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We present an interactive web application for visualizing genomic data of prokaryotic chro-
mosomes. The tool (GeneWiz browser) allows users to carry out various analyses such as 
mapping alignments of homologous genes to other genomes, mapping of short sequencing 
reads to a reference chromosome, and calculating DNA properties such as curvature or stack-
ing energy along the chromosome. The GeneWiz browser produces an interactive graphic 
that enables zooming from a global scale down to single nucleotides, without changing the 
size of the plot. Its ability to disproportionally zoom provides optimal readability and in-
creased functionality compared to other browsers. The tool allows the user to select the dis-
play of various genomic features, color setting and data ranges. Custom numerical data can 
be added to the plot allowing, for example, visualization of gene expression and regulation 
data. Further, standard atlases are pre-generated for all prokaryotic genomes available in 
GenBank, providing a fast overview of all available genomes, including recently deposited 
genome sequences. The tool is available online from 
http://www.cbs.dtu.dk/services/gwBrowser. Supplemental material including interactive at-
lases is available online at http://www.cbs.dtu.dk/services/gwBrowser/suppl/. 

 

 

Introduction
The development of fast and inexpensive genome 
sequencing technologies has led to the generation 
of vast amounts of genomic information. As ge-
nomic sequencing becomes both more powerful 
and affordable, the handling and analysis of the 
generated data produces novel challenges and 
shifts the focus away from the discovery process 
towards technical considerations of handling, 
storing and analyzing sequence data. An impor-
tant step when exploring a new genome is to com-
pare it to existing sequences, in order to identify 
both novel and conserved features. Many auto-
mated computational methods are available that 
attempt to derive protein function from sequence 
[1-3]. In a metagenomic study by Harrington and 
co-workers it was estimated that 76% of the ex-
amined protein coding genes could be assigned a 
function. However, to assess predictions for indi-

vidual genes the visualization remains critical to 
provide the biologist with an overview of the ge-
nomic context. Are genes of interest situated in 
clusters? In operons? How are they regulated? 
How does their DNA base composition compare 
with that of the rest of the genome? In order to 
display such features both on a genome scale and 
in close-up down to the level of nucleotides, we 
developed the GeneWiz browser which is based 
on the ‘Genome Atlas’ concept [4,5]. This tool can 
also display local DNA structural properties, so 
that regulatory or repeat regions can easily be 
identified and interpreted in a chromosomal con-
text. 
During development of the GeneWiz browser, it 
became apparent that novel sequencing technolo-
gy creates a further demand. The current genera-
tion of sequencing instruments utilizes primed 
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synthesis in flow cells to simultaneously obtain 
the sequences of millions of different DNA tem-
plates, an approach that changed the field of DNA 
sequencing [6,7]. Flow sequencing, also known as 
sequencing by synthesis (SBS) on a solid surface, 
tracks nucleotides as they are added to a growing 
DNA strand [8]. SBS is used by high-throughput 
sequencing systems which have become commer-
cially available in the past two years. Examples 
include the sequencer GS Titanium (commercia-
lized by 454/Roche); Genome Analyser GA-II (So-
lexa/Illumina); and SOLiD™ 3 system (Applied 
Biosystems). 
These developments have increased the speed of 
sequencing while significantly reducing its cost 
[9,10]. This much higher throughput provides 
greater coverage, but at the cost of much shorter 
read-lengths: from 50 bases with SOLiD 3 to 75 
bases with Illumina GA II. Even reads of 500 bases 
obtained with the 454-Titanium are still shorter 
than read lengths typically obtained using the 
Sanger method [9,11]. The output from modern 
high-through sequencing equipment challenges 
the assembly software by generating shorter and 
ambiguous reads. Processing of this flood of se-
quence data has rapidly become a bottleneck, and 
developing the necessary skills and tools will most 
likely be a driving factor in the execution of 
second-generation sequencing [12]. As a first step 
in this development, it needs to be determined to 
what extent assembly of short-read sequences can 
be trusted, an assessment for which the GeneWiz 
browser can also be used. 

Methods 
Our method of visualization is based on color-
encoded lanes to display numerical information 
on a genome atlas similar to GeneWiz [4,5]. The 
color encoding can be done either using a linear 
scale with a fixed minimum and maximum range, 
or a dynamic scale of standard deviations. Using 
the latter, color intensity decreases as data ap-
proach average values, thereby emphasizing re-
gions of significant variation. The web interface is 
divided into four optional sections, to address 
various biological viewpoints of chromosomes: 1) 
DNA properties 2) Mapping of homologous genes 
by BLAST 3) Mapping of short sequencing reads 4) 
Custom lanes such as Single Nucleotide Polymor-

phism (SNP) or microarray data. The output of 
each method is a numerical vector of length cor-
responding to that of the reference sequence, and 
the methods used for this construction are de-
scribed in detail below. 

Read quality assessment 
Gene duplications, rRNA operons and other repeti-
tive chromosomal regions are known to cause 
difficulties during the assembly of short reads [13]. 
To assess the degree of ambiguity of sequencing 
reads, a method was developed that derives the 
uniqueness of all reads, accounting for both the 
read quality and the match to the reference ge-
nome. 
Sequence reads from Illumina and 454 are re-
ported with base qualities: a per-nucleotide meas-
ure that denotes the credibility of the base calls. A 
method was derived which condenses these quali-
ties into values per position in the reference ge-
nome and calculates the following information: 
uniqueness-weighted quality, information content, 
sequence agreement, and repeat-weighted cover-
age, (see methods). These estimates provide a 
preliminary overview of regions that may appear 
problematic to assemble. In general, low unique-
ness is found in the gaps between the assembled 
contigs generated by the default assembly tools 
from a given sequence dataset, as will be demon-
strated below. A high score of uniqueness-
weighted quality indicates that the base is unique-
ly identified by a read and that it has a high base 
quality in that read. The approach is illustrated in 
Figure 1. 
From the mapping, five different parameters were 
calculate which together summarizes the trust-
worthiness of the reads given the assembly: 

Weighted coverage Under the assumption that 
all reads would map only once (Hr=1), the cov-
erage c(i) can be calculated as the number of 
alignments R mapped at position i. A weighted 
coverage c’(i)=wr,h (see equation below) is used 
to correct for higher coverage artificially intro-
duced by repeats: 
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Figure 1 | Mapping reads to a reference genome accounting for uniqueness. In step 1, each read is 
aligned against the reference genome. In the second step, the quality of each read is weighted ac-
cording to the uniqueness of the hit. A read giving rise to two hits S1 and S2 in the reference ge-
nome will be weighted proportionally with the relative alignment scores; if scores are identical, the 
mapping of S1 and S2 will be applied a weight of w=0.5 (see equation below). Step 3 maps the 
weighted qualities back to the reference genome so that each genomic position contains an array 
of weighted qualities. Once all reads are mapped, in step 4 only the maximum weighted quality 
value is kept and, step 5, the maximum weighted quality scores are color coded to reveal regions 
of low uniqueness. 

 

Sequence agreement This denotes the frequency 
of the reference nucleotide among the reads 
mapped at a given position and reveals the extent 
of agreement between the reads and the reference 
genome, as shown in Figure 2. 

 
Figure 2. Agreement between reads and ref-
erence sequence. 

Uniqueness-weighted quality This measure cor-
responds to the base qualities obtained from the 

reads that are mapped to the reference genome, 
weighted by the uniqueness of the read. Consider 
read r, which has a quality profile , where i is 
the position in the read. The read is aligned to the 
reference genome by BLAST, and all Hr hits are 
included, when the following criteria are met: 
BLAST score Sh of hit h is greater than or equal to 
S0 (optionally provided by the user), Sh ≥ S1 ⋅ x 
where S1 is the score of the first/best hit, x ∈ [0;1] 
is a constant provided by the user, and the E-value 
is equal to or less than a threshold specified by the 
user. The following formula is used to derive the 
weighted quality : 
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From all the q’r(i) values obtained at each position 
in the genome, the maximum uniqueness-
weighted quality is chosen when all reads have 
been mapped. 
Information content provides a number in bits of 
information [14] representing to what degree the 
reads agree: zero bits means equal distribution of 

A, T, G and C at a given position and 2 bits means 
complete conservation of a single base. 
 

2 22 log loga
i i i

ATGC

R P Pα

α∈

= + ⋅∑  

The value is plotted on a color scale whereby low 
information (random distribution, least expected) 
is given in dark colors, and high information (high 
conservation, most expected) as light or neutral 
color. This measure may be useful for visualizing 
single nucleotide polymorphisms. 
Read absence. A boolean where ‘one’ indicates 
complete absence of aligned reads. 

Visualization of whole-genome homology 
The BLASTatlas method [15] derives a map of per-
nucleotide numbers on a reference genome to 
visualize the matches in the alignment between 
the reference genome and a query. The query can 
constitute any number of genomic contigs, scaf-
folds, full genomes, or collections thereof. This 
provides a method to identify regions of a refer-
ence genome that are conserved throughout mul-
tiple samples, as well as those that are unique. The 
BLASTatlas method is integrated into the GeneWiz 
browser software to facilitate a user-friendly in-
terface. According to the BLAST algorithm chosen, 
DNA or protein sequences of the reference are 
aligned with the best match in the query (using 
either blastp, blastn, tblastn, or blastx). The align-

ment is then mapped back to the reference ge-
nome. A match adds a 'one' whereas a mismatch 
adds a 'zero' at each position along the chromo-
some. These ones and zeros translate into smooth 
color zones due to binning 

DNA properties and DNA destabilization 
Through the web interface it is currently possible 
to select from 36 different nucleotide composition 
and DNA structural properties [4,5,16-22]. In addi-
tion to this, calculations of so-called SIDD energy 
estimates are provided, offering an approximation 
of promoter regions. This method estimates the 
free energy required to open the DNA helix, calcu-
lated at the three different superhelix densities σ = 
-0.035, -0.044, -0.055, using the SIDD algorithm 
[23]. All of these parameters can be applied in any 
combination to any of the prokaryotic genomes 
available from the web interface, or to a custom 
sequence provided by the user. Alternatively, the 
parameters may be applied as collections forming 
8 standard atlases: Genome-, Base-, Structure-, 
Cruciform-, A-DNA-, Z-DNA-, the Repeat-atlas, and 
finally the SIDD atlas, which is introduced in this 
manuscript (Figure 3). 

 
Figure 3 Configuration and references for pre-defined groups of DNA sequence- and structural proper-
ties: Genome-, Base-, Structure-, Cruciform-, A-DNA-, Z-DNA-, Repeat-, and SIDD-atlas.
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Custom data 
A designated section of the GeneWiz browser is 
assigned for custom data. It allows the user to 
provide a per-nucleotide list of numerical values 
along with a desired color and data range. Al-
though not presented here, this allows for visuali-
zation of additional information such as microar-
ray data that has been pre-processed by the user, 
by mapping gene expression, regulation change, or 
p-values back to genomic coordinates. In addition 
to the main genome annotation covering CDSs,  
 
tRNAs, and rRNAs, the user may specify miscella-
neous and pseudo-gene annotations separately. A 
button allows the query of selected reference ge-
nomes against a replicate of pseudogenes.org [24]. 
Other annotations of possible pseudogenes can be 
added, such as GenePRIMP output (geneprimp.jgi-
psf.org/). 

Dynamic visualization 
The GeneWiz browser allows dynamic dispropor-
tional zooming, meaning that zooming occurs 
nearly instantly when requested by the user, by 
redrawing all the components like tracks, legends, 
marks and text for every view. This allows the 
browser to scale the plot to make use of the entire 

plotting area, by not rescaling all parts of the plot 
equally. For example, zooming 10 x will stretch a 
data lane 10  in genome position axis, however 
the lane height and distance to the neighbor lane 
will remain constant. The dynamic nature of the 
GeneWiz browser requires pre-binning of data for 
each zoom level, all of which are stored on a cen-
tral server; for improved efficiency only data re-
quested by the user are sent. The approach to 
store per-nucleotide information as table records 
in a database (e.g. MySQL) has proved unfeasible, 
as the number of records per genome exceeds 
millions, and the construction of indexes would be 
very time consuming. Instead, a memory mapping 
technique was chosen, that allows the server to 
directly obtain the values from binary files when 
provided with the zoom window and level, for any 
chromosome in the database. (Examples are pro-
vided as supplemental data, http://www.cbs.-
dtu.dk/services/gwBrowser/suppl/). 
The client is written as a JavaApplet, that obtains 
the data remotely from the server 
(http://ws.cbs.dtu.dk/cgi-bin/gwBrowser-
0.91/server.cgi). The browser server is written in 
Perl/CGI, while a compiled c-program handles the 
access to the binary data files. The options cur-
rently supported are listed in Table 2. 

Table 2 GeneWiz Browser server options. 
Option description 
d The unique identifier for the atlas 

ft Feature type (e.g. CDS,rRNA,tRNA) when returning 
annotations 

f Data field to return 
b Begin of window 
e End of window 
l Zoom level 
z Enable zlib compression of output 
m=i Return the genome length 
m=avg/stddev/min/max Return aggregate data for window/genome 

m=d 
Return data values provided field, window and zoom 
level 

m=c Return colors provided two or three-step ranges 
m=n Return nucleotides provided the window 
m=a Return annotations (used together with option ‘ft’) 
  

These options (Table 2) can be incorporated into a 
single URL. For example, one could request all 
numerical data for field f=dnap0, at zoom level 
l=5, from position b=1 to e=37,473bp, using com-
pression, z=true (http://ws.cbs.dtu.dk/cgi-
bin/gwBrowser-0.91/server.cgi?d=AL1111- 

68GENOMEatlas&m=d&f=dnap0&b=1&e=37473&
l=5&z=true). The field names and their configura-
tions are described in the xml record, which can 
be downloaded from the web 
(http://ws.cbs.dtu.dk/cgi-bin/gwBrowser-
0.91/fetchxml.cgi?AL111168GENOMEatlas). Fur-

http://ws.cbs.dtu.dk/cgi-bin/gwBrowser-0.91/server.cgi?d=AL1111-�
http://ws.cbs.dtu.dk/cgi-bin/gwBrowser-0.91/server.cgi?d=AL1111-�
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ther examples are provided in the supplemental 
data section. 

The GeneWiz workflow and data displayed 
The GeneWiz browser plots and provides dispro-
portional zooming for data pertaining to features 
and genes as well as numerical data associated 
with each nucleotide. The disproportional capabil-
ity of the GeneWiz browser implies that all com-
ponents (legends, tracks, marks, etc.) are regene-
rated for every view requested by the user. Figure 4 
outlines the GeneWiz browser workflow. 

When submitting a job via the web interface, the 
request is assigned a job identifier, under which 
all data lanes and configurations are kept. After 
the job has been processed the user may alter lane 
order, colors, ranges, and append various types of 
marks to the plot. The layout of a given browser 
instance is governed by an XML file, located on the 
server. When generating the graphical representa-
tion of the genome, the client Java program will 
make requests to the server to acquire aggregated 
values, such as the averages, standard deviations, 
minima, and maxima as well as lane data and an-
notations. 

 
Figure 4 | The dataflow of the GeneWiz browser service. 1) The selected reference genome and the 
lanes to be included are defined via the web interface. 2) The request is sent to the analysis server 
that handles the calculations. 3) When the job is finished, the web page redirects to the applet 
viewer that allows the user to navigate and edit the plot layout. 

Premade atlases 
The genome sequences stored in the CBS Genome 
Atlas Database [25] are synchronized with NCBI 
Entrez genome projects and have been pre-
processed for all of the eight standard atlases 
mentioned above. This allows the user to select 
from currently 1,636 pre-binned replicons from 
864 prokaryotic sequencing projects, searchable 
by replicon name, GenBank accession number, or 

organism name (http://www.cbs.dtu.dk/- servic-
es/gwBrowser/precalc/) 

Results 
Evaluation of re-sequencing quality 
Three re-sequenced bacterial genomes were ex-
amined, one genome sequence was generated us-
ing the Illumina GA technology, whereas two ge-
nome sequences were generated utilizing the 454-
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Titanium technology (Table 3). The public se-
quence was selected as reference for mapping the 
re-sequencing reads using the GeneWiz browser 
tool. The randomness in fragmentation was esti-
mated by comparing the experimental data with 
in-silico digestions, generated at 40X coverage 
using read lengths between 30 to 5,000 bp. A good 
correspondence between the in-silico and experi-
mental reads suggests little bias towards certain 
chromosomal regions (Figure 5, panel A). The as-

sembled contigs provided by 454 (C. jejuni and E. 
coli) are mapped to the reference genome using 
BLAST and annotated in the perimeter of the at-
lases (two leftmost atlases in Figure 5, panel A+B). 
The detailed atlas of the experimental data (true 
reads), are shown in Figure 5, panel B. Panel C 
shows quality/count of reads plotted as a function 
of read position. Note that the read quality de-
creases the further the distance from the begin-
ning of the read. 

Table 3 Sequencing details of three bacterial genomes, two of which were re-sequenced using 
454-Titanium and one with Illumina GA technology. 

 E. coli K12 MG1655 C. jejuni 
NCTC11168 

S. typhi Ty2 

Strain id ATCC: 700926D-5 ATCC: 
700819D-5 

ERA000001 

Technology 454-Titanium 454-Titanium Illumina GA II 
Read count 538,784 502,438 1,650,370 
Avg read length ((std. 
dev) 

522 (σ=53) 598 (σ=75) 51 (σ=0) 

Truncated length 600 600 35 
Coverage 61X 183X 18X 
Genome size 4,639,675 bp 1,641,481 bp 4,791,961 bp 
Accession and original 
Reference 

U00096 [26] AL111168 [27] AE014613 [28] 

 

 
Figure 5 | Panel A: The maximum uniqueness quality is shown for the actual reads (green-to-blue 
lane) plotted in the outermost lanes, using the published genome as a reference. The following 
lanes show in-silico digestions at 40 X coverage (red-to-blue lane), using read lengths 30, 50, 70, 
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200, 500, 1,000, 1,000, and 5,000 bases. Panel B shows the weighted coverage, agreement with 
reference, maximum uniqueness quality, information content, read absence, and AT content. All 
six plots can be accessed for zooming via the supplemental data section. Panel C displays the read 
count (green, secondary ordinate) and read quality (red, primary ordinate) as a function of read 
length. Note that read counts differ within the three datasets, resulting in different scales on the 
secondary ordinate. For the two 454-Titanium sets (C. jejuni and E. coli K12), an assembly was 
provided which allows a mapping of contigs to the reference genome. These marks are shown in 
gray in the perimeter of these plots. Red marks indicate contigs with two or more hits in the refer-
ence.

Genome homology: Comparing multiple 
Burkholderia species 
A comparative study aimed at mapping for exam-
ple pathogenic islands or gene losses among dif-
ferent bacterial genomes can benefit from a graph-
ical representation provided by the BLASTatlas 
method. The genus of Burkholderia covers a num-
ber of important animal and human pathogens 
known to cause melioidosis (B. pseudomallei) and 
pulmonary infection in cystic fibrosis (CF) patients 
(B. cepacia), whereas B. thailandensis, which is 
closely related to B. pseudomallei, rarely gives rise 
to diseases in humans [29,30]. Both species of B. 
thailandensis and B. mallei display large chromo-
somal deletions when compared to B. pseudomal-
lei. However, the more scattered nature of the 

gene loss observed in B. thailandensis suggests 
that B. mallei evolved from B. pseudomallei 
through the loss of larger regions [31]. These dele-
tions are evident from the atlas shown in Figure 6 
where the two chromosomes of Burkholderia 
pseudomallei 1710b are used as BLASTatlas refer-
ence in a comparison with 14 publicly available 
Burkholderia genomes (B. thailandensis plus all 
species having two or more strains sequenced, see 
supplemental data). In addition it is evident that a 
strong preference of deletion exist for chromo-
some II. Ong and co-workers report that deletions 
in chromosome II counts for 70% and 61% of the 
total gene loss in B. mallei and B. thailandensis, 
respectively.

 
Figure 6 | BLASTatlas of Burkholderia pseudomallei 1710b chromosomes I+II compared with 14 
Burkholderia species. Showing from the outermost circles: B. ambifaria (2, purple), B. cenocepacia 
(4, red) B. thailandensis (1, green) 10774, B. mallei (4, green), and B. pseudomallei (3, blue). In-
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nermost circles show percent AT, and CG skew. Note, that to allow visual comparison between B. 
thailandensis and B. mallei, both species are colored green: the outermost green lane corresponds 
to the single B. thailandensis, whereas the remaining four green lanes are all B. mallei. GenBank 
accession numbers as well as interactive plots are available through the supplemental data section.

The SIDD atlas: Annotation of regulatory 
elements 
The browser application enables the user to ap-
pend various annotation marks such as transcrip-
tion start site arrows, gene labels, and boxes. A 
final example illustrates how these marks can be 
used to integrate known regulatory elements with 
DNA properties and gene annotations to draw a 
more complete picture of a promoter region. The 
regulatory elements of the E. coli K12 MG1665 rrn 
operons [32] have been annotated in a standard 
SIDD atlas, providing a visualization of the P1/P2 

promoter structure (Figure 7). A zoom of the pro-
moter region reveals a strong SIDD site near the 
predominant P1 promoter approximately 40 bp. 
upstream of the P1 transcription start site. The 
transcription factor FIS stimulates transcription at 
several promoters, and for example the binding of 
FIS at the leuV promoter [33] has been suggested 
to transmit the superhelical destabilization down-
stream to the point where the RNAP twists and 
opens the helix [34]. This model may be valid for 
the rrnB P1 promoter also, as the activity of leuV 
and rrnB P1 are comparable [35]. 

  
Figure 7 | A zoom upstream of the E. coli K12 MG1665 rrnB operon. The three outer-most lanes 
show SIDD at three superhelix densities of sigma=-0.055, -0.045, and -0.035. The lower free ener-
gy required to melt the helix can be observed near the UP element of P1, for the SIDD lane at sig-
ma = -0.045. The atlas is available for zooming on the supplemental data section. 

Discussion
Visualization of the multidimensional information 
that is represented by a single genome sequence 
remains complex. An indispensable property of a 
genome visualization tool is that it must be zoom-
able, so that information can be interpreted at 
varying scales. Two recently published methods, 
the DNAPlotter [36] and the Genome Projector 
[37], both enable the user to build circular plots of 
numerical data related to genes as well as graphs 
of numerical data pertaining to the nucleotides. 

These tools create static graphics and allows only 
for proportional zooming, hence making the plot 
hard to interpret when zooming too deep. Both of 
these tools allow for visualization of individual 
genomes, but do not allow easy comparison across 
multiple genomes. With the ease of new genome 
sequences becoming available, it is essential to be 
able to quickly compare other genomes to a refer-
ence. 
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A number of other tools approach genome visuali-
zation from different angles: Genome Diagram [38] 
and Circos [39] are command line programs gene-
rating publication quality static images and vector 
graphics. Although these tools allow comparison 
of other genomes, are flexible and allow visualiza-
tion of numerical data, they lack an interactive 
layer. 
The GeneWiz browser described here uses dis-
proportional zooming to overcome this. From a 
technical perspective, the choice of programming 
language for writing graphical browsers is of im-
portance. There are obvious advantages of provid-
ing platform-independent Java software like that 
of the GeneWiz browser, but often this is at the 
cost of performance. Nevertheless, our tool de-
monstrates the usefulness of a genome browser 
that relies on interactive, true disproportional 
zooming to visualize annotated genes and features 
as well as numerical data provided at single nuc-
leotide resolution. By building a comprehensive 
tool that is both scalable and flexible, we have 
shown how different types of genomic data can be 
integrated into a single, easily navigated graphic 
that can be annotated further by the user. 
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