with sulfate at C-2 position linked α(1→4)-L-fucopyranose residues with disulfate at C-2
position-linked α(1→3), the same structural elements that are also in FCSPs from *F. vesiculosus* (Fig. 2.2; Chevolot et al., 1999).

Several structures of fucoids of the order of Laminariales were reported to contain monosulfate components that mainly consist of α(1→3)-linked 6-fucopyranose residues with sulfates at the C-2 position (Berteau and Mullay, 2003; Anastyuk et al., 2009). Fucoidan isolated from *Chorda filum* (Laminariales) has a structure of poly-α(1→3)-linked 6-fucopyranose backbone and residues are sulfated mainly at C-4 and sometimes C-2 position, whereas some α(1→3)-linked fucose residues (Fig. 2.2) to be 2-O-acetylated (Chizhov et al., 1999). Similar structure of L.
Okamuranus saccharina was previously reported by Usov et al., (1998). A structural study of fucoidan from Cladosiphon okamuranus (Chordariales) showed a linear backbone of α-(1→3)-linked L-fucopyranose with a portion of fucose residues that was O-acetylated and sulfate substitution at C-4 position (Fig. 2.2). It also contained α-glucuronic acid at 2 positions of fucose that were not substituted by a sulfate group (Nagao et al., 1999).

Fig. 2.3 Probable structure of fucoidan fraction from Hizikia fusiforme (Fucales) suggested by Usov et al. (1999). Structural composition was typical for Ulva species (Duarte et al., 2001).
Complex fucoidan structures such as sulfated galactofucans and heterofucans brown algae have been reported (Bilan and Usov, 2008). A complex mixture of polysaccharides extracted from Sargassum stenophyllum was mainly built of β(1→6)-o-galactose and/or β(1→2)-o-mannose units with branching points formed by α(1→3) and/or α(1→4)-l-fucose, α(1→4)-d-glucuronic acid, terminal β-α-xylene, and sometimes α(1→4)-o-glucose. Sulfate groups on the fucans are located at C-4 of a (1→3)-linked unit or C-2 of a (1→4)-linked residue (Fig. 2.3; Duarte et al., 2001). Galactose is found in trace amounts in the fucans from Himanthalia loeroi and Macrocrystis pyrifera (Mian and Percival, 1973) and has been reported as a major constituent, but the polysaccharides also had substantial quantities of fucose, xylose, and glucuronic acid (Percival and Young, 1974). A sulfated β-α-galactan isolated from L. angustata in trace amounts was considered a fucoidan with β-α-galactose as the major sugar and l-fucose and d-glucuronic acid as trace components (Nishino et al., 1994).

2.1.2 Anti-tumor bioactivity of FCSPs
FCSPs in brown seaweed have been subject to many scientific studies due to their diverse biological functions including anti-tumor and immunomodulatory activities (Aleksyenko et al., 2007; Maruyama et al., 2006). There are very few published reports on the relationship between chemical properties and anti-tumor activity of FCSPs. (Li et al., 2008; Aleksyenko et al., 2007; Koyanagi et al., 2003). However, it was suggested that the bioactive properties of FCSPs are mainly determined by the fucose sulfated chains (Nishino et al., 1994; Mourão et al., 1996); nevertheless, the anti-cancer activity of FCSPs was recently revealed to not be a function of a single but a combination of many factors such as the amount of sulfate groups, monosaccharide residues ratio, and the linkage type of the sugar residues (Ermakova et al., 2011; Ale et al., 2011). The available findings indicate that the anti-tumor activity of FCSPs may be associated with a significant enhancement of the cytolytic activity of NK cells augmented by increased production of macrophage-mediated immune response-signaling molecules (Maruyama et al., 2003; Takahashi et al., 1983; Teruya et al., 2009), namely interleukin (IL)-2, interferon (IFN)-γ, and IL-12 (Ale et al., 2011; Maruyama et al., 2003), and induction of apoptosis (Ale et al., 2011).

Macrophage activation by polysaccharides is mediated through specific membrane receptors. The major receptors reported for polysaccharide recognition in macrophages are glycoproteins including Toll-like receptor-4 (TLR-4), cluster of differentiation 14 (CD14), competent receptor-3 (CR-3), and scavenging receptor (SR) (Teruya et al., 2009). Activation of these receptors is mediated by intracellular signaling pathways, and the family of mitogen-activated protein kinases (MAPKs) plays a
critical role, notably in the production of nitric oxide (NO), which can lyse tumors (Teruya et al., 2009). MAPK family members such as p38 MAPK, extracellularly regulated kinase (ERK1/2), and stress-activated protein kinase/c-Jun-N-terminal kinase play an important role in the activation of macrophages by polysaccharides such as FCSPs (Teruya et al., 2009; Aisa et al., 2005) (Fig. 2.4). Activated MAPKs lead to activation of transcription factors resulting in induction of various genes (Teruya et al., 2009). Activation of macrophages induces the production of cytokines such as interleukin-12 (IL-12) which in turn stimulate the development of T-cells (Fig. 2.4). T-cells produce interleukin-2 (IL-2) that in turn activates NK cells proliferation. The NK cells themselves produce immunologically important cytokines, notably IFN-γ, which can further provoke the participation of macrophages in the stimulation of T-cell via induction of IL-12 (Maruyama et al., 2006; Teruya et al., 2009) (Fig. 2.4).

![Fig 2.4. Proposed mechanism responsible for fucoidan bioactivity: (a) Macrophage activation by fucose-containing sulfated polysaccharides (FCSPs) mediated through specific membrane receptor activation, namely Toll-like receptor (TLR)-4, cluster of differentiation 14 (CD14), competent receptor-3 (CR-3), and scavenging receptor (SR), which in turn induce intracellular signaling via mitogen-activated protein kinases (MAPKs); (b) activation of macrophages lead to production of cytokines such as interleukin (IL)-12, IL-2, and interferon (IFN)-γ, which enhances NK cell activation that may further stimulate T cell activation via IFN-γ.](image1)

![Fig 2.4. Proposed mechanism responsible for fucoidan bioactivity: (a) Macrophage activation by fucose-containing sulfated polysaccharides (FCSPs) mediated through specific membrane receptor activation, namely Toll-like receptor (TLR)-4, cluster of differentiation 14 (CD14), competent receptor-3 (CR-3), and scavenging receptor (SR), which in turn induce intracellular signaling via mitogen-activated protein kinases (MAPKs); (b) activation of macrophages lead to production of cytokines such as interleukin (IL)-12, IL-2, and interferon (IFN)-γ, which enhances NK cell activation that may further stimulate T cell activation via IFN-γ.](image2)
The anti-tumor mechanism of FCSPs appears to be associated with the significant enhancement of the cytolytic activity of NK cells augmented by increased production of the macrophage-mediated immune response, namely IL-2, type II IFN-y, and IL-12 (Maruyama et al., 2003; Maruyama et al., 2006). NK cells are large granular lymphocytes that are found throughout the body that contain cytotoxic substances which are important for the protection against some tumors. The slated NK cell killing occurs via release of granules containing perforin, which effectively opens up pores in target cell membranes through which the granzymes can enter and induce apoptosis (Kindt et al., 2007; Lydyard et al., 2000). FCSPs was reported to induce apoptosis in HT-29 colon cancer cells (Kim et al., 2010), MCF-7 human breast cancer cells (Yamasaki-Miyamoto et al., 2009), and HS-Sultan human lymphoma cells (Aisa et al., 2005). The importance of apoptosis as a killing mechanism used by the immune system is that targeted cells can be rapidly removed by phagocytes without induction of an inflammatory response.

IL-2, which is made by T cells, is a critical autocrine growth factor that is required for proliferation of T cells and NK cells (Lydyard et al., 2000). NK cell secretion of type II IFN-y activates macrophages, inducing IL-12 secretion, activating NK cells, and creating a system of positive feedback that increases the activation of both cell types within an infected cell or tissue (Parham 2009; Kindt et al., 2007). Hence, it was suggested that stimulation with IL-2 and IL-12 promotes IFN-y secretion by NK cells, probably due to enhancing NK cell activity by FCSPs (Maruyama et al., 2006). IL-12 stimulation alone was reported to produce only moderate augmentation of NK cell cytotoxicity. However, it increases the catalytic activity of lymphocytes against autologous targets in synergy with IL-2 (Nastala et al., 1994).

2.2 FCSPs extraction and chemical composition: past and present

Several extraction and purification procedures have been used for many years to isolate fucoidan from brown seaweed. Extraction using dilute acetic acid and subsequent purification was first performed by Kylin in 1913 to isolate the substance from various species of Laminaria and Fucus (Kylin, 1913). Kylin reported that fucoidan extracted in this way mainly contained fucose and also observed that the fucose occurred together with mannitol, alginic acid, and laminarin (Kylin, 1913) (Table 1); we now know that this interpretation was a result of co-extraction of these latter contaminants with fucoidan. Two years later, Kylin reported that fucoidan isolated from L. digitata contained methylpentose, interpreted as l-fucose, as well as some other pentoses (Kylin, 1915). A
parallel report was published that year by Hoagland and Lieb (1915), who isolated another water-soluble polysaccharide that was closely related to, if not identical with, fucoidan from Macrocystis pyrifera and was shown to contain L-fucose and a high proportion of calcium and sulfate (Table 1). Hoagland and Lieb (1915) did not compare their extraction using Na₂CO₃, soaking to one without, but their report is nevertheless the first example of how the extraction procedure may influence purity and, in turn, the analyzed composition of the extracted FCSFs (Table 1). Bird and Haas (1931) used fresh L. digitata fronds to obtain fucoidan by soaking them in water and precipitating crude sulfate from the extract using ethanol. Uronic acid was also present in this preparation (Table 1).

Table 1. Historic view of very early work, 1913–1950s, of fucoidan or fucose-containing sulfated polysaccharide extraction and their composition from different brown seaweed species.

<table>
<thead>
<tr>
<th>Year</th>
<th>Brown Seaweed sp.</th>
<th>Reported FCSFs Composition</th>
<th>Extraction Method</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1915</td>
<td>Laminaria and Fucus</td>
<td>Fucoidan contaminated with mannitol, alginate, and lariemann</td>
<td>Dilute acetic acid extraction</td>
<td>Kylin, 1913</td>
</tr>
<tr>
<td>1915</td>
<td>Laminaria digitata</td>
<td>Fucoidan contained methylpentoses, L-fucose, and some pentoses</td>
<td>Dilute acetic acid extraction</td>
<td>Kylin, 1915</td>
</tr>
<tr>
<td>1915</td>
<td>Macrocystis pyrifera</td>
<td>D ominantly alginic acid with fucose-sulfate</td>
<td>Sea weed was soaked in 2% Na₂CO₃ for 24 h, filtered, combined with HCl, and the resulting precipitate was filtered and then finally resolved in 2% Na₂CO₃</td>
<td>Hoagland and Lieb, 1915</td>
</tr>
<tr>
<td>1915</td>
<td>L. digitata</td>
<td>Substantial amounts of calcium sulfate and uronic acid</td>
<td>Soaking of seaweed in water, precipitation of crude sulfate by ethanol</td>
<td>Bird and Haas, 1931</td>
</tr>
<tr>
<td>1931</td>
<td>L. digitata</td>
<td>Methylpentose monosulfate monosulfate polymer with mainly fucose and alginate contaminants</td>
<td>Repeated extraction with 2% HCl at room temperature for 48 h, precipitated with 90% EtOH</td>
<td>Nelson and Chesterton, 1931</td>
</tr>
<tr>
<td>1937</td>
<td>L. digitata</td>
<td>Sulfate residue must be substituted by fucose or another super residue</td>
<td>Prepared by precipitating the droplets extract from seaweed in boiling ethanol</td>
<td>Lunde et al., 1937</td>
</tr>
<tr>
<td>1950</td>
<td>Fucus vesiculosus, Fucus spiralis, Himanthalia elongata, Laminaria clouston</td>
<td>Substantial amount of fucose and sulfate; and small amounts of uronic acid, galactose and xylose; ash was mainly calcium sulfate</td>
<td>Acid pH 2–2.5, 70°C, 1 h; 3 times, or aqueous, 100°C, for 24 h, lead acetate treatment, barium hydroxide added</td>
<td>Percival & Rose, 1950</td>
</tr>
<tr>
<td>1952</td>
<td>F. vesiculosus</td>
<td>Fucose, ash, sulfate</td>
<td>pH 2–2.5, 70°C, 1 h; 3 times</td>
<td>Black et al., 1952</td>
</tr>
</tbody>
</table>
The early FCSPs extraction procedures involved dilute acid treatment either with acetic or hydrochloric acid as the first extraction step with the purpose of hydrolyzing the non-FCSP polysaccharides (Table 1). However, the extraction and purification methods employed in different studies to isolate fucoidan/FCSPs from brown seaweed biomass have been modified to different extents since the first reports in 1913 and 1915. For example, Nelson and Cretcher (1931) extracted fucoidan from Macrocystis pyrifera by repeated extended (48-h) extraction with dilute HCl followed by FSCP isolation by ethanol precipitation and revealed the presence of sulfate in the form of ester groupings in the precipitated product. They also confirmed that fucose was the only sugar identified in the unhydrolyzed residue after acid hydrolysis, even though their product contained uronic acid, which was considered to be due to alginate contamination (Table 1).

2.2.1 FCSPs composition studies, 1930–1950

The studies by Nelson and Cretcher (1931) revealed the presence of sulfate in the form of ester groupings and confirmed that fucose was the only sugar identified after hydrolysis, although their product contained uronic acid, which was considered to be due to alginate acid contamination (Table 1). Please note the terminology used is quite confusing; nevertheless, with recent advances in chemical analyses, we now know that alginate acid and alginate comprise guluronic and mannuronic acids. Our understanding today that alginate acid, or alginate, is a linear hydrocolloid polymer that consist of blocks of (1→4)-linked β-D-mannurionate and its α-l-gulurionate residues, that these 2 monomers are C-5 epimers, and that the detailed structure of alginate may have mannuronate and guluronate in homopolymeric blocks of consecutive mannurionate residues (M-blocks), consecutive guluronate residues (G-blocks), or in structural units of alternating mannuronate and guluronate residues (MG-blocks). Uronic acids were determined to cover several different structures. This work addressed the significance of the differences and introduced consistent terminology by grouping these as uronic acids, especially since they do not belong to the FCSPs. Later, Lunde et al. (1937) prepared fucoidan by directly precipitating the droplets exuded from freshly gathered L. digitata fronds in ethanol (Table 1). After purification via product precipitation using boiling ethanol, they obtained a FSCP specimen that contained 33–37% methylpentose (interpreted correctly as fucose) and 26–30% ash in which the sulfate content was 17–19%, which made up approximately half of the total estimated sulfate in the polysaccharide (35–38%). They proposed a structural unit formula, \(\text{R-}\text{O-SO}_3\text{-OMn} \), for fucoidan and suggested that R was fucose or another pentose sugar residue, \(\text{R}^- \) was unknown, and M was Na+, K+, (\%Ca\(^{2+}\), or (\%Mg\(^{2+}\) (Lunde et al., 1937) (Table 1).

The early FCSPs extraction procedures involved dilute acid treatment either with acetic or hydrochloric acid as the first extraction step with the purpose of hydrolyzing the non-FCSP polysaccharides (Table 1). However, the extraction and purification methods employed in different studies to isolate fucoidan/FCSPs from brown seaweed biomass have been modified to different extents since the first reports in 1913 and 1915. For example, Nelson and Cretcher (1931) extracted fucoidan from Macrocystis pyrifera by repeated extended (48-h) extraction with dilute HCl followed by FSCP isolation by ethanol precipitation and revealed the presence of sulfate in the form of ester groupings in the precipitated product. They also confirmed that fucose was the only sugar identified in the unhydrolyzed residue after acid hydrolysis, even though their product contained uronic acid, which was considered to be due to alginate contamination (Table 1).

2.2.1 FCSPs composition studies, 1930–1950

The studies by Nelson and Cretcher (1931) revealed the presence of sulfate in the form of ester groupings and confirmed that fucose was the only sugar identified after hydrolysis, although their product contained uronic acid, which was considered to be due to alginate acid contamination (Table 1). Please note the terminology used is quite confusing; nevertheless, with recent advances in chemical analyses, we now know that alginate acid and alginate comprise guluronic and mannuronic acids. Our understanding today that alginate acid, or alginate, is a linear hydrocolloid polymer that consist of blocks of (1→4)-linked β-D-mannurionate and its α-l-gulurionate residues, that these 2 monomers are C-5 epimers, and that the detailed structure of alginate may have mannuronate and guluronate in homopolymeric blocks of consecutive mannurionate residues (M-blocks), consecutive guluronate residues (G-blocks), or in structural units of alternating mannuronate and guluronate residues (MG-blocks). Uronic acids were determined to cover several different structures. This work addressed the significance of the differences and introduced consistent terminology by grouping these as uronic acids, especially since they do not belong to the FCSPs. Later, Lunde et al. (1937) prepared fucoidan by directly precipitating the droplets exuded from freshly gathered L. digitata fronds in ethanol (Table 1). After purification via product precipitation using boiling ethanol, they obtained a FSCP specimen that contained 33–37% methylpentose (interpreted correctly as fucose) and 26–30% ash in which the sulfate content was 17–19%, which made up approximately half of the total estimated sulfate in the polysaccharide (35–38%). They proposed a structural unit formula, \(\text{R-}\text{O-SO}_3\text{-OMn} \), for fucoidan and suggested that R was fucose or another pentose sugar residue, \(\text{R}^- \) was unknown, and M was Na+, K+, (\%Ca\(^{2+}\), or (\%Mg\(^{2+}\) (Lunde et al., 1937) (Table 1).
Specimens from *F. vesiculosus*, *F. spiralis*, *H. lorea*, and *L. cloustoni* were prepared by Percival and Ross (1950) for FCSPs extraction using boiling water for 24 h, and the alginates and protein were removed with lead acetate and the addition of barium hydroxide. The resulting lead hydroxide-fucoid complex was then decomposed using dilute sulfuric acid and the fucoid was isolated after prolonged hydrolysis and filtration. The purest specimen was from *H. lorea*, which contained the following: a substantial amount of fucose and sulfate; small quantities of uronic acid, galactose, and xylose; metals; and ash, which was mainly calcium sulfate. These workers believed that the principal constituent of fucoid is a polyfucose monosulfate and that other constituents arise from impurities (Table 1). A parallel work was done by Conchie and Percival (1950) in which fucoid from Ascophyllum nodosum was methylated. It was believed that the main residue in fucoid was 1→2 linked of L-fucopyranose units carrying a sulfate group in C-4 (Conchie and Percival 1950). However, we now know that this is not the case because advanced analyses have verified that the backbone of fucoid from *F. vesiculosus* consists of alternating q(1→3) and q(1→4) linkages of 1-fucopyranose residues (Fig. 2.2).

2.2.2 Lab-scale extraction of fucoidan, 1950s

In the pursuit of obtaining extensive quantities, a laboratory-scale extraction of fucoidan was performed by Black et al. (1952). Interestingly, they referred to the extracted product as a “polyfucose ethereal sulfate occurring in the Phaeophyceae.” Their optimal fucoidan extraction procedure was as follows: one part by weight of dried ground seaweed and 10 parts by volume of 0.1 M hydrochloric acid at pH 2.0–2.5 contacted at 70°C with constant stirring for 1 h. A single acid hydrolysis extraction treatment using this method recovered about 50% by weight (w/w) of the theoretical maximum of fucoidan (recovered yield measured as % fucose obtained as % of total fucose in the seaweed DW), whereas 3 rounds of acid extraction recovered >80% of the fucose present; the triple acid hydrolysis treatment (0.1 M HCl, pH 2.0–2.5, 70°C, 1 h × 3) was therefore selected as the optimal extraction method (Table 1). After the acid hydrolysis treatment the crude fucoidan was isolated by fractional precipitation with alcohol and further purified by precipitation after the addition of formaldehyde (Black et al., 1952). Using this procedure, crude fucoidan samples containing 30–36% fucose were obtained; for example, the fucoidan recovered from *F. vesiculosus* using the optimal extraction protocol was analyzed to contain (by weight) 44% fucose, 26% total sulfate, and 31% ash (Black et al., 1952). In terms of yields of percentage of total fucose, the results obtained for the 4 different algal species were: *P. canaliculata*, 76%; *F. vesiculosus*, 62%; *Ascophyllum nodosum*, 54%; and *L. cloustoni*, 20% (Black et al., 1952). The authors suggested that a more efficient extraction methodology, i.e., extracting higher fucose
2.2.3 FCSPs extraction, 1970s–present
Carbohydrates of the brown seaweeds were successively extracted from H. loree, Bifurcaria bifurcata, and Padina pavonio using dilute acid followed by alkaline or using a water, acid, and alkaline sequence. Prior to extraction, the seaweed frond was pretreated with formaldehyde to polymerize phenolic constituents that could otherwise be contaminant to various extracts (Milan and Percival, 1973). This technique produced complex mixture of glucan, FCSPs, and algicin acid, which could be separated by fractional precipitation with ethanol, calcium salts, or cetyltrimethylammonium hydroxide, or by fractionation on resin columns. Fucoidan extracted in this fashion consisted of heteropolysaccharide comprising different proportions of fucose, glucuronic acid, xylose, and half-ester sulfate together with a trace of galactose. The result of this extraction method also showed that sulfate and uronic acid contents in the fucidin separated from aqueous calcium chloride and acid extracts varied significantly by species.

A study was conducted on the purification of a sulfated heteropolysaccharide from S. linfolium to elucidate its structural components. The extraction was done using hydrochloric acid pH 1.0 for 3 h at 80°C; the extract was neutralized using aqueous sodium carbonate and precipitated with ethanol. The resulting sulfated polysaccharide material was acid-hydrolyzed and it was proposed that the backbone was composed of glucuronic acid, mannose, and galactose residues with partially sulfated side chains of galactose, xylose, and fucose residues (Abdel-Fattah et al., 1974).

Extraction using an aqueous alkaline solution or dilute acid at ambient or slightly elevated temperatures has been the convenient method to produce fucoidan for many years. In recent years, pretreatment of seaweed biomass has been found advantageous to eliminate low molecular components (e.g., phenols) using a mixture of methanol, chloroform, and water (Bian et al., 2006); removal of protein can be facilitated using proteolytic enzymes (Rocha et al., 2005). A useful procedure to transform alginate in the residual biomass into insoluble calcium salts uses aqueous calcium chloride (Bian et al., 2002).

2.3 Seaweed products and biomass potential
The growth of seaweed production and developments of advanced technological farming indicates that the seaweed industry is progressively evolving and thus paves the way to new application opportunities (Buck and Buchholtz, 2004). For many years, seaweed has been utilized as a source of yields, could be achieved by increasing the water/seaweed ratio, extraction time, or extraction number.

2.2.3 FCSPs extraction, 1970s–present
Carbohydrates of the brown seaweeds were successively extracted from H. loree, Bifurcaria bifurcata, and Padina pavonio using dilute acid followed by alkaline or using a water, acid, and alkaline sequence. Prior to extraction, the seaweed frond was pretreated with formaldehyde to polymerize phenolic constituents that could otherwise be contaminant to various extracts (Milan and Percival, 1973). This technique produced complex mixture of glucan, FCSPs, and algicin acid, which could be separated by fractional precipitation with ethanol, calcium salts, or cetyltrimethylammonium hydroxide, or by fractionation on resin columns. Fucoidan extracted in this fashion consisted of heteropolysaccharide comprising different proportions of fucose, glucuronic acid, xylose, and half-ester sulfate together with a trace of galactose. The result of this extraction method also showed that sulfate and uronic acid contents in the fucidin separated from aqueous calcium chloride and acid extracts varied significantly by species.

A study was conducted on the purification of a sulfated heteropolysaccharide from S. linfolium to elucidate its structural components. The extraction was done using hydrochloric acid pH 1.0 for 3 h at 80°C; the extract was neutralized using aqueous sodium carbonate and precipitated with ethanol. The resulting sulfated polysaccharide material was acid-hydrolyzed and it was proposed that the backbone was composed of glucuronic acid, mannose, and galactose residues with partially sulfated side chains of galactose, xylose, and fucose residues (Abdel-Fattah et al., 1974).

Extraction using an aqueous alkaline solution or dilute acid at ambient or slightly elevated temperatures has been the convenient method to produce fucoidan for many years. In recent years, pretreatment of seaweed biomass has been found advantageous to eliminate low molecular components (e.g., phenols) using a mixture of methanol, chloroform, and water (Bian et al., 2006); removal of protein can be facilitated using proteolytic enzymes (Rocha et al., 2005). A useful procedure to transform alginate in the residual biomass into insoluble calcium salts uses aqueous calcium chloride (Bian et al., 2002).

2.3 Seaweed products and biomass potential
The growth of seaweed production and developments of advanced technological farming indicates that the seaweed industry is progressively evolving and thus paves the way to new application opportunities (Buck and Buchholtz, 2004). For many years, seaweed has been utilized as a source of
2.3.1 Phycocolloids

The global market for phycocolloids such as agar, carrageenans, and alginates is estimated to be worth annually $585 million US (McHugh, 2003). To date, the red seaweed has been harvested for food consumption in some regions of Asia, but many of these areas have engaged in farming red seaweed that is intended for the production of agar and carrageenan, while brown seaweed is most harvested naturally for alginate production (Crawford, 2002).

Carrageenan is composed of a linear galactose backbone with varying degrees of sulfation (15–40%) and are mainly composed of disaccharide repeating units of an α-(1→4)-linked 3,6-anhydro-α-D-galactopyranose or 3,6-anhydro-α-D-galactopyranose residue and a β-(1→3)-linked D-galactopyranose. The sulfated groups are covalently attached to individual galactose residues via ester linkages to the carbon atoms C-2, C-4, or C-6 (De Ruiter and Rudolph, 1997). Carrageenan is applied as a stabilizing agent to many food products and other industrial and pharmaceutical applications (van de Velde and De Ruiter, 2002). Among the leading species of red algae responsible for most of today’s commercial carrageenan production are K. alvarezii and E. denticulatum.

In addition, alginate another gel-forming sulfated polysaccharide extracted from brown seaweed has been utilized for various applications including foods and feeds, pharmaceutical, and industrial preparations. Alginate is composed of mannanuronic (M) and guluronic (G) acids with (1, 4) linkages, and its structure varies according to the monomer position on the chain, forming either homopolymers (MM or GG) or heteropolymers (MG or GM) segments (Percival and McDowell, 1967). The molecular weight of alginate is generally 500–1000kDa. Its solubility is influenced by factors such as pH, concentration, ions in solution, and the presence of divalent ions such as calcium (Morris and Norton, 1983).
2.3.2 Seaweed biomass for bioenergy production

Only few seaweed species have been exploited for commercial production (i.e., red and brown seaweed); hence, this study opens the way for other species to provide a basis for additional potential applications of seaweed biomass, namely bioenergy production. The cultivation of seaweed poses advantages to terrestrial crops since they have high growth rates and can be continuously harvested (Rasmussen et al., 2009). The estimated annual production of U. lactuca per hectare was 45 tons DW, which is 3× greater the yield of conventional food or energy crops (Bruhn et al., 2011). However, the production is believed to be significantly higher once growth conditions (exploiting flue gas as a source of carbon) and nutrients (fishery effluents as a source of nitrogen) are optimized. A study on the anaerobic digestion of sea lettuce (Ulva sp.) suggested that the methane gas yield from washed and ground sea lettuce biomass is about 180 mL g⁻¹ VS (volatile solid-based), while that from non-pretreated biomass is about 70% (Otsuka and Yoshino, 2004). Biogas production from fresh and macerated U. lactuca yielded up to 271 mL CH₄ g⁻¹ VS, which is in the range of the methane production from cattle manure and land-based energy crops such as grass clover. Drying of the biomass resulted in a 5–9-fold increase in weight-specific methane production compared to wet biomass (Bruhn et al., 2011).

2.4 Seaweed production

Seaweed has been traditionally cultured for centuries in several Asian countries including China, Japan, and Korea (Crawford, 2002). Most seaweed production came from the harvest of wild stocks in these countries, although limited culture had been established in countries such as the Philippines and Indonesia (Trono, 1990). The species cultivated include Kappaphycus and Eucheuma. The leading seaweed exporter, the Philippines, increased production from 675 tons in 1967 to 65,617 tons in 2009 and 80,000 tons in 2010, but the country is still importing raw seaweed materials from Indonesia (www.siap.com.ph, 2011). The world demand for seaweed in 2003 was 220,000 tons for K. alvarezii and E. dentata with an expected 10% annual increase in demand (Siewanen et al., 2005). Indonesia, on the other hand, raised its production from 1,000 million tons (MT) in 1966 to approximately 27,874 tons in 2001 and estimated 10 MT in 2015 (Siewanen et al., 2005). The production levels of algae in 2002 reached 18.6 MT (FAO, 2004). Europe had only a 6.3% share of the global world production of brown algae (362,000 tons FW) and about 0.3% of red algae (9,400 tons FW) with <200 tons of macroalgae produced in aquaculture in 2002 (FAO, 2004).

Several sea-based cultivation design methods have been developed and tested. The most commonly used was a fixed off-bottom long line, hanging long line, and combination of the 2 (Hurtado et al., 2011).
2.5 Paper 1: Important determinants for fucoidan bioactivity: a critical review of structure-function correlations and extraction methods for FCSPs from brown seaweeds

Marine Drugs, 2011, Published online

Authors:
Marcel Tutor Ale, Jørn Dalgaard Mikkelsen, Anne S. Meyer

Address:
Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering
Technical University of Denmark (DTU)
Soeltofts Plads Bldg. 229, 2800 Kgs. Lyngby, Denmark

Please turn to page 23

2.5 Paper 1: Important determinants for fucoidan bioactivity: a critical review of structure-function correlations and extraction methods for FCSPs from brown seaweeds

Marine Drugs, 2011, Published online

Authors:
Marcel Tutor Ale, Jørn Dalgaard Mikkelsen, Anne S. Meyer

Address:
Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering
Technical University of Denmark (DTU)
Soeltofts Plads Bldg. 229, 2800 Kgs. Lyngby, Denmark

Please turn to page 23

Marcel Todor Ale, Jørn D. Mikkelsen and Anne S. Meyer *

Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Søltofts Plads, Building 229, DK-2800 Kgs. Lyngby, Denmark; E-Mails: mta@kt.dtu.dk (M.T.A.); jdm@kt.dtu.dk (J.D.M.)

* Author to whom correspondence should be addressed; E-Mail: am@kt.dtu.dk; Tel.: +45-4525-2800; Fax: +45-4593-2906.

Received: 14 September 2011; in revised form: 3 October 2011 / Accepted: 13 October 2011 / Published: 24 October 2011

Abstract: Seaweeds—or marine macroalgae—notably brown seaweeds in the class Phaeophyceae, contain fucoidan. Fucoidan designates a group of certain fucose-containing sulfated polysaccharides (FCSPs) that have a backbone built of (1→3)-linked α-L-fucopyranosyl or of alternating (1→3)- and (1→4)-linked α-L-fucopyranosyl residues, but also include sulfated galactofucans with backbones built of (1→6)-β-D-galacto- and/or (1→2)-β-D-mannopyranosyl units with fucose or fuco-oligosaccharide branching, and/or glucuronic acid, xylose or glucose substitutions. These FCSPs offer several potentially beneficial bioactive functions for humans. The bioactive properties may vary depending on the source of seaweed, the compositional and structural traits, the content (charge density), distribution, and bonding of the sulfate substitutions, and the purity of the FCSP product. The preservation of the structural integrity of the FCSP molecules essentially depends on the extraction methodology which has a crucial, but partly overlooked, significance for obtaining the relevant structural features required for specific biological activities and for elucidating structure-function relations. The aim of this review is to provide information on the most recent developments in the chemistry of fucoidan/FCSPs emphasizing the significance of different extraction techniques for the structural composition and biological activity with particular focus on sulfate groups.
Keywords: fucoidan; antitumor; anti-coagulant; extraction; sulfated polysaccharides

1. Introduction

Fucoidan is a term used for a class of sulfated, fucose rich, polysaccharides found in the fibrillar cell walls and intercellular spaces of brown seaweeds of the class Phaeophyceae. These fucose-containing sulfated polysaccharides (FCSPs) principally consist of a backbone of (1→3)- and (1→4)-linked α-L-fucopyranose residues, that may be organized in stretches of (1→3)-α-fucan or of alternating α(1→3)- and α(1→4)-bonded α-fucopyranose residues. The α-fucopyranose residues may be substituted with sulfate (SO₃⁻) on the C-2 or C-4 (rarely on C-3), with single α-fucosyl residues and/or with short fucoside (fucosyl-oligosaccharide) side chains. If present, the fucoside side chains are usually O-4 linked to the α-L-fucopyranose backbone residues. However, as FCSPs structures of more brown seaweeds are being elucidated, as discussed further in the present review, it appears that FCSPs cover a broader range of complex polysaccharides than only those having fucan backbones. Apart from variations in the sulfate content and substitutions, also the monosaccharide composition of FCSPs varies among different species of brown seaweeds. Hence, in addition to fucose, different types of FCSPs may also contain galactose, mannose, xylose, glucose and/or glucuronic acid—usually in minor amounts [1].

According to the ISI Web of Knowledge (Thomson Reuters) the number of published articles with the topic assigned as “fucoidan” has increased significantly since fucoidan, or “fucoidin” as it was first called, was first isolated from brown algae in 1913 [2]; in particular, a profound increase in the number of papers has taken place during the last 5–10 years. By now, the published papers related to fucoidan hit approximately 1800 (August 2011, Figure 1). The recent interest has mainly focused on the potentially beneficial biological activities of fucoidan and FCSPs in humans including antitumor, immunomodulatory, anti-inflammatory, antiviral, antithrombotic, anti-coagulant, and antioxidant effects as well as specific activities against kidney, liver and urinary system disorders.

While the development of research efforts involving FCSPs and their potential applications are advancing, the understanding of the mechanisms and the particular structural features of the FCSPs being responsible for the various biological activities is still incomplete. Seaweeds, including various brown seaweeds such as Undaria and Laminaria spp., are part of the food culture in Asia, notably in Japan, the Philippines, and Korea, and seaweed extracts have also been used as a remedy in traditional medicine. However, no standardized FCSPs extraction or purification protocols exist, and no specific pharmaceutical, dermatological, or nutraceutical applications have as yet been officially approved for these polysaccharides or their lower molecular mass oligosaccharide derivatives.

It is our proposition that more focus should be directed to the extraction and purification processes in order to obtain consistent protocols that account for the biodiversity of FCSPs from different seaweeds and to retain the structural features of significance for the specific bioactivity properties of FCSPs. The development and use of such consistent extraction procedures would also help in achieving a better understanding of structure-function relationships of FCSPs. The aim of this review is to bring attention to the detailed structural features of FCSPs in relation to their marine algal sources.
and the extraction methodology, and to highlight recent knowledge concerning the structural determinants for FCSPs bioactivity.

Figure 1. The trend during three decades of research on fucoiond as depicted by the number of published articles (Thomson Reuters, ISI Web of Knowledge). The number of articles was obtained according to topics being assigned in the ISI Web of Knowledge search engine with the following topic search terms: Fucoidan; Fucoidan*Algae; Fucoidan*Algae*Activity.

2. Historic Overview: FCSPs Extraction Procedures and Chemical Analyses

Extraction using dilute acetic acid followed by purification was used by Kylin already in 1913 to isolate “fucoidin”, subsequently referred to as fucoidan, from various species of Laminaria and Fucus [2]. Already in this first seminal report, Kylin reported that fucoidan extracted in this way mainly contained fucose, but also observed that the fucose occurred together with mannitol, alginic acid and laminarin [2] (Table 1); we now know that this interpretation was a result of co-extraction of these latter contaminants with the fucoidan. Two years later, Kylin reported that fucoidan isolated from Laminaria digitata contained methylpentose, interpreted as L-fucose, as well as some other pentoses [3]. A parallel report was published that same year by Hoagland and Lieb (1915) [4] who isolated a water-soluble polysaccharide from Macrocystis pyrifera that was closely related to if not identical with “fucoidan”, and shown to contain L-fucose as well as relatively high levels of calcium and sulfate. They employed a Na2CO3 soaking step and addition of hydrochloric acid which is why they also—if not mainly—isolated alginic acid (or alginate) during the extraction (Table 1). The rationale behind the extraction of alginate from the seaweed with Na2CO3 soaking is to convert all the alginate salts, typically calcium and magnesium alginate, to the sodium salt. Please note that the terminology used is confusing; alginic acid or alginate does not designate one particular monosaccharide or one type of homo-polysaccharide. With the advances in chemical analyses it is now known that alginic acid or alginate is comprised of guluronic and mannuronic acids; which are C-5 epimers. Structurally, alginic acid, or alginate, is a linear hydrocolloid polymer that consists of blocks of (1→4) linked β-D-mannuronate and α-L-guluronate residues. The detailed structure of alginate may have mannuronate and guluronate in homopolymeric blocks of consecutive mannurionate residues

...
(M-blocks), in consecutive guluronate residues (G-blocks), or in structural units of alternating mannuronate and α-L-guluronic residues (MG-blocks). Both mannuronic acid and α-L-guluronic acids are uronic acids, and they have in the past been analytically determined as uronic acids. However, uronic acids also include several other structures, e.g., glucuronic and galacturonic acids. In this review, we will address the significance of the compositional and structural differences, but also attempt to introduce a consistent terminology by grouping these compounds as uronic acids, especially as homopolymers do not belong to the group of FCSPs. Hoagland and Lieb (1915) [4] did not compare their extraction with Na2CO3 soaking to one without, but their report is nevertheless the first example of how the extraction procedure may influence the purity and, in turn, the analyzed composition of the extracted FCSPs (see Table 1).

Table 1. Historic view of very early work, from 1913–1950, of fucoidan or FCSPs extraction and their reported composition from different brown seaweed species.

<table>
<thead>
<tr>
<th>Year</th>
<th>Brown seaweed sp.</th>
<th>Reported FCSPs composition</th>
<th>Extraction method</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1915</td>
<td>Laminaria and Fucus</td>
<td>Fucoidan contains fucose, that occurs together with mannitol, alginate and laminaran</td>
<td>Dilute acetic acid extraction</td>
<td>Kylin, 1913 [3]</td>
</tr>
<tr>
<td>1915</td>
<td>Laminaria digitata</td>
<td>Fucoidan contains fucose, that occurs together with mannitol, alginate and laminaran</td>
<td>Dilute acetic acid extraction</td>
<td>Kylin, 1915 [3]</td>
</tr>
<tr>
<td>1915</td>
<td>Macrocystis pyrifera</td>
<td>Mainly alginic acid, with some fucose-sulfate</td>
<td>Soaking in 2% Na2CO3 for 24 h, filtration, HCl addition, recovery of precipitate by filtration, neutralization in 2% Na2CO3</td>
<td>Hoagland and Lieb, 1915 [4]</td>
</tr>
<tr>
<td>1931</td>
<td>Laminaria digitata</td>
<td>Substantial amounts of calcium sulfate and uronic acid</td>
<td>Soaking of the seaweed in water, precipitation of crude, sulfated polysaccharides by ethanol</td>
<td>Bird and Hua, 1931 [5]</td>
</tr>
<tr>
<td>1931</td>
<td>Macrocystis pyrifera</td>
<td>Methylpentose monosulfate polymer with fucose and alginate contents</td>
<td>Repeated extraction with 2% HCl at room temperature for 48 h, precipitated with 90% ethanol</td>
<td>Nelson and Cretcher, 1931 [6]</td>
</tr>
<tr>
<td>1937</td>
<td>Laminaria digitata</td>
<td>Substantial amounts of fucose and sulfate, small amounts of uronic acid, galactose and tyrosine; metals and ash were also detected. Ash was mainly calcium sulfate</td>
<td>Preparation of precipitate by filtration, HCl addition, recovery of precipitate by filtration, neutralization in 2% Na2CO3</td>
<td>Lande et al., 1937 [7]</td>
</tr>
<tr>
<td>1939</td>
<td>Fucus vesiculosus</td>
<td>Substantial amounts of fucose in plant</td>
<td>Aquasonic extraction at −100 °C for 24 h, extract treated with lead acetate to precipitate alginate and proteins, filtrate solution treated with Ba(OH)2 to precipitate a “hydroxide-fucoidin complex”</td>
<td>Penciel and Ross, 1939 [8]</td>
</tr>
<tr>
<td>1952</td>
<td>Fucus vesiculosus</td>
<td>Fucose, ash, sulfate</td>
<td>0.1 M HCl at pH 2.2±0.5 at 70°C for 1 h, 3-times, fractional precipitation with ethanol</td>
<td>Black et al., 1952 [9]</td>
</tr>
</tbody>
</table>

The early FCSPs extraction procedures were based on using a dilute acid treatment, with either acetic or hydrochloric acid used as a first “extraction” step with the purpose of hydrolyzing the non-FCSP polysaccharides (Table 1). However, the extraction and purification methodologies employed in...
different studies to isolate fucoidan/FCSPs from brown seaweed biomass have been modified to different extents since the first reports from 1913 and 1915. Bird and Haas (1931) [5], for example, used soaking of the brown alga biomass in water and precipitation of crude sulfate from the extract with ethanol to obtain fucoidan from L. digitata (Table 1). The product of this extraction was also found to contain relatively high levels of ash. The high ash levels were presumably chiefly a result of the presence of calcium sulfate in the algal polysaccharides. For the compositional analysis, acid hydrolysis using H2SO4 was typically used. This acid hydrolysis step might by itself have contributed a substantial amount of sulfate. As a consequence, the use of H2SO4 clearly biased the interpretation of the compositional analysis. Hence, the fucoidan isolated by Bird and Haas (1931) [5] was designated as carbohydrate sulfate (i.e., containing esterified sulfate) since the total sulfate content was approximately the double of that found in the ash. Uronic acid was also present in the FCSPs preparation extracted from L. digitata [5] (Table 1).

Nelson and Cretcher (1931) [6] extracted fucoidan from Macrocystis pyrifera by repeated, extended (48 h) extraction with dilute HCl followed by isolation of the FCSPs by ethanol precipitation, and revealed the presence of sulfate in the form of ester groups in the precipitated product. They also confirmed that fucose was the only sugar identified in the unhydrolyzed residue after acid hydrolysis, even though their product contained uronic acid, considered to be due to alginate contamination (Table 1). Later, Lunde et al. [7] prepared fucoidan by directly precipitating the droplets exuded from freshly gathered L. digitata fronds in ethanol (Table 1). After purification via precipitation of the product from boiling ethanol they obtained a FCSPs specimen that contained 33–37% methylpentose (interpreted correctly as fucose), and 26–30% ash in which the sulfate content was 17–19%, which made up approximately half of the total sulfate estimated in the polysaccharide (35–38%). They proposed a structural unit formula, (R-C-O-SO2-OM)n, for fucoidan and suggested that R was fucose or another pentose sugar residue, K+ was unknown, and M was Na+, (i)Ca2+ or (ii)Mg2+ [7] (Table 1).

"In an attempt to reconcile some of the conflicting views on the nature of fucoidin" crude fucoidan extracts from F. vesiculosus, F. spirales, Himanthalia lorea and Laminaria clustoni were prepared by Percival and Ross (1950) [8]. Their methodology involved boiling of the seaweed biomass in neat boiling water for 24 h (hydrolysis treatment) followed by removal of alginates and protein by addition of lead acetate, then, after addition of barium hydroxide (presumably to precipitate alginate) the fucoidan was isolated as a crude lead hydroxide complex (Table 1). In order to isolate lead free fucoidan, the lead hydroxide complex was treated with dilute H2SO4 and fucoidan was then isolated after prolonged dialysis and filtration. The purest fucoidan specimen obtained was from H. lorea. This fucoidan isolated from H. lorea contained substantial amounts of fucose and sulfate; as well as small quantities of uronic acid, galactose and xylose. Metals and ash were also detected, and the ash was mainly made up of calcium sulfate [8]. Based on the data obtained the authors believed that the principal constituent of fucoidan was a polyfucose with one sulfate substitution on each fucose residue and that other constituents arose from adventitious impurities. A parallel paper was published in which it was proposed that the core structure of fucoidan from F. vesiculosus was built of 1→2 linked 1-fucopyranose units, each carrying a sulfate group on C-4 [10]. As discussed later, the interpretation that the fucosyl units in the fucoidan were 1→2 linked turned out to be incorrect, as more advanced

different studies to isolate fucoidan/FCSPs from brown seaweed biomass have been modified to different extents since the first reports from 1913 and 1915. Bird and Haas (1931) [5], for example, used soaking of the brown alga biomass in water and precipitation of crude sulfate from the extract with ethanol to obtain fucoidan from L. digitata (Table 1). The product of this extraction was also found to contain relatively high levels of ash. The high ash levels were presumably chiefly a result of the presence of calcium sulfate in the algal polysaccharides. For the compositional analysis, acid hydrolysis using H2SO4 was typically used. This acid hydrolysis step might by itself have contributed a substantial amount of sulfate. As a consequence, the use of H2SO4 clearly biased the interpretation of the compositional analysis. Hence, the fucoidan isolated by Bird and Haas (1931) [5] was designated as carbohydrate sulfate (i.e., containing esterified sulfate) since the total sulfate content was approximately the double of that found in the ash. Uronic acid was also present in the FCSPs preparation extracted from L. digitata [5] (Table 1).

Nelson and Cretcher (1931) [6] extracted fucoidan from Macrocystis pyrifera by repeated, extended (48 h) extraction with dilute HCl followed by isolation of the FCSPs by ethanol precipitation, and revealed the presence of sulfate in the form of ester groups in the precipitated product. They also confirmed that fucose was the only sugar identified in the unhydrolyzed residue after acid hydrolysis, even though their product contained uronic acid, considered to be due to alginate contamination (Table 1). Later, Lunde et al. [7] prepared fucoidan by directly precipitating the droplets exuded from freshly gathered L. digitata fronds in ethanol (Table 1). After purification via precipitation of the product from boiling ethanol they obtained a FCSPs specimen that contained 33–37% methylpentose (interpreted correctly as fucose), and 26–30% ash in which the sulfate content was 17–19%, which made up approximately half of the total sulfate estimated in the polysaccharide (35–38%). They proposed a structural unit formula, (R-C-O-SO2-OM)n, for fucoidan and suggested that R was fucose or another pentose sugar residue, K+ was unknown, and M was Na+, (i)Ca2+ or (ii)Mg2+ [7] (Table 1).

"In an attempt to reconcile some of the conflicting views on the nature of fucoidin" crude fucoidan extracts from F. vesiculosus, F. spirales, Himanthalia lorea and Laminaria clustoni were prepared by Percival and Ross (1950) [8]. Their methodology involved boiling of the seaweed biomass in neat boiling water for 24 h (hydrolysis treatment) followed by removal of alginates and protein by addition of lead acetate, then, after addition of barium hydroxide (presumably to precipitate alginate) the fucoidan was isolated as a crude lead hydroxide complex (Table 1). In order to isolate lead free fucoidan, the lead hydroxide complex was treated with dilute H2SO4 and fucoidan was then isolated after prolonged dialysis and filtration. The purest fucoidan specimen obtained was from H. lorea. This fucoidan isolated from H. lorea contained substantial amounts of fucose and sulfate; as well as small quantities of uronic acid, galactose and xylose. Metals and ash were also detected, and the ash was mainly made up of calcium sulfate [8]. Based on the data obtained the authors believed that the principal constituent of fucoidan was a polyfucose with one sulfate substitution on each fucose residue and that other constituents arose from adventitious impurities. A parallel paper was published in which it was proposed that the core structure of fucoidan from F. vesiculosus was built of 1→2 linked 1-fucopyranose units, each carrying a sulfate group on C-4 [10]. As discussed later, the interpretation that the fucosyl units in the fucoidan were 1→2 linked turned out to be incorrect, as more advanced
analyses have now verified that the backbone of fucoidan from *F. vesiculosus* consists of alternating at(1→3) and at(1→4) linkages [11].

In the pursuit to obtain extensive quantities, a laboratory-scale extraction of fucoidan was reported by Black *et al.* [9]. Interestingly, the extracted product was referred to as a “polysaccharide ethereal sulphate occurring in the Phaeophyceae”. Their optimal fucoidan extraction procedure was as follows: One part by weight of dried ground seaweed and 10 parts by volume of 0.1 M hydrochloric acid at pH 2.0–2.5 contacted at 70 °C with constant stirring for 1 h. A single acid hydrolysis extraction treatment using this method recovered about 50% by weight (w/w) of the theoretical maximum of fucoidan (recovered yield measured as % fucose obtained as % of total fucose in the seaweed dry weight), whereas three rounds of the acid extraction recovered more than 80% of the fucose present; the triple acid hydrolysis treatment (0.1 M HCl, pH 2.0–2.5, 70 °C, 1 h × 3) was therefore selected as the optimal extraction method (Table 1). After the acid hydrolysis treatment the crude fucoidan was isolated by fractional precipitation with alcohol and further purified by precipitation after addition of formaldehyde [9]. By this procedure samples of crude fucoidan containing 30–35% fucose were obtained; for example, the fucoidan recovered from *F. vesiculosus* using the optimal extraction protocol was analyzed to contain (by weight) 44% fucose; 26% total sulfate, and 31% ash [9].

In terms of yields, calculated as fucose as % of total fucose, the results obtained for the four different algal species were: *Pelvetia canaliculata* 76%; *F. vesiculosus* 62%; *Ascophyllum nodusum* 54%, and *L. cloustoni* 20% [9]. The authors suggested that a more efficient extraction methodology, i.e., extracting higher fucose yields, could be achieved by increasing the water/seaweed ratio, extraction time or number of extractions.

In a study about 20 years later, FCSPs from the brown seaweeds *Himanthalia loesel*, *Bifurcaria bifurcata* and *Padina pavonia* were extracted successively using dilute acid, followed by alkaline or neat water extraction, acid, and alkali in sequence [12] (Table 2). Prior to extraction, the seaweed fronds were treated with formaldehyde to polymerize phenolic constituents which might otherwise contaminate the extracted saccharides [12]. This extraction protocol produced a complex mixture of glucans, fucose-containing polysaccharides, and alginic acid which could be separated by fractional precipitation with ethanol, calcium salts (CaCl₂) or by fractionation on resin columns. The FCSPs extracted in this fashion were reported to be heteropolysaccharides containing different levels of fucose, glucuronic acid, xylose, and esterified sulfate, together with traces of galactose [12]. The results also showed that the sulfate and uronic acid contents in the FCSPs separated from the aqueous calcium chloride and acid extracts varied significantly according to the seaweed species [12].

Another study was conducted on the purification of a sulfated heteropolysaccharide substance from *Sargassum linifolium* to elucidate its structural components [13]. The extraction was done using hydrochloric acid at pH 1.0 for 3 h at 80 °C (Table 2); the extract was then neutralized with aqueous sodium carbonate and precipitated with ethanol [13]. The resulting sulfated polysaccharide material, termed “sargassan”, was proposed to be built of glucuronic acid, mannose, and galactose residues with partially sulfated side-chains composed of galactose, xylose and fucose residues [13]. As discussed later, we now know that *Sargassum* spp. do indeed contain highly complex FCSPs structures built from this array of monosaccharides.
Table 2. Extraction methods and reported chemical composition of different brown seaweed species and their corresponding order.

<table>
<thead>
<tr>
<th>Species</th>
<th>Order</th>
<th>Extraction method</th>
<th>Composition</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fucus evanescens</td>
<td>Fucales</td>
<td>Seaweed-H2O suspension was treated with 30% HCl (pH 3) at 100 °C for 15 min. Supernatant was neutralized with NaOH, precipitated with CaCl₂, and EtOH for 20 h at 4 °C; precipitate was dissolved with H₂O then dried.</td>
<td>fucose, glucose, uronic acid and sulfate</td>
<td>Nogasaka et al., 1999 [14]</td>
</tr>
<tr>
<td>Fucus distichus</td>
<td>Fucales</td>
<td>80% EtOH, 24 h, 70 °C precipitation; then extracted with water (or 2% CaCl₂) or HCl for 7 h at rt, followed by exhaustive extraction at 70 °C.</td>
<td>fucose, mannose, glucose, galactose, xylose, mannose, uronic acid and sulfate</td>
<td>Ponce et al., 2003 [15]</td>
</tr>
<tr>
<td>Fucus serratus</td>
<td>Fucales</td>
<td>Extracted at rt and then 70 °C with 0.01 NaCl containing 1% CaCl₂.</td>
<td>fucose, xylose, uronic acid</td>
<td>Josefaus, 2001 [16]</td>
</tr>
<tr>
<td>Ectocarpus utricularis</td>
<td>Ectocarpales</td>
<td>Extracted with water 7% w/v mL, 3 h at 80 °C</td>
<td>mannose, galactose, glucose, uronic acid and sulfate</td>
<td>Josefaus, 2001 [16]</td>
</tr>
<tr>
<td>Himanthalia okamuranus</td>
<td>Fucales</td>
<td>Extracted with water (or 2% CaCl₂; 80% EtOH, 12 h, 3 °C) or HCl for 7 h at rt, followed by exhaustive extraction at 70 °C.</td>
<td>fucose, mannose, glucose, uronic acid and sulfate</td>
<td>Duarte et al., 2001 [18]</td>
</tr>
<tr>
<td>Sargassum linifolium</td>
<td>Fucales</td>
<td>Extracted with water 0.03 M HCl at 90 °C for 4 h, single-step.</td>
<td>fucose, mannose, glucose, uronic acid</td>
<td>Ali et al., 2011 [19]</td>
</tr>
<tr>
<td>Sargassum spiralis</td>
<td>Fucales</td>
<td>Extracted with water at pH 1 (HCl), for 3 h at 80 °C.</td>
<td>mannose, galactose, uronic acid and sulfate</td>
<td>Abdul-fattah et al., 1974 [13]</td>
</tr>
<tr>
<td>Fucus evanescens</td>
<td>Fucales</td>
<td>Pretreatment: MeOH–CHCl₃–H₂O (4:2:1); then extracted 2% CaCl₂; for 5 h at 85 °C, precipitated and the precipitate was washed with water, stirred with 20% ethanolic solution and dissolved with water.</td>
<td>fucose, xylose, galactose, uronic acid and sulfate</td>
<td>Cumashi et al., 2007 [21]</td>
</tr>
<tr>
<td>Fucus distichus</td>
<td>Fucales</td>
<td>Pretreatment: MeOH–CHCl₃–H₂O (4:2:1); then extracted 2% CaCl₂; for 5 h at 85 °C, the extracts were collected by centrifugation, combined, dialyzed and lyophilized.</td>
<td>mannose, galactose, glucose, uronic acid and sulfate</td>
<td>Cumashi et al., 2007 [21]</td>
</tr>
<tr>
<td>Fucus serratus</td>
<td>Fucales</td>
<td>Pretreatment: MeOH–CHCl₃–H₂O (4:2:1); then extracted 2% CaCl₂; for 5 h at 85 °C, the extracts were collected by centrifugation, combined, dialyzed and lyophilized.</td>
<td>mannose, galactose, glucose, uronic acid and sulfate</td>
<td>Cumashi et al., 2007 [21]</td>
</tr>
</tbody>
</table>
fucoidan or FCSPs from different types of brown seaweeds (Tables 1 and 2). The use of different most highly purified, but still crude fucoidan specimen from structural suggestions for fucoidan or FCSPs (Tables 1 and 2). The early reports almost unequivocally extraction treatment has been found to be advantageous to eliminate low molecular components methanol, chloroform and water [22]. Removal of protein has also been considered. This can be facilitated via the use of proteolytic enzymes [28] (or by lead acetate treatment, as used by Percival and Roos in 1950 [8]). Another useful purification procedure has involved transformation of alginates—or no acid at all—as well as the differences in extraction time and temperature during the extraction and further purification treatments have generated diverse compositional results and structural suggestions for fucoidan or FCSPs (Tables 1 and 2). The early reports almost unequivocally found that fucoidan mainly contained fucose and sulfate; nevertheless, the chemical composition of the most highly purified, but still crude fucoidan specimen from Hizikia fusiforme indicated that the fucoidan of this seaweed species contained fucose, galactose, and sulfate [8,14]. In the more recent reports, a pretreatment of the seaweed biomass prior to the real extraction treatment has been found to be advantageous to eliminate low molecular components (e.g., phenols); as already mentioned above, an early study used formic acid pretreatment [12]. However, more recent reports show that the pretreatment typically involves the use of a mixture of methanol, chloroform and water [22]. Removal of protein has also been considered. This can be facilitated via the use of proteolytic enzymes [28] (or by lead acetate treatment, as used by Percival and Roos in 1950 [8]). Another useful purification procedure has involved transformation of alginate...
in the residual biomass into insoluble calcium salts by treatment of the FCSPs specimen with aqueous calcium chloride [19,20].

In conclusion, the use of an array of different extraction and purification techniques appear to have contributed to the confusion that has prevailed about the nature and composition of fucoidan and FCSPs ever since fucoidan was first described by Kylin early in the 20th century [2]. As detailed in the following, we now know that the initial suggestions [29,30] that fucoidan was built of 1→3-linked β-D-fucopyranosyl residues were wrong. Fucoidan is built of 1→3-linked α-L-fucopyranosyl or of alternating 1→3- and 1→4-linked α-L-fucopyranosyl residues that may be sulfate substituted. We also know that "fucoidans" isolated from certain brown algae have completely different structures and vice versa that fucoidan is a term that covers a diverse family of fucose-containing sulfated polysaccharides (Table 1). It is therefore more correct to use the term fucose-containing sulfated polysaccharides (FCSPs) rather than fucoidan as a collective term for these polysaccharides.

3. Taxonomic Comparison of Fucoidan or FCSPs Structure

3.1. Fucales

In 1993 a revised structure of the polysaccharide backbone of the main FCSP product from \(F. \) \(vesiculosus \) was presented as \(\alpha(1 \rightleftharpoons 3) \) linked instead of as \(\alpha(1 \rightleftharpoons 2) \) linked [31]; it was also reported that fucose was attached to the backbone fucan polymer to form branching points, typically one for every 2–3 fucose residues within the chain, still with sulfate groups at position C-4 on the fucose units [31]. However, detailed analysis of the methyl derivatives obtained from partially desulfated \(F. \) \(vesiculosus \) polysaccharides revealed the presence of 2,4-di-O-methylfucose as well as 2,3-di-O-methylfucose which indicated the presence of both \(\alpha(1 \rightleftharpoons 3) \) and \(\alpha(1 \rightleftharpoons 4) \) linked fucose residues [32] (Figure 2). A similar structure was also determined for a FCSPs-derived oligosaccharide of about 8–14 monosaccharide units extracted from \(Ascophyllum nodosum \) (Fucales) [11] (Figure 2).

More recently, several studies—using highly advanced analytical methods—have documented that fucoidan from brown seaweed in the order of Fucales such as \(F. \) \(evanescens \) and \(F. \) \(serratus \) do indeed contain large proportions of both \(\alpha(1 \rightleftharpoons 3) \) and \(\alpha(1 \rightleftharpoons 4) \) glycosidic bonds [20–22] (Figure 2). Structural analysis of a depolymerized low molecular weight fraction of fucoidan from \(F. \) \(evanescens \) by MALDI-TOF and tandem ESI mass spectrometry has moreover shown that this fraction contains oligosaccharides with and without sulfate substitutions and that it mainly consists of \(\alpha(1 \rightleftharpoons 3) \)-linked fucose residues being esterified with sulfate at C-2 [33]. This more detailed analysis has also revealed the presence of minor components of mixed monosulfated fucoligosaccharides containing both 2-O- and 4-O-sulfated (1→4) bonded xylose and galactose residues: Xyl-(1→4)-Fuc, Gal-(1→4)-Fuc, Gal-(1→4)-Gal, Gal-(1→4)-Fuc, Gal-(1→4)-Gal [24]. Glucuronic acid (GlcA) was also detected as being a part of the non-sulfated fucoligosaccharides: Fuc-(1→3)-GlcA, Fuc-(1→4)-Fuc-(1→3)-GlcA, Fuc-(1→3)-Fuc-(1→3)-GlcA respectively [33].
Brown seaweed species in the order of Fucales have also been reported to contain very complex FCSPs structures having fucose and galactose in comparable amounts; these structures are generally referred to as sulfated galactofucans and are predominantly found among Sargassum species [18,34,35]. These sulfated galactofucans are mainly built of (1→6)-β-D-galactose and/or (1→2)-β-D-mannose units with branching points formed by (1→3) and/or (1→4)-α-L-fucose, (1→4)-α-D-glucuronic acid, terminal β-D-xylose and sometimes (1→4)-α-D-glucose [18]. Early studies also reported the existence of fucoglucuronans having a backbone of glucuronic acid, mannose and galactose residues with side chains of neutral and partially sulfated residues of galactose, xylose and fucose; notably present in Sargassum linifolium [13]. More recently, the FCSPs of this type extracted from the brown seaweed Sargassum stenophyllum (Fucales) were grouped into two different types: type I was found to contain a relatively high percentage of α-D-glucuronic acid and relatively few sulfate groups, while type II contained relatively small amounts of α-D-glucuronic acid and a high percentage of sulfate [18]. The type I polysaccharides were composed of a linear backbone formed mainly by (1→6)-β-D-galactose and/or (1→2)-β-D-mannose with branching chains formed by (1→3) and/or (1→4)-α-L-fucose, (1→4)-α-D-glucuronic acid, while in the type II polysaccharides the backbone was mainly built of short galactan chains [18].

Corresponding structures were observed in FCSPs fractions from Hizikia fusiforme a.k.a. Sargassum fusiforme (Fucales). These structures were separated by ion exchange chromatography after the FCSPs had been obtained via hot aqueous extraction, followed by ethanol and CaCl₂ precipitation (Table 2). These chromatographically purified fractions predominantly contained fucose, mannose, galactose, uronic acid and sulfate [25] (Figure 3). In accordance with the findings of Duarte et al. [18]...
the structural analysis of one of the main fractions purified by ion exchange chromatography indicated that the sulfate groups might be found in any position on the galactose/mannose backbone or on the fucose units (Figure 3). The sulfate groups in the FCSPs in this fraction, which had been isolated after 3 rounds of extraction in hot water (70 °C), then ethanol and CaCl₂ precipitation prior to chromatography (Table 2), were mainly found at C-6 of \([\alpha,\beta]-\text{Man}-(1 \rightarrow 6)\), at C-4 and C-6 of \([\alpha,\beta]-\text{Man}-(1 \rightarrow 4)\) and at C-3 of \([\alpha,\beta]-\text{Gal}-(1 \rightarrow 3)\) [23]. On the fucose, the sulfate groups were substituted at C-2, C-3 or C-4, while some fucose residues had two sulfate groups [23]. The core of these \textit{S. fusiforme} FCSPs was mainly composed of alternating units of \([\alpha,\beta]-\text{Man}-(1 \rightarrow 4)\) and \([\alpha,\beta]-\text{GlcA}-(1 \rightarrow 3)\), with a minor portion of \([\alpha,\beta]-\text{Gal}-(1 \rightarrow 4)\) units, and the branching points were at C-3 of \([\alpha,\beta]-\text{Man}-(1 \rightarrow 6)\), C-2 of \([\alpha,\beta]-\text{Gal}-(1 \rightarrow 6)\) and C-2 of \([\alpha,\beta]-\text{Gal}-(1 \rightarrow 4)\), respectively [23] (Figure 3).

3.2. Laminariales and Other Brown Seaweed

Various structures of FCSPs from brown seaweeds of the order of Laminariales have also been reported [36]. The available data indicate that the FCSPs derived from this seaweed order contain small amounts of other monosaccharides besides fucose. Interestingly, polysaccharides containing significant amounts of fucose and galactose and which seem to be compositionally and structurally similar to the fucoidan from Fucales brown seaweeds appear to be prevalent [26,35]. Structural analysis was conducted on the FCSPs from the sporophyll \textit{Undaria pinnatifida} (Laminariales) and it

Figure 3. Suggested structures of the FCSPs (fucoidan) from \textit{H. fusiforme} [23] also known as \textit{Sargassum fusiforme} (Fucales); sulfate substitutions not shown. The structures also represent typical FCSPs structures from other \textit{Sargassum} spp. [18].
was found that the FCSPs had a high fucose/galactose ratio, high uronic acid, and low sulfate content. The most abundant fucopyranosyl units were substituted at the 3-, 2,3-, or 2,3,4-positions whereas fucose residues with substitutions at the 3,4- or 4-positions were less abundant [26]. The galactopyranosyl units were predominantly substituted at the 3- or at both the 3,4-positions [26].

FCSPs isolated from *Chorda filum* (Laminariales) have been shown to consist of a poly-(1→3)-fucopyranose backbone with a high degree of branching mainly as α(1→2)-linked single α-L-fucopyranosyl residues (Figure 4) [24,25]. The fucopyranosyl residues were found to be sulfated mainly at C-4 and sometimes at the C-2 position, whereas some of the α(1→3)-linked fucose residues were shown by NMR to be C-2 acetylated [25]. A similar structure has been reported by Usova et al. [24] for the FCSPs isolated from *L. saccharina* (Laminariales) which are mainly built of (1→3)-linked α-L-fucopyranose with sulfation at C-4 and sometimes at the C-2 position or with possible α-L-fucopyranosyl at C-2 (Figure 4). This FCSPs structure has also been found to be present in the body wall layer of the sea cucumber *Ludwigia grisea* (a marine invertebrate). The FCSPs of the sea cucumber body wall are essentially built of an α(1→3)-fucopyranose backbone [37]. NMR analysis has indicated that 2,4-di-sulfato-L-fucopyranose and unsubstituted fucopyranose are present in equal proportions, and that 2-mono-sulfato-L-fucopyranose is present in twice that proportion [33]. The FCSPs from *Lessonia rupestris* (Laminariales) have also been studied by NMR spectroscopy and the data indicate that the polysaccharides are mainly composed of α(1→3)-linked fucopyranose residues sulfated mainly at position C-4 and partially at position C-2 [38].

Figure 4. Structural motifs of FCSPs (fucoidan) from some brown seaweed species of the order *Laminariales* and *Chordariales*. FCSPs of *Chorda filum* and *Laminaria saccharina* consist of a poly-(α(1→3)-fucopyranoside backbone with sulfate mainly at C-4 and sometimes at the C-2 position; some of the backbone fucose residues may be acetylated at C-2 (not shown) [24,25]. *Cladophoropsis okamuranus* derived FCSPs also consist of a backbone of (1→3)-linked L-fucopyranose residues with sulfate substitutions at C-4 and/or with α(1→2)-linked single α-L-fucopyranosyl substitutions and vicinal glucuronic acid substitutions. Some of the side chain fucose residues may be O-acetylated (not shown) [14].

Other algal fucoids whose structures contain the same α(1→3)-backbone of fucose residues have been found in *Analipus japonicas* (Ectocarpales), *Adenosicyctis utricularis* (Ectocarpales), and *Chorda filum*.
higher fucose contents in the products were obtained with shorter extraction time [19]. The work also obtained [19] (Table 2). All extraction factors affected the FCSPs yield. Lower total FCSPs yields, but extraction yields of FCSPs from C. okamuranus (Chordariales) confirmed that this product was made up of a linear backbone of (1→3)-fucopyranose units with a portion of the fucose residues carrying sulfate substitutions at C-4 but some of the fucose residues have also been found to be O-acetylated (Figure 4). The C. okamuranus FCSPs may also contain α-glucuronic acid substitutions at the C-2-positions of those backbone fucose residues that are not substituted by a sulfate group [14] (Figure 4).

Methylation analysis, desulfation and NMR spectroscopy of the FCSPs fractions from Adenocystis utricularis (Ectocarpales) showed that these FCSPs contained the same α-(1→3)-fucopyranose backbone as that found in Chorda filum and Laminaria saccharina FCSPs, and that the fucopyranosyl units were mostly sulfated at C-4, and branched at C-2 with non-sulfated fucopyranosyl units; the galactan moiety, which was also present, was predominantly found to be a backbone structure of (1→3) and (1→6) D-galactopyranose units with sulfation mostly on C-4 [15]. Later, a similar structure was found in FCSPs extracted from Analipus japonicus (Ectocarpales) [39]. The relatively large variations in the reported compositional and structural properties of the FCSPs extracted from different brown seaweed species thus clearly confirm the natural biodiversity of FCSPs notably as exemplified by the structures found in Fucales, e.g., in the Fucus sp. and Sargassum sp. (Figures 2 and 3). The (1→3)-linked α-L-fucopyranosyl backbone structure, with various extents of sulfate substitutions, is prevalent as the core backbone structure in the majority of the currently analyzed FCSPs. Nevertheless, the reported structural data for FCSPs from different brown seaweed species clearly indicate that there is no consistent basic structure of “fucoidan”. It also seems clear that FCSPs extracted from seaweeds under the same order have different composition, and in turn that the structural traits of FCSPs cannot be categorized or predicted according to algal order (Tables 1 and 2).

When assessing the available compositional data the large variation in the composition of the FCSPs products obtained from different extraction methods is evident (Table 2). Recently, we optimized the extraction yields of FCSPs from Sargassum sp. by developing a single-step extraction procedure. While doing so, we also systematically examined the effects of different extraction parameters (i.e., acid concentration, time, and temperature) on the yields and composition of the FCSPs products obtained [19] (Table 2). All extraction factors affected the FCSPs yield. Lower total FCSPs yields, but higher fucose contents in the products were obtained with shorter extraction time [19]. The work also revealed that classical extraction treatment with HCl at elevated temperature and during extended time, i.e., a procedure similar to the one used by Black et al. [9], had a detrimental effect on the FCSPs yield as this treatment apparently disrupted the structural integrity of the fucose-containing polymer and caused degradation of the chains built of fucose residues [19]. Hence, some of the classic methods, employing relatively harsh acid treatments, may in fact have affected the composition and structure of the target FCSP products to different extents, and may have contributed to the prevailing “conflicting views on the nature of fucoidin” recognized already in 1950 by Percival and Ross [8]. A consensus to employ defined extraction protocols for extraction of FCSPs, or at least an agreement among scientists in the field to include a benchmark extraction procedure in their studies, would help to advance the understanding of these intriguing FCSPs substances.
4. Bioactivity of Fucoidan or FCSPs

In recent years, fucoidan or FCSPs from seaweed biomass have been the subject of many scientific studies aiming at assessing their potential biological activities including antitumor and immunomodulatory effects [40–42], antivirus [43], anti-thrombotic and anticoagulant [44], anti-inflammatory [45], and anti-oxidant effects [46], as well as their effects against various renal [47], hepatic [48] and urothelial disorders [49].

Recently, low molecular weight FCSPs have been shown to have therapeutic potential in preventing intimal hyperplasia in both in vivo and in vitro studies: Contact with low molecular weight FCSPs (“fucoidan”) thus increased the migration of human vascular endothelial cells and induced decreased migration of vascular smooth muscle cells in vitro [50]. In an in vivo rat experiment FCSPs reduced the intimal hyperplasia in the rat aortic wall after balloon injury [50]. Furthermore, an in vivo efficacy study of fucoidan films conducted using a rat model showed that during cecal-sidewall surgery a fucoidan film wound healing treatment reduced the adhesion scores by approximately 90% and resulted in 50% to 100% of animals being adhesion free [51].

In this review, the most significant bioactivities of FCSPs, including antitumor and immunomodulatory, anticoagulant and antithrombotic effects will be presented with special focus on the relationship between the FCSP structural features and biological activity.

4.1. Antitumor and Immune-Response Activities

Several different therapeutic strategies such as chemotherapy, radiation therapy, surgery or combinations hereof have been used to treat different types of cancer. Unfortunately, several of these treatments provide only minimal benefit; moreover, there are undesirable complications and long term side effects of the treatments [52,53]. Consequently the quest for potential preventive or therapeutic measures against cancer has been going on for years and recently the focus has been directed towards bioactive compounds of natural origin, including FCSPs from brown seaweeds [1]. Many reports have been published which indicate the antitumor and immune-response modulating activity of FCSPs in both in vivo and in vitro studies [40–42,54,55].

Sulfated polysaccharide fractions from Sargassum fulvellum, S. kelpianum, L. angustata, L. angustata var. longissima, L. japonica, Ecklonia cava, and Eisenia bicyclis have been evaluated for their bioactivities, and they have been found to exert remarkable growth inhibitory activities on Sarcoma-180 cells implanted into mice and to possess antitumor activity against L-1210 Leukemia in mice [56–58]. Recently, we reported the potent in vitro bioactivity of FCSPs extracted from Sargassum sp. and F. vesiculosus against lung and skin cancer cell growth [42]. The antitumor mechanism of FCSPs from sporophylls of Undaria pinnatifida has been described by Maruyama et al. [41,59]. The available findings indicate that antitumor activity of FCSPs may be associated with a significant enhancement of the cytolitic activity of natural killer (NK) cells augmented by increased production of macrophage-mediated immune response signaling molecules [59–61], namely interferlkin (IL-2, IFN-γ and IL-12) [42,59], and induction of apoptosis [42].

Macrophage activation by polysaccharides is mediated through specific membrane receptors. The major receptors reported for polysaccharides recognition in macrophages are glycoproteins including interleukins (IL)-2, IFN-γ, and IL-12 [42,59], and induction of apoptosis [42].

In this review, the most significant bioactivities of FCSPs, including antitumor and immunomodulatory, anticoagulant and antithrombotic effects will be presented with special focus on the relationship between the FCSP structural features and biological activity.

4.1. Antitumor and Immune-Response Activities

Several different therapeutic strategies such as chemotherapy, radiation therapy, surgery or combinations hereof have been used to treat different types of cancer. Unfortunately, several of these treatments provide only minimal benefit; moreover, there are undesirable complications and long term side effects of the treatments [52,53]. Consequently the quest for potential preventive or therapeutic measures against cancer has been going on for years and recently the focus has been directed towards bioactive compounds of natural origin, including FCSPs from brown seaweeds [1]. Many reports have been published which indicate the antitumor and immune-response modulating activity of FCSPs in both in vivo and in vitro studies [40–42,54,55].

Sulfated polysaccharide fractions from Sargassum fulvellum, S. kelpianum, L. angustata, L. angustata var. longissima, L. japonica, Ecklonia cava, and Eisenia bicyclis have been evaluated for their bioactivities, and they have been found to exert remarkable growth inhibitory activities on Sarcoma-180 cells implanted into mice and to possess antitumor activity against L-1210 Leukemia in mice [56–58]. Recently, we reported the potent in vitro bioactivity of FCSPs extracted from Sargassum sp. and F. vesiculosus against lung and skin cancer cell growth [42]. The antitumor mechanism of FCSPs from sporophylls of Undaria pinnatifida has been described by Maruyama et al. [41,59]. The available findings indicate that antitumor activity of FCSPs may be associated with a significant enhancement of the cytolitic activity of natural killer (NK) cells augmented by increased production of macrophage-mediated immune response signaling molecules [59–61], namely interferlkin (IL-2, IFN-γ and IL-12) [42,59], and induction of apoptosis [42].

Macrophage activation by polysaccharides is mediated through specific membrane receptors. The major receptors reported for polysaccharides recognition in macrophages are glycoproteins including interleukins (IL)-2, IFN-γ, and IL-12 [42,59], and induction of apoptosis [42].

Several different therapeutic strategies such as chemotherapy, radiation therapy, surgery or combinations hereof have been used to treat different types of cancer. Unfortunately, several of these treatments provide only minimal benefit; moreover, there are undesirable complications and long term side effects of the treatments [52,53]. Consequently the quest for potential preventive or therapeutic measures against cancer has been going on for years and recently the focus has been directed towards bioactive compounds of natural origin, including FCSPs from brown seaweeds [1]. Many reports have been published which indicate the antitumor and immune-response modulating activity of FCSPs in both in vivo and in vitro studies [40–42,54,55].

Sulfated polysaccharide fractions from Sargassum fulvellum, S. kelpianum, L. angustata, L. angustata var. longissima, L. japonica, Ecklonia cava, and Eisenia bicyclis have been evaluated for their bioactivities, and they have been found to exert remarkable growth inhibitory activities on Sarcoma-180 cells implanted into mice and to possess antitumor activity against L-1210 Leukemia in mice [56–58]. Recently, we reported the potent in vitro bioactivity of FCSPs extracted from Sargassum sp. and F. vesiculosus against lung and skin cancer cell growth [42]. The antitumor mechanism of FCSPs from sporophylls of Undaria pinnatifida has been described by Maruyama et al. [41,59]. The available findings indicate that antitumor activity of FCSPs may be associated with a significant enhancement of the cytolitic activity of natural killer (NK) cells augmented by increased production of macrophage-mediated immune response signaling molecules [59–61], namely interferlkin (IL-2, IFN-γ and IL-12) [42,59], and induction of apoptosis [42].

Macrophage activation by polysaccharides is mediated through specific membrane receptors. The major receptors reported for polysaccharides recognition in macrophages are glycoproteins including interleukins (IL)-2, IFN-γ, and IL-12 [42,59], and induction of apoptosis [42].
Toll-like receptor-4 (TLR-4), cluster of differentiation 14 (CD14), competent receptor-3 (CR-3) and scavenging receptor (SR) [61]. Activation of these receptors is mediated by intracellular signaling pathways and the family of mitogen-activated protein kinases (MAPKs) plays a critical role notably in the production of nitric oxide (NO) which can lyse tumors [61]. MAPK family members such as p38 MAPK, extracellular regulated kinase (ERK1/2) and stress-activated protein kinase/c-Jun-N-terminal kinase play an important role in the activation of macrophages by polysaccharides such as FCSPs [61,62] (Figure 5A). Activated MAPKs lead to activation of transcription factors resulting in induction of various genes [61]. Activation of macrophages induces the production of cytokines such as interleukin-12 (IL-12) which in turn stimulate the development of T-cells (Figure 5B). T-cells produce interleukin-2 (IL-2) that in turn activates NK cells proliferation. The NK cells themselves produce immunologically important cytokines, notably IFN-γ, which can further provoke the participation of macrophages in the stimulation of T-cell via induction of IL-12 [41,59] (Figure 5B).

NK cells appear to represent a first line of defense against the metastatic spread of blood-borne tumor cells, and normal NK activity may be important in immune surveillance against tumors [63]. NK-mediated killing of target cells by apoptosis is facilitated by activation of caspase cascades (Figure 5B). In tumor bearing mice, FCSPs appear to act as an immunopotentiator leading to increased antitumor effectiveness as exhibited by increased immune response against A20 leukemia cells and a lowering of the tumor size in transgenic (DO-11-10-Tg) mice [41]. Moreover, recent investigations of the immunomodulatory activity of FCSPs in rats with aspirin-induced gastric mucosal damage suggest that the gastro-protective effect of fucoidan against aspirin-induced ulceration may take place through the prevention of elevation of pro-inflammatory cytokines, IL-6 and IL-12 [64].

Figure 5. Proposed mechanism responsible for fucoidan bioactivity: (A) Macrophage activation by FCSPs as mediated through specific membrane receptor activation namely TLR-4, CD14, CR-3 and SR which in turn induce intracellular signaling via mitogen-activated protein kinases (MAPKs); (B) Activation of macrophages lead to production of cytokines such as IL-12, IL-2 and IFN-γ which enhance NK cell activation that may stimulate T-cell activation further via IFN-γ.

NK cells appear to represent a first line of defense against the metastatic spread of blood-borne tumor cells, and normal NK activity may be important in immune surveillance against tumors [63]. NK-mediated killing of target cells by apoptosis is facilitated by activation of caspase cascades (Figure 5B). In tumor bearing mice, FCSPs appear to act as an immunopotentiator leading to increased antitumor effectiveness as exhibited by increased immune response against A20 leukemia cells and a lowering of the tumor size in transgenic (DO-11-10-Tg) mice [41]. Moreover, recent investigations of the immunomodulatory activity of FCSPs in rats with aspirin-induced gastric mucosal damage suggest that the gastro-protective effect of fucoidan against aspirin-induced ulceration may take place through the prevention of elevation of pro-inflammatory cytokines, IL-6 and IL-12 [64].

Figure 5. Proposed mechanism responsible for fucoidan bioactivity: (A) Macrophage activation by FCSPs as mediated through specific membrane receptor activation namely TLR-4, CD14, CR-3 and SR which in turn induce intracellular signaling via mitogen-activated protein kinases (MAPKs); (B) Activation of macrophages lead to production of cytokines such as IL-12, IL-2 and IFN-γ which enhance NK cell activation that may stimulate T-cell activation further via IFN-γ.
Aptosis is one of the most prevalent pathways through which FCSPs can inhibit the overall growth of cancer. Previous studies have shown that different types of FCSPs can induce apoptosis in melanoma cells [42], HT-29 colon cancer cells [65], MCF-7 human breast cancer cells [66], and HS-Sultan human lymphoma cells [62]. In human HS-Sultan cells, the apoptosis may occur via activation of caspase-3 [62], and in MCF-7 cells via caspase-8 dependent pathways [66]. Alternatively, FCSPs induced apoptosis may take place through activation of caspases via both death receptor-mediated and mitochondria-mediated apoptotic pathways [65].

4.2. Anticoagulant and Antithrombic Activities

The earliest published report describing the anticoagulant activity of fucoidan was published in 1957 [67]. In that report it was shown that a certain fraction of fucoidan from F. vesiculosus possessed powerful anticoagulant activity that qualified fucoidan to belong to the group of heparins [67]. Heparin is a biomolecule containing highly sulfated glucosaminoglycan that is widely used as an injectable anticoagulant. It has been reported that the anticoagulant mechanisms of fucoidan are related to both antithrombin and heparin cofactor II-mediated activity [68,69], but the mechanisms by which fucoidan exerts anticoagulant activity remain controversial [32]. Hence, any possible relations between the physical and chemical properties, the structure, and the anticoagulant activity of fucoidan remain to be firmly established. The uncertainties are mainly due to the structural variation of fucoidan between algal species, but most likely also a result of the different extraction methodologies employed to isolate FCSPs that appear to have produced FCSPs of different composition, structure, and size, which have given rise to conflicting results in the detailed studies of mechanisms of anticoagulant activity [32,70].

Results obtained using the so called activated partial thromboplastin time assay (APTT) have strongly indicated that FCSPs from F. vesiculosus have specific anticoagulant activity. Comparable results have been obtained in two independent studies using FCSPs dosages equivalent to 9-13 U/mg versus 167 U/mg for heparin; and 16 U/mg versus 193 U/mg heparin, respectively [71,72]. When FCSPs samples isolated from nine brown seaweed species were tested for anticoagulant activities, the APTT results were significant at 12–38 U/mg as compared to at 167 U/mg for heparin [73]. A remarkable finding for anticoagulant action was also reported by Kitamura et al. [74], who showed that a FCSPs fraction from L. angustata var. longissima (Laminariales) had antithrombin activity at 200 U/mg, equivalent to a dose of 140 U/mg heparin. The particular FCSPs fraction having anticoagulant activity had a molecular weight of ~21–23 kDa and contained fucose-galactose-sulfate at a ratio of 9:1:9 with the sulfate substitutions at C-4 of the fucose residues [74].

It has been postulated that it is not a specific structural trait that determines fucoidan’s ability to elicit anticoagulant activity, but rather that the anticoagulant effect is due to a multitude of structural features including monosaccharide composition, molecular weight, sulfation level, and position of sulfate groups on the main chain of the polysaccharide [69,75–77]. The comprehensive study of the anticoagulant activity of fucoidan from C. okamuranus (Chordariales) have been reported to exert virtually no anticoagulant effect, and this could be due to the low amount of sulfate in its polymer backbone and/or the presence of vicinal branching points formed by 2-O-α-L-galacturonic substituents (Figure 4) [21,14]. On the other hand, the concentrations
of C-2-sulfate and C-2,3-di-sulfated sugar residues (Figure 2) have been reported to be a common structural feature for fucoidan anticoagulant activity [11]. The anticoagulant activity of high molecular weight FCSPs from *Ecklonia kurome* were thus reported to be dependent on both molecular weight and sulfate content [76]: Higher molecular weight FCSPs (*i.e.*, 27 and 58 kDa) showed higher anticoagulant activity than lower molecular weight FCSPs (*i.e.*, ≤10 kDa); and FCSPs samples having a high molar ratio of sulfate to total sugar residues were found to exhibit inhibitory effects on fibrinogen clotting by thrombin reaction [76]. These results were supported by data reported by Haroun-Bouhedja et al. [78] who reported a relationship between the extent of sulfate group substitutions and the biological activities of fucoidan. The anticoagulant activity of low molecular weight (LMW) fucoidan, *i.e.*, MW < 18 kDa was thus found to decrease with decreasing degree of sulfation, and very low-sulfate (<20%) or desulfated LMW fucoidan lost its anticoagulant activity, but retained some antiproliferative activity on CCL39 fibroblast cells [78]. In contrast, LMW fucoidan with sulfate content higher than 20% was found to exert profound anticoagulant activity as well as antiproliferative effects on fibroblast cell line CCL39 cells in a dose-dependent fashion [78].

Some studies suggest that also the sugar composition (*e.g.*, fucose, galactose, mannose, etc.) or the type of oligo- or polysaccharides of the FCSPs may play an important role for anticoagulant activity [75,79]. However, the series of investigations conducted by Pereira et al. [32,80,81] indicated that a 2-sulfated, 3-linked α-L-galactan, but not α-L-fucan, was the potent thrombin inhibitor mediated by anti-thrombin of heparin cofactor II. These findings have however also pointed out that it is not necessarily the sugar composition but rather the sulfate substitutions on the sugars that determine the anticoagulant activity of fucoidan—or both [82].

Most of the reported studies were carried out with crude, diverse and complex FCSPs obtained via extraction from brown seaweeds as opposed to being chemically well defined structures. For this reason it is not easy to identify a structure-versus-activity relationship because of the presence of highly branched portions and the complex distributions of sulfate and acetyl groups in algal FCSPs. This aspect was attempted resolved by use of invertebrate polysaccharides [83]. The data obtained indicated that regular, linear sulfated α-L-fucans and sulfated α-L-galactans express anticoagulant activity, which is not simply a function of charge density, but critically dependent on the pattern of sulfation as well as monosaccharide composition. Sulfated α-L-fucans and fucosylated chondroitin sulfate were also shown to elicit antithrombotic activity when tested on in vivo models of venous and arterial thrombosis in experimental animals [83].

4.3. Bioactivities and Oversulfation of FCSPs

In 1984 crude FCSPs fractions from *Sargassum kjellmanianum* were prepared in order to investigate the influence of the sulfation levels on the survival of L-1210 leukemia bearing mice; and on the growth of Sarcoma-180 cells [58]. The study showed that the fraction with the highest sulfation was the most effective against L-1210 leukemia bearing mice and it produced an increase in life span of 26%. On the other hand, this particular FCSPs fraction was also less effective in inhibiting growth of Sarcoma-180 cells subcutaneously implanted into mice [58].

Since then, several investigations have focused on the effect of oversulfation of FCSPs on biological activity [54,78,84–89]. Oversulfated FCSPs may be obtained by further sulfation of native FCSP of C-2-sulfate and C-2,3-di-sulfated sugar residues (Figure 2) have been reported to be a common structural feature for fucoidan anticoagulant activity [11]. The anticoagulant activity of high molecular weight FCSPs from *Ecklonia kurome* were thus reported to be dependent on both molecular weight and sulfate content [76]: Higher molecular weight FCSPs (*i.e.*, 27 and 58 kDa) showed higher anticoagulant activity than lower molecular weight FCSPs (*i.e.*, ≤10 kDa); and FCSPs samples having a high molar ratio of sulfate to total sugar residues were found to exhibit inhibitory effects on fibrinogen clotting by thrombin reaction [76]. These results were supported by data reported by Haroun-Bouhedja et al. [78] who reported a relationship between the extent of sulfate group substitutions and the biological activities of fucoidan. The anticoagulant activity of low molecular weight (LMW) fucoidan, *i.e.*, MW < 18 kDa was thus found to decrease with decreasing degree of sulfation, and very low-sulfate (<20%) or desulfated LMW fucoidan lost its anticoagulant activity, but retained some antiproliferative activity on CCL39 fibroblast cells [78]. In contrast, LMW fucoidan with sulfate content higher than 20% was found to exert profound anticoagulant activity as well as antiproliferative effects on fibroblast cell line CCL39 cells in a dose-dependent fashion [78].

Some studies suggest that also the sugar composition (*e.g.*, fucose, galactose, mannose, etc.) or the type of oligo- or polysaccharides of the FCSPs may play an important role for anticoagulant activity [75,79]. However, the series of investigations conducted by Pereira et al. [32,80,81] indicated that a 2-sulfated, 3-linked α-L-galactan, but not α-L-fucan, was the potent thrombin inhibitor mediated by anti-thrombin of heparin cofactor II. These findings have however also pointed out that it is not necessarily the sugar composition but rather the sulfate substitutions on the sugars that determine the anticoagulant activity of fucoidan—or both [82].

Most of the reported studies were carried out with crude, diverse and complex FCSPs obtained via extraction from brown seaweeds as opposed to being chemically well defined structures. For this reason it is not easy to identify a structure-versus-activity relationship because of the presence of highly branched portions and the complex distributions of sulfate and acetyl groups in algal FCSPs. This aspect was attempted resolved by use of invertebrate polysaccharides [83]. The data obtained indicated that regular, linear sulfated α-L-fucans and sulfated α-L-galactans express anticoagulant activity, which is not simply a function of charge density, but critically dependent on the pattern of sulfation as well as monosaccharide composition. Sulfated α-L-fucans and fucosylated chondroitin sulfate were also shown to elicit antithrombotic activity when tested on in vivo models of venous and arterial thrombosis in experimental animals [83].

4.3. Bioactivities and Oversulfation of FCSPs

In 1984 crude FCSPs fractions from *Sargassum kjellmanianum* were prepared in order to investigate the influence of the sulfation levels on the survival of L-1210 leukemia bearing mice; and on the growth of Sarcoma-180 cells [58]. The study showed that the fraction with the highest sulfation was the most effective against L-1210 leukemia bearing mice and it produced an increase in life span of 26%. On the other hand, this particular FCSPs fraction was also less effective in inhibiting growth of Sarcoma-180 cells subcutaneously implanted into mice [58].

Since then, several investigations have focused on the effect of oversulfation of FCSPs on biological activity [54,78,84–89]. Oversulfated FCSPs may be obtained by further sulfation of native FCSP
molecules using dimethylformamide as solvent and a sulfur trioxide-trimethylamine complex as the sulfating agent [86]. The inhibitory effects of such oversulfated FCSPs were investigated on the invasion of Murine Lewis Lung Carcinoma cells through a reconstituted membrane basement fragment, so-called laminin [86]. Oversulfated FCSPs were found to be the most potent inhibitor of tumor cell invasion and were also, in particular, found to inhibit tumor cell adhesion to laminin better than native and desulfated FCSPs. The most potent oversulfated FCSP structures had sulfate groups on both the C-3 and C-4 positions of the fucose units; hence, the particular spatial orientation of the negative charges in the FCSPs molecules may also be an important determinant of bioactivity [86]. The study did not allow firm conclusions to be drawn with respect to mechanisms of action, but it was suggested that the increased negative charge resulting from oversulfuration might promote the formation of FCSPs-protein complexes involved in cell proliferation, in turn suppressing cell growth [86].

When the importance of the spatial orientation of the negative charges on the FCSPs was investigated in more depth it was confirmed that this feature plays a major role in determining the binding potency of FCSPs to vascular endothelial growth factor 165 (VEGF165) [88]. Both native and oversulfated FCSPs have been tested for their anti-angiogenic actions in vivo and for their in vitro anti-proliferative effects against B16 melanoma cells, Sarcoma-180 and Lewis lung carcinoma cells: The interaction of oversulfated FCSPs with VEGF165 occurred with high affinity and resulted in the formation of highly stable complexes, thereby interfering with the binding of VEGF165 to vascular endothelial growth factor receptor-2 (VEGFR-2). The results showed that both native and oversulfated FCSPs were able to suppress neovascularization in mice implanted Sarcoma-180 cells; and that both FCSPs types inhibited tumor growth through the prevention of tumor-induced angiogenesis, but the data indicated that sulfation tended to give more potent effects [88].

Native and oversulfated FCSPs derived from Cladophora okamuranus (Chordariaceae) were analyzed using 1H NMR spectroscopy and it was suggested that whereas natural sulfation produced 4-mono-O-sulfato-L-fucopyranose the oversulfated FCSPs contained 2,4-di-, 2-mono-, and 4-mono-O-sulfato-L-fucopyranose [89]. It was also suggested that sulfate content and the positioning of sulfate groups, e.g., 2,4-di- vs. 4-mono, might be important for the anti-proliferative activity of fucoidan in a human leukemia cell line (U937), an effect which is presumed to take place via induction of apoptosis associated with activation of caspase-3 and -7 [89].

The effects of oversulfation of low and high molecular weight FCSPs derivatives from F. vesiculosus and heparin on lipopoly saccharide (LPS)-induced release of plasminogen activator inhibitor-1 (PAI-1) from cultured human umbilical vein endothelial cells (HUVEC) were examined by Soeda et al. [87]. Their study demonstrated that all oversulfated FCSPs derivatives including high molecular weight derivatives of 100–130 kDa were effective in suppressing the LPS-induced PAI-1 antagion, and supported an important role of the degree of sulfation for bioactivity [87].

The correlation of oversulfuration and conformation of molecular sizes of FCSPs for anticancer activity using human stomach cancer cell lines AGS was evaluated recently for FCSPs isolated from dried Undaria pinnatifida FCSPs [54]. The data showed that the oversulfated, low molecular weight FCSP derivatives increased the inhibition of cell growth, while the growth inhibition was less for native, high molecular weight FCSPs and for oversulfated high molecular weight FCSPs [54]. The differences were suggested to be a result of the smaller molecular weight fractions having a less
bioactivities via the use of targeted extraction methodologies. On this basis it may even be possible to of the seaweed, will generate a better, common basis for analysis and understanding of bioactivities and fractionation methodology, preferably with specific steps adapted to the particular botanical order may currently hinder our full understanding of the biological activity of fucoidan or FCSPs. Hence the maintenance of the structural integrity of the FCSPs molecules nevertheless appears crucial for the exact correlation between the bioactivity and the structural molecular features of FCSPs—which vary depending on seaweed species and extraction methodology—has yet to be clarified.

The preservation of the structural integrity of the FCSPs molecules nevertheless appears crucial for maintaining the biological properties and it has been clearly shown that the extraction treatment employed affects the composition and thus the structural features of the FCSPs substances.

The diverse structures and varied chemical composition of FCSPs may have hindered the development of an in-depth understanding of the precise properties of significance for specific bioactivity effects.

Important structural issues for bioactivity appear to include the degree of sulfation and the size of the FCSP molecules. Oversulfated FCSPs have thus been found to be potent inhibitors of tumor cell invasion compared to desulfated native FCSPs. Low molecular weight FCSPs have been shown to be effective in inhibiting human stomach cancer cell growth and to exert anticoagulant activity provided that the extent of the degree of sulfation was relatively high. Loss of anticoagulant activity has been observed with decreasing degree of sulfation, although anti-proliferative effects on fibroblast cell lines were retained.

Undoubtedly, the presence of impurities influences the biological properties of FCSPs and therefore may currently hinder our full understanding of the biological activity of fucoidan or FCSPs. Hence the development of standard extraction procedures for FCSPs including hydrolysis treatment, purification and fractionation methodology, preferably with specific steps adapted to the particular botanical order of the seaweed, will generate a better, common basis for analysis and understanding of bioactivities and the mechanisms determining the bioactivities of FCSPs. On this basis it may even be possible to target specific structural features and in turn tune the extraction procedure to obtain specific bioactivities via the use of targeted extraction methodologies.

Despite the availability of early, seminal studies of the extraction of FCSPs from brown seaweeds the understanding of the complex structures of FCSPs, is far from complete.

5. Conclusions

Fucoidan—or FCSPs—are an important group of polysaccharides that show remarkable biological actions notably anticoagulant, antitumor and immune-response activities. Despite intensive research, the exact correlation between the bioactivity and the structural molecular features of FCSPs—which vary depending on seaweed species and extraction methodology—has yet to be clarified.

The preservation of the structural integrity of the FCSPs molecules nevertheless appears crucial for maintaining the biological properties and it has been clearly shown that the extraction treatment employed affects the composition and thus the structural features of the FCSPs substances.

The diverse structures and varied chemical composition of FCSPs may have hindered the development of an in-depth understanding of the precise properties of significance for specific bioactivity effects.

Important structural issues for bioactivity appear to include the degree of sulfation and the size of the FCSP molecules. Oversulfated FCSPs have thus been found to be potent inhibitors of tumor cell invasion compared to desulfated native FCSPs. Low molecular weight FCSPs have been shown to be effective in inhibiting human stomach cancer cell growth and to exert anticoagulant activity provided that the extent of the degree of sulfation was relatively high. Loss of anticoagulant activity has been observed with decreasing degree of sulfation, although anti-proliferative effects on fibroblast cell lines were retained.

Undoubtedly, the presence of impurities influences the biological properties of FCSPs and therefore may currently hinder our full understanding of the biological activity of fucoidan or FCSPs. Hence the development of standard extraction procedures for FCSPs including hydrolysis treatment, purification and fractionation methodology, preferably with specific steps adapted to the particular botanical order of the seaweed, will generate a better, common basis for analysis and understanding of bioactivities and the mechanisms determining the bioactivities of FCSPs. On this basis it may even be possible to target specific structural features and in turn tune the extraction procedure to obtain specific bioactivities via the use of targeted extraction methodologies.

Despite the availability of early, seminal studies of the extraction of FCSPs from brown seaweeds the understanding of the complex structures of FCSPs, is far from complete.

References

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
3 Extraction of FCSPs

Brown seaweeds in the class of Phaeophyceae are excellent sources of sulfated polysaccharides notably FCSPs (Shanmugam and Mody, 2000; Abdel-fattah et al., 1974). FCSPs comprise families of polydisperse heterogeneous molecules based on l-fucose, α-xylene, α-galuronic acid, α-mannose, and α-galactose. Fucoidan is part of a group of FCSPs that consists almost entirely of fucose and ester sulfate (Pericival and McDowell, 1967), have a backbone of (1→3)-linked α-L-fucopyranosyl or of alternating (1→3)- and (1→4)-linked α-L-fucopyranosyl residues. Nevertheless, we now know that sulfated galactofucans with backbones of (1→6)-β-D-galacto- or (1→2)-β-D-mannopyranosyl units with fucose or fucogalactoarabino branching and/or glucuronic acid, xylose, or glucose substitutions that could be considered fucodins (Nishino et al., 1994). It has long been known that cell wall polymers of brown seaweed are complex; hence, extraction poses a challenge because the yield and chemical nature of the polysaccharides recovered from such seaweeds are markedly influenced by the conditions used to extract them.

Early reports show that treatment with dilute acid at ambient or slightly elevated temperature has been a preferred first step in extraction protocols for isolating fucoidan or FCSPs from different types of brown seaweed. The use of different acids or no acid at all as well as the differences in extraction time and temperature during extraction and further purification treatments have generated varying compositional results and structural suggestions for fucoidan and FCSPs. The early reports almost unequivocally found that fucoidan mainly contained fucose and sulfate; nevertheless, the chemical composition of the most highly purified but still crude fucoidan specimen from H. lorea indicated that the fucoidan of this seaweed species contained fucose, galactose, xylose, uronic acid, and sulfate (Pericival and Ross, 1950; Pericival, 1968).

3.1 Extraction methods

Extraction of brown seaweed fucans generally involves multiple extended aqueous extractions, usually with hot acid, and may include calcium addition to promote alginate precipitation (Chizhov et al., 1999; Marais et al., 2001). It has long been known that extraction time, temperature, and acid concentration/pH may influence both the yield and the composition of the resulting fucans (Li et al., 2008; Black et al., 1952). Hence, Black et al. (1952) reported how the use of different extraction methods influenced the fucose quantity with a disparity of 20~80% of the total fucose of F. vesiculosus. The influence of extraction method on fucan yield is further exemplified by

3 Extraction of FCSPs

Brown seaweeds in the class of Phaeophyceae are excellent sources of sulfated polysaccharides notably FCSPs (Shanmugam and Mody, 2000; Abdel-fattah et al., 1974). FCSPs comprise families of polydisperse heterogeneous molecules based on l-fucose, α-xylene, α-galuronic acid, α-mannose, and α-galactose. Fucoidan is part of a group of FCSPs that consists almost entirely of fucose and ester sulfate (Pericival and McDowell, 1967), have a backbone of (1→3)-linked α-L-fucopyranosyl or of alternating (1→3)- and (1→4)-linked α-L-fucopyranosyl residues. Nevertheless, we now know that sulfated galactofucans with backbones of (1→6)-β-D-galacto- or (1→2)-β-D-mannopyranosyl units with fucose or fucogalactoarabino branching and/or glucuronic acid, xylose, or glucose substitutions that could be considered fucodins (Nishino et al., 1994). It has long been known that cell wall polymers of brown seaweed are complex; hence, extraction poses a challenge because the yield and chemical nature of the polysaccharides recovered from such seaweeds are markedly influenced by the conditions used to extract them.

Early reports show that treatment with dilute acid at ambient or slightly elevated temperature has been a preferred first step in extraction protocols for isolating fucoidan or FCSPs from different types of brown seaweed. The use of different acids or no acid at all as well as the differences in extraction time and temperature during extraction and further purification treatments have generated varying compositional results and structural suggestions for fucoidan and FCSPs. The early reports almost unequivocally found that fucoidan mainly contained fucose and sulfate; nevertheless, the chemical composition of the most highly purified but still crude fucoidan specimen from H. lorea indicated that the fucoidan of this seaweed species contained fucose, galactose, xylose, uronic acid, and sulfate (Pericival and Ross, 1950; Pericival, 1968).

3.1 Extraction methods

Extraction of brown seaweed fucans generally involves multiple extended aqueous extractions, usually with hot acid, and may include calcium addition to promote alginate precipitation (Chizhov et al., 1999; Marais et al., 2001). It has long been known that extraction time, temperature, and acid concentration/pH may influence both the yield and the composition of the resulting fucans (Li et al., 2008; Black et al., 1952). Hence, Black et al. (1952) reported how the use of different extraction methods influenced the fucose quantity with a disparity of 20~80% of the total fucose of F. vesiculosus. The influence of extraction method on fucan yield is further exemplified by
fucoidan yield data from *Laminaria japonica*: the yield was only 1.5% of the DW of the seaweed when extracted using alkaline solution at 95°C for 2 h (Sakai et al., 2002) but was 2.3% DW when the extraction was done using water in an autoclave at 120°C for 3 h (Wang et al., 2008). However, the maximal yield of brown seaweed fucans is typically in the range of 5–7% DW. Fucoidan yields from *F. vesiculosus* have thus been reported to be 7.0% DW, while the yields obtained from *Sargassum horneri* and *Undaria pinnatifida* were found to be 5.2% and 6.8% DW, respectively (Kuda et al., 2002).

3.2 Single-step extraction of FCSPs

This section is an extended elucidation of Paper 1 and concerns designed optimization of a single-step extraction of FCSPs from *Sargassum sp.*

3.2.1 Relevance

Brown seaweed fucans have been reported to possess bioactive properties (Chevolot et al., 1999). Acquiring this valuable compound from non-commercially important seaweed material is of the utmost interest. *Sargassum sp.* is an unexploited brown seaweed, belonging to class Phaeophyceae, which grows widely almost worldwide in abundance; hence, it is considered a nuisance seaweed. To initially assess the possible use of *Sargassum sp.* as an FCSP source, we wanted to systematically evaluate the influence of the extraction parameters (i.e., acid concentration, time, temperature) and maximize the yield while attempting a relatively mild treatment.

3.2.2 Hypotheses and objectives

The effect of different extraction treatment conditions on FCSP yield and composition was evident, especially in early seminal studies about fucoidan extraction (Black et al., 1952), which recommended the use of a 3-step hot acid extraction procedure. Furthermore, 4× CaCl₂ treatment for 5 h at 85°C for the extraction of fucoidan was found to be remarkably useful (Bilan et al., 2002). Nevertheless, repetitive extractions of FCSPs for several hours are probably not necessary since it could generate variations on the chemical nature of polysaccharides, thus influencing its yield and structural integrity.

On the other hand, single-step extraction of FCSPs using optimized parameters (i.e., acid concentration, time, temperature) is sufficient to obtain considerable yield while conserving polysaccharide integrity. Nonetheless, there is limited systematic information about the influences and apparently complex interactions of extraction parameters on fucose-containing sulfated fucoidan yield data from *Laminaria japonica*: the yield was only 1.5% of the DW of the seaweed when extracted using alkaline solution at 95°C for 2 h (Sakai et al., 2002) but was 2.3% DW when the extraction was done using water in an autoclave at 120°C for 3 h (Wang et al., 2008). However, the maximal yield of brown seaweed fucans is typically in the range of 5–7% DW. Fucoidan yields from *F. vesiculosus* have thus been reported to be 7.0% DW, while the yields obtained from *Sargassum horneri* and *Undaria pinnatifida* were found to be 5.2% and 6.8% DW, respectively (Kuda et al., 2002).

3.2 Single-step extraction of FCSPs

This section is an extended elucidation of Paper 1 and concerns designed optimization of a single-step extraction of FCSPs from *Sargassum sp.*

3.2.1 Relevance

Brown seaweed fucans have been reported to possess bioactive properties (Chevolot et al., 1999). Acquiring this valuable compound from non-commercially important seaweed material is of the utmost interest. *Sargassum sp.* is an unexploited brown seaweed, belonging to class Phaeophyceae, which grows widely almost worldwide in abundance; hence, it is considered a nuisance seaweed. To initially assess the possible use of *Sargassum sp.* as an FCSP source, we wanted to systematically evaluate the influence of the extraction parameters (i.e., acid concentration, time, temperature) and maximize the yield while attempting a relatively mild treatment.

3.2.2 Hypotheses and objectives

The effect of different extraction treatment conditions on FCSP yield and composition was evident, especially in early seminal studies about fucoidan extraction (Black et al., 1952), which recommended the use of a 3-step hot acid extraction procedure. Furthermore, 4× CaCl₂ treatment for 5 h at 85°C for the extraction of fucoidan was found to be remarkably useful (Bilan et al., 2002). Nevertheless, repetitive extractions of FCSPs for several hours are probably not necessary since it could generate variations on the chemical nature of polysaccharides, thus influencing its yield and structural integrity.

On the other hand, single-step extraction of FCSPs using optimized parameters (i.e., acid concentration, time, temperature) is sufficient to obtain considerable yield while conserving polysaccharide integrity. Nonetheless, there is limited systematic information about the influences and apparently complex interactions of extraction parameters on fucose-containing sulfated
polysaccharide yield. It is our proposition that more focus should be directed to the extraction and purification processes to obtain consistent protocols that account for the biodiversity of FCSPs from different seaweeds and retain the structurally significant features of the specific bioactivity properties of FCSPs. The development and use of such consistent extraction procedures would also help achieve a better understanding of the structure-function relationships of FCSPs.

Therefore, the objectives of this study were to optimize the extraction of FCSPs while systematically examining the effects of treatments using different acids, reaction times, and temperature on its yield from a Sargassum sp. seaweed. We compared the composition of the extracted polysaccharides obtained using the final yield-optimized one-step extraction procedure as well as an analogous two-step extraction procedure to those obtained with the classical state-of-the-art multi-step fucoidan extraction methods of Black et al. (1952) and Bilan et al. (2002).

3.2.3 Result highlights
FCSP extraction parameters significantly affect yield: acid concentration has negative effects, while both time and temperature exert positive effects. The optimized single-step extraction was achieved by the statistically designed optimal extraction procedure of 0.03 M HCl, 90°C, and 4 h with a maximal fucoidan yield of approximately 7% DW. The influence of extended extraction time was evident on polysaccharide composition: the fucose and sulfate content of fucoidan decreased as extraction time increased, while glucuronic acid content increased. The results indicated that obtaining a high-yield FCSP with relatively high fucose content in a single-step extraction was a compromise, and the data confirmed that a shorter extraction time was required to obtain a high fucose yield, while 3-h extraction time was the best compromise to achieve high polysaccharides yield and high fucose levels of FCSP from Sargassum sp. seaweed.

The data from this study demonstrated the vulnerability of FCSPs to harsh extraction conditions and confirmed that the extraction methods significantly influence both the yields and the chemical nature of polysaccharides recovered from extraction.

3.2.4 Consideration and justification
Several brown seaweed species could be used as source materials for the production of FCSPs. Nevertheless, Sargassum sp. was chosen in this study for the following reasons: it is a highly invasive seaweed species that is abundant worldwide; no commercial application is yet firmly established, thus its commercial value is very low; and the use of Sargassum sp. for the production of bioactive compounds such as fucoidan will add value to it.
The main message of the work was that the yields and chemical nature of the polysaccharides were clearly affected by extraction treatment. Apart from highlighting the effects of the extraction parameters and their interactions, this work provides a novel approach to defining milder extraction conditions and reveals that the current state-of-the-art extraction methods that involve multiple steps and harsh acid and temperature conditions partly degrade the FCSPs.

A sulfated fucan (a fucoidan) may occur in Sargassum sp., but no evidence in this present study to prove that ω-fucose comprised the backbone of a significant component of the preparation; as such, the term fucoidan may not reasonably be applied to the isolated product. One could interpret the evidence as indicating that the product isolated contained a sulfated fucose-containing heteroglycan and possibly had a glucuronan primary structure with extensive fucosyl side branches that are cleaved and lost as extraction time increases. In the absence of more direct indication for a fucan structure, it is preferable to refer to the extracted product as fucose-containing sulfated polysaccharides (FCSPs).

Based on the simple and practical method for recovering a suite of complex sulfated polysaccharides from Sargassum sp. established in this work, we can, therefore, conclude that product yield and chemical composition are strongly affected by extraction method. An optimized one-step extraction treatment to obtain high yields of FCSP from Sargassum sp. was developed, and the effect of different treatment parameters on polysaccharide integrity was established. The evidence presented in this study (Paper 2) shows that the extracted polysaccharide product is heterogeneous at any time it is analyzed, although the composition varies with extraction duration. The monomeric composition shows that fucose and sulfate were important components of the polysaccharide mixture as isolated (Paper 2). The results confirmed that Sargassum sp. may be a good source of FCSPs. The data also demonstrated the vulnerability of FCSPs to harsh extraction conditions and confirmed that extraction method significantly influences FCSP composition and yield. We strongly emphasize this point as it has a major bearing on any study in which such products are being evaluated for biological activity. It is our belief that the model obtained may be applied to other fucoidan-containing brown seaweeds.

3.3 Paper 2: Designed optimization of single-step extraction of FCSPs from Sargassum sp.

Defined an optimized single-step FCSPs extraction procedure from brown seaweed species such as Sargassum sp. It has been reported that fucose-rich sulfated polysaccharides from brown seaweeds exert different beneficial biological activities including anti-inflammatory, anticoagulant, and anti-viral effects. Classical extraction of fucose-containing sulfated polysaccharides from brown seaweed species typically involves extended, multi-step, hot acid, or CaCl₂ treatments, each step lasting several hours. In this work, we systematically examined the influence of acid concentration (HCl), time, and temperature on the yield of fucose-containing sulfated polysaccharides (FCSPs) in statistically designed two-step and single-step multifactorial extraction experiments. All extraction factors had significant effects on the fucose-containing sulfated polysaccharides yield, with the temperature and time exerting positive effects, and the acid concentration having a negative effect. The model defined an optimized single-step FCSPs extraction procedure for Sargassum sp. (a brown seaweed). A maximal fucose-containing sulfated polysaccharides yield of ≈7% of the Sargassum sp. dry matter was achieved by the optimal extraction procedure of: 0.03 M HCl, 90°C, 4 h. HPAEC-PAD analysis confirmed that fucose, galactose, and glucuronic acid were the major constituents of the polysaccharides obtained by this optimized method. Lower polysaccharide yield, but relatively higher fucose content was obtained with shorter extraction time. The data also revealed that classical multi-step extraction with acid (0.2 M HCl at elevated temperature and extended time had a detrimental effect on the FCSPs yield as this treatment apparently disrupted the structural integrity of the polymer and evidently caused degradation of the carbohydrate chains built up of fucose residues.

Keywords: Fucoidan; Sargassum; Brown seaweed; Fucose; Bioactive compound; Extraction method

Introduction

Fucose-containing sulfated polysaccharides, or “fucoidans”, from brown algal can contain dietary glycosidic linkages and are usually substituted with acetic and/or glucuronic acid. These fucose-containing sulfated polysaccharides (FCSPs) can be extracted from brown seaweed species such as Fucus, Laminaria, and Sargassum (Li et al. 2006; Meri and Naitoza 1982). A range of biological activities have been attributed to FCSPs including anti-tumour (Zhang et al. 1995), anti-viral (Adhikari et al. 2007; Tschernko et al. 2009), anti-inflammatory (Blondin et al. 2004), and notably anticoagulant effects (Nardella et al. 1996). The potential pharmaceutical and medical applications of FCSPs have recently directed special interest into utilisation of brown seaweeds as a source of FCSPs (Blanchard et al. 2004). Some fucose-containing sulfated polysaccharides have a backbone of 3-linked α-D-fucopyranose, while others have a backbone of alternating 3- and 4-linked α-D-fucopyranose residues and sulfated galactofucans (Bilani and Uwe 2008). The sulfated galactofucans are prominently found in various Sargassum species (Draute et al. 2001; Zhu et al. 2005). These sulfated galactofucans are mainly built of (1→3)-α-L-galactopyranose and/or (1→3)-β-D-mannopyranose units with branching points.
HCl at 25°C for 5 h yielded 12.0% DW (Zvyagintseva et al. 2001). Early studies also reported the existence of fucoglucomannans having a backbone of galactose, manono, and galactose residues with side chains of neutral and partially sulfated residues of glucuronic acid, xylose, and fucose; these supposed fuco-glucuronans have been reported to be present in *Laminaria japonica* (Abdel-Fattah et al. 1974). Extraction of fucose-containing sulfated polysaccharides from brown seaweeds generally involves multiple, external aqueous extractions, usually with hot acid (hydrochloric acid), and may include calcium addition to promote alginate precipitation (Clifters et al. 1999; Marion and Jousseaume 2001). It has long been known that extraction time, temperature, and acid concentration/pH may influence both yields and composition of the resulting fucoidan or FCSPs (Li et al. 2008; Black et al. 1952). Already in 1952, Black et al. (1952) reported how the use of different extraction methods influenced the quantity of fucose with a disparity of 25% to 80% of total fucose of *Fucus vesiculosus* fucoidan and 20% to 55% of total fucose of *Polystroma canescens* fucoidan (Black et al. 1952). The influence of extraction method on fucose-containing sulfated polysaccharides yield is further exemplified by data from the yield from *Laminaria japonica*; the yield was only 1.3% of the dry weight (DW) of the seaweed when extracted with alkali in solution at 39°C for 5 h (Sakai et al. 2002), but 2.3% DW when the extraction was done with water in an autoclave at 120°C for 3 h (Wong et al. 2008). On the other hand, the fucoids, namely fucoidan yield of a combined extract of *F. evanescens* was 12.9% DW when extracted with 20% HCl at 95°C for 2 h (Sakai et al. 2002), while cold extraction with 0.4% HCl at 10°C yielded 12.0% DW (Zvyagintseva et al. 1999). Typically, the maximum fucoidan yields from (diast) brown seaweeds range from 5% DW. Fucoidan yields extracted from *F. vesiculosus* have thus been reported to be 7.0% DW; while the fucoidan yields obtained from *Undaria pinnatifida* and *Cedrata perrottetii* were found to be 5.2% DW and 6.8% DW, respectively (Koda et al. 2002). Despite the existence of early seminal studies about FCSP extraction, notably Black et al. (1952), that recommended the use of a three-step hot acid extraction procedure, there is only limited systematic information about the influences and apparently complex interactions of extraction parameters such as temperature, and time on fucose-containing sulfated polysaccharides yield. Several studies have been performed on unchopped brown seaweeds in the Phaeophyceae which grows wildly in enormous quantities almost all over the world; but it is particularly abundant along the coastal regions in south East Asia; where members of this genus are considered as nuisance seaweeds. In order to initially assess the possible use of *Sargassum* sp. as a source of FCSPs, we wanted to evaluate systematically the influence of the extraction parameters, i.e., acid concentration, time, temperature, and maximize the FCSPs yields, while at the same time attempt a relatively mild extraction procedure. In this present work, we therefore systematically examined the effects of different combinations of acid, reaction time and temperature on the fucose-containing sulfated polysaccharides yields from a *Sargassum* sp. obtained from Vietnam. We also compared the composition of the extracted polysaccharides obtained by the final yield-optimized one-step extraction procedure as well as an analogous two-step extraction procedure to those obtained with the classical, state-of-the-art multistep fucoidan extraction methods of Black et al. (1952) and Bilan et al. (2002). **Materials and methods** Chemicals Hydrochloric acid 37%, t-glucose and t-xylene were purchased from Merck; Ethanol 99.8%, trichloroacetic acid 99% (TFA), trifluoracetic acid 99%, diethyl ether, CaCl2, Na2SO4, BaCl2, L-arabinose, D-glucose and D-mannose were analytical grade. Dried *Sargassum* sp. was obtained from the company Viet Delta Co. Ltd (Ho Chi Minh City, Vietnam). **Design of experiments** Two-step and one-step extraction experiments were evaluated according to an experimental design of response surface modeling (RSM). A central composite rotatable face centered design was used with process modeling and optimization using multiple linear regression modeling. The number of different parameter combinations in each design was 14 with 3 applications of the center point. The varying factors were as follows: acid concentrations, 0, 0.1, and 0.2 M of HCl; extraction temperatures, 30, 60, and 90°C; and reaction times were 3, 5, and 7 h. All extraction experiments were performed in duplicate. **General extraction process** Sargassum sp. was ground by milling using an ORBI Nordski Coffee Mill 100 watts (ORBIS Nordski, Denmark, A/S, Denmark) to pass through a 45-μm sieve and permutated with a MoOH-CH3OH-He (4:2:3) mixture at room temperature to remove colored matter and phenolic compounds prior to extraction. All extractions (Fig. 1a and b) were done in a rotor ball (Ibdlas SW22—Germany) with stirring at 200 rpm. *Sargassum* sp. was ground using an ORBI Nordski Coffee Mill 100 watts (ORBIS Nordski, Denmark, A/S, Denmark) to pass through a 45-μm sieve and permutated with a MoOH-CH3OH-He (4:2:3) mixture at room temperature to remove colored matter and phenolic compounds prior to extraction. All extractions (Fig. 1a and b) were done in a rotor ball (Ibdlas SW22—Germany) with stirring at 200 rpm. (according to the experimental design) were added to a
Residue A
Residue A

(16 mL) from Extract A was precipitated with 60% EtOH. The supernatant was removed. Then the residue was washed with 5 mL MilliQ water and centrifuged again at 10,600×g. The precipitate was washed once with water and was coagulated immediately with aqueous ethanol to obtain crude FCSPs. The precipitate was discarded and the supernatant was centrifuged again at 10,600×g.

Each Eppendorf tube was weighed prior to pellet transfer, and the FCSPs yield (in mg g−1 dry weight) was thus based on the original seaweed dry weight.

cabbage flake that contained 1 g of ground dried, pretreated Sargassum sp. In the single-step extraction (Fig. 1a), the seaweed was extracted according to the factorial design described in the design of experiment. After extraction, the suspended seaweed was centrifuged at 10,600×g for 5 min, then the residue was washed with 5 mL MilliQ water and centrifuged again at 10,600×g for 10 min, thereafter the first supernatant and the supernatant from the washing were combined (Extract A). A liquid fraction from the washing were combined (Extract A) was precipitated with 60% (v/v) aqueous ethanol to obtain crude FCSPs. The precipitate was washed once with water and was coagulated immediately with either 0.5 M NaCl or 1 M CaCl₂ to release and precipitate alginate. The sticky precipitate was discarded and the supernatant was centrifuged again at 10,600×g for 10 min, Then the pellet was collected and transferred to an Eppendorf tube. Each Eppendorf tube was weighed prior to pellet transfer, and then centrifuged at 10,600×g for 5 min, the pellet was washed with alcohol and dextrin ether and then finally dried overnight at 50°C. The amount of dried crude FCSPs yield was translated to dry weight (in mg kg⁻¹ of the total extract volume (in mL) from the original dry seaweed solution (in grams dry weight per milliliter) and the FCPS yield (in mg g⁻¹ dry weight) was thus based on the original seaweed dry weight.

For the two-step extraction (Fig. 1b), the seaweed residue of the single-step extraction (Residue A, Fig. 1a) was extracted once more by addition of 10 mL HCl (of a concentration according to the experimental design) and the suspended seaweed was treated the same way as described above to obtain Extract B. Extract A and B were then combined, and crude FCSPs was isolated by the same procedure as described above (Fig. 1b).

Benchmark experiment A comparative study between the optimized conditions of the two-step extraction and the one-step extraction respectively, obtained from the multi-variate models, and two other extraction conditions from known methods (Black et al. 1952; Bilan et al. 2002) which, in short, involved extraction of the ground, dried, pretreated Sargassum sp. four times with a 2% CaCl₂ solution at 85°C for 5 h (Bilan et al. 2002). Method 3 was the benchmark extraction of Black et al. (1952) which, in short, involved extraction of the ground, dried, pretreated Sargassum sp. at 90°C for 4 h (once), or 1 h (once), was designated as Method 3a. Method 2 was the benchmark extraction of Bilan et al. (2002) which, in short, involved extraction of the ground, dried, pretreated Sargassum sp. at 50°C for 3 h (Bilan et al. 2002). Method 3 was the benchmark extraction of Black et al. (1952): for this extraction, the ground, dried, pretreated Sargassum sp. was extracted three times with 0.17 M HCl at 70°C for 1 h with washing, centrifugation and pH reduction from pH 2.5 to 1.9 after each extraction step (Black et al. 1952). After extraction, all extracts were precipitated with ethanol, washed with H₂O and treated with 1 M CaCl₂, to precipitate alginate. In each case, the supernatant was then centrifuged, precipitated with ethanol, centrifuged again, and the pellet was dried overnight at 50°C.
Dried Acid hydrolysis Dried Sargassum sp. powder and extracted polysaccharide samples (50 mg) were subjected to acid hydrolysis using 2 M TFA at 121°C for 2 h (Amusa and Meyer 2008). After hydrolysis, the mixture was freeze-dried, and the dried powder was resolubilized and centrifuged at 10,000 × g for 10 min to collect the supernatant then filtered using a 0.2 μm syringe tip filter (Sartorius GmbH, Germany) prior to HPAEC-PAD analysis (see below). The monosaccharide recoveries were determined for arabinose, rhamnose, fucose, galactose, glucose, xylose, and glucuronic acid and used as correction factors for the quantitative monosaccharide assay principally as described previously (Amusa and Meyer 2008).

Compositional analysis The separation and quantification of monosaccharides of the acid hydrolyzed polysaccharides were done by HPAEC-PAD using a BioLC system consisting of GS60 gradient pumps/ED50 electrochemical detector/AS50 chromatography compartment coupled to an A530 autosampler (Dionex Corp., USA). Separations were performed using a CarboPac TM PA20 (3 mm × 150 mm) analytical column (Dionex Corp.) according to Thomson and Meyer (2010). The quantification was carried out using the external monosaccharide standards: l-arabinose, l-rhamnose, l-fucose, D-galactose, D-glucose, D-mannose, D-xylose, and D-glucuronic acid. Data were collected and analyzed with Chromelon 6.80 SP4 Build 2346 software (Dionex Corp.). The sulfation analysis was performed by a turbidimetric method using agarose-barium reagent as described by Jackson and McCammon (1978).

Optimizing two-step extraction To determine the optimal extraction of fucose-containing sulfated polysaccharides, the seaweed was extracted twice and the effects of different treatment factors were tested systematically, i.e., acid, 0 to 0.2 M HCl; temperature, 30 to 90°C; and time, 1 to 5 h (Fig. 1b). According to the model, the predicted maximum yield of 7.1% DW was achieved using 0.07 M HCl/90°C/3 h extracted twice. The predicted extraction yield obtained when the two-step extraction was done without acid, at 30°C for 1 h produced 2.9 ± 0.8% DW only, while the harshest extraction treatment of 0.2 M/90°C/3 h resulted in a yield of 3.1 ± 0.6% DW from the combined Extract A and B, respectively.

Statistical and data analysis The analyses of variance were performed using MINITAB 15 (Minich, Inc., USA) with a significance value of P ≤ 0.05. The program Modules version 7.0.0.1 (Umetrics AB, Sweden) was used as an aid for the design of experimental templates and for the evaluation of the effects and the interactions by multiple linear regression analysis.

Evaluation of extraction—two steps

A turbidimetric analysis was performed for the determination of the yield of polysaccharides from the seaweed dried and extracted twice with 0.07 M HCl and steam distillation for 5 min. The data showed that the major part of the yield was obtained during the first extraction. The results of these experiments are presented in Table 1, and the data also showed that the major part of the yield was obtained during the first extraction. The results of these experiments are presented in Table 1, and the data also showed that the major part of the yield was obtained during the first extraction. The results of these experiments are presented in Table 1, and the data also showed that the major part of the yield was obtained during the first extraction.
thus showed that the yield of the first extraction (Extract A) of Method 1 (0.6±0.01% DW) was higher, p<0.05, than the corresponding yields of the benchmark methods Method 2 (0.2±0.08% DW) and Method 3 (0.2±0.09% DW), respectively (Fig. 2). Based on this result, it was decided to evaluate whether a higher polysaccharide yield could be obtained using only a single-step extraction of Method 1 type. A second statistical experiment was therefore performed to define the optimum acid concentration, temperature and incubation time for this single-step extraction (Fig. 1a, Extract A only).

Optimization of polysaccharide yield—single-step extraction

Multiple linear regression analysis of the data obtained in the statistically designed single-step extraction study showed that an increase in extraction time and temperature significantly increased the polysaccharide yield, whereas a decrease of acid concentration also significantly increased the yield (Table 1). Moreover, acid and acid interaction, acid and time interaction and acid and temperature interaction each had a significant effect on the polysaccharide yield (Table 1). According to the model, the maximum polysaccharide yield of ~8% DW from Sargassum sp. would be obtained at 0.03 M HCl/90°C/4 h, whereas the lowest polysaccharide yield was at 30°C or 60°C with 0.2 M HCl (Fig. 3).

The quality of the model was confirmed by the average value of the center points (0.76±0.1% DW) being close to the coefficient of the constant (0.26±0.29% DW). The regression model was given as:

\[
x = 0.51 - 0.51x_1 + 1.46x_2 - 0.35 x_1x_2 + 0.31 x_3 - 0.36 x_1^2 + 0.51 x_2 - 0.08x_3 + 0.15 \text{ in acid concentration}; x_2 \text{ is time; } x_3 \text{ is temperature; Table 1.}
\]

The summary of the fit and the predictability of the model for FCSPs yield were satisfactory (R²=0.928; Q²=0.835, model validity=0.891, and model reproducibility=0.889 (Fig. 3)).

The sulfate content of the fucoidan polysaccharide was then analyzed to ascertain whether any difference among the three methods (Table 2); this was probably due to the interaction of CaCl2 after each round of extraction. The sulfate content of the fucoidan polysaccharide was however lower with the optimized single-step extraction method than that obtained in Method 2 and 3 (Table 2). Method 2 had the lowest glucuronic acid content among the three methods (Table 3), thus was probably due to the interaction of CaCl2 after each round of extraction. The sulfate content of the fucoidan polysaccharide was however lower with the optimized single-step extraction method than that obtained in Method 2 and 3.

Investigation of extended extraction time

Based on the predicted optimized extraction model (Fig. 3) and the raw data (Fig. 4), it was decided to evaluate the influence of extended extraction time on the extracted polysaccharide composition. Extended extraction was carried out for up to 46 h using the predicted single-step optimal conditions for comparative analysis of the monosaccharide composition of the polysaccharide subjected to TFA hydrolysis and thereafter HPAEC to analyze the monomer content. The results showed that the fucose content was higher in the polysaccharide extracted with 0.2 M HCl than without acid when the treatment time was 1 or 3 h, but at 90°C h, the fucose level was higher with no acid than with 0.2 M HCl (Fig. 4b). The influence of acid treatment (0.2 M HCl) during extraction was thus observed to have a negative effect on the fucose content when temperature and time were elevated (Fig. 4b).

Comparative extraction analysis

The optimal condition of the single-step extraction predicted by the model (i.e., 0.03 M HCl/90°C/4 h) was used in an actual extraction experiment designated as Method 1 for comparative analysis of the monosaccharide composition with the benchmark extraction methods of Bilan et al. (2002) and Black at al. (1952): Method 2 and Black at al. (1952): Method 3. The monosaccharide composition of the polysaccharide showed that fucose, galactose, and glucuronic acid were the dominant monomers (Table 2). Clearly, the fucose content of the statistically optimized one-step extraction method was significantly higher than the fucose levels in the fucoidan (or FCSPs) obtained by both Method 2 and 3 (Table 2). Method 2 had the lowest glucuronic acid content among the three methods (Table 3), thus was probably due to the interaction of CaCl2 after each round of extraction. The sulfate content of the fucoidan polysaccharide was however lower with the optimized single-step extraction method than that obtained in Method 2 and 3.

Investigation of extended extraction time

Based on the predicted optimized extraction model (Fig. 3) and the raw data (Fig. 4), it was decided to evaluate the influence of extended extraction time on the extracted polysaccharide composition. Extended extraction was carried out for up to 46 h using the predicted single-step optimal conditions for comparative analysis of the monosaccharide composition of the polysaccharide subjected to TFA hydrolysis and thereafter HPAEC to analyze the monomer content. The results showed that the fucose content was higher in the polysaccharide extracted with 0.2 M HCl than without acid when the treatment time was 1 or 3 h, but at 90°C h, the fucose level was higher with no acid than with 0.2 M HCl (Fig. 4b). The influence of acid treatment (0.2 M HCl) during extraction was thus observed to have a negative effect on the fucose content when temperature and time were elevated (Fig. 4b).
and rhamnose contents (Fig. 5b). In addition, the extended polysaccharide, but did not affect the xylose, glucose, the mannose and galactose content of the extracted extraction time also resulted in an almost linear increase in ionic acid increased (Fig. 5a). Apparently, the duration of (Fig. 5a). The amount of fucose dropped steadily as the extraction time influenced the polysaccharide yield treatment, i.e., 0.03 M HCl/90°C. The duration of extraction time also resulted in an almost linear increase in the mannose and galactose content of the extracted polysaccharide, but did not affect the xylose, glucose, and rhamnose contents (Fig. 5b). In addition, the extended extraction time significantly decreased the sulfate content until 8 h of extraction (Fig. 5b). These results indicated that obtaining a high yield of a fucose-rich fucans from Sargassum sp. having a limited gluconic acid (and galactose and mannose) content was a compromise, and the data confirmed that an extraction time of 3 h was the best compromise to achieve high yields and a high fucose level (Fig. 5a). It is tempting to speculate that some “true” fucoidan is released in the early minutes of the extraction, that the acid catalytical loss of α-L-fucopyranose linkages relative to the other glycosidic bonds during extended treatment may confound the picture. One could interpret the evidence as indicating that the product isolated contained a sulfated fucose-containing heparinoglycan, possibly having a glucaran primary structure with extensive fucosyl side branches which are cleaved and lost as extraction time is extended. A sulfated fucan (a fucosan) may occur in Sargassum sp., but further elucidation of fucose-containing sulfated polysaccharides from Sargassum sp. is required. With a lower total polysaccharide yield requirement, a relatively higher fucose content could be obtained with a shorter extraction of 1 h as compared to a 4 h extraction (Table 2 and Fig. 5).

Discussion

Statistically designed optimization of FCSPs extraction was conducted to produce a model that provided an understanding of the complex influences and interactions of the extraction factors temperature, time, and acid concentration, and in turn allowed prediction of the optimal extraction treatment to obtain high FCSPs yield. The model predicted that 0.07 M HCl/90°C/3 h produced high FCSPs yield using two-step extractions. However, careful assessment of the data obtained after the first and second steps at these optimal extraction conditions showed that an additional extraction step to produce Extract B (Fig. 1b) could be omitted since its yield was very low compared to Extract A (Fig. 2). Hence, a new optimized extraction design was performed for a single-step extraction using the same factors settings, i.e., acid, 0 to 0.2 M HCl; temperature, 30 to 90°C; and time, 1 to 5 h. The maximum yield produced by this new optimal condition (0.03 M HCl/90°C/ 4 h) was ~7.0% DW. Previously reported multi-step extraction results of fucose-containing polysaccharides from S. hornieri and C. pinnatifida were 5.17% DW and 6.75-15.15% DW (Kaddu et al., 2002); from S. ringoldianum it was 200 mg from fresh 150 g algal fronds, approximately equivalent to 0.87% DW. Hence, the result of multiple linear regressions of the parameters and interaction on the fucose-containing poly-

FIG. 3 The 3D response surface plots at three different temperatures (°C), acid concentration (M), and extraction time (h) for extraction factors treatment, i.e., 0.03 M HCl/90°C. The duration of extraction time influenced the polysaccharide yield (Fig. 5a). Hence, the total polysaccharide yield increased until 8 h of extraction (using 0.03 M HCl/90°C) and the yield then reached a plateau of approximately 9% DW (Fig. 5a). The amount of fucose dropped steadily as the duration of the extraction time increased whereas glucuronic acid increased (Fig. 5a). It is tempting to speculate that some “true” fucoidan is released in the early minutes of the extraction, and in turn allowed prediction of the optimal extraction treatment to obtain high FCSPs yield. The model predicted that 0.07 M HCl/90°C/3 h produced high FCSPs yield using two-step extractions. However, careful assessment of the data obtained after the first and second steps at these optimal extraction conditions showed that an additional extraction step to produce Extract B (Fig. 1b) could be omitted since its yield was very low compared to Extract A (Fig. 2). Hence, a new optimized extraction design was performed for a single-step extraction using the same factors settings, i.e., acid, 0 to 0.2 M HCl; temperature, 30 to 90°C; and time, 1 to 5 h. The maximum yield produced by this new optimal condition (0.03 M HCl/90°C/ 4 h) was ~7.0% DW. Previously reported multi-step extraction results of fucose-containing polysaccharides from S. hornieri and C. pinnatifida were 5.17% DW and 6.75-15.15% DW (Kaddu et al., 2002); from S. ringoldianum it was 200 mg from fresh 150 g algal fronds, approximately equivalent to 0.87% DW. Hence, the result of multiple linear regressions of the parameters and interaction on the fucose-containing poly-

Fig. 3: The 3D response surface plots at three different temperatures (°C), acid concentration (M), and extraction time (h) for extraction factors
PhD Thesis 2012

saccharide yield for the one-step extraction was in agreement with the available data.

The composition obtained from HPAEC-PAD analysis of the TEA hydrolysates of Sargassum sp. agrees with the prevalent polysaccharide structure among Sargassum species; hence, in the case of S. patens and S. stenophyllus (Duarte et al., 2001; Zhou et al., 1996), it can be concluded that the higher acid levels might have caused a loosening of the cell wall matrix allowing local penetration of the acid into the fucan sulfates, to be partially degraded in the intercellular spaces resulting in partial degradation of FCSPs or notably fucoidan (Kloareg et al., 1984; Mabou et al., 1996) or, as pointed out by Percival and McDowell (1967), "Fucoidin, first isolated and named by Kylin (1913) was more systematically named fucoidan". This working definition of fucoidan provided the following definition: "Natural polysaccharides built up essentially of sulfated α-L-fucose residues are known as fucoidan". This definition of fucoidan has been retained by polysaccharide chemists to the present day (Painter, 1983; Painter et al., 2001, 2003). General linear model significantly different (P<0.05).

The optimization of the one-step method illustrated that a single-step extraction with the combination of low acid concentration, 0.03 M HCl or below, and temperature near 90°C was sufficient to produce a satisfactory FCSPs (fucoidan) yield. The integrity of the polysaccharide was best conserved at low acid treatment (Fig. 4b), since the use of 0.2 M HCl apparently broke the integrity of the polysaccharide molecules resulting in a decline of fucose at elevated time and temperature (Fig. 4b). This indicated that the higher acid levels might have caused a loosening of the cell wall matrix allowing local penetration of the acid into the fucoidan in the intercellular spaces resulting in partial degradation of FCSPs or notably fucoidan (Kloareg et al., 1984; Mabou et al., 1996). The effect of acid might have been enhanced as dried seaweed material was used in the experiments, where it can absorb and expand abruptly during hydration (Phillips et al., 2002). The degradation of carbohydrate chains built up of fucose was recognized when the duration of extraction time increased (Fig. 5). Our result is in agreement with Ponce et al. (2003) who reported that longer extraction time led to poorer fucose content. In seaweed, Percival and McDowell understood and emphasized that fucan referred to polysaccharides consisting almost entirely of fucose and other sulfates. Fucose-containing heteropolysaccharides (e.g., glucuronoxylofucans) were treated as quite different entities from fucoidan. painter (1983) provided the following definition: "Natural polysaccharides built up essentially of sulfated α-L-fucose residues are known as fucoidan". This working definition of fucoidan has been retained by polysaccharide chemists to the present day (Painter et al., 2001, 2003). General linear model significantly different (P<0.05).

The optimization of the one-step method illustrated that a single-step extraction with the combination of low acid concentration, 0.03 M HCl or below, and temperature near 90°C was sufficient to produce a satisfactory FCSPs (fucoidan) yield. The integrity of the polysaccharide was best conserved at low acid treatment (Fig. 4b), since the use of 0.2 M HCl apparently broke the integrity of the polysaccharide molecules resulting in a decline of fucose at elevated time and temperature (Fig. 4b). This indicated that the higher acid levels might have caused a loosening of the cell wall matrix allowing local penetration of the acid into the fucoidan in the intercellular spaces resulting in partial degradation of FCSPs or notably fucoidan (Kloareg et al., 1984; Mabou et al., 1996). The effect of acid might have been enhanced as dried seaweed material was used in the experiments, where it can absorb and expand abruptly during hydration (Phillips et al., 2002). The degradation of carbohydrate chains built up of fucose was recognized when the duration of extraction time increased (Fig. 5). Our result is in agreement with Ponce et al. (2003) who reported that longer extraction time led to poorer fucose content. In seaweed, Percival and McDowell understood and emphasized that fucan referred to polysaccharides consisting almost entirely of fucose and other sulfates. Fucose-containing heteropolysaccharides (e.g., glucuronoxylofucans) were treated as quite different entities from fucoidan. Painter (1983) provided the following definition: "Natural polysaccharides built up essentially of sulfated α-L-fucose residues are known as fucoidan". This working definition of fucoidan has been retained by polysaccharide chemists to the present day (Painter et al., 2001, 2003). General linear model significantly different (P<0.05).

The optimization of the one-step method illustrated that a single-step extraction with the combination of low acid concentration, 0.03 M HCl or below, and temperature near 90°C was sufficient to produce a satisfactory FCSPs (fucoidan) yield. The integrity of the polysaccharide was best conserved at low acid treatment (Fig. 4b), since the use of 0.2 M HCl apparently broke the integrity of the polysaccharide molecules resulting in a decline of fucose at elevated time and temperature (Fig. 4b). This indicated that the higher acid levels might have caused a loosening of the cell wall matrix allowing local penetration of the acid into the fucoidan in the intercellular spaces resulting in partial degradation of FCSPs or notably fucoidan (Kloareg et al., 1984; Mabou et al., 1996). The effect of acid might have been enhanced as dried seaweed material was used in the experiments, where it can absorb and expand abruptly during hydration (Phillips et al., 2002). The degradation of carbohydrate chains built up of fucose was recognized when the duration of extraction time increased (Fig. 5). Our result is in agreement with Ponce et al. (2003) who reported that longer extraction time led to poorer fucose content. In seaweed, Percival and McDowell understood and emphasized that fucan referred to polysaccharides consisting almost entirely of fucose and other sulfates. Fucose-containing heteropolysaccharides (e.g., glucuronoxylofucans) were treated as quite different entities from fucoidan. Painter (1983) provided the following definition: "Natural polysaccharides built up essentially of sulfated α-L-fucose residues are known as fucoidan". This working definition of fucoidan has been retained by polysaccharide chemists to the present day (Painter et al., 2001, 2003). General linear model significantly different (P<0.05).
addition, longer extraction time at higher temperatures led to higher polysaccharide yield with lower amount of sulfate and higher proportion of glucuronic acid (Ponce et al. 2003; Duarte et al. 2001). The same trend was also noticed in our present work. The glucuronic acid increased while sulfate decreased with time, i.e., the sulfate content was highest when glucuronic acid was lowest (Fig. 5a, b). This was also observed for fucoidan extraction from S. ringgoldianum (Mori and Nomizu 1982).

In conclusion, a simple and practical method for recovering a suite of complex fucose-containing sulfated polysaccharides from Sargassum sp. has been established. Clearly, yield and chemical composition of the product are strongly affected by the method of extraction as was to be expected. The yield data are gravimetric only and so pertain to a crude mixture of biopolymers extracted. The evidence presented shows that the extracted polysaccharide product is heterogeneous at any time it is analyzed, although the composition varies with the duration of extraction. The monomeric composition shows that fucose and sulfate were important components of the polysaccharide mixture as isolated. An optimized one-step extraction treatment to obtain high yields of a fucose-containing sulfated polysaccharide from Sargassum sp. has been developed, and the effect of different treatment parameters on the integrity of the polysaccharide was established. The results confirmed that Sargassum sp. may be a good source of fucose-containing sulfated polysaccharides. The data also demonstrated the vulnerability of fucose-containing sulfated polysaccharides to harsh extraction conditions and confirmed that the extraction method significantly influences the yields and not just the polysaccharide composition of the extracted polysaccharide. Furthermore, the main conclusions confirm the long known facts that cell wall polymers of brown algae are complex, and that the yields and chemical nature of polysaccharides recovered from such seaweeds are markedly influenced by the conditions used to extract them. It is important to emphasize this point as it has a major bearing on any study in which such products are being evaluated for biological activity. It is our belief that the model obtained may be applied to other FCSPs or fucoidan-containing types of brown seaweed.

In conclusion, a simple and practical method for recovering a suite of complex fucose-containing sulfated polysaccharides from Sargassum sp. has been established. Clearly, yield and chemical composition of the product are strongly affected by the method of extraction as was to be expected. The yield data are gravimetric only and so pertain to a crude mixture of biopolymers extracted. The evidence presented shows that the extracted polysaccharide product is heterogeneous at any time it is analyzed, although the composition varies with the duration of extraction. The monomeric composition shows that fucose and sulfate were important components of the polysaccharide mixture as isolated. An optimized one-step extraction treatment to obtain high yields of a fucose-containing sulfated polysaccharide from Sargassum sp. has been developed, and the effect of different treatment parameters on the integrity of the polysaccharide was established. The results confirmed that Sargassum sp. may be a good source of fucose-containing sulfated polysaccharides. The data also demonstrated the vulnerability of fucose-containing sulfated polysaccharides to harsh extraction conditions and confirmed that the extraction method significantly influences the yields and not just the polysaccharide composition of the extracted polysaccharide. Furthermore, the main conclusions confirm the long known facts that cell wall polymers of brown algae are complex, and that the yields and chemical nature of polysaccharides recovered from such seaweeds are markedly influenced by the conditions used to extract them. It is important to emphasize this point as it has a major bearing on any study in which such products are being evaluated for biological activity. It is our belief that the model obtained may be applied to other FCSPs or fucoidan-containing types of brown seaweed.
References
4 Bioactivity of FCSPs

Fucoidan was first isolated in 1913, since then, it has gained much attention in both the academic and industrial sectors (Jiao et al., 2011, Kylin, 1913). Fucoidan has been the subject of many research studies due to its diverse biological functions, including anti-tumor and immunomodulatory activities (Alekseyenko et al., 2007; Maruyama et al., 2006). According to the ISI Web of Knowledge (Thomson Reuters), the number of published articles has increased significantly since fucoidan, or “fucoidin” as it was first called, was first isolated from brown algae in 1913 (Kylin, 1913); in particular, a profound increase in the number of papers has occurred over the last 5–10 years. By now, the published papers related to fucoidan hit approximately 1,800 (August 2011, Fig. 4.1). Recent interests have focused mainly on the potentially beneficial biological activities of fucoidan and FCSPs in humans, including anti-tumor, immunomodulatory, anti-inflammatory, antiviral, antithrombotic, anticoagulant, and antioxidant effects as well as specific activities against kidney, liver, and urinary system disorders. Interest in utilizing natural bioactive compounds for the suppression or prevention of cancer is flourishing because of the current development of approaches has been recognized as a field with enormous potential (Rahman et al., 2010).

Fig. 4.1. The trend over 3 decades of research on fucoidan as depicted by the number of articles published annually (Thomson Reuters, ISI Web of Knowledge). The number of articles was obtained according to topics being assigned in ISI Web of Knowledge search engine with the following topic search terms: fucoidan; fucoid*algae; fucoid*algae*activity.
While the development of research efforts involving FCSPs and their potential applications continue to advance, understanding of the mechanisms and the particular structural features of the FCSPs being responsible for the various biological activities remains incomplete. Seaweeds, including various brown seaweeds such as Undaria and Laminaria spp., are part of the food culture in Asia, notably in Japan, the Philippines, and Korea, and seaweed extracts have also been used as remedies in traditional medicine. However, there currently exist no standardized FCSPs extraction or purification protocols, and no specific pharmaceutical, dermatological, or nutraceutical applications have as yet been officially approved for these polysaccharides or their lower molar mass oligosaccharide derivatives. FCSPs that were isolated in multi-step processes and then purified and fractionated demonstrated essential bioactivities (Holtkamp et al., 2009), while unpurified fucoidan that is isolated using milder and fewer processing steps has been found to induce anti-tumor activity and act as an immunopotentiator in tumor-bearing animals (Takahashi, 1983).

4.1 Anti-tumor activity of FCSPs
FCSPs from different brown seaweed species have shown remarkable growth inhibition of Sarcoma-180 cells implanted into mice and possess anti-tumor activity against L-1210 leukemia in mice (Yamamoto et al., 1974, 1981, 1984). The anti-tumor mechanism of fucoidan from sporophyll of Undaria pinnatifida was described by Maruyama et al. (2003), who indicated that the anti-tumor activity of fucoidan appears to be associated with significant enhancement of the cytotoxic activity of NK cells. The effectiveness of fucoidan as an immunopotentiator was exhibited by an increased immune response against A20 leukemia cells and a significantly lowered tumor size in transgenic (DD:11-10-Tg) mice (Maruyama et al., 2006). The enhancement of NK cell activity by fucoidan was augmented through increased production of macrophage-mediated immune responses, namely IL-2, IFN-γ, and IL-12 (Maruyama et al., 2003). Moreover, the most prevalent pathway through which fucoidan can inhibit cancer growth is apoptosis. Fucoidan induces apoptosis via the activation of caspase-3 in human HS-Sultan cells (Aisa et al., 2005); in MCF-7 cells via caspase-8-dependent pathways (Yamashiki-Miyamoto et al., 2009); and through the activation of caspases via both the death receptor-mediated and mitochondria-mediated apoptotic pathways (Kim et al., 2010).

4.2 Anti-proliferative and immune-response activities
This section is an extended elucidation of Paper 3: fucoidan from Sargassum sp. and F. vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates NK cells in mice in

While the development of research efforts involving FCSPs and their potential applications continue to advance, understanding of the mechanisms and the particular structural features of the FCSPs being responsible for the various biological activities remains incomplete. Seaweeds, including various brown seaweeds such as Undaria and Laminaria spp., are part of the food culture in Asia, notably in Japan, the Philippines, and Korea, and seaweed extracts have also been used as remedies in traditional medicine. However, there currently exist no standardized FCSPs extraction or purification protocols, and no specific pharmaceutical, dermatological, or nutraceutical applications have as yet been officially approved for these polysaccharides or their lower molar mass oligosaccharide derivatives. FCSPs that were isolated in multi-step processes and then purified and fractionated demonstrated essential bioactivities (Holtkamp et al., 2009), while unpurified fucoidan that is isolated using milder and fewer processing steps has been found to induce anti-tumor activity and act as an immunopotentiator in tumor-bearing animals (Takahashi, 1983).

4.1 Anti-tumor activity of FCSPs
FCSPs from different brown seaweed species have shown remarkable growth inhibition of Sarcoma-180 cells implanted into mice and possess anti-tumor activity against L-1210 leukemia in mice (Yamamoto et al., 1974, 1981, 1984). The anti-tumor mechanism of fucoidan from sporophyll of Undaria pinnatifida was described by Maruyama et al. (2003), who indicated that the anti-tumor activity of fucoidan appears to be associated with significant enhancement of the cytotoxic activity of NK cells. The effectiveness of fucoidan as an immunopotentiator was exhibited by an increased immune response against A20 leukemia cells and a significantly lowered tumor size in transgenic (DD:11-10-Tg) mice (Maruyama et al., 2006). The enhancement of NK cell activity by fucoidan was augmented through increased production of macrophage-mediated immune responses, namely IL-2, IFN-γ, and IL-12 (Maruyama et al., 2003). Moreover, the most prevalent pathway through which fucoidan can inhibit cancer growth is apoptosis. Fucoidan induces apoptosis via the activation of caspase-3 in human HS-Sultan cells (Aisa et al., 2005); in MCF-7 cells via caspase-8-dependent pathways (Yamashiki-Miyamoto et al., 2009); and through the activation of caspases via both the death receptor-mediated and mitochondria-mediated apoptotic pathways (Kim et al., 2010).

4.2 Anti-proliferative and immune-response activities
This section is an extended elucidation of Paper 3: fucoidan from Sargassum sp. and F. vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates NK cells in mice in
Lung cancer is among the most prevalent types of cancer worldwide and is a prime contributor to cancer-related mortality. Melanoma incidence rates for both males and females are also increasing in the United States (Jemal et al., 2010). To date, therapeutic strategies such as chemotherapy, radiation therapy, surgery, or combinations thereof have been implemented for many cancer patients; however, they still provide only minimal survival benefits due to factors such as toxicity, complications, and long-term side effects (Schneider et al., 2010; Grossi et al., 2010). As a consequence, the need for chemopreventive agents from natural sources with minimal or no harmful side effects is of ardent importance. Hence, FCSPs, notably fucoidan, from brown seaweed may prove to be excellent contenders for the prevention or control of lung and skin carcinogenesis.

4.2.2 Hypotheses and objectives
Isolating fucoidan from brown seaweed using minimal processing will preserve its structural integrity and, thereby, help maintain its bioactive characteristics but results in crude fucoidan products. The chemical nature of polysaccharides recovered from seaweed is influenced by the technology used to extract them. Crude fucoidan obtained via single-step extraction has been subjected to fewer and milder process conditions. Therefore, the well-defined structural features of fucoidans are likely be conserved and, thus, retain their biological activity.

It has been reported that crude fucoidan fractions from edible brown seaweeds affect L-1210 leukemia cell development in vivo, while sulfation of crude fucoidan fractions from Sargassum kelpmannsi shows enhances their anti-tumor activity (Yamamoto et al., 1983). Moreover, in vivo studies confirmed that the feeding of ground brown seaweed to animals, the oral administration of hot-water extraction of seaweed, and the intraperitoneal injection of crude fucoidan fractions resulted in an inhibitory effect on mammary tumorigenesis and intestinal carcinogenesis (Yamamoto et al., 1987; Yamamoto and Maruyama, 1985). Hence, other forms of cancer such as lung and skin cancer may alternatively be prevented or controlled through the use of crude fucoidan from brown seaweed.

Therefore, the objectives of the present works were to determine the potency of unfractionated FCSPs to inhibit the growth of skin and lung cancer cells in vitro, evaluate the immune-response
activity of FCSPs in mice in vivo, and elucidate the contributing factors behind this effect (Paper 3). Furthermore, we investigated the different structural features of unfractonated FCSPs from Sargassum sp. and F. vesiculosus using Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1H NMR) spectroscopy to determine whether its contribution is crucial to its bioactive effectiveness. We also conducted an in vitro study to examine the influence of FSCP products from Sargassum sp. and F. vesiculosus on melanoma B16 cell (MC) proliferation and caspase-3 activity mediating the apoptosis of melanoma B16 cells (Paper 4).

4.2.3 Result highlights

The influence of 2 crude fucoidans extracted from Sargassum sp. (MTA) using a minimal number of processing steps and obtained commercially from F. vesiculosus (SIG) on Lewis lung carcinoma cells (LLC) and MC was examined. The compositions of the SIG and MTA fucoidans were significantly different with respect to fucose, galactose, and glucuronic acid, unlike the sulfate content (Paper 3). The FT-IR spectra indicated that the sulfate in the FCSPs from Sargassum sp. (FSAR) was located in the equatorial C-2 and C-3 positions as depicted by the absorption bands at 817 cm$^{-1}$, whereas the IR spectra of FCSPs from F. vesiculosus (FVES) displayed an absorption band at 838 cm$^{-1}$ with a small shoulder absorption band at 822 cm$^{-1}$, indicating sulfate groups at the C-4 and C-2 positions (Paper 4). This finding corresponds to the 1H NMR spectra of the unfractonated FVES sample from F. vesiculosus, indicating a typical structure of algal fucoidan consisting of α3-linked 2-mono-O-sulfated 1-fucopyranose residues and/or α3-linked 2,4-di-O-sulfated 1-fucopyranose residues (Pereira et al., 1999; Patankar et al., 1993).

In vitro studies showed the anti-proliferative effect of crude fucoidan on LLC and MC cells in a dose-dependent manner. Male C57BL/6jCl mice were subjected to daily intra-peritoneal injections over 4 days with either SIG or MTA fucoidan (50 mg/kg body wt) to evaluate immune response augmentation. The cytolytic activity of NK cells was enhanced by crude fucoidan as indicated by 51Cr-labeled YAC-1 target cell release. Histochemical staining showed morphologic changes of MC cells after exposure to crude fucoidan. Fragmentation and condensation of chromatin, illustrated as an intense dark brown color within the cell nuclei, was indicative of crude fucoidan-induced apoptosis (Paper 3). In this work (Paper 4), we noted based on flow cytometric analysis that FSCP samples from Sargassum sp. and F. vesiculosus induced apoptosis through activation of caspase-3 in a dose-dependent manner (Paper 4).

The mechanism behind FSCP anti-tumor activity and how it enhances the immune response has yet to be determined. Nevertheless, this study provides substantial indications that FSCP exerts activity of FCSPs in mice in vivo, and elucidate the contributing factors behind this effect (Paper 3). Furthermore, we investigated the different structural features of unfractonated FCSPs from Sargassum sp. and F. vesiculosus using Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1H NMR) spectroscopy to determine whether its contribution is crucial to its bioactive effectiveness. We also conducted an in vitro study to examine the influence of FSCP products from Sargassum sp. and F. vesiculosus on melanoma B16 cell (MC) proliferation and caspase-3 activity mediating the apoptosis of melanoma B16 cells (Paper 4).
bioactive characteristics on lung and skin cancer model cells and that its anti-tumor activity was
due to the enhancement of NK cell activity (Paper 3). The crucial bioactive effectiveness of these
unfractionated FCSPs from Sargassum sp. and F. vesiculosus may be attributed to their distinct
structural features, such as level of sulfation (charge density) and position and bonding of the
sulfate substitutions or sulfated fucans and sulfated galactan complexes. This present study
demonstrated the early and later apoptosis stages by FACScan, which could indicate that FCSPs
have a direct apoptotic effect on MC cells (Paper 4) and that the presence of 3-linked galactan in
the structure of FCSPs from Sargassum sp. may somehow contribute to its anti-proliferative
effects.

4.2.4 Consideration and justification
The monosaccharide profiles of the acid-hydrolyzed polysaccharides from Sargassum sp. and F.
vesiculosus suggest that both products are contaminated with components other than fucose and
sulfate (Paper 3). The commercially obtained sample from F. vesiculosus was a crude fucoidan, as
indicated in the product specification from the supplier (Sigma Aldrich Inc., Germany).
Alternatively, the product extracted from Sargassum sp. contained a low amount of fucose
compared to that of F. vesiculosus, but they have the same chemical composition profile. The low
amount of recovered fucose was probably attributed by the condition used to extract them or the
extent of the acid hydrolysis, which perhaps has a major influence in the disappearance of fucose.
In any case, the isolated product from Sargassum sp. showed the same monosaccharide profile as
the commercially obtained sample from F. vesiculosus (Sigma Aldrich Inc.); hence, it is safe to say
that the isolated FCSP product from Sargassum sp. was also a crude fucoidan.

Moreover, based on previous published papers, the term crude fucoidan was applied for FCSPs
from brown seaweeds in which impurities are present in the isolated products (Yamamoto et al.,
1983; Takahashi, 1983). Nevertheless, crude fucoidan from these samples have shown potent anti-
tumor activity and cellular immunity associated with T cells (Takahashi, 1983). However, it should
be noted that evidence establishing that fucose comprised the backbone of a significant
component of the preparation was necessary to reasonably apply the term fucoidan. In the
absence of this evidence, it is preferable to term the isolated product from Sargassum sp. as crude
fucoidan or, to be more accurate, FCSP (Papers 3 and 4). The major active component may be a
FCSP (e.g., fucoidan) that is present in brown seaweed such as Sargassum sp., but further
structural elucidation is essential, as it has major bearing on any biological activity study.
Nevertheless, there are many indications in this present work that FCSP samples may contain
bioactive characteristics on lung and skin cancer model cells and that its anti-tumor activity was
due to the enhancement of NK cell activity (Paper 3). The crucial bioactive effectiveness of these
unfractionated FCSPs from Sargassum sp. and F. vesiculosus may be attributed to their distinct
structural features, such as level of sulfation (charge density) and position and bonding of the
sulfate substitutions or sulfated fucans and sulfated galactan complexes. This present study
demonstrated the early and later apoptosis stages by FACScan, which could indicate that FCSPs
have a direct apoptotic effect on MC cells (Paper 4) and that the presence of 3-linked galactan in
the structure of FCSPs from Sargassum sp. may somehow contribute to its anti-proliferative
effects.

4.2.4 Consideration and justification
The monosaccharide profiles of the acid-hydrolyzed polysaccharides from Sargassum sp. and F.
vesiculosus suggest that both products are contaminated with components other than fucose and
sulfate (Paper 3). The commercially obtained sample from F. vesiculosus was a crude fucoidan, as
indicated in the product specification from the supplier (Sigma Aldrich Inc., Germany).
Alternatively, the product extracted from Sargassum sp. contained a low amount of fucose
compared to that of F. vesiculosus, but they have the same chemical composition profile. The low
amount of recovered fucose was probably attributed by the condition used to extract them or the
extent of the acid hydrolysis, which perhaps has a major influence in the disappearance of fucose.
In any case, the isolated product from Sargassum sp. showed the same monosaccharide profile as
the commercially obtained sample from F. vesiculosus (Sigma Aldrich Inc.); hence, it is safe to say
that the isolated FCSP product from Sargassum sp. was also a crude fucoidan.

Moreover, based on previous published papers, the term crude fucoidan was applied for FCSPs
from brown seaweeds in which impurities are present in the isolated products (Yamamoto et al.,
1983; Takahashi, 1983). Nevertheless, crude fucoidan from these samples have shown potent anti-
tumor activity and cellular immunity associated with T cells (Takahashi, 1983). However, it should
be noted that evidence establishing that fucose comprised the backbone of a significant
component of the preparation was necessary to reasonably apply the term fucoidan. In the
absence of this evidence, it is preferable to term the isolated product from Sargassum sp. as crude
fucoidan or, to be more accurate, FCSP (Papers 3 and 4). The major active component may be a
FCSP (e.g., fucoidan) that is present in brown seaweed such as Sargassum sp., but further
structural elucidation is essential, as it has major bearing on any biological activity study.
Nevertheless, there are many indications in this present work that FCSP samples may contain
fucoidan-like structures (Paper 4). This study showed that both FCSP samples induced apoptosis by activating caspases-3 and exerted anti-tumor activity by inhibiting the growth of MC cells. It appears that unfractionated FCSPs from Sargassum sp. and F. vesiculosus are potent skin cancer preventive agents, a fact that was demonstrated by a direct in vitro study of melanoma B16 cells (Paper 4).

4.3 Paper 3: Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo

Authors: Marcel Tutor Ale¹, Hiroko Maruyama², Hidekazu Tamauchi³, Jørn Dalgaard Mikkelsen⁴, Anne S. Meyer⁵

Please turn to page 71

4.4 Paper 4: Fucose containing sulfated polysaccharides inhibits the proliferation of melanoma cells and induces apoptosis by activation of caspase-3 in vitro

Marine Drugs, 2011, Submitted

Authors: Marcel Tutor Ale¹, Hiroko Maruyama², Hidekazu Tamauchi³, Jørn Dalgaard Mikkelsen⁴, Anne S. Meyer⁵

Address: ¹Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering Technical University of Denmark (DTU)
Soebofts Plads Bldg. 229, 2800 Kgs. Lyngby, Denmark
²Department of Pathology, School of Allied Science and ³Department of Microbiology, School of Medicine
Kitasato University, Kitasato 1-15-1
Sagamihara, Kanagawa 228-8555 Japan

Please turn to page 77

fucoidan-like structures (Paper 4). This study showed that both FCSP samples induced apoptosis by activating caspases-3 and exerted anti-tumor activity by inhibiting the growth of MC cells. It appears that unfractionated FCSPs from Sargassum sp. and F. vesiculosus are potent skin cancer preventive agents, a fact that was demonstrated by a direct in vitro study of melanoma B16 cells (Paper 4).

4.3 Paper 3: Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo

Authors: Marcel Tutor Ale¹, Hiroko Maruyama², Hidekazu Tamauchi³, Jørn Dalgaard Mikkelsen⁴, Anne S. Meyer⁵

Please turn to page 71

4.4 Paper 4: Fucose containing sulfated polysaccharides inhibits the proliferation of melanoma cells and induces apoptosis by activation of caspase-3 in vitro

Marine Drugs, 2011, Submitted

Authors: Marcel Tutor Ale¹, Hiroko Maruyama², Hidekazu Tamauchi³, Jørn Dalgaard Mikkelsen⁴, Anne S. Meyer⁵

Address: ¹Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering Technical University of Denmark (DTU)
Soebofts Plads Bldg. 229, 2800 Kgs. Lyngby, Denmark
²Department of Pathology, School of Allied Science and ³Department of Microbiology, School of Medicine
Kitasato University, Kitasato 1-15-1
Sagamihara, Kanagawa 228-8555 Japan

Please turn to page 77
1. Introduction

in a new use for a group of brown seaweed-like fucoid-...dose-dependent and antigenic effects [4]. The utilization of natural bioactive compounds for suppression of prevention of cancer in living being has been recognized as a field of enormous potential [5]. Fucoidans extracted from brown seaweed like Laminaria sp. and Ascophyllum nodosum have repeatedly demonstrated a variety of anti-cancer activities in in vitro and in vivo systems. Fucoidans isolated from the brown seaweed Sargassum sp. and Fucus vesiculosus reduce cell viability of lung cancer cells and melanoma cells in vitro and activates natural killer cells in mice in vivo

Marcel Tutur A1, Hiroko Murayama2, Hidekazu Tanaka3, Jenn D. Mikkelersen4, Anne S. Meyer4

A1 Department of Organic Engineering, Technical University of Denmark (DTU), Lyngby, Denmark
A2 Department of Molecular and Clinical Pharmacology, University of Edinburgh, UK
A3 Department of Microbiology, School of Allied Sciences, Ehime University, Japan
A4 Department of Organic Engineering, Technical University of Denmark (DTU), Lyngby, Denmark

© 2011 Elsevier B.V. All rights reserved.

Fucoidans from Sargassum sp. and Fucus vesiculosus reduce cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo

Marcel Tutur A1, Hiroko Murayama2, Hidekazu Tanaka3, Jenn D. Mikkelersen4, Anne S. Meyer4

1. Introduction

Fucoidans from brown seaweeds like Laminaria sp. and Ascophyllum nodosum have repeatedly demonstrated a variety of anti-cancer activities in in vitro and in vivo systems. Fucoidans isolated from the brown seaweed Sargassum sp. and Fucus vesiculosus reduce cell viability of lung cancer cells and melanoma cells in vitro and activates natural killer cells in mice in vivo

Marcel Tutur A1, Hiroko Murayama2, Hidekazu Tanaka3, Jenn D. Mikkelersen4, Anne S. Meyer4

A1 Department of Organic Engineering, Technical University of Denmark (DTU), Lyngby, Denmark
A2 Department of Molecular and Clinical Pharmacology, University of Edinburgh, UK
A3 Department of Microbiology, School of Allied Sciences, Ehime University, Japan
A4 Department of Organic Engineering, Technical University of Denmark (DTU), Lyngby, Denmark

© 2011 Elsevier B.V. All rights reserved.

Fucoidans from brown seaweeds like Laminaria sp. and Ascophyllum nodosum have repeatedly demonstrated a variety of anti-cancer activities in in vitro and in vivo systems. Fucoidans isolated from the brown seaweed Sargassum sp. and Fucus vesiculosus reduce cell viability of lung cancer cells and melanoma cells in vitro and activates natural killer cells in mice in vivo

Marcel Tutur A1, Hiroko Murayama2, Hidekazu Tanaka3, Jenn D. Mikkelersen4, Anne S. Meyer4

A1 Department of Organic Engineering, Technical University of Denmark (DTU), Lyngby, Denmark
A2 Department of Molecular and Clinical Pharmacology, University of Edinburgh, UK
A3 Department of Microbiology, School of Allied Sciences, Ehime University, Japan
A4 Department of Organic Engineering, Technical University of Denmark (DTU), Lyngby, Denmark

© 2011 Elsevier B.V. All rights reserved.

Fucoidans from brown seaweeds like Laminaria sp. and Ascophyllum nodosum have repeatedly demonstrated a variety of anti-cancer activities in in vitro and in vivo systems. Fucoidans isolated from the brown seaweed Sargassum sp. and Fucus vesiculosus reduce cell viability of lung cancer cells and melanoma cells in vitro and activates natural killer cells in mice in vivo

Marcel Tutur A1, Hiroko Murayama2, Hidekazu Tanaka3, Jenn D. Mikkelersen4, Anne S. Meyer4

A1 Department of Organic Engineering, Technical University of Denmark (DTU), Lyngby, Denmark
A2 Department of Molecular and Clinical Pharmacology, University of Edinburgh, UK
A3 Department of Microbiology, School of Allied Sciences, Ehime University, Japan
A4 Department of Organic Engineering, Technical University of Denmark (DTU), Lyngby, Denmark

© 2011 Elsevier B.V. All rights reserved.

Fucoidans from brown seaweeds like Laminaria sp. and Ascophyllum nodosum have repeatedly demonstrated a variety of anti-cancer activities in in vitro and in vivo systems. Fucoidans isolated from the brown seaweed Sargassum sp. and Fucus vesiculosus reduce cell viability of lung cancer cells and melanoma cells in vitro and activates natural killer cells in mice in vivo

Marcel Tutur A1, Hiroko Murayama2, Hidekazu Tanaka3, Jenn D. Mikkelersen4, Anne S. Meyer4

A1 Department of Organic Engineering, Technical University of Denmark (DTU), Lyngby, Denmark
A2 Department of Molecular and Clinical Pharmacology, University of Edinburgh, UK
A3 Department of Microbiology, School of Allied Sciences, Ehime University, Japan
A4 Department of Organic Engineering, Technical University of Denmark (DTU), Lyngby, Denmark

© 2011 Elsevier B.V. All rights reserved.
2. Materials and methods

2.1. Chemistry

Two crude fucoidan samples were used throughout this work. Firstly, crude fucoidan from Sargassum sp. (MSU) was extracted in our laboratory (see Section 2.2) while crude fucoidan from Sargassum fluitans (Jaguar Land Ltd., Malaysia) was purchased from Sigma–Aldrich (Canada). To remove the impurities and proteins, the crude fucoidan was hydrolyzed using 1 M HCl at 160 °C for 1 h. The supernatant was then neutralized to pH 7 using 1 M NaOH. The crude fucoidan was washed with water to remove the impurities. The dried material was then extracted with water in parallel at 50 °C for 24 h.

2.2. Determination of monosaccharide composition

The samples were hydrolyzed with 2 M trifluoroacetic acid (Merck, Germany) at 100 °C for 3 h. The supernatants were evaporated to dryness and the residue was redissolved in water. The resulting solution was neutralized to pH 7 with 1 M NaOH. The monosaccharides were subsequently analysed using a Dionex-ICS-3000 system.

2.3. Electrophoresis

The electrophoresis was performed using an Agilent 2200 system (Agilent Technologies). The samples were separated by using a 25 cm capillary column with a 30 μm inner diameter. A sample volume of 5 μL was injected using the splitless mode. The capillary was maintained at 150 °C. The separation was performed at +30 kV and the absorbance was monitored at 214 nm.

2.4. Fucoidan composition analysis

The determination of each of the acid hydrolysed crude fucoidan samples was analysed by using glass-capillary and sodium carbonate-sodium hydroxide solutions of various concentrations of sodium carbonate and sodium hydroxide. Each sample was dissolved in a 1% sodium carbonate solution and the pH was adjusted to 11

2.5. Antioxidant activity assay

Male SHR rats (Charles River Japan Inc., Japan) were used for this study. The rats were maintained in a controlled environment with a 12 h light/dark cycle and were fed a standard laboratory diet. The rats were divided into four groups: control, 250 mg/kg crude fucoidan, 500 mg/kg crude fucoidan, and 1000 mg/kg crude fucoidan. The rats were given daily subcutaneous injections of crude fucoidan for 2 weeks. At the end of the experiment, the rats were sacrificed, and their organs were collected for analysis.

3. Results

The results showed that the crude fucoidan had antioxidant activity, which was determined using the reducing power assay. The results showed that the crude fucoidan had a significant reduction in the reducing power assay, indicating that it had antioxidant activity. The results were consistent with previous studies that showed that fucoidan had antioxidant activity.

4. Conclusion

In conclusion, the crude fucoidan had antioxidant activity, which could be beneficial in the treatment of oxidative stress-related diseases. Future studies are needed to investigate the mechanisms of action of the crude fucoidan and to determine its potential for use in clinical settings.
Triphosphate (BDH) and labeling (TUNEL) method using an in situ apoptosis detection kit (Takara Bio Inc., Shiga, Japan). The TUNEL method was performed using the TUNEL kit (Takara Bio Inc., Shiga, Japan). This kit employs a TdT (terminal deoxynucleotidyl transferase) and digoxigenin-labeled deoxyuridine 5'-triphosphate (DUTP) to detect fragmented DNA; the reaction is visualized using alkaline phosphatase and a colorimetric substrate. The TUNEL method is an in situ method that detects DNA fragmentation in apoptotic cells. The TdT enzyme elongates fragmented single-stranded DNA with dUTP and digoxigenin-labeled nucleotides. The digoxigenin label is then detected using an alkaline phosphatase substrate.

The TUNEL method is often used to detect apoptosis in biological samples. It can be used to study the effects of various treatments or conditions on cell survival, and it is widely used in research and diagnostic applications.

The TUNEL method is typically performed on tissue sections or cell cultures, using a specific protocol that includes enzymatic digestion of DNA, labeling of fragmented DNA, and detection of the label using a colorimetric substrate. The protocol typically involves the following steps:

1. Enzymatic digestion of DNA: The sample is treated with a DNAase to ensure that the DNA is in a suitable state for labeling.
2. Labeling of fragmented DNA: The TdT enzyme elongates fragmented single-stranded DNA with dUTP and digoxigenin-labeled nucleotides.
3. Detection of the label: The digoxigenin label is detected using an alkaline phosphatase substrate.

The TUNEL method is a sensitive and specific method for detecting apoptosis, and it is widely used in research and diagnostic applications.

To study the effects of various treatments or conditions on cell survival, the TUNEL method is often used to detect apoptosis in biological samples. It can be used to study the effects of various treatments or conditions on cell survival, and it is widely used in research and diagnostic applications.

The TUNEL method is typically performed on tissue sections or cell cultures, using a specific protocol that includes enzymatic digestion of DNA, labeling of fragmented DNA, and detection of the label using a colorimetric substrate. The protocol typically involves the following steps:

1. Enzymatic digestion of DNA: The sample is treated with a DNAase to ensure that the DNA is in a suitable state for labeling.
2. Labeling of fragmented DNA: The TdT enzyme elongates fragmented single-stranded DNA with dUTP and digoxigenin-labeled nucleotides.
3. Detection of the label: The digoxigenin label is detected using an alkaline phosphatase substrate.

The TUNEL method is a sensitive and specific method for detecting apoptosis, and it is widely used in research and diagnostic applications.
The weights of male C57BL/6J mice (Clea Japan Inc, Tokyo, Japan) were recorded and the inherent albinism of the mice was observed daily for 4 days. The mice revealed that there were no obvious differences in weight between the experimental and control groups. In addition, significant increases in weight were observed in the groups treated with fucoidans, with the exception of the group treated with fucoidan at 14 x 3.85 mg/kg (for MTA and 11.1 x 1.70 mg/kg for SIG) compared to 5.1 x 2.35 mg/kg in the non-treated control group (Fig. 3). The positive control Poly C succinyl fucose at 108.1 x 26.15 mg/kg significantly increased the survival rate of mice. The weights of the mice were determined at all time points, and a trend in the weight gain was observed in the groups treated with fucoidans compared to the control group (Fig. 3).

In this study, we employed crude fucoidan extracted from ground Selectum sp. as a single-step extraction using 0.05 M HCl at 0°C for 4 h, and commercially obtained crude fucoidan from F. vesiculosus. We found that the both materials had similar biological profiles in terms of their anti-cancer effects. In particular, fucose, galactose, and mannose were observed in the crude material, and their ratios were given in the supplementary materials (Table 1). Low dose levels of MTA fucoidan induced more significant reduction of the prolifera- tion of human cancer cells than the SIG fucoidan, but increased the cell proliferation assays revealed moderate to low inhibitory activity of MTA and SIG fucoidans on Lewis lung carcinoma and melanoma B16 F10 cells (Fig. 1). These data indicated the crude fucoidan hista- bility towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola- tion towards these cell lines was probably related to the sulfate group present in the fucoidan structure rather than the presence of significant amounts of fucose. The same observation was reported by Yamamoto et al. [17] that added sulfates to the crude fucoidam and viola-
found variously, NK cells promote the effect of fucoidan and its biological activities, it has shown that fucoidan exerts significant anti-proliferative effects on both lung and skin cancer cells.

In previous in vivo and in vitro studies of fucoidan, we have reported that fucoidan suppressed proliferation of various cancer cell lines and inhibited the expression of some specific molecular markers [7, 20]. In the present work, we further investigated the mechanism of action of fucoidan on human skin carcinoma cancer cells in order to understand the underlying mechanisms of the fucoidan-induced anti-proliferative effect on human skin cancer cells.

Since fucoidan is known to be a potent and skin cancer preventive agent and its mode of action is associated with the immune response [5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], we have examined the potential of fucoidan to induce apoptosis in human skin carcinoma cancer cells. As a result, we have found that fucoidan induces apoptosis in human skin carcinoma cancer cells, as shown by DNA fragmentation and by the appearance of typical nuclear condensation and chromatin fragments. This effect was observed in both in vitro and in vivo studies. In addition, we have shown that fucoidan induces apoptosis in human skin carcinoma cancer cells by inhibiting the activation of caspase-8 and caspase-9, which are key enzymes in the apoptosis cascade. Furthermore, we have found that fucoidan induces an increase in the expression of Bak and Bax, which are pro-apoptotic proteins, and a decrease in the expression of Bcl-2 and Bcl-xL, which are anti-apoptotic proteins. These results suggest that fucoidan induces apoptosis in human skin carcinoma cancer cells by promoting the pro-apoptotic proteins and inhibiting the anti-apoptotic proteins.

Moreover, we have shown that fucoidan significantly inhibits the expression of IL-12, which is a cytokine that plays a critical role in the immune response. This effect was observed in both in vitro and in vivo studies. In addition, we have shown that fucoidan inhibits the expression of TNF-α, which is another cytokine that plays a critical role in the immune response. These results suggest that fucoidan inhibits the immune response by downregulating the expression of pro-inflammatory cytokines.

In conclusion, our results suggest that fucoidan has potential anti-cancer properties and can be used as a therapeutic agent for the treatment of human skin carcinoma cancer cells. Further studies are needed to investigate the mechanism of fucoidan action on human skin carcinoma cancer cells in more detail and to test its efficacy in vivo.

References
Fucose-Containing Sulfated Polysaccharides from Brown Seaweeds Inhibit Proliferation of Melanoma Cells and Induce Apoptosis by Activation of Caspase-3 in Vitro

Marcel Tutor Ale 1, Hiroko Maruyama 2, Hidekazu Tamauchi 3, Jørn D. Mikkelsen 1 and Anne S. Meyer 1,*

1 Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Soeltoft Plads Bldg. 229, 2800 Kgs. Lyngby, Denmark; E-Mails: mta@kt.dtu.dk (M.T.A.); jdm@kt.dtu.dk (J.D.M.)
2 Department of Pathology, School of Allied Science, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 252-0373, Japan; E-Mail: maruyama@ahs.kitasato-u.ac.jp
3 Department of Microbiology, School of Medicine, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 252-0373, Japan; E-Mail: hidetama@med.kitasato-u.ac.jp

* Author to whom correspondence should be addressed; E-Mail: am@kt.dtu.dk; Tel.: +45-4525-2800; Fax: +45-4593-2906.

Received: 10 October 2011; in revised form: 21 November 2011 / Accepted: 6 December 2011 / Published: 13 December 2011

Abstract: Fucose-containing sulfated polysaccharides (FCSPs) extracted from seaweeds, especially brown macro-algae, are known to possess essential bioactive properties, notably growth inhibitory effects on tumor cells. In this work, we conducted a series of in vitro studies to examine the influence of FCSPs products from Sargassum henslowianum C. Agardh (FSAR) and Fucus vesiculosus (FVES), respectively, on proliferation of melanoma B16 cells and to investigate the underlying apoptosis promoting mechanisms. Cell viability analysis showed that both FCSPs products, i.e., FSAR and FVES, decreased the proliferation of the melanoma cells in a dose-response fashion, with FSAR being more potent at lower dosages, and FVES being relatively more anti-proliferative than FSAR at higher dosages. Flow cytometric analysis by Annexin V staining of the melanoma cells exposed to the FCSPs products confirmed that both FSAR and FVES induced apoptosis. The FCSPs-induced apoptosis was evidenced by loss of plasma membrane asymmetry and transloation of the cell membrane phospholipids and was accompanied by the activation of caspase-3. The FCSPs bioactivity is proposed to be attributable to distinct structural features of the FCSPs, particularly the presence of sulfated galactofucans (notably in C. Agardh (FSAR) and Fucus vesiculosus (FVES), respectively, on proliferation of melanoma B16 cells and to investigate the underlying apoptosis promoting mechanisms. Cell viability analysis showed that both FCSPs products, i.e., FSAR and FVES, decreased the proliferation of the melanoma cells in a dose-response fashion, with FSAR being more potent at lower dosages, and FVES being relatively more anti-proliferative than FSAR at higher dosages. Flow cytometric analysis by Annexin V staining of the melanoma cells exposed to the FCSPs products confirmed that both FSAR and FVES induced apoptosis. The FCSPs-induced apoptosis was evidenced by loss of plasma membrane asymmetry and transloation of the cell membrane phospholipids and was accompanied by the activation of caspase-3. The FCSPs bioactivity is proposed to be attributable to distinct structural features of the FCSPs, particularly the presence of sulfated galactofucans (notably in
Keywords: fucoidan; anti-tumor; sulfated polysaccharides; bio-activity; apoptosis; fucose

1. Introduction

Fucose-containing sulfated polysaccharides (FCSPs) designate a group of diverse polysaccharides that can be extracted from brown seaweeds of the class Phaeophyceae. This seaweed class includes the order Fucales, in which seaweed species such as Fucus sp. and Sargassum sp. belong. The most studied FCSPs, originally called fucoidan, fucoidin, or fucans, have a backbone built of (1→3)-linked α-l-fucopyranosyl residues or of alternating (1→3)- and (1→4)-linked α-L-fucopyranosyl residues [1,2]. These fucopyranosyl residues may be substituted with short fucose side chains or sulfate groups at C-2 or C-4, and may also carry other minor substitutions, e.g., acetate, xylose, mannose, glucuronic acid, galactose, or glucose [3–5]. Brown seaweed FCSPs also include sulfated galactofucans with backbones built of (1→6)-β-D-galacto- and/or (1→2)-β-D-mannopyranosyl units. In addition to sulfation, these backbone residues may be substituted with fucoses, single fucose substitutions, and/or glucuronic acid, xylose or glucose substitutions [4]. Recently it has been understood that the compositional and structural features of FCSPs differ significantly among seaweed species and that these features are markedly influenced by the conditions used to extract them [3,6].

FCSPs of different degrees of purity and composition, extracted from brown seaweeds such as Sargassum sp. and Fucus sp., have been documented to have a wide range of biological activities including anticoagulant [7,8], anti-thrombotic [8], anti-inflammatory [9], anti-viral [10,11], and notably anti-tumoral effects [8,12,13]. Unfractionated FCSPs have thus specifically been found to reduce cell proliferation of lung carcinoma and melanoma cells in vitro; to exert immunopotentiating effects in tumor bearing animals; and to activate natural killer cells in mice leading to increased anti-tumor effectiveness [13–16]. Kim et al. [17] applied a crude polysaccharide composed predominantly of sulfated fucose from Fucus vesiculosus to human colon cancer cells in vitro, and concluded that this crude brown seaweed polysaccharide extract can induce apoptosis, and provided data that suggested that the apoptosis was induced via activation of caspases. Moreover, commercially available crude FCSPs (“fucoidan”) extracted from F. vesiculosus have been reported to inhibit proliferation and induce apoptosis on human lymphoma HS-Sultan cells lines by activation of caspase-3 [18]. Recently, we have reported that crude FCSPs extracted from a Sargassum sp. and from F. vesiculosus, respectively, induce growth inhibition and apoptosis of melanoma B16 cells in vitro [19]. When injected intraperitoneally into mice over four days, these same unfractionated FCSPs were found to induce enhanced natural killer cells (NK cells) activity, to result in specific lysis of YAC-1 cells (a murine T-lymphoma cell line sensitive to NK cells) [19]. Previous reports with human HS-Sultan cells and MCF-7 cells, respectively, have suggested that the FCSPs induced apoptosis initiation may take place via activation of caspase-3 and caspase-8 dependent pathways, respectively [18,19], but no firm evidence has been established regarding the exact mechanism responsible for the apoptotic action

Keywords: fucoidan; anti-tumor; sulfated polysaccharides; bio-activity; apoptosis; fucose
2. Results

2.1. FCSPs Chemical Composition

The compositional analysis of the fucose-containing sulfated polysaccharide products from *S. henslowianum* C. Agardh (FSAR) and *F. vesiculosus* (FVES), respectively, showed that the FSAR product was mainly made up of uronic acid and fucose, with a significant level of sulfate, and minor amounts of other monosaccharides, mainly galactose and mannose (Table 1). The FVES product had a similar monosaccharide profile and a similar sulfation level, but the amounts of fucose, galactose and xylose were significantly higher than in FSAR; whereas the uronic acid and mannose levels were lower (Table 1).

<table>
<thead>
<tr>
<th>Samples</th>
<th>Monosaccharide Composition * in mg/g DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSAR</td>
<td>Fuc ** Rha Ara Gal ** Glc Xyl ** Man ** UA ** Sulfate</td>
</tr>
<tr>
<td>FSAR</td>
<td>31.5 1.8 0.2 0.2 14.4 4.2 0.2 0.3 5.7 0.5 127 384 20</td>
</tr>
<tr>
<td>FVES</td>
<td>139.5 2.0 0.6 2.8 0.2 29 2.5 1.8 13.2 0.2 0.4 19.2 342 45</td>
</tr>
</tbody>
</table>

* Monosaccharide composition: Fuc = fucose, Rha = rhamnose, Ara = arabinose, Gal = galactose, Glc = glucose, Xyl = xylose, Man = mannose, UA = uronic acid; ** Significantly different levels among FSAR and FVES at P < 0.05, number of replicates > 4.

2.2. IR and 1H NMR Spectra of FCSPs

The FCSPs were analyzed to determine if their infrared absorption properties were similar to the previously reported fucoidan IR absorption data [2,20]. The spectra of the FSAR and FVES samples scanned between wavenumbers 4000 and 400 cm\(^{-1}\) both exhibited major absorption bands at around 3340 and 3240 cm\(^{-1}\) that were interpreted as being due to O-H stretching (data not shown). The IR spectra between 1800 and 500 cm\(^{-1}\) (Figure 1a,b) revealed small but distinct bands for both the samples at 1720 cm\(^{-1}\) which indicated the presence of O-acetyl groups [21], whereas the absorption bands at ~1610 to 1620 cm\(^{-1}\) (Figure 1a,b), most pronounced for the FSAR sample, indicated uronic acid [20]. The FSAR sample showed an intense IR band at around 1400-1470 cm\(^{-1}\) which could be attributable to scissoring vibration of CH\(_{2}\) (galactose, mannose) and asymmetric bending vibration of CH\(_{3}\) (fucose, O-acetyl) as suggested previously for absorption at around 1455 cm\(^{-1}\) by Symtyosa et al. [22]. The
absorption band at 1240 cm⁻¹ observed for both samples, but being particularly prevalent for the FVES sample, was assigned as S=O stretching vibration, indicating the presence of esterified sulfate [20]. A similar absorption pattern around 820-840 cm⁻¹ was observed for both FCSPs. The FSAR infrared spectrum showed an absorption band at 817 cm⁻¹ (Figure 1a) whereas the FVES infrared spectrum displayed a broader absorption band at 838 cm⁻¹ and a small shoulder of absorption at 822 cm⁻¹ (Figure 1b). Since IR adsorption at 840 cm⁻¹ has been reported to be due to sulfate groups at the axial C-4 position whereas sulfate groups at the equatorial C-2 and/or C-3 positions have been reported to give a small absorption at 820 cm⁻¹ [2], the observed absorption bands at 820-840 cm⁻¹ were interpreted as being indicative of sulfate groups.

The proton NMR spectra (D₂O) of the FSAR and the FVES samples were complex with broad signals and with several signals in the chemical shift of the envelope of anomeric signals at 5.0–5.5 ppm (Figure 2a,b). The presence of the signals at 5.0–5.5 ppm is consistent with the presence of α-L-fucopyranosyl [23]. The 1H-NMR spectra also both contained peaks at 1.1–1.3 ppm, with the signals for the FVES sample being particularly strong (Figure 2a,b). Previously, such high-field region signals at 1.1–1.3 ppm have been assigned to a C6 methyl proton group of L-fucopyranose [22] whereas several intense and narrow signals at 2.54–2.21 ppm have been attributed to CH₃ protons of O-acetyl groups [3]. The narrow and intense signals at 5.10 and 5.18 ppm in the chemical shift of the envelope of the anomeric proton of FSAR (Figure 2a) were reported earlier and assigned to α3-linked and α3,4-linked L-fucopyranose residues for fucoidan from Hizikia fusiformis a.k.a Sargassum fusiformis [24]. The high field region signals 1.24 and 1.20 ppm (Figure 2a) were assigned to α3-linked 2-mono-O-sulfated and α3-linked unsulfated L-fucopyranose residues [21]. Moreover, the intense signals at 4.37 and 3.99 ppm (Figure 2a) were assigned to the presence of 4-linked 2-mono-O-sulfated L-fucopyranose residues [21]. The independent signal, 4.61 ppm (Figure 2a) was assigned to a 3-linked α-D-galactopyranosyl residue when compared with the data of Farias et al. [25]. The
FVES had an intense signal at 5.45 ppm (Figure 2b), which was assigned to α3-linked 2-mono-O-sulfated L-fucopyranose residues, whereas the signals at 5.40, 4.58 and 4.39 ppm (Figure 2b) were assigned to be due to disulfated residues, i.e., α3-linked 2,4-di-O-sulfated L-fucopyranose residues [26]. Hence in general, the 1H NMR confirmed the anticipated FCSPs structures of the two samples.

Figure 2. One-dimensional 1H NMR spectra of crude FCSPs from (a) Sargassum henslowianum C. Agardh (FSAR) and (b) Fucus vesiculosus (FVES) in D_2O obtained using an INOVA 600 NMR spectrometer (Agilent Technologies, Tokyo, Japan).

2.3. Anti-Proliferative Effects of the FCSPs

The viability of melanoma B16 cells treated with the FSAR and FVES products, respectively, was determined via measurement of cell proliferation using an MTT based colorimetric assay. Both FCSPs products (FSAR and FVES) decreased the viability of melanoma B16 cells in a dose-dependent fashion, after 24 h of incubation of 6 × 10^5 cells density per well (Figure 3). In particular, a pronounced cell viability reduction was noticed after the addition of low levels, 0.1 mg/mL, of FSAR, producing a cell viability of ~80% of the control, and cell proliferation was halted gradually as the FCSPs dosage level increased (Figure 3) indicating moderate cytotoxicity. The FVES treated cells showed the same trend, but the FVES product generally induced a lower anti-proliferative effect than the FSAR product at the lower FCSP addition levels (P ≤ 0.05), but a significantly higher effect than FSAR (P ≤ 0.05) at the higher addition level, producing a drastic reduction of the proliferation of melanoma B16 cells leaving only ~6% of the cells viable at an FCSPs addition level of 1 mg/mL (Figure 3). The viability
reduction pattern induced by the two FCSPs on the melanoma cells were in complete accord with previously published data [13].

Figure 3. MTT based colorimetric assay of cell viability of melanoma B16 cells after treatment for 24 h with different dosage levels of crude fucose-containing sulfated polysaccharides from Sargassum henslowianum C. Agardh (FSAR) and Fucus vesiculosus (FVES), respectively. Cell density was 6×10^4 cells per well. \(\pm\) indicate statistically significantly different \((P \leq 0.05)\) cell viability levels after treatment with the two FCSP products at the same dosage level (mg/mL) \((n=4)\).

2.4. Apoptosis of Melanoma Cells by FCSPs

Programmed cell death or apoptosis is characterized by certain morphological cell changes such as loss of plasma membrane integrity in addition to internucleosomal DNA cleavage. One of the earliest apparent changes in cells undergoing apoptosis is the translocation of the cell membrane phospholipid phosphatidylserine from the inner to the outer leaflet of the plasma membrane. This change in the cell membrane is now recognized as an early, essential feature of apoptosis. The translocation exposes the phosphatidylserine to the external cellular environment and this is a feature which can be measured by exposing the cells to fluorochrome-conjugated phospholipid-binding proteins such as phycoerythin (PE)-labelled Annexin V (PE-Annexin V). Such staining with Annexin V is typically used in conjunction with a vital dye such as 7-amino-acticomycin (7-AAD) to identify early stages of apoptotic cells (Annexin V\^\text{\textregistered}, 7-AAD\^\text{\textregistered}) which accompany the later apoptosis stages (both Annexin V and 7-AAD are positive). Viable cells with intact membranes exclude 7-AAD, whereas the membranes of dead and damaged cells undergoing apoptosis are permeable to 7-AAD. Figure 4 shows the number of melanoma cells undergoing apoptosis \((%\ relative\ to\ a\ control\ not\ exposed\ to\ FCSPs)\) and the flow cytometric scan data of Annexin V staining induced by exposure of the melanoma cells to 0.2 mg/mL of the seaweed FCSPs samples from S. henslowianum (FSAR) and F. vesiculosus (FVES), respectively. Both FCSPs products induced significant apoptosis of the melanoma cells: The FSAR product appeared to induce a more potent apoptotic effect than the FVES product (Figure 4a) since the relative number of melanoma cells undergoing apoptosis \((%\ relative\ to\ a\ control\ sample\ not\ exposed\ to\ FCSPs)\) induced by the FSAR sample was significantly higher \((41 \pm 3\%)\) than the apoptotic effect of
the FVES exposure (30 ± 5%). The data corresponded to the fluorescence-activated cell sorting (FACS) scan showing the accumulation of intense dots-color in cells that underwent the latest apoptosis stage (Figure 4b,c: both Annexin V and 7-AAD positive). The FVES sample induced more early apoptosis (Figure 4c than the FSAR, as characterized by the build-up of disperse dots-color (Annexin V’ and 7-AAD’) indicating loss of plasma membrane asymmetry. The data were in accordance with the anti-proliferative effects of the FCSPs treatments (Figure 3).

Figure 4. Flow cytometric analysis by Annexin V staining of Melanoma B16 cells treated for 24 h with 0.2 mg/mL crude fucose-containing sulfated polysaccharide (FCSP) products extracted from *S. henslowianum* C. Agardh (FSAR) and *F. vesiculosus* (FVES), respectively. (a) Apoptosis induced by FSAR (41 ± 3%, n = 2), FVES (30 ± 5%, n = 2); control 11.66 % (data not shown) (b) FSAR data and (c) FVES data for FACS scans of FCSP treated Melanoma 16 cells that were viable and not undergoing apoptosis (Annexin V’ and 7-AAD’), in the latest stage apoptosis and dead (Annexin V’ and 7-AAD’), respectively.

2.5. FCSPs Activation of Caspase-3

In general, activation of caspase-3 initiates apoptosis in mammalian cells. The caspase-3 colorimetric assay employed in the present study is based on spectrophotometric detection of the chromophore p-nitroaniline (pNA) after cleavage of the pNA-labeled substrate DEVD-pNA. The activity of caspase-3 was augmented after treatment of the melanoma cells for 24 h with the FCSPs from *S. henslowianum* (FSAR) and *F. vesiculosus* (FVES) (Figure 5). The recorded caspase-3 activity increased significantly in a dose-dependent manner in response to the FCSPs treatment dosage (0–0.8 mg/mL), i.e., from 100% of control at 0, to ~180% of the control response at 0.8 mg/mL (P ≤ 0.05) (Figure 5).

No significant differences in the responses induced by the two types of FCSPs were recorded within the individual dosages of the FSAR and FVES treatments (Figure 5). The same trend of caspase-3 activity was observed in a 48 h treatment of melanoma cells with the FSAR and FVES samples (data not shown).

2.5. FCSPs Activation of Caspase-3

In general, activation of caspase-3 initiates apoptosis in mammalian cells. The caspase-3 colorimetric assay employed in the present study is based on spectrophotometric detection of the chromophore p-nitroaniline (pNA) after cleavage of the pNA-labeled substrate DEVD-pNA. The activity of caspase-3 was augmented after treatment of the melanoma cells for 24 h with the FCSPs from *S. henslowianum* (FSAR) and *F. vesiculosus* (FVES) (Figure 5). The recorded caspase-3 activity increased significantly in a dose-dependent manner in response to the FCSPs treatment dosage (0–0.8 mg/mL), i.e., from 100% of control at 0, to ~180% of the control response at 0.8 mg/mL (P ≤ 0.05) (Figure 5).

No significant differences in the responses induced by the two types of FCSPs were recorded within the individual dosages of the FSAR and FVES treatments (Figure 5). The same trend of caspase-3 activity was observed in a 48 h treatment of melanoma cells with the FSAR and FVES samples (data not shown).
3. Discussion

The incidence of melanoma skin cancer has risen dramatically over the past few decades [27]. Because of the significant risk and undesirable effects of known cancer therapeutic strategies, many studies have evaluated the possible protective effects of bioactive compounds of natural origin. Fucose-containing sulfated polysaccharides (FCSPs) derived from naturally grown brown seaweeds by aqueous extraction have been shown to exert potentially beneficial bioactivities, including immuno-modulatory, anti-inflammatory and anti-tumorigenic effects. In keeping its natural properties, FCSPs must be extracted from brown seaweeds by use of a mild processing treatment and a minimal number of extraction steps.

Brown seaweeds constitute a part of the conventional diet in several Asian countries, especially in Japan, and in a Japanese cohort study the intake of seaweeds has been associated with lower mortality from all chronic diseases including cancer [28]. It has recently been demonstrated that FCSPs from brown seaweeds exert growth inhibitory activity on certain cancer cell lines in vitro [13,17,18]. Incorporation of brown seaweeds into animal diets has also revealed cancer inhibitory effects with no direct lethal consequences [29,30]. Natural FCSPs from brown seaweeds may therefore have significant potential as protective agents to control or prevent skin cancer provided that the FCSPs do indeed exert cancer-preventive effects.

In this study, in accordance with previous data [13], we found that unfractionated FCSPs, i.e., FSAR and FVES, extracted from the brown seaweeds S. henslowianum and F. vesiculosus, respectively, were composed of fucose, galactose, xylose, mannose and glucuronic acid, and showed that the fucose, galactose and glucuronic acid contents differed significantly among the two FCSPs products, but that their sulfate contents were similar (Table 1).

We also found both distinct differences and several similarities in the structural make-up of these FCSPs by use of FTIR and 1H NMR spectroscopy. The FT-IR analyses thus corroborated the presence of different functional groups in the two FCSPs (Table 1). The 1H NMR spectroscopy analysis showed that both FCSPs contain similar types of monosaccharides, except for the relative content of fucose, galactose, xylose, mannose, and glucuronic acid. The sulfate contents were also similar (Table 1).

In this study, we also evaluated the possible cancer-preventive properties of the FCSPs, using the caspase-3 assay as a potential indicator of apoptosis. The caspase-3 assay was performed on melanoma B16 cells treated with different dosages of FCSPs from S. henslowianum (FSAR) and F. vesiculosus (FVES). The results showed that caspase-3 activity was significantly increased with increasing dosage of FCSPs, indicating that FCSPs may have potential as protective agents to control or prevent skin cancer.

Figure 5. Activation of caspase-3 after treatment of melanoma B16 cells with different dosages of FCSPs from S. henslowianum (FSAR) and F. vesiculosus (FVES). For each dosage treatment the caspase-3 activity was assayed on a cytosolic extract of melanoma B16 cells with a DEVD-pNA substrate (contact at 37 °C for 1 h) and spectrophotometric detection by measuring the absorbance at 405 nm ($n = 2$).
of sulfate groups in both the FSAR and the FVES sample (Figure 1). The IR spectra indicated that the sulfate substitutions of the FCSPs extracted from the Sargassum sp. (FSAR) were located in the equatorial C-2 and/or C-3 positions as depicted by absorption bands at 817 cm\(^{-1}\). This finding was in agreement with data reported for fucoidan fractions isolated from Sargassum stenophyllum [4]. However, Duarte et al. [4] also reported that two other saccharide fractions from S. stenophyllum had an absorption band at 837 cm\(^{-1}\) indicating sulfate groups at the C-4 positions of the structural monosaccharides [4]. The spectra of the FCSPs from F. vesiculosus (FVES) displayed an absorption band at 838 cm\(^{-1}\) with a small shoulder at ~822 cm\(^{-1}\) indicating sulfate groups at both the C-4 and the C-2 position (Figure 1). This finding corresponds to previously reported \(^1\)H NMR data of FCSPs from F. vesiculosus that have indicated a typical structure of algal fucoidan consisting of \(\alpha\)-linked 2-mono-O-sulfated L-fucopyranose residues, and/or \(\alpha\)-linked 2,4-di-O-sulfated L-fucopyranose residues [2,26]. Small disparities in the IR spectra from different published reports can be due to factors such as sample handling and the FCSPs extraction procedure employed. The present study also aimed at establishing whether crude FCSPs extracted from Sargassum henslowianum C. Agardh (FSAR) contained fucoidan-like structures composed of \(\alpha\)-3-linked or/and \(\alpha\)-3,4-linked L-fucopyranose residues. Even though signals consistent with the presence of \(\alpha\)-L-fucopyranose entities were recorded (with \(^1\)H NMR signals at 5.10 and 5.18 ppm, Figure 2a), the probability that the FSAR may contain a cocktail of polysaccharides is likely. Hence, the \(^1\)H NMR spectra also showed that the FSAR sample contained 3-linked \(\beta\)-galactopyranose residues as indicated by an independent signal at 4.61 ppm (Figure 2a). \(\beta\)-(1 \(\rightarrow\)3)-linked galactopyranose residues are known to be a typical structural feature of seaweed polysaccharides, from e.g., Laminaria angustata var. longissima, Botryocladia occidentalis [25,31]. However, another possibility might be that the FSAR sample was not composed of a mixture of different types of polysaccharides but rather, that the sample consisted of one type of a highly complex hetero-polysaccharide as suggested by Duarte et al. [4] for the fucoidans from Sargassum stenophyllum. It can safely be said that the \(^1\)H NMR spectra of the FCSPs samples were complex and overlapping. It is therefore difficult to draw any definite conclusions about the detailed structural features and differences among the two FCSPs; the detailed elucidations of the definite structural details were also beyond the scope of this present study, but clearly deserve further investigation. Nonetheless, the data confirmed that the diversity, i.e., the compositional and structural complexity of (potentially bioactive) algal fucose-containing sulfated polysaccharides, is much wider than originally believed. The biological activities of the FCSPS against skin cancer cells were investigated in vitro, and the results revealed that both FSAR and FVES can exert anti-proliferative effects on melanoma B16 cells in vitro. The FSAR sample induced more significant reductions of the cell viability of melanoma cells than the FVES sample at low dosage levels (Figure 3). At higher dosages, the FSAR treatment still induced gradually more loss of cell viability, but the FVES had more potent anti-proliferative effects at higher dosages than FSAR which could indicate direct cell toxicity. The bioactivities of these FCSPs may be attributable to their distinct structural features, notably the level of sulfation (charge density), the distribution (e.g., random versus clustered) and bonding of the sulfate substitutions, as well as other specific structural features of the sulfated fucans and the sulfated galactofucan complexes. The sulfate groups of FVES were substituted at the C-2 and C-4 position of the fucose substitutes, typical for fucoidan from F. vesiculosus, and consistent with previously published data indicating that the sulfate groups of sulfate groups in both the FSAR and the FVES sample (Figure 1). The IR spectra indicated that the sulfate substitutions of the FCSPs extracted from the Sargassum sp. (FSAR) were located in the equatorial C-2 and/or C-3 positions as depicted by absorption bands at 817 cm\(^{-1}\). This finding was in agreement with data reported for fucoidan fractions isolated from Sargassum stenophyllum [4]. However, Duarte et al. [4] also reported that two other saccharide fractions from S. stenophyllum had an absorption band at 837 cm\(^{-1}\) indicating sulfate groups at the C-4 positions of the structural monosaccharides [4]. The spectra of the FCSPs from F. vesiculosus (FVES) displayed an absorption band at 838 cm\(^{-1}\) with a small shoulder at ~822 cm\(^{-1}\) indicating sulfate groups at both the C-4 and the C-2 position (Figure 1). This finding corresponds to previously reported \(^1\)H NMR data of FCSPs from F. vesiculosus that have indicated a typical structure of algal fucoidan consisting of \(\alpha\)-linked 2-mono-O-sulfated L-fucopyranose residues, and/or \(\alpha\)-linked 2,4-di-O-sulfated L-fucopyranose residues [2,26]. Small disparities in the IR spectra from different published reports can be due to factors such as sample handling and the FCSPs extraction procedure employed. The present study also aimed at establishing whether crude FCSPs extracted from Sargassum henslowianum C. Agardh (FSAR) contained fucoidan-like structures composed of \(\alpha\)-3-linked or/and \(\alpha\)-3,4-linked L-fucopyranose residues. Even though signals consistent with the presence of \(\alpha\)-L-fucopyranose entities were recorded (with \(^1\)H NMR signals at 5.10 and 5.18 ppm, Figure 2a), the probability that the FSAR may contain a cocktail of polysaccharides is likely. Hence, the \(^1\)H NMR spectra also showed that the FSAR sample contained 3-linked \(\beta\)-galactopyranose residues as indicated by an independent signal at 4.61 ppm (Figure 2a). \(\beta\)-(1 \(\rightarrow\)3)-linked galactopyranose residues are known to be a typical structural feature of seaweed polysaccharides, from e.g., Laminaria angustata var. longissima, Botryocladia occidentalis [25,31]. However, another possibility might be that the FSAR sample was not composed of a mixture of different types of polysaccharides but rather, that the sample consisted of one type of a highly complex hetero-polysaccharide as suggested by Duarte et al. [4] for the fucoidans from Sargassum stenophyllum. It can safely be said that the \(^1\)H NMR spectra of the FCSPs samples were complex and overlapping. It is therefore difficult to draw any definite conclusions about the detailed structural features and differences among the two FCSPs; the detailed elucidations of the definite structural details were also beyond the scope of this present study, but clearly deserve further investigation. Nonetheless, the data confirmed that the diversity, i.e., the compositional and structural complexity of (potentially bioactive) algal fucose-containing sulfated polysaccharides, is much wider than originally believed. The biological activities of the FCSPS against skin cancer cells were investigated in vitro, and the results revealed that both FSAR and FVES can exert anti-proliferative effects on melanoma B16 cells in vitro. The FSAR sample induced more significant reductions of the cell viability of melanoma cells than the FVES sample at low dosage levels (Figure 3). At higher dosages, the FSAR treatment still induced gradually more loss of cell viability, but the FVES had more potent anti-proliferative effects at higher dosages than FSAR which could indicate direct cell toxicity. The bioactivities of these FCSPs may be attributable to their distinct structural features, notably the level of sulfation (charge density), the distribution (e.g., random versus clustered) and bonding of the sulfate substitutions, as well as other specific structural features of the sulfated fucans and the sulfated galactofucan complexes. The sulfate groups of FVES were substituted at the C-2 and C-4 position of the fucose substitutes, typical for fucoidan from F. vesiculosus, and consistent with previously published data indicating that the sulfate
groups were substituted at C-2 of 3-linked L-fucopyranose residues in fucoidan from e.g., *Pucus eximicus* [21]. In contrast, the sulfate substitutions in the FSAR were interpreted to be mainly at the C-2 and/or C-3 positions of the monosaccharides according to the IR spectra (Figure 1); the observation of C-2 linked sulfate groups agreed with the data mentioned above for fucoidan from *Pucus spp.* [3,21], but is also in agreement with the proposition that the sulfate groups were substituted at C-2 on the 3-linked galactopyranose residues [25]. The possible presence of sulfated, 3-linked galactan in the structure of FSAR may contribute to the efficacy of FSAR to induce anti-proliferative effects as it has been reported that 2-O-sulfated 3-linked galactan is more bioactive than 2-O-sulfated 3-linked fucans and 3-O-sulfated 4-linked galactan [32-34].

The findings that the FCSPs induced apoptosis of the melanoma B16 cells *in vitro* were in agreement with recent reports [13,16,35], but the differential apoptotic efficacies, and the dose-response effects of differently structured FCSPs (Figure 4) have not been reported earlier. In particular, it is a novel finding that significantly different sulfated, polysaccharide structures from brown seaweeds—as evaluated in the present work—exert relatively similar apoptotic effects on melanoma cells. The results of this work thus indicate that not only the well-studied, classical type of FCSPs having a backbone made up of (1→3)-linked α-L-fucopyranosyl or of alternating (1→3)- and (1→4)-linked α-L-fucopyranosyl residues have potential tumor-preventing effects, but also that the more complex sulfated fucose-rich galacto-mannans from *Sargassum* spp. exert promising cancer-preventive effects.

The principal objective of this study was to assess whether any structural features of the FCSPs might be crucial for bioactivity, and the data suggest that the sulfate substitutions, and not necessarily only the fucose-backbone structure itself, confer this decisive bioactivity. It is however important to investigate whether other differently structured FCSPs may exert similar growth inhibitory and apoptosis inducing effects on cancer cells.

In this work we noted that both FCSPs activate caspase-3 in a dosage-response fashion (Figure 5). These findings affirmed the results reported previously which have shown that FCSPs (“fucoidan”) from *F. vesiculosus* induce apoptosis in human lymphoma HS-Sultan cell lines and in HT-29 and HCT116 human colon cancer cells *in vitro*, and moreover that the exposure of these cells to the *F. vesiculosus* FCSPs appear to activate caspase-3 [17,18]. The *F. vesiculosus* FCSPs treatment was also shown to enhance mitochondrial membrane permeability of human colon cancer cells in vitro, and to induce cytochrome c and Smac/Diablo release from the mitochondria [17]. It has also been reported that pretreatment of HT-29 and HCT116 colon cancer cells with individual caspase-8 or caspase-9 inhibitors (Z-IETD-FMK and Z-LEHD-FMK, respectively) prior to fucoidan exposure reduced the levels of caspases, including caspase-3 [17]. It has likewise been shown that pretreatment of human lymphoma HS Sultan cells with a pan-caspase inhibitor, z-VAD-FMK, reduced fucoidan-induced apoptosis [18]. Hence, the available data support the proposition that fucoidan-induced apoptosis occurs through caspase activation pathways. The cascade mechanism by which the caspase-activation is presumed to take place via the mitochondria-mediated apoptotic pathway is illustrated in Figure 6.

Loss of plasma membrane is one of the earliest features of apoptosis and Annexin V staining can identify apoptosis at an early stage. However this assay does not distinguish between cells that have undergone apoptotic death versus those that have died as a result of a necrotic pathway, because in either case the dead cells will stain with both Annexin V and 7-AAD. Both early and later apoptosis stages were observed by the FACS scanning indicating that the FCSPs had a direct apoptotic effect on
the melanoma B16 cells (*in vitro*) (Figure 4). The direct apoptotic action of the FCSPs was probably due to the interaction of the highly negative charge density of the FCSPs with the melanoma B16 cells (as a result of the sulfation). Recently, we reported that crude fucoidan from *Sargassum* sp. could trigger apoptosis indirectly by enhancing the activity of natural killer (NK) cells activity *in vivo* [13]. NK cells produce immunologically important cytokines, notably IFN-γ, which can promote the activation of T-cells to produce interleukin-2 and -12 that in turn further enhance the NK cell activation [14,36].

Figure 6. Proposed mechanism for inhibition of the proliferation of melanoma cells by FCSPs: Activation of macrophages via membrane receptors, which leads to the production of cytokines that enhance NK cell activation. Activated NK cells release Granzyme B and perforin through granule exocytosis into the space between NK cells and melanoma cells to initiate caspase cascades in melanoma cells. Assimilation of Granzyme B by the tumor cells is facilitated by perforin. Granzyme B then initiates apoptosis by triggering the release of mitochondrial cytochrome c and apoptosome formation leading to caspase-3 activation, which in turn translocates the nucleus causing DNA fragmentation—the distinct morphological change of cells by apoptosis [36,37].

The apoptosis induced by FCSPs via the activation of caspase-3 was reported previously to be mediated through a mitochondrial pathway [17–19,38]. However, it remains to be determined whether...
differences in FCSPs structures will influence the apoptotic mechanism, including the mitochondrial pathway apoptosis cascade. The route of the mitochondrial dependent apoptotic pathway is the release of apoptosis-inducing factor (AIF) and cytochrome c from the inner mitochondrial membrane into the cytosol. Cytochrome c interacts with Apaf-1 (apoptotic protease activating factor 1) and procaspase-9 to form the active apoptosome. The apoptosome then initiates the cleavage of procaspase-3, producing active caspase-3, which initiates the execution phase of apoptosis by proteolysis of substances whose cleavage commits the cell to apoptosis [39] (Figure 6). The influence of the different FCSPs structures on the mitochondrial membrane permeability and electric potential requires further study. We hope in the future to investigate the bioactivity and mechanism of FCSPs on certain degenerative diseases in vivo and to further elucidate specific molecular targets of FCSPs for inhibition of cancer cells.

4. Experimental Section

4.1. Chemicals

Sargassum henslowianum C. Agardh was obtained from Viet Delta Ltd. (Ho Chi Minh, Vietnam) and the Fucose-containing sulfated polysaccharides (FSAR) from the S. henslowianum (FSAR) were extracted in our laboratory (see below). Crude fucoidan from F. vesiculosus (FVES) was obtained from Sigma-Aldrich (Steinheim, Germany); according to the product description the FVES had been prepared from F. vesiculosus via the extraction method described by Black and Desvar [40]. Hydrochloric acid (37%), D-glucose and D-xylose were purchased from Merck (Darmstadt, Germany). Trifluoroacetic acid (99%, TFA), trichloroacetic acid (99%, TCA), CaCl₂, Na₂SO₄, BaCl₂, arabinose, rhamnose, D-galactose and L-fucose were from Sigma-Aldrich Co. (Steinheim, Germany). Agarose D-2 was obtained from Hispanagar (Burgos, Spain). Caspase-3 colorimetric assay kit was obtained from Bovision, Inc. (Mountain View, CA, USA). Minimal essential medium eagle (MEM-eagle) cell culture media was purchased from Sigma–Aldrich Co. (Steinheim, Germany); foetal bovine serum (FBS) was from Flow Laboratories (North Ryde, N.S.W., Australia); streptomycin-penicillin and Trypan Blue were from Gibco (Canada). Cell Proliferation Kit 1 was obtained from Roche Applied Science, Germany. The PE Annexin V Apoptosis Detection Kit 1 was obtained from BD Biosciences (Franklin Lakes, NJ, USA). All chemicals used were analytical grade.

4.2. Extraction of FCSPs from S. henslowianum C. Agardh

The Sargassum FCSP product (FSAR) used was extracted from S. henslowianum C. Agardh by use of an optimized single-step extraction procedure described previously [6]. Briefly, the dried S. henslowianum seaweed was ground and sieved to pass through a 500 μm sieve and 100 g of dried ground seaweed was extracted in 2 L of 0.03 M HCl with continuous stirring at 200 rpm for 4 h at 90 °C water bath (Julabo, Germany). The suspended seaweed was filtered, and the extract was precipitated using 60% ethanol, the precipitate collected after centrifugation at 10,600 rpm for 10 min (Sigma Laboratory Centrifuge 4K15, VWR, Denmark), and the resulting pellet was freeze dried. This freeze dried pellet constituted the fucose-containing sulfated polysaccharides (FSAR).
4.3. Acid Hydrolysis and FCSPs Composition Analysis

The freeze-dried FSAR and FVES samples (20 mg) were hydrolyzed separately in 2 M TFA (final concentration) at 121 °C for 2 h, then the hydrolyzed mixture were freeze-dried at ~57 °C (Heto Lyolab, Denmark). Each dried powder sample was resolubilized in doubly distilled water and centrifuged at 10,000 rpm for 10 min to collect the supernatant (Sigma Laboratory Centrifuge 4K15, VWR, Denmark). Each supernatant was filtered through a 0.2 μm syringe tip filter (SUN-Sri, Rockwood, TN) prior to injection into the HPAEC-PAD for monosaccharide analysis [41]. Analysis of sulfate content was done according to the method described by Jackson and McCandless [42].

4.4. 1H NMR and FTIR Spectroscopy

The 1H NMR spectra were obtained using an INOVA 600 NMR spectrometer (Agilent Technologies Japan, Ltd., Tokyo Japan) equipped with a 1H[15N-31P] pulse field gradient indirect-detecting probe. Standard pulse sequences were used in all operations. The 1H chemical shift (δH) was referenced to HOD (δH 4.76 ppm, 2H2O). The 1H NMR spectrum was assigned through the 1H–1H decoupling technique. An NMR spectrum of L-fucose was utilized as a reference for chemical shift assignment. The lyophilized FCSPs powders were dissolved in deuterium oxide (2H2O) and evaporated to exchange the unstable 1H with 2H. The evaporation and dissolution step was repeated five times, and the samples (10 mg) were finally dissolved in 0.75 mL 2H2O and then subjected to NMR spectroscopy. The IR spectra were obtained using a Spectrum One FT-IR spectrometer (Perkin Elmer, Waltham, MA, USA) equipped with universal attenuated total reflectance (UATR) accessories. Analysis of each of the FSAR and FVES powders, ~1 mg of each, was done using diffuse reflectance infrared transform spectroscopy (DRIFTS) and the spectrum was evaluated by Perkin Elmer Spectrum software version 5 (Perkin Elmer, Waltham, MA, USA).

4.5. Cell Culture and Anti-Proliferative Assay

Melanoma B16 cells (MC) were grown in MEM eagle medium supplemented with 10% (v/v) heat inactivated FBS, 1% (w/v) streptomycin-penicillin and 1% (v/v) of 200 mM L-glutamine at 37 °C under 5% CO2. Monolayer cultivation was carried out by adding 100 μL of the cell-MEM-FBS mixture into separate wells in 96-flat well plates at a density of 6 × 104 cells per well followed by incubation for 24 h in 5% CO2 at 37 °C. For the anti-proliferation assay the medium was removed after the 24 h of monolayer cell cultivation and replaced with 100 μL of MEM medium containing 2% FBS and varying concentrations (0.1–1.0 mg/mL) of the crude FCSPs, i.e., FSAR and FVES, respectively, and the mixtures were then incubated for 24 h. Quantification of cell proliferation was carried out using a tetrazolium salt (MTT (3-(4,5-dimethyl-thiazolyl-2)-2,5-diphenyltetrazolium bromide)) based colorimetric assay following the protocol supplied with the Cell Proliferation Kit 1 (Roche Applied Science, Germany). Briefly, 20 μL MTT solution (5 mg/mL) was added to the cell cultures after the 24 h of incubation with the FCSPs, and the cell cultures were then re-incubated for 4 h. Finally, 100 μL of stabilization solution was added to each well and the plates were incubated overnight at 37 °C under 5% CO2. Absorbance was measured using an Elisa reader at 550–690 nm. For the anti-proliferation assay the medium was removed after the 24 h of monolayer cell cultivation and replaced with 100 μL of MEM medium containing 2% FBS and varying concentrations (0.1–1.0 mg/mL) of the crude FCSPs, i.e., FSAR and FVES, respectively, and the mixtures were then incubated for 24 h. Quantification of cell proliferation was carried out using a tetrazolium salt (MTT (3-(4,5-dimethyl-thiazolyl-2)-2,5-diphenyltetrazolium bromide)) based colorimetric assay following the protocol supplied with the Cell Proliferation Kit 1 (Roche Applied Science, Germany). Briefly, 20 μL MTT solution (5 mg/mL) was added to the cell cultures after the 24 h of incubation with the FCSPs, and the cell cultures were then re-incubated for 4 h. Finally, 100 μL of stabilization solution was added to each well and the plates were incubated overnight at 37 °C under 5% CO2. Absorbance was measured using an Elisa reader at 550–690 nm.
4.6. Cell Culture and Caspase-3 Assay

Melanoma B16 cells (MC) were grown in MEM eagle culture medium supplemented with 10% (v/v) heat inactivated FBS, 1% (w/v) streptomycin-penicillin and 1% (v/v) of 200 mM L-glutamine maintained at 37 °C under 5% CO₂. For the caspase-3 assay, monolayer cultivation was carried out in a petri dish (60 × 15 mm) by adding 5 mL culture medium containing melanoma cells at a density of 1 × 10⁵ per mL and varying concentrations (0.2, 0.4 and 0.8 mg/mL) of the FSAR and FVES, respectively. The mixtures were then incubated for 24 and 48 h in 5% CO₂ at 37 °C. The caspase-3 assay was performed according to the protocol supplied with the assay kit (Biovision Inc., Mountain View, CA, USA) used to assay the activity of caspases that recognize the amino acid sequence DEVD. The assay was based on spectrophotometric detection of the chromophore p-nitroaniline (pNA) after cleavage from the labeled substrate DEVD-pNA. Concisely, the melanoma B16 cells exposed to FSAR and FVES, respectively, were harvested and resuspended in 50 μL of cell lysis buffer and incubated on ice for 10 min. and the mixture centrifuged for 1 min (14,000 × g, 4 °C). Each supernatant was then transferred to a fresh tube, and reaction buffer (50 μL) and 4 mM DEVD-pNA substrate (5 μL) were added, and this reaction mixture was then incubated at 37 °C for 1 h. Absorbance of pNA light emission was quantified using a microtiter plate reader at 405 nm.

4.7. Apoptosis Assay by Fluorescence-Activated Cell Sorting (FACS)

After 24 h of monolayer cultivation of melanoma B16 cells with 0.2 mg/mL of FSAR or FVES, and no FCSPs addition as control, the culture medium was removed, and the cells harvested by addition of 1 mL Trypsin-EDTA. The harvested cells were washed twice with 0.1 M PBS and then resuspended in binding buffer according to the protocol for the Annexin V Apoptosis Detection Kit I (BD Biosciences, Franklin Lakes, NJ, USA). 100 μL of this solution at 1 × 10⁵ cells was transferred to a culture tube and 5 μL of Annexin V and 5 μL of 7-amino-actinomycin (7-ADD) were added, and the mixture incubated at room temperature for 25 min. Then, 400 μL of binding buffer was added and the extent of apoptosis and staining pattern of the cells were tracked by flow cytometric analysis on a FACSscan instrument (Becton Dickinson).

5. Conclusions

The tumor inhibitory bioactivity of fucose-containing sulfated polysaccharides (FCSPs) from Sargassum henslowianum C. Agardh (FSAR) and F. vesiculosus (FVES) was demonstrated through evaluation of inhibition of melanoma cell proliferation, activation of caspase-3, and apoptosis of melanoma B-16 cells in vitro. The structural traits of the FCSPs products were shown to be complex and to differ among the two FCSPs making it delicate to draw definite conclusions about structural effects and mechanisms. However, since the sulfate levels were relatively high as well as relatively similar among the two FCSPs, we propose that the bioactivity effects of the FSAR and FVES might be attributable to the sulfation (charge density), positioning and bonding of the sulfate substitutions in the FCSPs. The work clearly indicates that unfractionated fucose-containing sulfated polysaccharides from both Sargassum henslowianum C. Agardh and Fucus vesiculosus may have therapeutic potential as skin-cancer preventive agents.
Acknowledgments

The authors would like to express their gratitude to D. Tsubokawa, H. Kitasato and K. Ishihara—School of Allied Health Science, Kitasato University—Sagamihara, Kanagawa, Japan for sharing their laboratory facilities; and for their untiring assistance, support and encouragement during the entire experimental activities of this present study.

References

Mulloy, B.; Ribeiro, A.C.; Alves, A.P.; Vieira, R.P.; Mourao, P.A.S. Sulfated fucans from Echinoderms have a regular tetrasaccharide repeating unit defined by specific patterns of sulfation at the 0-2 and 0-4 positions. J. Biol. Chem. 1994, 269, 22113–22123.

Samples Availability: Available from the authors.

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
5 Seaweed nutrient assimilation and growth response

Industrial sewage, fish farm effluents, and agricultural runoff are the major causes of eutrophication of aquatic systems. Eutrophication has adverse environmental effects including hypoxia; on the other hand, some aquatic organisms may experience increased population, promoted growth, and the production of algae, including fast-growing seaweed. The use of large-scale seaweed populations is thought to provide new and cost-effective technologies for sequestering and preventing the distribution of waterborne pollutants. Seaweeds can remove several pollutants through assimilation, bioaccumulation, and detoxification. Integration of seaweed cultivation with fish aquaculture has been proposed to reduce the nutrient burden of fish effluents (Chopin et al., 2001). Ulva sp. has been considered the integrated biofilter system and has shown reasonably high efficiency in the removal of waste inorganic nutrients (Chung et al., 2002). Seaweed accumulates a wide range of heavy metals regardless of radioactivity status. In highly polluted seawaters, bioaccumulation can be as high as 1 g per dry gram of seaweed tissue, while approximately 5–100 mg/g in normal seawaters (Burdis and Bird, 1994; Grüven et al., 1993).

Opportunist green macroalgae such as U. lactuca can rapidly consume the available inorganic nutrients at a rate that depend on the availability of ammonium and nitrate (Pedersen and Borum, 1996) and, hence, influence their differential growth responses. U. lactuca has a high growth potential doubling time of approximately 2 days with a production potential of 45 T (total solids) ha⁻¹ yr⁻¹ (Christensen and Sand-Jensen, 1990; Bruhn et al., 2011). Nitrogen enrichment studies have shown uptake rates and growth responses that were more in favor of ammonium than nitrate since they require energy-demanding nitrate reductions (Pedersen and Borum, 1996; Solomonson and Barber, 1990). U. lactuca was known to have high affinity for dissolved inorganic carbon (DIC). Rapid photosynthesis in dense floating mats leads to DIC depletion and increases pH and oxygen levels; as a consequence, these changes may all inhibit carbon fixation and, thus, reduce growth. Photosynthetic experiments have shown that the growth response of Ulva species was weakly affected by oxygen levels, whereas pH approaching 10 was highly inhibitory (Christensen and Sand-Jensen, 1990).
5.2.1 Relevance
Increased fluctuating levels of nutrients in the estuarine ecosystem stimulate the abundance and production of fast-growing algae like the ephemeral macroalga U. lactuca (Twilley et al., 1985). The abundant growth of ephemeral macroalgae is so invasive that it could lead to oxygen depletion and shading among other marine habitats. Enormous quantities of this seaweed create environmental concerns (e.g., microbial waste and rancid odors) when cast away on the beach. U. lactuca a common ephemeral macroalga from the tropical to polar climates that has been harvested from natural populations or cultivated in land-based systems and as part of integrated multi-trophic aquaculture systems. Nevertheless, most of today’s U. lactuca biomass is unused,
dumped or left stranded to decompose in the shore creating waste problem (Morand et al., 2006). Hence, utilization of *U. lactuca* is of ardent importance.

Production of alternative biofuels from non-starch biomass has directed attention to the utilization of *U. lactuca* as primary substrates for anaerobic digestion to biogas. Moreover, Ulva species are rich in rare cell wall polysaccharides and vitamins A, B2, B12, and C, and they exert antioxidant, antimicrobial, and antiviral activities (Ivanova et al., 1993; Abd El-Baky et al., 2008; Ortiz et al., 2006). For this reason, cultivation of *U. lactuca* for either crude biomass production or for the production of biologically active compounds is currently receiving increased attention (Hiraksa and Oka, 2008). Nonetheless, a major prerequisite for the successful exploitation of cultivated *U. lactuca* for commercial applications is that both the growth rate and the yield are optimized. This in turn requires both an understanding of the influence of different nutrients on the growth response and a precise methodology to measure the growth.

5.2.2 Hypotheses and objectives

The utilization of ammonium and nitrate by seaweed varies among species, and the assimilation of these nutrients influences the growth. It has been observed that the presence of ammonium inhibits nitrate uptake (Thomas and Harrison, 1987). These interactions, however, were only discussed in relation to nitrogen uptake rates and the understanding of the influence of these interactions on seaweed growth responses, including those of *U. lactuca*, remains limited. The common method to determine growth rate and biomass yield in seaweed culture systems involves determination of the initial and final weight of seaweed samples. This requires removal of surface moisture either by wiping with a filter cloth or by centrifugation. The extent of remaining surface moisture induces varying degrees of measurement inaccuracy (Mouya and Neori, 2008; Vandermeulen and Gordin, 1990). In continuous culture monitoring, the harvested seaweeds are dehydrated prior to weighing, and then a stock strain is taken and used as the initial inoculum material for further culture. However, seaweed needs to recuperate from the harsh dehydration-hydration treatment before it can resume growth. Therefore, the interruption of cellular growth is almost unavoidable (Phillips et al., 2002).

Therefore, the objective of this work was to evaluate the growth response of *U. lactuca* cultured in artificial seawater exposed to different sources and levels of nitrogen (NH₄⁺ and NO₃⁻) using a more accurate growth monitoring technique. To achieve the precise evaluation, a photo-scanning technology was used to obtain digital images of the sizes of the frond discs, and in this way

...
examined the growth kinetics by measuring the surface area expansion of the seaweed discs using digital image processing software.

5.2.3 Result highlights
The growth response of U. lactuca exposed to different sources of nitrogen (NH₄⁺, NO₃⁻, and the combination NH₄NO₃) was examined using photo-scanning technology. Differential increases of the surface area of U. lactuca discs with time in response to different N-nutrient enrichments were expected. The NH₄Cl- and NaNO₃-rich media (50 µM of N) accelerated U. lactuca growth to a maximum specific growth rate of 16.4 ± 0.18% d⁻¹ and 9.4 ± 0.72% d⁻¹, respectively. The highest obtained biomass production was 22.6 ± 0.24 mg-DW m⁻² d⁻¹. The U. lactuca growth response favored ammonium as the nitrogen source, and its presence apparently discriminated nitrate uptake by U. lactuca when exposed to NH₄NO₃.

Apart from showing a significant differential growth response of U. lactuca to different nitrogen sources, the work exhibits the applicability of a photo-scanning approach for acquiring precise quantitative growth data for U. lactuca as exemplified by assessment of the growth response to two different N-sources.

5.2.4 Consideration and justification
The exploitation of land-based resources for bioenergy production created global concern for its impact on the food production, availability, and price of commodities. Meanwhile, the utilization of marine-based resources, notably non-commercially important seaweed, is gaining attention. This leads macroalgae like U. lactuca to be considered for the production of bioenergy because it exhibits production potential for either land-based culture or off-shore cultivation (Bruhn et al., 2011). Furthermore, other potential applications of U. lactuca biomass (e.g., source of functional and bioactive compounds) must be established to add more value to the seaweed biomass.

Nevertheless, the growth rate, yields, and culture condition must primarily be optimized to successfully exploit U. lactuca for commercial applications. Therefore, understanding the effect of different nutrients on the growth response is critical, and it requires precise methodology to measure the growth with the purpose of effectively evaluating nutrient assimilation.

Over the growth experiment duration, an artificial seawater medium was used without renewal, which may have influenced the growth kinetics of the algal frond. However, the results indicate that U. lactuca can grow even without renewing the artificial seawater medium for a certain period. The maximum growth rate was close to that of a published study (Neori et al., 1991), examined the growth kinetics by measuring the surface area expansion of the seaweed discs using digital image processing software.

5.2.3 Result highlights
The growth response of U. lactuca exposed to different sources of nitrogen (NH₄⁺, NO₃⁻, and the combination NH₄NO₃) was examined using photo-scanning technology. Differential increases of the surface area of U. lactuca discs with time in response to different N-nutrient enrichments were expected. The NH₄Cl- and NaNO₃-rich media (50 µM of N) accelerated U. lactuca growth to a maximum specific growth rate of 16.4 ± 0.18% d⁻¹ and 9.4 ± 0.72% d⁻¹, respectively. The highest obtained biomass production was 22.6 ± 0.24 mg-DW m⁻² d⁻¹. The U. lactuca growth response favored ammonium as the nitrogen source, and its presence apparently discriminated nitrate uptake by U. lactuca when exposed to NH₄NO₃.

Apart from showing a significant differential growth response of U. lactuca to different nitrogen sources, the work exhibits the applicability of a photo-scanning approach for acquiring precise quantitative growth data for U. lactuca as exemplified by assessment of the growth response to two different N-sources.

5.2.4 Consideration and justification
The exploitation of land-based resources for bioenergy production created global concern for its impact on the food production, availability, and price of commodities. Meanwhile, the utilization of marine-based resources, notably non-commercially important seaweed, is gaining attention. This leads macroalgae like U. lactuca to be considered for the production of bioenergy because it exhibits production potential for either land-based culture or off-shore cultivation (Bruhn et al., 2011). Furthermore, other potential applications of U. lactuca biomass (e.g., source of functional and bioactive compounds) must be established to add more value to the seaweed biomass.

Nevertheless, the growth rate, yields, and culture condition must primarily be optimized to successfully exploit U. lactuca for commercial applications. Therefore, understanding the effect of different nutrients on the growth response is critical, and it requires precise methodology to measure the growth with the purpose of effectively evaluating nutrient assimilation.

Over the growth experiment duration, an artificial seawater medium was used without renewal, which may have influenced the growth kinetics of the algal frond. However, the results indicate that U. lactuca can grow even without renewing the artificial seawater medium for a certain period. The maximum growth rate was close to that of a published study (Neori et al., 1991),
where they used fresh seawater medium and extensive medium renewal. However, the amount of biomass accumulated during this experiment was relatively low compared to those of other earlier works (Neori et al., 1991). This variation was probably attributed to different monitoring techniques and culture conditions, such as water flow velocity, temperature, density, and illumination intensity.

5.3 Paper 5: Differential growth response of Ulva lactuca to ammonium and nitrate assimilation

Authors:
Marcel Tutor Ale, Jørn Dalgaard Mikkelsen, Anne S. Meyer

Address:
Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering
Technical University of Denmark (DTU)
Soeltofts Plads Bldg. 229, 2800 Kgs. Lyngby, Denmark

Please turn to page 101
Differential growth response of *Ulva lactuca* to ammonium and nitrate assimilation

Marcel Tutor Ale & Jørn Dalgaard Mikkelsen - Anne S. Meyer

Abstract

Controlled cultivation of marine macroalgal biomass such as *Ulva* species, notably *Ulva lactuca*, is currently studied for production of biofuels or functional food ingredients. In a dystrophic environment, this macrophyte is exposed to varying types of nutrient supply, including different and fluctuating levels of nitrogen sources. Our understanding of the influences of this varying condition on the uptake and growth responses of *U. lactuca* is limited. In this present work, we examined the growth response of *U. lactuca* exposed to different sources of nitrogen (NH₄Cl, NaNO₃), and the combination NH₄NO₃ by using photo-scanning technology for monitoring the growth kinetics of *U. lactuca*. The images revealed differential increases of the surface area of *U. lactuca* disks with time in response to different N-nutrient enrichments. The results showed a favorable growth response to ammonium as the nitrogen source. The NH₄Cl and NaNO₃ rich media (50 mM of N) accelerated *U. lactuca* growth to a maximum specific growth rate of 16.4±0.18%/day and 9.4±0.72%/day, respectively. The highest biomass production rate obtained was 22.5±0.24 mg DW m⁻²·day⁻¹. The presence of ammonium significantly discriminated the nitrate uptake by *U. lactuca* when exposed to NH₄NO₃. Apart from showing the significant differential growth response of *U. lactuca* to different nitrogen sources, the work exhibits the applicability of a photo-scanning approach for acquiring precise quantitative growth data for *U. lactuca* as exemplified by assessment of the growth response to two different N-sources.

Keywords: Ammonium, Nitrate, Growth monitoring, Seaweed cultivation, *Ulva*, Nutrient uptake

Introduction

Ulva lactuca is an important macroalga in marine ecology. Its fronds are soft, sheet-like structures that are two cells thick, and this morphology is the reason for its common name “sea lettuce.” Recently, production of alternative fuels from non-starch biomass has also directed the attention to utilization of marine alga, including seaweed or macroalgae, as sources of biomass for biofuels production (Knut and Mønster-Reimann 2004). The rapid growth of *U. lactuca* is attributed to its high photosynthetic rates and high C and N-nutrient uptake capacity (Magain et al. 1996; Naldi and Wheeler 2002; Sand-Jensen 1988). Seaweed has also been proposed as a biomass source for production of functional food ingredients, pharmaceuticals, and cosmetics (Bodin-Dubignon et al. 1997; Cushley et al. 2003; Bixler 1996; De Rock-Holtzhauer 1991). *Ulva lactuca* is a good source of vitamin A, B₁₂, and C and is rich in β-carotene and *U. lactuca* extracts have been shown to exert antioxidant, anti-microbial, and anti-viral activities in various in vitro assays (Ivanova et al. 1994; Abd Elhakay et al. 2005; Ozie et al. 2006). It has been shown previously, that *U. lactuca* is suitable for propagation under controlled conditions (Vermant and Sand-Jensen 1987; Lao 2000; Sato et al. 2006a, b). For this reason, cultivation of *U. lactuca* in tanks for either crude biomass production or for production of biologically active compounds is currently receiving increased attention.

M. L. Ali et al. 2011, J. D. Mikkelsen - A. S. Meyer, Center for Business Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Nordic Park, Building 229, 2800 Kgs. Lyngby, Denmark. e-mail: mikklesen@eb.tu.dk

PhD Thesis 2012
Materials and methods

Ammonium and nitrate are the major nitrogen sources of seaweeds in the natural habitat and are used as nutrients for seaweed in integrated multitrophic aquaculture systems (Cepurite et al. 2008). Several experiments have been conducted for several seaweed species on the interaction of ammonium and nitrate uptake. The utilization of ammonium and nitrate by seaweed varies among species and assimilation of these nutrients influences the growth. It has been observed that the presence of ammonium inhibits the nitrate uptake; thus ammonium uptake dominated nitrate uptake when exposed to a combination of NH$_4^+$ and NO$_3^-$ (Thomas and Harrison 1987). However, these interactions were discussed only in relation to nitrogen uptake rates and the understanding of the influence of these interactions on seaweed growth responses, including growth responses of *U. lactuca*, is still limited. The common method to determine growth rate and biomass yield in seaweed culture systems involves determination of the initial and final weight of seaweed samples. This requires removal of surface moisture either by wiping with filter cloth or by centrifugation. The extent of remaining surface moisture induces varying degrees of inaccuracy to the measurement (Moay and Noort 2008; Vandenbol and Gorin 1990).

In this present work, the objective is to evaluate the growth responses of *U. lactuca* exposed to different sources of nitrogen (NH$_4^+$ and NO$_3^-$). We cultured *U. lactuca* frond disks for 10 days in small containers with artificial seawater (ASW) enriched with equimolar levels of nitrogen (50 μM) of two different N-nutrients, NH$_4$Cl and NaNO$_3$, to assess the growth responses. Another experiment was conducted in the same set-up for 4 days to evaluate the ammonium and nitrate uptake rates when *U. lactuca* was exposed to 50 μM NH$_4$NO$_3$. We used photo-scanning to obtain digital images of the area of the frond disks, and in this way scanned the growth kinetics by measuring the surface area expansion of the seaweed disks daily using commercially available digital image processing software.

Materials and methods

The chemicals used for nitrogen source were NH$_4$Cl (99.5%), NaNO$_3$ (99.5%), and NNO$_3$ (99.0%), purchased from Sigma-Aldrich, (Bornem, Belgium). Commercial marine sea salt (Sera Marine Basic Salt—Heinsberg, Germany) was used to prepare artificial seawater (ASW) principally as described by Sato et al. (2004a, b). For nitrate determination, a low-range lab nitrate test kit supplied with nitrate reducer was used (The Nitric Educator Co, Inc, Michigan).

Aquatium culture: condition and set-up

Fresh *U. lactuca* fronds were obtained from the National Environmental Research Institute of Denmark (DMI), University of Aarhus (Silkeborg, Denmark). The original scored material was cultured in ponds with natural seawater. Upon arrival to our laboratory, the seaweed fronds were transferred into a 2 L beaker containing 1.5 L ASW with a 35 g L$^{-1}$ concentration of marine sea salt to habituate. The ASW medium had a pH of 8.35 and 21.5 ppt salinity measured using a handheld conductivity meter (Con 11, Eutech Instruments—Singapore). The fronds were acclimatized in the beaker with aeration for 3 days prior to transfer into a 112-L aquarium tank for long-term cultivation. The water at ambient temperature in the 112-L aquarium was kept directly to a 45-L reservoir tank and the water was then pumped back to the aquarium at a rate of approximately 1.70 L h$^{-1}$. The reservoir was aerated and the water (ASW) was renewed weekly.

Funkh culture set-up

The growth monitoring of the *U. lactuca* fronds during differential cultivation was carried out using a perfused flask (500 mL) positioned inside a rectangular container that served as a catchment basin. The culture flask was perforated at a certain height to allow the medium to overflow after reaching the 300 mL level into the catchment basin. The medium was then re-circulated at a speed of 1.5 L h$^{-1}$ using a peristaltic pump. A small magnetic bar was placed at the bottom of the flask to mix the water twice daily and to prevent the contact of the magnetic bar and the bottom of the flask to mix the water twice daily and to prevent the contact of the magnetic bar and the bottom of the flask. A schematic diagram is shown in Fig. 1. In this experiment, the individual fronds were enriched with 50 μM NH$_4$Cl, 50 μM NaNO$_3$, and 50 μM NH$_4$NO$_3$ as ASW, respectively. In this way we scanned the growth kinetics by measuring the surface area expansion of the seaweed disks daily using commercially available digital image processing software.

Materials and methods

The chemicals used for nitrogen source were NH$_4$Cl (99.5%), NaNO$_3$ (99.5%), and NNO$_3$ (99.0%), purchased from Sigma-Aldrich, (Bornem, Belgium). Commercial marine sea salt (Sera Marine Basic Salt—Heinsberg, Germany) was used to prepare artificial seawater (ASW) principally as described by Sato et al. (2004a, b). For nitrate determination, a low-range lab nitrate test kit supplied with nitrate reducer was used (The Nitric Educator Co, Inc, Michigan).

Aquatium culture: condition and set-up

Fresh *U. lactuca* fronds were obtained from the National Environmental Research Institute of Denmark (DMI), University of Aarhus (Silkeborg, Denmark). The original scored material was cultured in ponds with natural seawater. Upon arrival to our laboratory, the seaweed fronds were transferred into a 2 L beaker containing 1.5 L ASW with a 35 g L$^{-1}$ concentration of marine sea salt to habituate. The ASW medium had a pH of 8.35 and 21.5 ppt salinity measured using a handheld conductivity meter (Con 11, Eutech Instruments—Singapore). The fronds were acclimatized in the beaker with aeration for 3 days prior to transfer into a 112-L aquarium tank for long-term cultivation. The water at ambient temperature in the 112-L aquarium was kept directly to a 45-L reservoir tank and the water was then pumped back to the aquarium at a rate of approximately 1.70 L h$^{-1}$. The reservoir was aerated and the water (ASW) was renewed weekly.
supplied with urea as described by Campbell et al. (2004). The uptake rate was calculated from changes in ammonium and nitrate concentration during each sampling interval according to \(V = \frac{(S_i - S_0)}{(t + B)} \) where \(S_i \) is the ammonium concentration, \(S_0 \) is the nitrate concentration, \(t \) is the time elapsed between two successive samplings and \(B \) is the amount of biomass dry weight (DW) (Pedersen 1994). Throughout the experiment the \(U. \) lactuca disks were illuminated with a parallel 2X18W Lumilux Cool White light (Osram—Germany) from a fluorescent lamp which was placed 12 cm above the top of the culture flask, light and dark ratio was 14:10 hours. Illumination at a continuous irradiance of 55 umol photons m\(^{-2}\)s\(^{-1}\) was measured using a handheld Field Scout quantum light meter (Spectrum Technologies, Inc., USA). The size expansion of each seaweed disk was monitored daily using scanning and image processing software as described below.

Scanning, imaging, and growth measurements

Fresh and healthy fronds were collected from the aquarium, and then an approximately 9 mm diameter sharpened pique tube was punched randomly into different Ulva fronds to form a disk. All disks were scanned and the area was measured prior to inoculation. Three \(U. \) lactuca disks were inoculated in the flasks with ASW medium. Before scanning, all disks were carefully transferred into a petri dish containing a small volume of the medium to prevent the seaweed disk from drying. Microscopic glass slides were used to cover the scanned disk to ensure that the entire surface was plane, and then the disks were scanned using a Canonic 5000F (Canon) at 300 dpi resolution equipped with MP Navigator Ex software (Canon) for digital imaging. The images were calibrated by cropping them at 200-200 pixels using Photoscipe v3.3 image editor (Moore—Seoul, Korea) prior to disk area measurement. Image-Pro Plus software (Media Cybernetics, Inc., USA) was calibrated appropriately for image analysis and measurement of the size/area of the image in mm\(^2\). This was done by scanning a ruler at 300 dpi, and then the image was cropped at 200-200 pixels. A length of 1 mm was measured via a ruler image, saved, and then used as the standard for disk image calibration.

Disk area growth, specific growth rates, and biomass yield

After measuring the initial area of all the disks, three disks with known area were randomly collected, weighed and subjected to drying in a 105°C oven for 4 h and then the disk dry weight was obtained. The measured dry weight (DW) was used to convert the disk area into dry weight, resulting in a conversion factor of 0.327 mg mm\(^{-2}\). The equivalent scanned DW of the disk was used to calculate the biomass produced as the sum of the DW of all the disks (mg) on the culture flask per culture area of the flasks (0.065 m\(^2\)) per unit time (day) expressed in units of mg m\(^{-2}\) day\(^{-1}\). The equivalent scanned DW of the disk was used to calculate the biomass produced as the sum of the DW of all the disks (mg) on the culture flask per culture area of the flasks (0.065 m\(^2\)) per unit time (day) expressed in units of mg m\(^{-2}\) day\(^{-1}\). The equivalent scanned DW of the disk was used to calculate the biomass produced as the sum of the DW of all the disks (mg) on the culture flask per culture area of the flasks (0.065 m\(^2\)) per unit time (day) expressed in units of mg m\(^{-2}\) day\(^{-1}\). The disk area growth was calculated according to this equation \(G = \frac{A_i - A_0}{c \times t} \) where \(A_i \) is the disk area growth (mm\(^2\) day\(^{-1}\)), \(A_0 \) is the disk area (mm\(^2\)) at the end of the sampling interval, \(A_c \) is the disk area (mm\(^2\)) at the beginning of the sampling interval, and \(t \) is the time elapsed between two successive samplings. Specific growth rate (μ) as percent increase in disk area expansion was calculated according to this equation \(\mu = \frac{A_i - A_0}{A_0 \times t} \) where \(A_i \) is the disk area (mm\(^2\)) at the end of the sampling interval, \(A_0 \) is the disk area (mm\(^2\)) at the beginning of the sampling interval, and \(t \) is the time (day) elapsed between two successive samplings. Specific growth rate (μ) as percent increase in disk area expansion was calculated according to this equation \(\mu = \frac{A_i - A_0}{A_0 \times t} \) where \(A_i \) is the disk area (mm\(^2\)) at the end of the sampling interval, \(A_0 \) is the disk area (mm\(^2\)) at the beginning of the sampling interval, and \(t \) is the time (day) elapsed between two successive samplings. Specific growth rate (μ) as percent increase in disk area expansion was calculated according to this equation \(\mu = \frac{A_i - A_0}{A_0 \times t} \) where \(A_i \) is the disk area (mm\(^2\)) at the end of the sampling interval, \(A_0 \) is the disk area (mm\(^2\)) at the beginning of the sampling interval, and \(t \) is the time (day) elapsed between two successive samplings. Specific growth rate (μ) as percent increase in disk area expansion was calculated according to this equation \(\mu = \frac{A_i - A_0}{A_0 \times t} \) where \(A_i \) is the disk area (mm\(^2\)) at the end of the sampling interval, \(A_0 \) is the disk area (mm\(^2\)) at the beginning of the sampling interval, and \(t \) is the time (day) elapsed between two successive samplings. Specific growth rate (μ) as percent increase in disk area expansion was calculated according to this equation \(\mu = \frac{A_i - A_0}{A_0 \times t} \) where \(A_i \) is the disk area (mm\(^2\)) at the end of the sampling interval, \(A_0 \) is the disk area (mm\(^2\)) at the beginning of the sampling interval, and \(t \) is the time (day) elapsed between two successive samplings. Specific growth rate (μ) as percent increase in disk area expansion was calculated according to this equation \(\mu = \frac{A_i - A_0}{A_0 \times t} \) where \(A_i \) is the disk area (mm\(^2\)) at the end of the sampling interval, \(A_0 \) is the disk area (mm\(^2\)) at the beginning of the sampling interval, and \(t \) is the time (day) elapsed between two successive samplings. Specific growth rate (μ) as percent increase in disk area expansion was calculated according to this equation \(\mu = \frac{A_i - A_0}{A_0 \times t} \) where \(A_i \) is the disk area (mm\(^2\)) at the end of the sampling interval, \(A_0 \) is the disk area (mm\(^2\)) at the beginning of the sampling interval, and \(t \) is the time (day) elapsed between two successive samplings.
The growth difference of the surface area in the images of NH4Cl and NaNO3 produced an olive-green color, which was likely due to the nitrogen sources. The fronds that were enriched with nitrate-enriched medium than that obtained with ASW after 10 days was significantly higher (P<0.05) were observed for both the ammonium- and nitrate-enriched medium the biomass yield showed a steep increase during days 2-5 whereas the yield varied much less during the first days for the NO3 growth. The difference in the disk growth in response to the type of N-source was noticed from the fifth day of cultivation onward (Fig. 3). The growth increment (specific growth rate) stalled after about 8 days of cultivation, presumably as a result of nitrogen limitation in the media. The specific growth rate increased with substantial amount of NH4 and stabilized after the nutrient was depleted. The maximum specific growth rate of U. lactuca cultured on NH4 was 18.6±0.8 day−1 and 9.4±0.72% day−1 with NO3 during 10 days of cultivation. The growth kinetics on nitrate illustrated a modest growth response as exemplified by the biomass yield of U. lactuca on the nitrate nutrient source relative to that on the NH4 (Fig. 3). Ammonium enrichment the biomass yield significantly (P<0.05) relative to the NO3 nutrient. The maximum biomass yield was 22.5±0.24 mg m−3 day−1 by ammonium and only 13.0±0.40 mg m−3 day−1 by nitrate enrichment.

Nitrogen uptake and interaction

Further analysis of the nutrient uptake response of U. lactuca in relation to different nitrogen sources showed that ammonium was favorably assimilated corresponding to a high uptake rate of ammonium (Fig. 4a, b). Both ammonium and nitrate were assimilated as indicated by the decrease of concentration in the medium (Fig. 4a). Significant differences (P<0.05) were observed for both the concentration and uptake rate of ammonium and nitrate over time (Fig. 4a, b). The abrupt assimilation of ammonium with high uptake rate from 0 to 1 day of cultivation was probably due to starvation of the seaweed frond. Nitrate in the medium was slowly assimilated by U. lactuca until an increased uptake rate was observed between 3 and 4 days of cultivation (Fig. 4b). The U. lactuca disks were also exposed to 50 μM NaNO3 in order to evaluate the uptake response of U. lactuca to the combination of the two nitrogen sources. This combination of ammonium and nitrate in the medium demonstrated the interactive response of U. lactuca to these nutrients (Fig. 4c). This interaction showed that the simultaneous presence of ammonium and nitrate resulted in an NH4 uptake rate which was similar to that of the NH4 uptake rate when exposed to ammonium alone, but a relatively higher uptake rate of NO3 as compared to when exposed to NaNO3 alone (compare Fig. 4b and c). However, the ammonium uptake rate was still significantly higher than

Results

Calibration, imaging, and growth measurement

Disks prepared from U. lactuca fronds grew steadily and reproducibly. The differences in U. lactuca disk area growth induced by the different N-enrichment (no N-addition, 50 μM NH4Cl or 50 μM NaNO3) was monitored daily throughout the cultivation period. Images of the disk fronds presented in Fig. 2 exhibit the increase in the surface area of U. lactuca disks over time with the different nitrogen sources. The fronds that were enriched with NaCl and NaNO3 produced an olive-green color, which may be a result of the accumulation of chlorophyll in the fronds. The color was slightly more yellow-green but also darker in the case of ASW-grown fronds (Fig. 2). The color differences may result from differences of nutrient sources. The ammonium-enriched medium induced a significantly higher increase (P<0.05) in surface area expansion (148.8 mm m−3 day−1) than the nitrate-enriched medium (98.6 mm m−3 day−1), while the disks incubated in the ASW without N-enrichment grew only slowly with no significant area expansion during the 10 days of cultivation (Fig. 2). Nitrate availability in the medium contributed little to the growth but nevertheless the disk area expansion after 10 days was significantly higher (P<0.05) with the nitrate-enriched medium than that obtained with ASW only.

Further analysis of the nutrient uptake response of U. lactuca in relation to different nitrogen source showed that ammonium was favorably assimilated corresponding to a high uptake rate of ammonium (Fig. 4a, b). Both ammonium and nitrate were assimilated as indicated by the decrease of concentration in the medium (Fig. 4a). Significant differences (P<0.05) were observed for both the concentration and uptake rate of ammonium and nitrate over time (Fig. 4a, b). The abrupt assimilation of ammonium with high uptake rate from 0 to 1 day of cultivation was probably due to starvation of the seaweed frond. Nitrate in the medium was slowly assimilated by U. lactuca until an increased uptake rate was observed between 3 and 4 days of cultivation (Fig. 4b). The U. lactuca disks were also exposed to 50 μM NaNO3 in order to evaluate the uptake response of U. lactuca to the combination of the two nitrogen sources. This combination of ammonium and nitrate in the medium demonstrated the interactive response of U. lactuca to these nutrients (Fig. 4c). This interaction showed that the simultaneous presence of ammonium and nitrate resulted in an NH4 uptake rate which was similar to that of the NH4 uptake rate when exposed to ammonium alone, but a relatively higher uptake rate of NO3 as compared to when exposed to NaNO3 alone (compare Fig. 4b and c). However, the ammonium uptake rate was still significantly higher than

Biomass yield and specific growth rate

Both ammonium- and nitrate enrichment elicited a normal, hyperbolic growth response as depicted in the accumulation of biomass (Fig. 3). On the NH4+ enriched medium the biomass yield showed a steep increase during days 2-5 whereas the yield varied much less during the first days for the NO3 growth. The difference in the disk growth in response to the type of N-source was noticed from the fifth day of cultivation onward (Fig. 3). The growth increment (specific growth rate) stalled after about 8 days of cultivation, presumably as a result of nitrogen limitation in the media. The specific growth rate increased with substantial amount of NH4 and stabilized after the nutrient was depleted. The maximum specific growth rate of U. lactuca cultured on NH4 was 18.6±0.8 day−1 and 9.4±0.72% day−1 with NO3 during 10 days of cultivation. The growth kinetics on nitrate illustrated a modest growth response as exemplified by the biomass yield of U. lactuca on the nitrate nutrient source relative to that on the NH4 (Fig. 3). Ammonium enrichment the biomass yield significantly (P<0.05) relative to the NO3 nutrient. The maximum biomass yield was 22.5±0.24 mg m−3 day−1 by ammonium and only 13.0±0.40 mg m−3 day−1 by nitrate enrichment.
Ulva lactuca grew faster with ammonium than with nitrate as the nitrogen source (Fig. 3). This corresponded well with the finding that the uptake of ammonium was faster than the nitrate uptake (Fig. 4b). This difference was probably due to the ammonium being presented in a reduced state which can easily be assimilated and directly utilized by algae for the synthesis of amino acid and protein resulting in cell and tissue growth (Duran 1995). Nitrate, however, must first be reduced to nitrite and then to ammonium in order for the algae to utilize this nitrogen source. The interaction study of the combination of ammonium and nitrate (Fig. 4c) demonstrated the discrimination of ammonium uptake and the uptake of nitrate. According to Lara et al. (1987) the reduction of nitrite to nitrate is catalyzed by the nitrite reductase enzyme that usually uses two ferrodoxins as electron donors while reduction from nitrite to ammonium is catalyzed by the nitrate reductase enzyme which usually uses two ferrodoxins as electron donors. The discrimination of ammonium uptake and the uptake of nitrate is caused by cell division or cell extension. Nevertheless, the increase of seaweed disk area.

Discussion

Our understanding of the growth kinetics of Ulva lactuca is highly dependent on the precise monitoring of its growth and measurement of the spike response to different nutrient sources. This includes minimizing the inaccuracy during growth measurement of seaweed fronds. The Ulva lactuca fronds are only two cell layers thick making them vulnerable to damage. By cautiously handling the disks during measurement, the measurement of information about growth kinetics could be achieved. In this present work, each individual disk sample was monitored and analyzed consistently. The images of the Ulva lactuca disks shown in Fig. 2 are the actual pictures obtained by the digital scanning. We used commercially readily available image processing software to determine the exact disk expansion. The software used was programmed to automatically count and measure the size of an image provided that the image had been calibrated. Once the parameters, e.g., pixel size, resolution, units, etc., were calibrated, the images were measured uniformly using the same calibration. The experimental set-up was designed to assess the exact cell growth physiology, which is why no firm conclusion can be drawn as to whether the disk growth is caused by cell division or cell extension. Nevertheless, because of the accuracy of the photo-scanning measurements, the increase in biomass yield could easily be calculated from the increase of seaweed disk area.
reduce, a process that needs six formaldehyde. This reduction mechanism as a consequence requires energy for the bisepropanol process. Thus, U. lactuca growth responses are different given the same concentration of nitrate nitrogen as they would on ammonium nitrogen.

The use of ASW medium over the duration of this experiment without renewal may have influenced the growth kinetics. The common experimental practice in indoor seaweed culture is water renewal (Naldi and Wheeler 2002; Vormast and Sand-Jensen 1987; Nardi et al. 1991; Christensen and Sand-Jensen 1996), however, the effect of the water renewal is unclear. Nevertheless, our results indicate that U. lactuca can grow even without renewing the medium for a certain period. The maximum growth rate (μ_{max}) in this condition was 16.39±0.18% day$^{-1}$ but in control (μ_{max}) reported in a previously published study (Nardi et al. 1991) where they used fresh seawater medium and extensive renewal of medium.

The amount of biomass accumulated during this experiment was relatively low as compared to other earlier works where they harvested considerable amounts of brown (Nardi et al. 1991; Msuya and Nort 2008). The water flow velocity may be the cause of the relatively lower biomass production. In this work, the water circulation was controlled to be 1.5 L h$^{-1}$, this circulation was almost equivalent to the water flow in the shallow benthic zone, which should be beneficial for U. lactuca growth. This assumption is supported by the previous works of Deity (1971) and Parker (1981) that showed the application of simulated current consistently enhanced growth rates of U. lactuca under laboratory conditions. This can also be a study conducted by Msuya and Nort (2008) in which they concluded that water velocity affected biomass yield and biofiltration performance of 'U. lactuca under low nutrient concentration in laboratory experiments.'

Acknowledgement: The authors are grateful to Michael Bostrom of the National Environmental Research Institute (DMI), University of Aarhus—Silkeborg, Denmark for providing the U. lactuca strain.

References

6 Conclusions and perspectives

As already stated, seaweeds are the subject of a wide range of interesting research topics; therefore, it entails crossing beyond another border of academic discipline to elucidate the problems and accomplish specific objectives. The present study provided information about the most recent developments in the chemistry of fucoidan/FCSPs, emphasizing the significance of different extraction techniques for the structural composition and biological activity using an interdisciplinary approach. The utilization of marine seaweeds that have washed up on the coastline as a source of bioactive compounds like FCSPs and the growth response of Ulva lactuca to nutrient assimilation were thoroughly investigated.

The use of different extraction and purification techniques appears to have contributed to the confusion about the nature and composition of FCSPs ever since it was first described by Kylin early in the 20th century. As detailed in the following, we now know that fucoidan is built of 1→3-linked α-L-fucopyranosyl or of alternating 1→3- and 1→4-linked α-L-fucopyranosyl residues that may be sulfate-substituted, and that some fucoidans isolated from certain brown algae have completely different structures composed of sulfated galactofucans with backbones of (1→6)-linked β-D-galacto- and/or (1→2) β-D-mannopyranosyl units with (1→3) and/or (1→4) α-L-fuco-oligosaccharide branching. The available data thus show that the term fucoidan has been used for several different chemical structures and vice versa, that fucoidan is a term that covers a diverse family of FCSPs (Paper 1). It is, therefore, more correct to use the term FCSPs, rather than fucoidan, as a collective term for these polysaccharides.

The varied chemical composition and diverse structures of FCSPs from brown seaweed may have hindered the development of an in-depth understanding of the precise properties of significance for structure-function correlations. Nevertheless, important structural bioactivity issues appear to include the degree of sulfation of the FCSP molecules. Oversulfated FCSPs have thus been found to be excellent potent inhibitors of tumor cell invasion compared to desulfated native FCSPs. Loss of anticoagulant activity has been observed with decreasing degrees of sulfation, although anti-proliferative effects on fibroblast cell lines were retained (Paper 1).

A simple and practical method for recovering a suite of complex FCSPs from Sargassum sp. and the effect of different treatment parameters on the integrity of the polysaccharide have been
established (Paper 2). The preservation of the structural integrity of the FCSP molecules appears to be crucial for maintaining its biological properties, and it has been clearly shown that the extraction treatment employed affects the composition and thus the structural features of the FCSP substances (Paper 2). Evidently, the chemical composition and yield of the isolated products are strongly influenced by the method of extraction, as was expected. The data presented (Paper 2) showed that the polysaccharide obtained from a single-step extraction method may be heterogeneous, and that the composition varies with the length of the extraction process. Fucose, sulfate, and glucuronic acid were the important components of the polysaccharide mixture and this is typical for a fucoidan compound (Paper 2). The results (Paper 2) also demonstrated that FCSPs were vulnerable to harsh extraction conditions. Hence, we confirmed that extraction condition significantly influenced FCSP composition, and structural alteration may have occurred. Undoubtedly, the presence of impurities could influence the biological properties of FCSPs and, therefore, may currently hinder our complete understanding of the biological activity of fucoidan or FCSPs. Hence, the development of standard extraction procedures for FCSPs including hydrolysis treatment, purification, and fractionation methodology, preferably with specific steps adapted to the particular botanical order of the seaweed, will generate a better common basis for the analysis and understanding of bioactivities and the mechanisms determining FCSP bioactivities. On this basis, it may even be possible to target specific structural features and, in turn, tune the extraction procedure to obtain specific bioactivities via the use of targeted extraction methodologies.

The bioactivity of the isolated FCSP products from Sargassum sp. against LLC and MC was investigated (Paper 3). The study showed that FCSPs induce apoptosis of MC cells (Papers 3 and 4) and exert anti-tumor activity through the inhibition of the growth of LLC and MC, which was probably due to the enhancement of NK cell activity as the principal effector mediating tumor cell death. We showed that both FCSPs samples from Sargassum sp. and F. vesiculosus induces apoptosis by activating caspase-3 and exerts anti-tumor activity by inhibiting the growth of cells (Paper 4). FCSPs from Sargassum sp. and Fucus vesiculosus thus appear to be potent against lung and skin cancer cell lines, and its mode of action is associated with the immune response (Paper 3).

Furthermore, the bioactivity of crude fucoidan toward these 2 types of cancer cell lines was possibly augmented by the sulfate groups in the fucoidan structure. Nevertheless, further examination about these findings is needed to elucidate the underlying factors of FCSP bioactivity.

The unfractionated FCSP structures from Sargassum sp. could probably be heterogeneous and branched as expected; however, another possibility could be that these FCSPs were not mixtures
of different types of polysaccharides but members of the same polysaccharide family. Our structural investigation presented by \(^{1}H\) NMR spectra indicate that in both Sargassum sp. and F. vesiculosus, FSCP samples contained fucoidan-like structures, but definite structural information about whether the structure is heterogeneous or members of the same polysaccharide family should further be investigated (Paper 4). The quantitative variation of its components and distribution patterns as well as the differences in its structural details was probably not due to sample heterogeneity but rather to extreme compositional and structural dispersion. At any rate, the crucial bioactive effectiveness of these unfractionated FCPs may be attributed to their distinct structural features, such as level of sulfation (charge density) and the position and bonding of the sulfate substitutions or sulfated fucans (i.e., C-2 and/or C-4 of α3-linked 1-fucopyranose residues) and sulfated galactans (i.e., C-2 of 3-linked galactopyranose residues) complexes (Paper 4). Nonetheless, we now understand that the type and variety of algal FCPs is much wider than originally believed.

In addition to the investigation of the potential of the brown seaweeds Sargassum sp. and F. vesiculosus as natural sources of bioactive compounds, the washed up nuisance green seaweed U. lactuca was also examined for its growth and nutrient assimilation potential. This study was performed to illustrate the need for a precise monitoring method of the growth of U. lactuca in order to successfully exploit it for commercial application. Our understanding of the growth kinetics of U. lactuca is highly dependent on the precise monitoring of its growth and measurement of the uptake response to different nutrient sources. This includes minimizing inaccuracies during the growth measurement of seaweed fronds. This work exhibited the applicability of the photo-scanning approach for attaining accurate quantitative growth data of U. lactuca as demonstrated by evaluation of the growth response to ammonium and nitrate (Paper 5). The experimental set-up was not designed to assess the exact cell growth physiology, which is why no firm conclusion can be drawn as to whether the U. lactuca disc growth was caused by cell division or cell extension. Nevertheless, because of the accuracy of the photo-scanning measurements, the increase in biomass yield could easily be calculated from the increase of seaweed disc area (Paper 5). This result showed that U. lactuca grew faster with ammonium than with nitrate as the nitrogen source (Paper 5). This corresponded well with the finding that the ammonium uptake was faster than the nitrate uptake. This difference was probably due to the ammonium being presented in a reduced state that can be easily assimilated and directly utilized by algae for the synthesis of amino acids and proteins resulting in cell and tissue growth. Nitrate, however, must first be reduced to nitrite and then to ammonium for the algae to utilize this...
6.1 Future perspectives

Marine seaweed has gained a lot of attention in the scientific community and in industries; thus, the potential biological effects of seaweeds have been exploited has been examined extensively in recent years. Still, there are many avenues in seaweed research, that need to be considered, studied, and understood to successfully exploit this abundant resource. This PhD study highlighted a few of the crucially important factors in the utilization of seaweed products, notably the extraction procedure and bioactivity analysis of FCSPs. Nevertheless, there are other research areas concerning seaweed resources that need further investigation; they may include bioprocesses and purification involving enzyme technology coupled with membrane technology coupled with the concept of seaweed biorefinery.

A typical technology for isolating valuable products from seaweeds, notably bioactive compounds like FCSPs, involves the use of chemicals. This technique has been employed since the first extraction of fucoidan by Kylin in 1913. This present study demonstrated that chemical extraction of fucans from brown seaweeds contained impurities. The apparent impurities (i.e., saccharides other than sulfated fucos) may or may not contribute to the bioactivity efficacy of fucoidan. To reach a definitive conclusion, this hypothesis must be examined strategically using enzymes that cleave specific sites. Extraction using enzymes coupled with membrane technology could be a future strategy for recovering bioactive seaweed compounds. Mono-component activity enzymes may be employed to eliminate and/or hydrolyze specific impurities, including certain monosaccharides and structural polysaccharides. Chemically and/or enzymatically isolated FCSPs compounds can be further purified by filtration using membranes to separate the molecular size of interest. Purified components will be investigated to determine whether they possess any biological active properties against certain diseases using in vitro, in vivo, animal models, and/or possibly clinical testing.

Seaweed cultivation and processing is an important industry in Southeast Asia, but it is still new to Scandinavia, especially Denmark. As described in this study, only selected components are obtained from seaweeds (i.e., FCSPs, fucoidan, alginate, carrageenan, and agar), and the remaining are considered waste. This present study proposed a new type of strategy to improve the
utilization of seaweed by using the entire seaweed frond for the production of chemicals and/or biochemicals and energy. Thus, a concept of seaweed biorefinery should be developed.

The first phase of this concept includes isolation of commercially important chemicals/biochemicals such as hydrocolloids and the bioactive sulfated polysaccharide compounds. In the second phase, the remaining residues are collected as bulk biomass and then converted into chemicals and energy carriers (heat, liquid, gas, and electricity) by catalytic and enzymatic conversions and/or by digestion and pyrolysis. The residue-containing minerals are targeted for use in fertilizer applications in the final phase of the biorefinery cycle.

Many potential applications exist for the products acquired from biorefineries. Seaweed components derived thereof can be used as hydrocolloids for food and feed applications or can be formulated into natural health supplements; in contrast, mineral-containing seaweed residues are incorporated into fertilizer products.

The detailed processes, procedures, and specific working conditions of this seaweed biorefinery concept are yet to be determined.
7 References

Abdel-fattah AF, Hussein MD, Salem HM (1974) Studies of purification and some properties of sargassan, a sulfated heteropolysaccharide from Sargassum linifolium. Carbohydrate Research 33:9-17

7 References

Abdel-fattah AF, Hussein MD, Salem HM (1974) Studies of purification and some properties of sargassan, a sulfated heteropolysaccharide from Sargassum linifolium. Carbohydrate Research 33:9-17

PhD Thesis 2012

PhD Thesis 2012

Crawford, B. 2002. Seaweed Farming: An Alternative Livelihood for Small-Scale Fishers? Coastal Resources Center, University of Rhode Island, USA.

Crawford, B. 2002. Seaweed Farming: An Alternative Livelihood for Small-Scale Fishers? Coastal Resources Center, University of Rhode Island, USA.

hydrolysis, preparation of oligosaccharides, and heparin cofactor II-dependent anticoagulant activity. Glycobiology, 15, 369–381

hydrolysis, preparation of oligosaccharides, and heparin cofactor II-dependent anticoagulant activity. Glycobiology, 15, 369–381

In this Doctoral thesis

Fucose containing sulfated polysaccharides (FCSPs) derived from brown seaweed exhibited crucial biological activities including anti-proliferative effects on lung and skin cancer cells in vitro. FCSPs also demonstrated immunomodulating effect by enhancing natural killer cells activity.

Conventional extraction technology for FCSPs involves treatment that is detrimental to its structural properties, yield and compositional attributes. Thus it hinders our understanding on the exact structure-function relations of FCSPs, as a consequence it limits commercial application possibilities for this valuable compound.

This PhD thesis delivers new understanding about the influences of extraction treatment parameters on the chemical nature of FCSPs and showed the most recent investigation of FCSPs as potential therapeutic agent for certain type of cancers.

The author of this PhD thesis is an agricultural engineer with MSc in agricultural development specialized in production and analysis of hydrocolloid from seaweed biomass for food and other commercial applications. He was involved in developing sustainable technology for algae bioremediation of wastewater and algae biomass production for bioenergy.