Microcontainers as an oral drug delivery system.

Nielsen, Line Hagner; Keller, Stephan Sylvest; Jacobsen, J.; Rades, Thomas; Boisen, Anja; Müllertz, A.

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Microcontainers as an oral drug delivery system

Line Hagner Nielsen¹,²*, Stephan Sylvest Keller¹, Jette Jacobsen², Thomas Rades², Anette Müllertz², Anja Boisen¹

¹Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
²Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Introduction
For oral drug delivery of BCS class 2 and 4 drugs, it may be necessary to introduce innovative drug delivery systems to improve bioavailability. Micro fabricated devices have been proposed as promising oral drug delivery systems.¹ Microcontainers consist of a walled reservoir extending from a flat base where size and shape easily can be controlled and also allowing for unidirectional drug release.²

Aim
The purpose of this study was to evaluate microcontainers in vitro and in vivo as an innovative oral drug delivery system for the poorly water-soluble drug, furosemide.

Method
SU-8 microcontainers (inner diameter of 223 µm) (Fig 1a) were filled with amorphous sodium salt of furosemide (ASSF), subsequently, the cavity was spray coated with Eudragit® L100. The release of ASSF from the microcontainers was examined in biorelevant gastric and intestinal media and the intestinal permeability of ASSF dosed in microcontainers was evaluated using a Caco-2 cell culture model. Furthermore, the oral bioavailability of ASSF in microcontainers and in capsules coated with Eudragit® L100 were assessed.

Results
Drug release from microcontainers was prevented in the gastric medium, while an immediate release of ASSF was seen in the intestinal medium. The cell studies showed a fast permeability of ASSF with no significant differences between the microcontainers and bulk powder, P_{app}: $1.7±0.6·10^{-5}$ cm/s and $1.8±1.0·10^{-5}$ cm/s (mean±SD n=11), respectively (Fig 1b). The relative oral bioavailability of ASSF in microcontainers was found to be $220±43\%$ (mean±SEM, n=6) when compared to drug-filled capsules coated with Eudragit® which was reflected by a larger AUC for the ASSF in microcontainers (Fig 1c).

Conclusion
Microcontainers show considerable potential as a future oral drug delivery system.

References

Fig. 1 a) A microcontainer, inner diameter of 223 µm, b) intestinal permeability of ASSF filled into microcontainers in comparison with bulk powder, c) AUC0-1440 min for the plasma concentration of ASSF dosed in microcontainers and in Eudragit-coated capsules after oral administration to rats.