Leakage Inductance Calculation for Planar Transformers with a Magnetic Shunt

Zhang, Jun; Ouyang, Ziwei; Duffy, Maeve C.; Andersen, Michael A. E.; Hurley, William G.

Published in:
IEEE Transactions on Industry Applications

Link to article, DOI:
10.1109/TIA.2014.2322140

Publication date:
2014

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Leakage Inductance Calculation for Planar Transformers with a Magnetic Shunt

Jun Zhang, Student Member, IEEE, Ziwei Ouyang, Member, IEEE, Maeve C. Duffy, Senior Member, IEEE, Michael A. E. Andersen, Member, IEEE, William. G. Hurley, Fellow, IEEE

Abstract—The magnetic shunt is generally inserted in a planar transformer to increase the leakage inductance which can be utilized as the series inductor in resonant circuits such as the LLC resonant converter. This paper presents a calculation methodology for the leakage inductance of the transformer with a magnetic shunt by means of the stored magnetic energy in the primary and secondary sides of the transformer using the magnetomotive force (MMF) variation method, as well as the stored energy in the shunt based on the reluctance model. The detailed calculation method is described. Both the FEA simulation and the experimental results have proven the validity of the proposed calculation method for leakage inductance.

Index Terms—Leakage inductance, magnetomotive force (MMF), magnetic shunt, planar transformer, resonant converter, reluctance model

I. NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_c</td>
<td>Effective cross sectional area of the core</td>
</tr>
<tr>
<td>b_c</td>
<td>Width of the outer leg of the core</td>
</tr>
<tr>
<td>b_w</td>
<td>Width of the core window</td>
</tr>
<tr>
<td>E_{core}</td>
<td>Energy stored in the core</td>
</tr>
<tr>
<td>E_{pri}</td>
<td>Energy stored in the primary side</td>
</tr>
<tr>
<td>E_{sec}</td>
<td>Energy stored in the secondary side</td>
</tr>
<tr>
<td>E_{shunt}</td>
<td>Energy stored in the magnetic shunt</td>
</tr>
<tr>
<td>f_p</td>
<td>MMF in each layer of the primary winding</td>
</tr>
<tr>
<td>f_s</td>
<td>MMF in each layer of the secondary winding</td>
</tr>
<tr>
<td>h</td>
<td>Thickness of the magnetic shunt</td>
</tr>
<tr>
<td>h_{sp}</td>
<td>Thickness of each layer in the primary winding</td>
</tr>
<tr>
<td>h_{ss}</td>
<td>Thickness of each layer in the secondary winding</td>
</tr>
<tr>
<td>I_p</td>
<td>Current across the primary winding</td>
</tr>
<tr>
<td>I_{p}'</td>
<td>Turns per layer in the primary side</td>
</tr>
<tr>
<td>I_s</td>
<td>Turns per layer in the secondary side</td>
</tr>
<tr>
<td>l_c</td>
<td>Effective length of the core</td>
</tr>
<tr>
<td>l_w</td>
<td>Depth of the magnetic core</td>
</tr>
<tr>
<td>N_p</td>
<td>Number of primary layers</td>
</tr>
<tr>
<td>N_s</td>
<td>Number of secondary layers</td>
</tr>
<tr>
<td>$P(n)$</td>
<td>The nth layer of the primary winding</td>
</tr>
<tr>
<td>$S(n)$</td>
<td>The nth layer of the secondary winding</td>
</tr>
<tr>
<td>x</td>
<td>Distance from the top winding (see Fig. 3)</td>
</tr>
<tr>
<td>μ_0</td>
<td>Magnetic permeability of free space</td>
</tr>
<tr>
<td>μ_r</td>
<td>Relative permeability of the core</td>
</tr>
<tr>
<td>μ_s</td>
<td>Relative permeability of the magnetic shunt</td>
</tr>
</tbody>
</table>

II. INTRODUCTION

The correct prediction of leakage inductance in transformers is critical for LLC resonant converters because a well-matched resonant frequency is required [1], [2]. Traditional LLC converters use a wire-wound transformer and an additional magnetic component for the resonant inductor, resulting in a significant increase in the overall size of the converter. Nowadays, many efforts involve integrated magnetics and planar magnetics for LLC converters [3]-[6]. Inserting a magnetic shunt into the transformer winding layers is a common method to increase the leakage inductance, as shown in Fig. 1.

Many publications have made excellent analysis and calculations for leakage inductance in conventional and planar transformers [7]-[12]. However, none of published literature has predicted an accurate leakage inductance for planar transformers with an inserted magnetic shunt. This paper focuses on the leakage inductance calculation in planar transformers based on magnetomotive force (MMF) analysis and leakage energy distribution along the conductors,

Fig. 1. The planar transformer with magnetic shunt

0993-9994 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
insulators and magnetic shunt. Section III gives a detailed analysis on the leakage inductance and proposes a formula to calculate the leakage inductance with a magnetic shunt consideration. Section IV presents a comparison of the calculations, FEA simulation results and the experimental results. Several planar transformer prototypes with different magnetic shunts have been built to verify the proposed calculation method. At last, conclusions are reached in section V.

III. LEAKAGE INDUCTANCE CALCULATION METHOD

A. Basic Definition of Leakage Inductance

In a typical transformer, the flux generated by ac current excitation in the primary winding follows the magnetic circuit and link with the secondary winding. Some flux will leak from the core and return to the air, winding layers and insulator layers without linking the secondary windings. The partial coupling of the flux results in leakage inductance. Fig. 2 shows the leakage flux paths and the magnetomotive force (MMF) variation in the transformer.

Within the winding area the leakage flux is approximately parallel to the winding interface. The leakage inductance referred to the primary side can be calculated by the energy stored in the magnetic field,

$$E = \frac{1}{2} \oint B \cdot H dV = \frac{1}{2} L_k \cdot I_p^2$$

(1)

where \(V\) is the total effective volume and \(I_p\) is the current in the primary winding.

B. Leakage Inductance Calculation

A description for the leakage inductance calculation based on the energy methodology can be found in [13]. This paper describes how the insertion of a magnetic shunt offers a more consistent and definable leakage inductance, and proposes the calculation methodology based on the MMF and the reluctance model. Fig. 3 presents the simplified analytical scheme of MMF distribution along the winding layers for the simple case of a planar transformer with magnetic shunt inserted in the middle of the core window. The numbers of layers in the primary and secondary are labeled as \(N_p\) and \(N_s\), respectively.

In planar transformers, the windings are generally implemented by PCB or copper foil. The number of turns in each layer of the primary and secondary side is \(k_p\) and \(k_s\), respectively and corresponding currents are \(I_p\) and \(I_s\), respectively as shown in Fig. 4. The MMF along the flux path which includes the layer depends on the number of ampere turns linked by the path. Thus, the MMF in each layer of the primary and secondary windings is given as:

$$f_p = k_p \cdot I_p, \quad f_s = k_s \cdot I_s$$

(2)

In order to obtain the leakage inductance of the presented planar transformer, the total magnetic energy stored in the window area including the energy in the primary side \(E_{pri}\), the secondary side \(E_{sec}\) and the magnetic shunt \(E_{shunt}\) must be analyzed and calculated. Based on Fig. 3, the magnetic field intensity in the shunt inside the core window can be calculated by assuming the MMF in it is \(N_s f_p\) and the field intensity in the shunt across the core legs is 0. On the other hand, the reluctance model can be applied to obtain the magnetic field intensity in the shunt with the reluctance of the windings ignored because the shunt leakage energy may dominate the total leakage energy. Two calculation methods will be compared.

1) Energy stored in the primary side and the secondary windings: Based on the analysis of the magnetic field intensity \(H\) in the primary side, the stored energy in the primary \(E_{pri}\) can be obtained. Fig. 5 shows the MMF in vicinity of layer \(n\) in the primary where \(n\) can be accumulated from 1 to \(N_p\). The relation between the magnetic field intensity \(H\) and the geometric position \(x\) is shown as (3).

Fig. 2. The leakage flux paths and MMF curve

Fig. 3. The simplified analytical scheme of MMF distribution for the planar transformer with magnetic shunt
Fig. 5. The distribution and calculation of MMF

\[
H(x) = \frac{(n-1)f_p}{b_w} + 2f_p \int_{x-(n-1)(h_p+h_{Δp})}^{x} \frac{dx}{h_p+b_w} \text{ when } (n-1)(h_p+h_{Δp}) < x \leq (n-1)(h_p+h_{Δp})+h_p
\]

(3)

The energy \(E_{pri} \) can be calculated by (1) and written as (4).

\[
E_{pri} = 2 \cdot \frac{1}{2} \mu_0 l_w k_2 f_p \left[\sum_{n=1}^{N_p} \left(\frac{(n-1)(h_p+b_{Δp})+h_p}{(n-1)(h_p+b_{Δp})+h_p} \right) H^2(x) dx \right]
\]

(4)

In (4), \(l_w \) is the depth of the magnetic core or the shunt, see Fig. 3. Combining (3) and (4), it can be obtained

\[
E_{pri} = \frac{1}{6} \mu_0 l_w k_2 f_p \left[2h_p N_p^3 + h_{Δp} (2N_p^3 - 3N_p^2 + N_p) \right] l_w^2
\]

(5)

Similarly,

\[
E_{sec} = \frac{1}{6} \mu_0 l_w k_2 f_p \left[2h_p N_p^3 + h_{Δp} (2N_p^3 - 3N_p^2 + N_p) \right] l_w^2
\]

(6)

2) Energy stored in the magnetic shunt: First method, the MMF in the magnetic shunt is assumed to be \(N_{f_p} \) and then,

\[
H_s = \frac{N_{f_p}}{b_w}
\]

(7)

The energy stored in the total magnetic shunt is

\[
E_{shunt} = \mu_0 \mu_s \frac{h_{l_w} k_2^2 f_p^2}{b_w^2}
\]

(8)

Thus, the leakage inductance based on this method is

\[
L_k = \frac{\mu_0 l_w k_2^2 f_p N_p^2}{3b_w} \left(\sum_{l=1}^{l_{p+1}} \left[2(h_l + h_{Δl}) N_l - 3h_{Δl} + \frac{h_{Δl}}{N_l} \right] + 6μ_h l \right)
\]

(9)

The secondary method is based on the reluctance model of the transformer because the main magnetic flux path is changed with the shunt inserted as shown in Fig. 3. The MMF in the magnetic shunt should not be assumed as \(N_{f_p} \) under some conditions. In general, the permeability of magnetic shunt is substantially higher than the permeability of air, the energy stored in the magnetic shunt dominates the total leakage energy. Fig. 6 shows the reluctance model of leakage inductance calculation in the planar transformer with the inserted magnetic shunt with the reluctance of windings ignored. The reluctance of the magnetic core \(R_1 \) and \(R_2 \), the reluctance of the shunt \(R_{s1} \) and \(R_{s2} \) can be calculated by

\[
R_1 + \frac{1}{2} R_2 = \frac{l_c}{2μ_0μ_s A_i}
\]

(10)

\[
R_{s1} = \frac{h}{2μ_0μ_s b_w l_w} \quad R_{s2} = \frac{b_w}{μ_0μ_s h l_w}
\]

where \(μ_ε \), \(μ_s \) are the relative permeability of the core and shunt respectively, \(A_i \) is the effective cross sectional area of the core, \(l_c \) is the effective length of the EE core and other parameters are labeled in Fig. 6. Fig. 7 gives the reluctance model of the planar transformer.

From the magnetic reluctance model, the magnetic flux in the shunt inside the window is

\[
\phi_s = \frac{N_{f_p} f_p}{R_1 + \frac{1}{2} R_2 + R_{s1} + R_{s2}}
\]

(11)

If \(a \) was defined as

\[
a = \frac{R_2}{R_1 + \frac{1}{2} R_2 + R_{s1} + R_{s2}}
\]

(12)
The magnetic field intensity of the shunt inside the window \(H_{sw} \) is
\[
H_{sw} = \frac{1}{b_w} a N_p f_p \tag{13}
\]
The magnetic field intensity of the shunt inside the core \(H_{sc} \) is
\[
H_{sc} = \frac{R_{cl}}{h R_{c2}} a N_p f_p \tag{14}
\]
The magnetic field intensity of the core \(H_{core} \) is
\[
H_{core} = \frac{R_{c1} + 2 R_{c2}}{2 l_c R_{c2}} a N_p f_p \tag{15}
\]
The total leakage energy stored in the magnetic shunt \(E_{shunt} \) is
\[
E_{shunt} = \mu_0 \mu_s \left(\frac{h l_{w}}{b_w} + \frac{2 b_c l_c R_{c1}}{h R_{c2}} \right) a^2 k_p^2 N_p^2 l_p^2 \tag{16}
\]
The energy stored in the magnetic core \(E_{core} \) is
\[
E_{core} = \mu_0 \mu_r A_c \left(\frac{R_{c1} + 1}{2 R_{c2}} \right)^2 a^2 k_p^2 N_p^2 l_p^2 \tag{17}
\]
From the balance of the MMF in the primary and the secondary windings,
\[
N_p k_p f_p = N_s k_s I_s \tag{18}
\]
Combining (1), (5), (6), (16), (17) and (18), the leakage inductance referred to the primary of the planar transformer with magnetic shunt can be expressed by (19) shown at the bottom of the page.

The two calculation methods will be compared and evaluated by the simulation and experimental results.

IV. METHODS EVALUATION AND EXPERIMENTAL VERIFICATION

The leakage calculations demonstrate that the relative permeability and the thickness of the magnetic shunt are significant in terms of the leakage inductance. The magnetic shunt should be selected carefully in order to achieve the design. 2D Finite Element Analysis (FEA) simulations for the ELP 43/10/28 core with different shunts have been performed. The detailed specifications of the planar transformer are presented in Table I. Fig. 8 shows the simulation results of the magnetic field intensity in the core window corresponding to the calculations by (3). The magnetic field intensity is much higher in the shunt than elsewhere, which means the leakage energy is mainly stored in the magnetic shunt.

In order to verify the proposed calculation methodology and compare the presented two calculation methods, magnetic shunts with different relative permeability were studied: (1) \(\mu_s=10 \); (2) \(\mu_s=40 \); (3) \(\mu_s=100 \); (4) \(\mu_s=150 \); (5) \(\mu_s=200 \). The thickness of the shunt \(h \) is varied from 0.1 mm to 2 mm. The two methods to calculate the leakage inductance have been
\[
L_h = \frac{1}{3} \mu_0 k_p^2 N_p^2 \frac{l_w}{b_w} \sum_{i=p,s} 2(h_i + h_{w,i}) N_i - 3h_{w,i} \frac{h_{w,i}}{N_i} + 6 \mu_s \left(h + \frac{2 b_c l_c R_{c1}}{h R_{c2}} \right) a^2 + \frac{3}{4} \mu_r b_c A_c \frac{b_c l_c R_{c2}}{R_{c1} + 1} \frac{R_{c2}}{2} a^2 \right) \tag{19}
\]

Compared with the simulation results as shown in Fig. 9. It is indicated that the calculation method of the leakage inductance presented as (19) with the reluctance model applied is more accurate.

Further experiments were carried out to verify the proposed calculation method. Four kinds of the PCB windings have been built; the magnetic core for the planar transformer is ELP 43/10/28. Two PCB windings are shown in Fig. 10. The thickness of the insulator between two windings and the number of layers in PCB1 and PCB2 are different. The insulator thicknesses in PCB1 and PCB2 are 0.4 mm and 1.5 mm while numbers of turns are 4 and 2, respectively. Three transformers have been built and the parameters are shown in Table I. Thicknesses of shunts used in the planar transformer
are shown in Fig. 12. Fig. 12 (a) - (b) show the calculation and experimental results for the leakage inductance were measured at 100 kHz and the average value for 16 test results was selected as the measured inductance. Comparisons of the calculation and experimental results for each transformer are shown in Fig. 12. Fig. 12 (a) and (b) show the calculation and experimental results for the three tested transformers with the thickness of the magnetic shunt 0.5 mm and 1 mm, respectively. The experimental results indicate that the proposed calculation method based on the reluctance model for the leakage inductance of the planar transformer with a magnetic shunt is valid.

V. CONCLUSIONS

This paper presents a new methodology for the calculation of leakage inductance in the planar transformers with a magnetic shunt based on the stored magnetic energy in the primary and secondary side of the transformer as well as the stored energy in the shunt. The reluctance model is utilized to obtain the magnetic field density in the magnetic shunt and proved to be a better calculation method to obtain the leakage inductance. The proposed model is available for the selection of the magnetic shunt in applications where the leakage inductance can be applied as a series inductor in the circuit, such as the resonant inductor in the LLC resonant converter. The FEA simulations have been carried out and results calculated by the proposed equation correspond well with the simulation results. Several prototypes of the planar transformer have been built and the measured leakage inductance agrees with the theoretical computation.

ACKNOWLEDGEMENT

The author, Jun Zhang, would like to acknowledge the support of the Chinese Scholarship Council (CSC).

REFERENCES

Jun Zhang (S'13) was born in Anhui, China, in 1987. He received the B.S. degree and M.S. degree in electrical engineering, from the Department of Electrical Engineering, Zhejiang University, Hangzhou, China, in 2009 and 2011, respectively. He is currently working toward the Ph.D. degree in the Power Electronics Research Centre, NUI Galway, Galway, Ireland.

His research interests include high frequency resonant converter and planar magnetics.

Ziwei Ouyang (S'07, M'11) received the B.S. degree in electrical engineering from the Naval University of Engineering, Wuhan, China, in 2004, the M.S. degree from the Tianjin University of Technology, Tianjin, China, in 2007, and the Ph.D. degree from the Technical University of Denmark (DTU), Denmark, in 2011. He worked as a Postdoctoral Researcher at DTU from 2011 to 2013 and is currently assistant professor in the Department of Electrical Engineering at DTU.

His current research interests include advanced magnetics design, modelling and integration in switch mode power supplies, dc/dc converters, and digital control in high-power reversible converters. He is the holder of three US/EP/PCT patents. He is member of the IEEE PEELS, IES and Magnetics societies.

Maeve C. Duffy (SM'09) graduated with a PhD in Electronic Engineering from the National University of Ireland, Galway in 1997. From 1997 - 2001, she was a Research Assistant with PEI Technologies at the NMRC (Tyndall) in Cork, Ireland, where her research focused on planar magnetics for power electronic applications. Since then, she has been a Lecturer in Electrical & Electronic Engineering at NUI Galway.

Her current research interests are in magnetic component modelling and design for microprocessor loads, energy harvesting and wireless power systems. She was an elected member of the AdCom of the IEEE Power Electronics Society from 2006 to 2008.